
Dallinger Documentation
Release 2.7.0

Dallinger Development Team

February 13, 2017

User Documentation

1 Installation 3

2 Installing Dallinger with Anaconda 5

3 Setting Up AWS, psiTurk, and Heroku 7

4 Demoing Dallinger 11

5 Learning to Use Dallinger 13

6 Monitoring a Live Experiment 15

7 Viewing the PostgreSQL Database 17

8 Command-Line Utility 19

9 2048 21

10 Bartlett (1932), stories 23

11 Networked chatroom-based coordination game 25

12 Concentration 27

13 Transmitting functions 29

14 Bartlett (1932), drawings 31

15 Markov Chain Monte Carlo with People 33

16 Rogers’ Paradox 35

17 The Sheep Market 37

18 Snake 39

19 Vox Populi (Wisdom of the crowd) 41

20 Developer Installation 43

21 Required Experimental Files 47

i

22 Database API 49

23 The Experiment Class 63

24 Web API 67

25 Communicating With the Server 71

26 Acknowledgments 73

27 Dallinger’s incubator 75

ii

Dallinger Documentation, Release 2.7.0

Laboratory automation for the behavioral and social sciences.

User Documentation 1

Dallinger Documentation, Release 2.7.0

2 User Documentation

CHAPTER 1

Installation

If you would like to contribute to Dallinger, please follow these alternative install instructions.

1.1 Install Python

Dallinger is written in the language Python. For it to work, you will need to have Python 2.7 installed. You can check
what version of Python you have by running:

python --version

If you do not have Python 2.7 installed, you can install it from the Python website.

1.2 Install Postgres

Dallinger uses Postgres to create local databases. On OS X, install Postgres from postgresapp.com. This will require
downloading a zip file, unzipping the file and installing the unzipped application.

You will then need to add Postgres to your PATH environmental variable. If you use the default location for installing
applications on OS X (namely /Applications), you can adjust your path by running the following command:

export PATH="/Applications/Postgres.app/Contents/Versions/9.3/bin:$PATH"

NB: If you have installed a more recent version of Postgres (e.g., the the upcoming version 9.4), you may need to alter
that command slightly to accommodate the more recent version number. To double check which version to include,
then run:

ls /Applications/Postgres.app/Contents/Versions/

Whatever number that returns is the version number that you should place in the export command above. If it does
not return a number, you have not installed Postgres correctly in your /Applications folder or something else is
horribly wrong.

1.3 Create the Database

After installing Postgres, you will need to create a database for your experiments to use. Run the following command
from the command line:

3

https://www.python.org/downloads/
http://postgresapp.com
https://github.com/PostgresApp/PostgresApp/releases/tag/9.4rc1

Dallinger Documentation, Release 2.7.0

psql -c 'create database dallinger;' -U postgres

1.4 Install Dallinger

Install Dallinger from the terminal by running

pip install dallinger

Test that your installation works by running:

dallinger --version

If you use Anaconda, installing Dallinger probably failed. The problem is that you need to install bindings for the
psycopg2 package (it helps Python play nicely with Postgres) and you must use conda for conda to know where to
look for the links. You do this with:

conda install psycopg2

Then, try the above installation commands. They should work now, meaning you can move on.

Next, you’ll need access keys for AWS, Heroku, etc..

4 Chapter 1. Installation

CHAPTER 2

Installing Dallinger with Anaconda

If you are interested in Dallinger and use Anaconda, you’ll need to adapt the standard instructions slightly.

2.1 Install psycopg2

In order to get the correct bindings, you need to install psycopg2 before you use requirements.txt; otherwise,
everything will fail and you will be endlessly frustrated.

conda install psycopg2

2.2 Install Dallinger

You’ll follow all of the Dallinger development installation instructions, with the exception of the virtual environ-
ment step. Then return here.

2.3 Confirm Dallinger works

Now, we need to make sure that Dallinger and Anaconda play nice with one another. At this point, we’d check to
make sure that Dallinger is properly installed by typing

dallinger --version

into the command line. For those of us with Anaconda, we’ll get a long error message. Don’t panic! Add the following
to your .bash_profile:

export DYLD_FALLBACK_LIBRARY_PATH=$HOME/anaconda/lib/:$DYLD_FALLBACK_LIBRARY_PATH

If you installed anaconda using Python 3, you will need to change anaconda in that path to anaconda3.

After you source your .bash_profile, you can check your Dallinger version (using the same command that we
used earlier), which should return the Dallinger version that you’ve installed.

2.4 Re-link Open SSL

Finally, you’ll need to re-link openssl. Run the following:

5

https://www.continuum.io/downloads

Dallinger Documentation, Release 2.7.0

brew install --upgrade openssl
brew unlink openssl && brew link openssl --force

6 Chapter 2. Installing Dallinger with Anaconda

CHAPTER 3

Setting Up AWS, psiTurk, and Heroku

Before you can use Dallinger, you will need accounts with Amazon Web Services, Amazon Mechanical Turk, Heroku,
and psiTurk. You will then need to create a configuration file and set up your environment so that Dallinger can access
your accounts.

3.1 Create the configuration file

The first step is to create the Dallinger configuration file in your home directory. You can do this using the Dallinger
command-line utility through

dallinger setup

which will prepopulate a hidden file .dallingerconfig in your home directory. Alternatively, you can create this
file yourself and fill it in like so:

[AWS Access]
aws_access_key_id = ???
aws_secret_access_key = ???
aws_region = us-east-1

[psiTurk Access]
psiturk_access_key_id = ???
psiturk_secret_access_id = ???

[Heroku Access]
heroku_email_address = ???
heroku_password = ???

[Email Access]
dallinger_email_address = ???
dallinger_email_password = ???

[Task Parameters]
experiment_code_version = 1.0
num_conds = 1
num_counters = 1

[Server Parameters]
port = 5000
cutoff_time = 30
logfile = -
loglevel = 0

7

Dallinger Documentation, Release 2.7.0

debug = true
login_username = examplename
login_pw = examplepassword
threads = 1
clock_on = true

In the next steps, we’ll fill in your config file with keys.

3.2 Amazon Web Services API Keys

You can get API keys for Amazon Web Services by following these instructions.

Then fill in the following lines of .dallingerconfig, replacing ??? with your keys:

[AWS Access]
aws_access_key_id = ???
aws_secret_access_key = ???

N.B. One feature of AWS API keys is that they are only displayed once, and though they can be regenerated, doing so
will render invalid previously generated keys. If you are running experiments using a laboratory account (or any other
kind of group-owned account), regenerating keys will stop other users who have previously generated keys from being
able to use the AWS account. Unless you are sure that you will not be interrupting others’ workflows, it is advised that
you do not generate new API keys. If you are not the primary user of the account, see if you can obtain these keys
from others who have successfully used AWS.

3.3 Amazon Mechanical Turk

It’s worth signing up for Amazon Mechanical Turk (perhaps using your AWS account from above), both as a requester
and as a worker. You’ll use this to test and monitor experiments. You should also sign in to each sandbox, requester
and worker using the same account. Store this account and password somewhere, but you don’t need to tell it to
Dallinger.

3.4 psiTurk

Next, create an account on psiTurk, which will require a valid email address. Once you confirm your account, click
on **API Keys**, which will allow you to access your API keys as seen in the image below:

Fig. 3.1: Don’t even try to use these API Keys, they’ve been reissued!

Place these credential in the .dallingerconfig file:

Then fill in the following lines of .dallingerconfig, replacing ??? with your keys:

[psiTurk Access]
psiturk_access_key_id = ???
psiturk_secret_access_id = ???

8 Chapter 3. Setting Up AWS, psiTurk, and Heroku

http://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html
https://requester.mturk.com/mturk/beginsignin
https://www.mturk.com/mturk/beginsignin
https://requester.mturk.com/begin_signin
https://workersandbox.mturk.com/mturk/welcome
http://psiturk.org/
https://psiturk.org/dashboard/api_credentials

Dallinger Documentation, Release 2.7.0

3.5 Heroku

Next, sign up for Heroku and install the Heroku toolbelt.

You should see an interface that looks something like the following:

Fig. 3.2: This is the interface with the Heroku app

Then, log in from the command line:

heroku login

And fill in the appropriate section of .dallingerconfig:

[Heroku Access]
heroku_email_address = ???
heroku_password = ???

3.6 Done?

Done. You’re now all set up with the tools you need to work with Dallinger.

Next, we’ll test Dallinger to make sure it’s working on your system.

3.5. Heroku 9

https://www.heroku.com/
https://toolbelt.heroku.com/

Dallinger Documentation, Release 2.7.0

10 Chapter 3. Setting Up AWS, psiTurk, and Heroku

CHAPTER 4

Demoing Dallinger

First, make sure you have Dallinger installed:

• Installation

• Developer Installation

To test out Dallinger, we’ll run a demo experiment in debug mode. First download the Bartlett (1932) demo and unzip
it. Then run Dallinger in debug mode from within that demo directory:

dallinger debug

You will see some output as Dallinger loads. When it is finished, you will see something that looks like:

Now serving on http://0.0.0.0:5000
[psiTurk server:on mode:sdbx #HITs:4]$

This is the psiTurk prompt. Into that prompt type:

debug

This will cause the experiment to open in a new window in your browser. Alternatively, type

debug --print-only

to get the URL of the experiment so that you can view it on a different machine than the one you are serving it on.

Once you have finished running through the experiment as a participant, you can type debug again to play as the next
participant.

Help, the experiment page is blank! This may happen if you are using an ad-blocker. Try disabling your ad-blocker
and refresh the page.

11

http://dallinger.readthedocs.io/en/latest/demos/bartlett1932.html

Dallinger Documentation, Release 2.7.0

12 Chapter 4. Demoing Dallinger

CHAPTER 5

Learning to Use Dallinger

5.1 Beginner

5.1.1 Key concepts in Dallinger

• Database API

• The Experiment Class

5.1.2 Dallinger as a web app

• Communicating With the Server

• Web API

5.1.3 Experimental design

• Required Experimental Files

• config.txt

• Dallinger.js

5.1.4 Example walkthroughs

• Bartlett1932 walkthrough

5.2 Intermediate

5.2.1 Experimental design

• Networks

• Nodes

• Infos

• Transformations

13

Dallinger Documentation, Release 2.7.0

• Using properties 1 through 5

• Processes

• Failing

5.2.2 Running experiments

• Command-Line Utility

• Debugging

5.3 Advanced

5.3.1 Experimental design

• Changing route behavior and making new routes

• Sending requests from within Dallinger

5.3.2 Running experiments

• Writing automated tests

• Compensating workers

• Monitoring a live experiment

• Recruiters

14 Chapter 5. Learning to Use Dallinger

CHAPTER 6

Monitoring a Live Experiment

There are a number of ways that you can monitor a live experiment:

6.1 Command line tools

dallinger summary --app {#id}, where {#id} is the id (w...) of the application.

This will print a summary showing the number of participants with each status code, as well as the overall yield:

status | count

1 | 26
101 | 80
103 | 43
104 | 2

Yield: 64.00%

6.2 Papertrail

You can use Papertrail to view and search the live logs of your experiment. You can access the logs either through
the Heroku dashboard’s Resources panel (https://dashboard.heroku.com/apps/{#id}/resources), where {#id} is the id
of your experiment, or directly through Papertrail.com (https://papertrailapp.com/systems/{#id}/events).

6.2.1 Setting up alerts

You can set up Papertrail to send error notifications to Slack or another communications platform.

0. Take a deep breath.

1. Open the Papertrail logs.

2. Search for the term error.

3. To the right of the search bar, you will see a button titled “+ Save Search”. Click it. Name the search “Errors”.
Then click “Save & Setup an Alert”, which is to the right of “Save Search”.

4. You will be directed to a page with a list of services that you can use to set up an alert.

5. Click, e.g., Slack.

15

https://dashboard.heroku.com/apps
https://papertrailapp.com/systems

Dallinger Documentation, Release 2.7.0

6. Choose the desired frequency of alert. We recommend the minimum, 1 minute.

7. Under the heading “Slack details”, open (in a new tab or window) the link new Papertrail integration.

8. This will bring you to a Slack page where you will choose a channel to post to. You may need to log in.

9. Select the desired channel.

10. Click “Add Papertrail Integration”.

11. You will be brought to a page with more information about the integration.

12. Scroll down to Step 3 to get the Webhook URL. It should look something like
https://hooks.slack.com/services/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.

13. Copy this link to your clipboard.

14. Change anything else you want and then scroll to the bottom and click “Save integration”.

15. Go back to Papertrail page that you left in Step 7.

16. Paste the copied URL into the input text box labeled “Integration’s Webhook URL” under the “Slack Details”
heading.

17. Click “Create Alert” on the same page.

18. Victory.

16 Chapter 6. Monitoring a Live Experiment

CHAPTER 7

Viewing the PostgreSQL Database

Postico is a nice tool for examining Postgres databases on OS X. We use it to connect to live experiment databases.
Here are the steps needed to do this:

1. Download Postico and place it in your Applications folder.

2. Open Postico.

3. Press the “New Favorite” button in the bottom left corner to access a new database.

4. Get the database credentials from the Heroku dashboard:

• Go to https://dashboard.heroku.com/apps/{app_id}/resources

• Under the Add-ons subheading, go to “Heroku Postgres :: Database”

• Note the database credentials under the subheading “Connection Settings”. You’ll use these in step 5.

5. Fill in the database settings in Postico. You’ll need to include the:

• Host

• Port

• User

• Password

• Database

6. Connect to the database.

• You may see a dialog box pop up saying that Postico cannot verify the identity of the server. Click
“Connect” to proceed.

17

https://eggerapps.at/postico/
https://dashboard.heroku.com/apps

Dallinger Documentation, Release 2.7.0

18 Chapter 7. Viewing the PostgreSQL Database

CHAPTER 8

Command-Line Utility

Dallinger is executed from the command line within the experiment directory with the following commands:

8.1 verify

Verify that a directory is a Dallinger-compatible app.

8.2 debug

Run the experiment locally. An optional --verbose flag prints more detailed logs to the command line.

8.3 sandbox

Runs the experiment on MTurk’s sandbox using Heroku as a server. An optional --verbose flag prints more detailed
logs to the command line.

8.4 deploy

Runs the experiment live on MTurk using Heroku as a server. An optional --verbose flag prints more detailed logs
to the command line.

8.5 logs

Open the app’s logs in Papertrail. A required --app <app> flag specifies the experiment by its id.

8.6 summary

Return a summary of an experiment. A required --app <app> flag specifies the experiment by its id.

19

Dallinger Documentation, Release 2.7.0

8.7 export

Download the database and partial server logs to a zipped folder within the data directory of the experimental folder.
Databases are stored in CSV format. A required --app <app> flag specifies the experiment by its id.

8.8 summary

Print a summary of the participant table to the command line. A required --app <app> flag specifies the experiment
by its id.

8.9 qualify

Assign qualification to a worker. Requires a qualification id qualification_id, value value, and worker id
worker_id. This is useful when compensating workers if something goes wrong with the experiment.

8.10 hibernate

Temporarily scales down the specified app to save money. All dynos are removed and so are many of the add-ons.
Hibernating apps are non-functional. It is likely that the app will not be entirely free while hibernating. To restore the
app use awaken. A required --app <app> flag specifies the experiment by its id.

8.11 awaken

Restore a hibernating app. A required --app <app> flag specifies the experiment by its id.

8.12 destroy

Tear down an experiment server. A required --app <app> flag specifies the experiment by its id.

20 Chapter 8. Command-Line Utility

CHAPTER 9

2048

2048 is a sliding-block puzzle game by the Italian web developer Gabriele Cirulli. The goal is to slide numbered tiles
on a grid, combining them to create a tile with a value of 2048.

Download the demo.

21

Dallinger Documentation, Release 2.7.0

Fig. 9.1: Screenshot of an in-progress 2048 game

22 Chapter 9. 2048

CHAPTER 10

Bartlett (1932), stories

Frederic Bartlett’s 1932 book Remembering documents early experiments that explore how using and transmitting a
memory can affect the memory’s contents. Bartlett wanted to understand how culture shapes memory. Inspired by
Philippe (1897), he performed a series of experiments that asked participants to repeatedly recall a memory or to pass
it down a chain of people, from one to the next. Bartlett showed that the process of reproduction alters memories over
time, causing them to take on features from an individual’s culture. More generally, the methods he developed expose
cumulative effects of the forces that reshape and degrade memories and how they impact the structure and veracity of
what we remember.

Bartlett, F. C. (1932). Remembering. Cambridge: Cambridge University Press.

In this demo, a story is passed down a chain.

Download the demo.

23

Dallinger Documentation, Release 2.7.0

24 Chapter 10. Bartlett (1932), stories

CHAPTER 11

Networked chatroom-based coordination game

This is a networked coordination game where players broadcast messages to each other and try to make the same
decision as others.

Download the demo.

25

Dallinger Documentation, Release 2.7.0

26 Chapter 11. Networked chatroom-based coordination game

CHAPTER 12

Concentration

The objective of Concentration is to flip and match all the turned-down cards in as few moves as possible.

Fig. 12.1: Screenshot of an in-progress Concentration game

Download the demo.

27

Dallinger Documentation, Release 2.7.0

28 Chapter 12. Concentration

CHAPTER 13

Transmitting functions

Culturally transmitted knowledge changes as it is transmitted from person to person. Some of the most striking
instances of this process come from cases of language acquisition. For example, in Nicaragua, a community of deaf
children transformed a fragmentary pidgin into a language with rich grammatical structure by learning from each
other (Kegl and Iwata, 1989; Senghas and Coppola, 2001). Languages, legends, and social norms are all shaped by
the processes of cultural transmission (Cavalli-Sforza, 1981; Boyd and Richerson, 1988; Kirby, 1999, 2001; Briscoe,
2002).

Laboratory studies of cultural transmission often use the method of “iterated learning”, which has roots in Bartlett’s
experiments. In the iterated learning paradigm, information is passed along a chain of individuals, from one to the
next, much like in the children’s game Telephone. Iterated learning paradigms for the transmission of language and
other forms of knowledge have been developed, too (Kalish et al., 2007; Griffiths and Kalish, 2007; Griffiths et al.,
2008a). For example, in one study, participants learned the relationship between two continuous variables (“function
learning”) and were tested on what they had discovered (Kalish et al., 2007). Responses on the test were then used to
train the next participant in the chain. Kalish et al. (2007) found that, over time, knowledge transmitted through the
chain reverts to the prior beliefs of the individual learners.

Kalish, M. L., Griffiths, T. L., & Lewandowsky, S. (2007). Iterated learning: Intergenerational knowledge transmission
reveals inductive biases. Psychonomic Bulletin and Review, 14, 288-294.

Download the demo.

29

Dallinger Documentation, Release 2.7.0

30 Chapter 13. Transmitting functions

CHAPTER 14

Bartlett (1932), drawings

Frederic Bartlett’s 1932 book Remembering documents early experiments that explore how using and transmitting a
memory can affect the memory’s contents. Bartlett wanted to understand how culture shapes memory. Inspired by
Philippe (1897), he performed a series of experiments that asked participants to repeatedly recall a memory or to pass
it down a chain of people, from one to the next. Bartlett showed that the process of reproduction alters memories over
time, causing them to take on features from an individual’s culture. More generally, the methods he developed expose
cumulative effects of the forces that reshape and degrade memories and how they impact the structure and veracity of
what we remember.

Fig. 14.1: Bartlett’s drawing experiment

Bartlett, F. C. (1932). Remembering. Cambridge: Cambridge University Press.

In this demo, a drawing is passed down a chain.

Download the demo.

31

Dallinger Documentation, Release 2.7.0

32 Chapter 14. Bartlett (1932), drawings

CHAPTER 15

Markov Chain Monte Carlo with People

Markov Chain Monte Carlo with People (MCMCP) is a method for uncovering mental representations that exploits an
equivalence between a model of human choice behavior and an element of an MCMC algorithm. This demo replicates
Experiment 3 of Sanborn, Griffiths, & Shiffrin (2010), which applies MCMCP to four natural categories, providing
estimates of the distributions over animal shapes that people associate with giraffes, horses, cats, and dogs.

Sanborn, A. N., Griffiths, T. L., & Shiffrin, R. M. (2010). Uncovering mental representations with Markov chain
Monte Carlo. Cognitive Psychology, 60(2), 63-106.

Download the demo.

33

Dallinger Documentation, Release 2.7.0

34 Chapter 15. Markov Chain Monte Carlo with People

CHAPTER 16

Rogers’ Paradox

This experiment, which demonstrates Rogers paradox, explores the evolution of asocial learning and unguided social
learning in the context of a numerical discrimination task.

Download the demo.

35

Dallinger Documentation, Release 2.7.0

36 Chapter 16. Rogers’ Paradox

CHAPTER 17

The Sheep Market

“The Sheep Market is a collection of 10,000 sheep created by workers on Amazon’s Mechanical Turk. Each worker
was paid $.02 (US) to “draw a sheep facing left.”

http://www.aaronkoblin.com/project/the-sheep-market/

Download the demo.

37

http://www.aaronkoblin.com/project/the-sheep-market/

Dallinger Documentation, Release 2.7.0

38 Chapter 17. The Sheep Market

CHAPTER 18

Snake

This is the video game Snake, in which the player maneuvers a line which grows in length within the bounds of a box,
with the line itself being a primary obstacle.

Download the demo.

39

https://en.m.wikipedia.org/wiki/Snake_(video_game)

Dallinger Documentation, Release 2.7.0

40 Chapter 18. Snake

CHAPTER 19

Vox Populi (Wisdom of the crowd)

https://en.wikipedia.org/wiki/Wisdom_of_the_crowd

Download the demo.

41

https://en.wikipedia.org/wiki/Wisdom_of_the_crowd

Dallinger Documentation, Release 2.7.0

42 Chapter 19. Vox Populi (Wisdom of the crowd)

CHAPTER 20

Developer Installation

We recommend installing Dallinger on Mac OS X. It’s also possible to use Ubuntu.

20.1 Install Python 2.7

You will need Python 2.7. You can check what version of Python you have by running:

python --version

If you do not have Python 2.7 installed, you can install it from the Python website.

Or, if you use Homebrew:

brew install python

Or, if you use Anaconda, install using conda, not Homebrew.

If you have Python 3.x installed and and symlinked to the command python, you will need to create a virtualenv
that interprets the code as python2.7 (for compatibility with the psiturk module). Fortunately, we will be
creating a virtual environment anyway, so as long as you run brew install python and you don’t run into any
errors because of your symlinks, then you can proceed with the instructions. If you do run into any errors, good luck,
we’re rooting for you.

20.2 Install Postgres

On OS X, we recommend installing Postgres.app to start and stop a Postgres server. You’ll also want to set up the
Postgres command-line utilities by following the instructions here.

You will then need to add Postgres to your PATH environmental variable. If you use the default location for installing
applications on OS X (namely /Applications), you can adjust your path by running the following command:

export PATH="$PATH:/Applications/Postgres.app/Contents/Versions/latest/bin"

NB: If you have installed an older version of Postgres (e.g., < 9.5), you may need to alter that command to accommo-
date the more recent version number. To double check which version to include, run:

ls /Applications/Postgres.app/Contents/Versions/

Whatever values that returns are the versions that you should place in the export command above in the place of
latest.

43

https://www.python.org/downloads/
http://postgresapp.com
http://postgresapp.com/documentation/cli-tools.html

Dallinger Documentation, Release 2.7.0

If it does not return a number, you have not installed Postgres correctly in your /Applications folder or something
else is horribly wrong.

On Ubuntu, follow the instructions under the heading “Installation” here.

20.3 Create the Database

After installing Postgres, you will need to create a database for your experiments to use. First, open the Postgres.app.
Then, run the following command from the command line:

psql -c 'create database dallinger;' -U postgres

If you get the following error...

psql: could not connect to server: No such file or directory
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

...then you probably did not start the app.

20.4 Set up a virtual environment

Note: if you are using Anaconda, ignore this virtualenv section; use conda to create your virtual environment.
Or, see the special Anaconda installation instructions.

Set up a virtual environment by running the following commands:

pip install virtualenv
pip install virtualenvwrapper
export WORKON_HOME=$HOME/.virtualenvs
mkdir -p $WORKON_HOME
source $(which virtualenvwrapper.sh)
mkvirtualenv dallinger --python /usr/local/bin/python2.7

These commands use pip, the Python package manager, to install two packages virtualenv and
virtualenvwrapper. They set up an environmental variable named WORKON_HOME with a string that gives
a path to a subfolder of your home directory (~) called Envs, which the next command (mkdir) then makes ac-
cording to the path described in $WORKON_HOME (recursively, due to the -p flag). That is where your environ-
ments will be stored. The source command will run the command that follows, which in this case locates the
virtualenvwrapper.sh shell script, the contents of which are beyond the scope of this setup tutorial. If you
want to know what it does, a more in depth description can be found on the documentation site for virtualenvwrapper.

Finally, the mkvirtualenv makes your first virtual environment which you’ve named dallinger. We have ex-
plicitly passed it the location of python2.7 so that even if your python command has been remapped to python3,
it will create the environment with python2.7 as its interpreter.

In the future, you can work on your virtual environment by running:

source $(which virtualenvwrapper.sh)
workon dallinger

NB: To stop working on the virtual environment, run deactivate. To list all available virtual environments, run
workon with no arguments.

44 Chapter 20. Developer Installation

https://help.ubuntu.com/community/PostgreSQL
http://virtualenvwrapper.readthedocs.io/en/latest/install.html#python-interpreter-virtualenv-and-path

Dallinger Documentation, Release 2.7.0

20.5 Install enchant

To be able to build the documentation, you will need to have the Enchant library installed. Please follow the instruc-
tions here to install it.

20.6 Install Dallinger

Next, navigate to the directory where you want to house your development work on Dallinger. Once there, clone the
Git repository using:

git clone https://github.com/Dallinger/Dallinger

This will create a directory called Dallinger in your current directory.

Change into your the new directory and make sure you are still in your virtual environment before installing the
dependencies. If you want to be extra careful, run the command workon dallinger, which will ensure that you
are in the right virtual environment.

Note: if you are using Anaconda – as of August 10, 2016 – you will need to follow special Anaconda installation
instructions. This should be fixed in future versions.

cd Dallinger

Now we need to install the dependencies using pip:

pip install -r dev-requirements.txt

Next run setup.py with the argument develop:

python setup.py develop

Test that your installation works by running:

dallinger --version

Note: if you are using Anaconda and get a long traceback here, please see the special Installing Dallinger with
Anaconda.

Next, you’ll need access keys for AWS, Heroku, etc..

20.5. Install enchant 45

http://pythonhosted.org/pyenchant/download.html

Dallinger Documentation, Release 2.7.0

46 Chapter 20. Developer Installation

CHAPTER 21

Required Experimental Files

Dallinger is flexible with regards to the form the front end takes. However, there are a number of required or forbidden
files. You can verify that a directory is compatible by running the verify command from a terminal within the directory.
Though just because these checks pass doesn’t mean the experiment will run! The minimal required structure is as
follows:

Blue items are (optional) directories (note that the experiment directory can have any name), green items are required
files (the README file can be either a txt file or a md file), and red items are forbidden files that will cause a conflict
at run time.

21.1 Required files

• config.txt - The config file contains a variety of parameters that affect how Dallinger runs. For more info see...

• experiment.py - This is a python file containing the custom experiment code.

• README.txt/md - This (hopefully) contains a helpful description of the experiment.

47

Dallinger Documentation, Release 2.7.0

21.2 Forbidden files

A number of files cannot be included in the experiment directory. This is because, when Dallinger runs, it inserts a
number of required files into the experiment directory and will overwrite any files with the same name. The files are
as follows:

• complete.html - this html page shows when dallinger is run in debug mode and the experiment is complete.

• error_dallinger.html - this is a flexible error page that shows when something goes wrong.

• launch.html - this page is shown when the /launch route is pinged and the experiment starts successfully.

• robots.txt - this file is returned to bots (e.g. from Google) that bump into the experiment when crawling the
internet.

• dallinger.js - this is a javascript library with a number of helpful functions.

• reqwest.min.js - this is required for dallinger.js to work.

• dallinger.css - this contains several css classes that are used in the demos.

48 Chapter 21. Required Experimental Files

https://github.com/ded/reqwest

CHAPTER 22

Database API

The classes involved in a Dallinger experiment are: Network, Node, Vector, Info, Transmission,
Transformation, Participant, and Question. The code for all these classes can be seen in models.py.
Each class has a corresponding table in the database, with each instance stored as a row in the table. Accordingly,
each class is defined, in part, by the columns that constitute the table it is stored in. In addition, the classes have
relationships to other objects and a number of functions.

The classes have relationships to each other as shown in the diagram below. Be careful to note which way the arrows
point. A Node is a point in a Network that might be associated with a Participant. A Vector is a directional
connection between a Node and another Node. An Info is information created by a Node. A Transmission is
an instance of an Info being sent along a Vector. A Transformation is a relationship between an Info and
another Info. A Question is a survey response created by a Participant.

22.1 SharedMixin

All Dallinger classes inherit from a SharedMixin which provides multiple columns that are common across tables:

49

Dallinger Documentation, Release 2.7.0

SharedMixin.id
a unique number for every entry. 1, 2, 3 and so on...

SharedMixin.creation_time
the time at which the Network was created.

SharedMixin.property1
a generic column that can be used to store experiment-specific details in String form.

SharedMixin.property2
a generic column that can be used to store experiment-specific details in String form.

SharedMixin.property3
a generic column that can be used to store experiment-specific details in String form.

SharedMixin.property4
a generic column that can be used to store experiment-specific details in String form.

SharedMixin.property5
a generic column that can be used to store experiment-specific details in String form.

SharedMixin.failed
boolean indicating whether the Network has failed which prompts Dallinger to ignore it unless specified other-
wise. Objects are usually failed to indicate something has gone wrong.

SharedMixin.time_of_death
the time at which failing occurred

22.2 Network

The Network object can be imagined as a set of other objects with some functions that perform operations over those
objects. The objects that Network‘s have direct access to are all the Node‘s in the network, the Vector‘s between
those Nodes, Infos created by those Nodes, Transmissions sent along the Vectors by those Nodes and Transforma-
tions of those Infos. Participants and Questions do not exist within Networks. An experiment may involve multiple
Networks, Transmissions can only occur within networks, not between them.

class dallinger.models.Network(**kwargs)
Contains and manages a set of Nodes and Vectors etc.

22.2.1 Columns

Network.type
A String giving the name of the class. Defaults to “network”. This allows subclassing.

Network.max_size
How big the network can get, this number is used by the full() method to decide whether the network is full

Network.full
Whether the network is currently full

Network.role
The role of the network. By default dallinger initializes all networks as either “practice” or “experiment”

22.2.2 Relationships

dallinger.models.Network.all_nodes
All the Nodes in the network.

50 Chapter 22. Database API

Dallinger Documentation, Release 2.7.0

dallinger.models.Network.all_vectors
All the vectors in the network.

dallinger.models.Network.all_infos
All the infos in the network.

dallinger.models.Network.networks_transmissions
All the transmissions int he network.

dallinger.models.Network.networks_transformations
All the transformations in the network.

22.2.3 Methods

Network.__repr__()
The string representation of a network.

Network.__json__()
Return json description of a participant.

Network.calculate_full()
Set whether the network is full.

Network.fail()
Fail an entire network.

Network.infos(type=None, failed=False)
Get infos in the network.

type specifies the type of info (defaults to Info). failed { False, True, “all” } specifies the failed state of the infos.
To get infos from a specific node, see the infos() method in class Node.

Network.latest_transmission_recipient()
Get the node that most recently received a transmission.

Network.nodes(type=None, failed=False, participant_id=None)
Get nodes in the network.

type specifies the type of Node. Failed can be “all”, False (default) or True. If a participant_id is passed only
nodes with that participant_id will be returned.

Network.print_verbose()
Print a verbose representation of a network.

Network.size(type=None, failed=False)
How many nodes in a network.

type specifies the class of node, failed can be True/False/all.

Network.transformations(type=None, failed=False)
Get transformations in the network.

type specifies the type of transformation (default = Transformation). failed = { False, True, “all” }

To get transformations from a specific node, see Node.transformations().

Network.transmissions(status=’all’, failed=False)
Get transmissions in the network.

status { “all”, “received”, “pending” } failed { False, True, “all” } To get transmissions from a specific vector,
see the transmissions() method in class Vector.

22.2. Network 51

Dallinger Documentation, Release 2.7.0

Network.vectors(failed=False)
Get vectors in the network.

failed = { False, True, “all” } To get the vectors to/from to a specific node, see Node.vectors().

22.3 Node

Each Node represents a single point in a single network. A Node must be within a Network and may also be associated
with a Participant.

class dallinger.models.Node(network, participant=None)
A point in a network.

22.3.1 Columns

Node.type
A String giving the name of the class. Defaults to node. This allows subclassing.

Node.network_id
the id of the network that this node is a part of

Node.participant_id
the id of the participant whose node this is

22.3.2 Relationships

Node.network
the network the node is in

Node.participant
the participant the node is associated with

dallinger.models.Node.all_outgoing_vectors
All the vectors going out from this Node.

dallinger.models.Node.all_incoming_vectors
All the vectors coming in to this Node.

dallinger.models.Node.all_infos
All Infos created by this Node.

dallinger.models.Node.all_outgoing_transmissions
All Transmissions sent from this Node.

dallinger.models.Node.all_incoming_transmissions
All Transmissions sent to this Node.

dallinger.models.Node.transformations_here
All transformations that took place at this Node.

22.3.3 Methods

Node.__repr__()
The string representation of a node.

52 Chapter 22. Database API

Dallinger Documentation, Release 2.7.0

Node.__json__()
The json of a node.

Node._to_whom()
To whom to transmit if to_whom is not specified.

Return the default value of to_whom for transmit(). Should not return None or a list containing None.

Node._what()
What to transmit if what is not specified.

Return the default value of what for transmit(). Should not return None or a list containing None.

Node.connect(whom, direction=’to’)
Create a vector from self to/from whom.

Return a list of newly created vector between the node and whom. whom can be a specific node or a (nested)
list of nodes. Nodes can only connect with nodes in the same network. In addition nodes cannot connect with
themselves or with Sources. direction specifies the direction of the connection it can be “to” (node ->
whom), “from” (whom -> node) or both (node <-> whom). The default is “to”.

Whom may be a (nested) list of nodes.

Will raise an error if:

1. whom is not a node or list of nodes

2. whom is/contains a source if direction is to or both

3. whom is/contains self

4. whom is/contains a node in a different network

If self is already connected to/from whom a Warning is raised and nothing happens.

This method returns a list of the vectors created (even if there is only one).

Node.fail()
Fail a node, setting its status to “failed”.

Also fails all vectors that connect to or from the node. You cannot fail a node that has already failed, but you
can fail a dead node.

Set node.failed to True and time_of_death to now. Instruct all not-failed vectors connected to this node,
infos made by this node, transmissions to or from this node and transformations made by this node to fail.

Node.is_connected(whom, direction=’to’, failed=None)
Check whether this node is connected [to/from] whom.

whom can be a list of nodes or a single node. direction can be “to” (default), “from”, “both” or “either”.

If whom is a single node this method returns a boolean, otherwise it returns a list of booleans

Node.infos(type=None, failed=False)
Get infos that originate from this node.

Type must be a subclass of Info, the default is Info. Failed can be True, False or “all”.

Node.mutate(info_in)
Replicate an info + mutation.

To mutate an info, that info must have a method called _mutated_contents.

Node.neighbors(type=None, direction=’to’, failed=None)
Get a node’s neighbors - nodes that are directly connected to it.

22.3. Node 53

Dallinger Documentation, Release 2.7.0

Type specifies the class of neighbour and must be a subclass of Node (default is Node). Connection is the
direction of the connections and can be “to” (default), “from”, “either”, or “both”.

Node.receive(what=None)
Receive some transmissions.

Received transmissions are marked as received, then their infos are passed to update().

“what” can be:

1.None (the default) in which case all pending transmissions are received.

2.a specific transmission.

Will raise an error if the node is told to receive a transmission it has not been sent.

Node.received_infos(type=None, failed=None)
Get infos that have been sent to this node.

Type must be a subclass of info, the default is Info.

Node.replicate(info_in)
Replicate an info.

Node.transformations(type=None, failed=False)
Get Transformations done by this Node.

type must be a type of Transformation (defaults to Transformation) Failed can be True, False or “all”

Node.transmissions(direction=’outgoing’, status=’all’, failed=False)
Get transmissions sent to or from this node.

Direction can be “all”, “incoming” or “outgoing” (default). Status can be “all” (default), “pending”, or “re-
ceived”. failed can be True, False or “all”

Node.transmit(what=None, to_whom=None)
Transmit one or more infos from one node to another.

“what” dictates which infos are sent, it can be:

1. None (in which case the node’s _what method is called).

2. an Info (in which case the node transmits the info)

3. a subclass of Info (in which case the node transmits all its infos of that type)

4. a list of any combination of the above

“to_whom” dictates which node(s) the infos are sent to, it can be:

1. None (in which case the node’s _to_whom method is called)

2. a Node (in which case the node transmits to that node)

3. a subclass of Node (in which case the node transmits to all nodes of that type it is connected to)

4. a list of any combination of the above

Will additionally raise an error if:

1. _what() or _to_whom() returns None or a list containing None.

2. what is/contains an info that does not originate from the transmitting node

3. to_whom is/contains a node that the transmitting node does not have a not-failed connection with.

54 Chapter 22. Database API

Dallinger Documentation, Release 2.7.0

Node.update(infos)
Process received infos.

Update controls the default behavior of a node when it receives infos. By default it does nothing.

Node.vectors(direction=’all’, failed=False)
Get vectors that connect at this node.

Direction can be “incoming”, “outgoing” or “all” (default). Failed can be True, False or all

22.4 Vector

A vector is a directional link between two nodes. Nodes connected by a vector can send Transmissions to each other,
but because Vectors have a direction, two Vectors are needed for bi-directional Transmissions.

class dallinger.models.Vector(origin, destination)
A directed path that links two Nodes.

Nodes can only send each other information if they are linked by a Vector.

22.4.1 Columns

Vector.origin_id
the id of the Node at which the vector originates

Vector.destination_id
the id of the Node at which the vector terminates.

Vector.network_id
the id of the network the vector is in.

22.4.2 Relationships

Vector.origin
the Node at which the vector originates.

Vector.destination
the Node at which the vector terminates.

Vector.network
the network the vector is in.

dallinger.models.Vector.all_transmissions
All Transmissions sent along the Vector.

22.4.3 Methods

Vector.__repr__()
The string representation of a vector.

Vector.__json__()
The json representation of a vector.

Vector.fail()
Fail a vector.

22.4. Vector 55

Dallinger Documentation, Release 2.7.0

Vector.transmissions(status=’all’)
Get transmissions sent along this Vector.

Status can be “all” (the default), “pending”, or “received”.

22.5 Info

An Info is a piece of information created by a Node. It can be sent along Vectors as part of a Transmission.

class dallinger.models.Info(origin, contents=None)
A unit of information.

22.5.1 Columns

Info.id

Info.creation_time

Info.property1

Info.property2

Info.property3

Info.property4

Info.property5

Info.failed

Info.time_of_death

Info.type
a String giving the name of the class. Defaults to “info”. This allows subclassing.

Info.origin_id
the id of the Node that created the info

Info.network_id
the id of the network the info is in

Info.contents
the contents of the info. Must be stored as a String.

22.5.2 Relationships

Info.origin
the Node that created the info.

Info.network
the network the info is in

dallinger.models.Info.all_transmissions
All Transmissions of this Info.

dallinger.models.Info.transformation_applied_to
All Transformations of which this info is the info_in

dallinger.models.Info.transformation_whence
All Transformations of which this info is the info_out

56 Chapter 22. Database API

Dallinger Documentation, Release 2.7.0

22.5.3 Methods

Info.__repr__()
The string representation of an info.

Info.__json__()
The json representation of an info.

Info._mutated_contents()
The mutated contents of an info.

When an info is asked to mutate, this method will be executed in order to determine the contents of the new info
created.

The base class function raises an error and so must be overwritten to be used.

Info.fail()
Fail an info.

Set info.failed to True and time_of_death to now. Instruct all transmissions and transformations involving
this info to fail.

Info.transformations(relationship=’all’)
Get all the transformations of this info.

Return a list of transformations involving this info. relationship can be “parent” (in which case only
transformations where the info is the info_in are returned), “child” (in which case only transformations
where the info is the info_out are returned) or all (in which case any transformations where the info is the
info_out or the info_in are returned). The default is all

Info.transmissions(status=’all’)
Get all the transmissions of this info.

status can be all/pending/received.

22.6 Transmission

A transmission represents an instance of an Info being sent along a Vector. Transmissions are not necessarily received
when they are sent (like an email) and must also be received by the Node they are sent to.

class dallinger.models.Transmission(vector, info)
An instance of an Info being sent along a Vector.

22.6.1 Columns

Transmission.origin_id
the id of the Node that sent the transmission

Transmission.destination_id
the id of the Node that the transmission was sent to

Transmission.vector_id
the id of the vector the info was sent along

Transmission.network_id
the id of the network the transmission is in

Transmission.info_id
the id of the info that was transmitted

22.6. Transmission 57

Dallinger Documentation, Release 2.7.0

Transmission.receive_time
the time at which the transmission was received

Transmission.status
the status of the transmission, can be “pending”, which means the transmission has been sent, but not received;
or “received”, which means the transmission has been sent and received

22.6.2 Relationships

Transmission.origin
the Node that sent the transmission.

Transmission.destination
the Node that the transmission was sent to.

Transmission.vector
the vector the info was sent along.

Transmission.network
the network the transmission is in.

Transmission.info
the info that was transmitted.

22.6.3 Methods

Transmission.__repr__()
The string representation of a transmission.

Transmission.__json__()
The json representation of a transmissions.

Transmission.fail()
Fail a transmission.

Transmission.mark_received()
Mark a transmission as having been received.

22.7 Transformation

A Transformation is a relationship between two Infos. It is similar to how a Vector indicates a relationship between
two Nodes, but whereas a Vector allows Nodes to Transmit to each other, Transformations don’t allow Infos to do
anything new. Instead they are a form of book-keeping allowing you to keep track of relationships between various
Infos.

class dallinger.models.Transformation(info_in, info_out)
An instance of one info being transformed into another.

22.7.1 Columns

Transformation.type
a String giving the name of the class. Defaults to “transformation”. This allows subclassing.

Transformation.node_id
the id of the Node that did the transformation.

58 Chapter 22. Database API

Dallinger Documentation, Release 2.7.0

Transformation.network_id
the id of the network the transformation is in.

Transformation.info_in_id
the id of the info that was transformed.

Transformation.info_out_id
the id of the info produced by the transformation.

22.7.2 Relationships

Transformation.node
the Node that did the transformation.

Transformation.network
the network the transmission is in.

Transformation.info_in
the info that was transformed.

Transformation.info_out
the info produced by the transformation.

22.7.3 Methods

Transformation.__repr__()
The string representation of a transformation.

Transformation.__json__()
The json representation of a transformation.

Transformation.fail()
Fail a transformation.

22.8 Participant

The Participant object corresponds to a real world participant. Each person who takes part will have a corresponding
entry in the Participant table. Participants can be associated with Nodes and Questions.

class dallinger.models.Participant(worker_id, assignment_id, hit_id, mode)
An ex silico participant.

22.8.1 Columns

Participant.type
a String giving the name of the class. Defaults to “participant”. This allows subclassing.

Participant.worker_id
A String, the worker id of the participant.

Participant.assignment_id
A String, the assignment id of the participant.

Participant.unique_id
A String, a concatenation of worker_id and assignment_id, used by psiTurk.

22.8. Participant 59

Dallinger Documentation, Release 2.7.0

Participant.hit_id
A String, the id of the hit the participant is working on

Participant.mode
A String, the mode in which Dallinger is running: live, sandbox or debug.

Participant.end_time
The time at which the participant finished.

Participant.base_pay
The amount the participant was paid for finishing the experiment.

Participant.bonus
the amount the participant was paid as a bonus.

Participant.status

String representing the current status of the participant, can be:

• working - participant is working

• submitted - participant has submitted their work

• approved - their work has been approved and they have been paid

• rejected - their work has been rejected

• returned - they returned the hit before finishing

• abandoned - they ran out of time

• did_not_attend - the participant finished, but failed the attention check

• bad_data - the participant finished, but their data was malformed

• missing_notification - this indicates that Dallinger has inferred that a Mechanical Turk noti-
fication corresponding to this participant failed to arrive. This is an uncommon, but potentially serious
issue.

22.8.2 Relationships

dallinger.models.Participant.all_questions
All the questions associated with this participant.

dallinger.models.Participant.all_nodes
All the Nodes associated with this participant.

22.8.3 Methods

Participant.__json__()
Return json description of a participant.

Participant.fail()
Fail a participant.

Set failed to True and time_of_death to now. Instruct all not-failed nodes associated with the partici-
pant to fail.

Participant.infos(type=None, failed=False)
Get all infos created by the participants nodes.

60 Chapter 22. Database API

Dallinger Documentation, Release 2.7.0

Return a list of infos produced by nodes associated with the participant. If specified, type filters by class.
By default, failed infos are excluded, to include only failed nodes use failed=True, for all nodes use
failed=all. Note that failed filters the infos, not the nodes - infos from all nodes (whether failed or not) can
be returned.

Participant.nodes(type=None, failed=False)
Get nodes associated with this participant.

Return a list of nodes associated with the participant. If specified, type filters by class. By default failed nodes
are excluded, to include only failed nodes use failed=True, for all nodes use failed=all.

Participant.questions(type=None)
Get questions associated with this participant.

Return a list of questions associated with the participant. If specified, type filters by class.

22.9 Question

A Question is a way to store information associated with a Participant as opposed to a Node (Infos are made by Nodes,
not Participants). Questions are generally useful for storing responses debriefing questions etc.

class dallinger.models.Question(participant, question, response, number)
Responses of a participant to debriefing questions.

22.9.1 Columns

Question.type
a String giving the name of the class. Defaults to “question”. This allows subclassing.

Question.participant_id
the participant who made the response

Question.number
A number identifying the question. e.g., each participant might complete three questions numbered 1, 2, and 3.

Question.question
the text of the question

Question.response
the participant’s response. Stored as a string.

22.9.2 Relationships

Question.participant
the participant who answered the question

22.9.3 Methods

Question.__json__()
Return json description of a question.

Question.fail()
Fail a question.

Set failed to True and time_of_death to now.

22.9. Question 61

Dallinger Documentation, Release 2.7.0

62 Chapter 22. Database API

CHAPTER 23

The Experiment Class

Experiments are designed in Dallinger by creating a custom subclass of the base Experiment class. The code for the
Experiment class is in experiments.py. Unlike the other classes, each experiment involves only a single Experiment
object and it is not stored as an entry in a corresponding table, rather each Experiment is a set of instructions that tell
the server what to do with the database when the server receives requests from outside.

class dallinger.experiments.Experiment(session)
Define the structure of an experiment.

verbose
Boolean, determines whether the experiment logs output when running. Default is True.

task
String, the name of the experiment. Default is “Experiment title”.

session
session, the experiment’s connection to the database.

practice_repeats
int, the number of practice networks (see role). Default is 0.

experiment_repeats
int, the number of non practice networks (see role). Default is 0.

recruiter
Recruiter, the Dallinger class that recruits participants. Default is PsiTurkRecruiter.

initial_recruitment_size
int, the number of participants requested when the experiment first starts. Default is 1.

known_classes
dictionary, the classes Dallinger can make in response to front-end requests. Experiments can add new
classes to this dictionary.

__init__(session)
Create the experiment class. Sets the default value of attributes.

add_node_to_network(node, network)
Add a node to a network.

This passes node to add_node().

assignment_abandoned(participant)
What to do if a participant abandons the hit.

This runs when a notification from AWS is received indicating that participant has run out of time. Calls
fail_participant().

63

Dallinger Documentation, Release 2.7.0

assignment_returned(participant)
What to do if a participant returns the hit.

This runs when a notification from AWS is received indicating that participant has returned the experiment
assignment. Calls fail_participant().

attention_check(participant)
Check if participant performed adequately.

Return a boolean value indicating whether the participant‘s data is acceptable. This is mean to check the
participant’s data to determine that they paid attention. This check will run once the participant completes
the experiment. By default performs no checks and returns True. See also data_check().

attention_check_failed(participant)
What to do if a participant fails the attention check.

Runs when participant has failed the attention_check(). By default calls
fail_participant().

bonus(participant)
The bonus to be awarded to the given participant.

Return the value of the bonus to be paid to participant. By default returns 0.

bonus_reason()
The reason offered to the participant for giving the bonus.

Return a string that will be included in an email sent to the participant receiving a bonus. By default it is
“Thank you for participating! Here is your bonus.”

create_network()
Return a new network.

create_node(participant, network)
Create a node for a participant.

data_check(participant)
Check that the data are acceptable.

Return a boolean value indicating whether the participant‘s data is acceptable. This is meant to check for
missing or invalid data. This check will be run once the participant completes the experiment. By default
performs no checks and returns True. See also, attention_check().

data_check_failed(participant)
What to do if a participant fails the data check.

Runs when participant has failed data_check(). By default calls fail_participant().

fail_participant(participant)
Fail all the nodes of a participant.

get_network_for_participant(participant)
Find a network for a participant.

If no networks are available, None will be returned. By default participants can participate only once
in each network and participants first complete networks with role=”practice” before doing all other
networks in a random order.

info_get_request(node, infos)
Run when a request to get infos is complete.

info_post_request(node, info)
Run when a request to create an info is complete.

64 Chapter 23. The Experiment Class

Dallinger Documentation, Release 2.7.0

log(text, key=’?????’, force=False)
Print a string to the logs.

log_summary()
Log a summary of all the participants’ status codes.

networks(role=’all’, full=’all’)
All the networks in the experiment.

node_get_request(node=None, nodes=None)
Run when a request to get nodes is complete.

node_post_request(participant, node)
Run when a request to make a node is complete.

recruit()
Recruit participants to the experiment as needed.

This method runs whenever a participant successfully completes the experiment (participants who fail
to finish successfully are automatically replaced). By default it recruits 1 participant at a time until all
networks are full.

save(*objects)
Add all the objects to the session and commit them.

This only needs to be done for networks and participants.

setup()
Create the networks if they don’t already exist.

submission_successful(participant)
Run when a participant submits successfully.

transformation_get_request(node, transformations)
Run when a request to get transformations is complete.

transformation_post_request(node, transformation)
Run when a request to transform an info is complete.

transmission_get_request(node, transmissions)
Run when a request to get transmissions is complete.

transmission_post_request(node, transmissions)
Run when a request to transmit is complete.

vector_get_request(node, vectors)
Run when a request to get vectors is complete.

vector_post_request(node, vectors)
Run when a request to connect is complete.

65

Dallinger Documentation, Release 2.7.0

66 Chapter 23. The Experiment Class

CHAPTER 24

Web API

The Dallinger API allows the experiment frontend to communicate with the backend. Many of these routes correspond
to specific functions of Dallinger’s classes, particularly dallinger.models.Node. For example, nodes have a
connect method that creates new vectors between nodes and there is a corresponding connect/ route that allows
the frontend to call this method.

24.1 Miscellaneous routes

GET /ad_address/<mode>/<hit_id>

Used to get the address of the experiment on the psiTurk server and to return participants to Mechanical Turk
upon completion of the experiment. This route is pinged automatically by the function submitAssignment in
dallinger.js.

GET /<directory>/<page>

Returns the html page with the name <page> from the directory called <directory>.

GET /summary

Returns a summary of the statuses of Participants.

GET /<page>

Returns the html page with the name <page>.

24.2 Experiment routes

GET /experiment/<property>

Returns the value of the requested property as a JSON <property>.

GET /info/<node_id>/<info_id>

Returns a JSON description of the requested info as info. node_id must be specified to ensure the requesting node
has access to the requested info. Calls experiment method ‘info_get_request(node, info).

POST /info/<node_id>

67

Dallinger Documentation, Release 2.7.0

Create an info with its origin set to the specified node. contents must be passed as data. info_type
can be passed as data and will cause the info to be of the specified type. Also calls experiment method
info_post_request(node, info).

POST /launch

Initializes the experiment and opens recruitment. This route is automatically pinged by Dallinger.

GET /network/<network_id>

Returns a JSON description of the requested network as network.

POST /node/<node_id>/connect/<other_node_id>

Create vector(s) between the node and other_node by calling node.connect(whom=other_node).
Direction can be passed as data and will be forwarded as an argument. Calls experiment method
vector_post_request(node, vectors). Returns a list of JSON descriptions of the created vectors as
vectors.

GET /node/<node_id>/infos

Returns a list of JSON descriptions of the infos created by the node as infos. Infos are identified by calling
node.infos(). info_type can be passed as data and will be forwarded as an argument. Requesting node
and the list of infos are also passed to experiment method info_get_request(node, infos).

GET /node/<node_id>/neighbors

Returns a list of JSON descriptions of the node’s neighbors as nodes. Neighbors are identified by calling
node.neighbors(). node_type and connection can be passed as data and will be forwarded as argu-
ments. Requesting node and list of neighbors are also passed to experiment method node_get_request(node,
nodes).

GET /node/<node_id>/received_infos

Returns a list of JSON descriptions of the infos sent to the node as infos. Infos are identified by calling
node.received_infos(). info_type can be passed as data and will be forwarded as an argument. Re-
questing node and the list of infos are also passed to experiment method info_get_request(node, infos).

GET /node/<int:node_id>/transformations

Returns a list of JSON descriptions of all the transformations of a node identified using
node.transformations(). The node id must be specified in the url. You can also pass
transformation_type as data and it will be forwarded to node.transformations() as the argu-
ment type.

GET /node/<node_id>/transmissions

Returns a list of JSON descriptions of the transmissions sent to/from the node as transmissions. Transmissions
are identified by calling node.transmissions(). direction and status can be passed as data and will
be forwarded as arguments. Requesting node and the list of transmissions are also passed to experiment method
transmission_get_request(node, transmissions).

POST /node/<node_id>/transmit

Transmit to another node by calling node.transmit(). The sender’s node id must be specified in the url. As with
node.transmit() the key parameters are what and to_whom and they should be passed as data. However, the
values these accept are more limited than for the backend due to the necessity of serialization.

If what and to_whom are not specified they will default to None. Alternatively you can pass an int (e.g. ‘5’) or a
class name (e.g. Info or Agent). Passing an int will get that info/node, passing a class name will pass the class.

68 Chapter 24. Web API

Dallinger Documentation, Release 2.7.0

Note that if the class you are specifying is a custom class it will need to be added to the dictionary of known_classes
in your experiment code.

You may also pass the values property1, property2, property3, property4 and property5. If passed this will fill in the
relevant values of the transmissions created with the values you specified.

The transmitting node and a list of created transmissions are sent to experiment method
transmission_post_request(node, transmissions). This route returns a list of JSON descrip-
tions of the created transmissions as transmissions. For example, to transmit all infos of type Meme to the node
with id 10:

reqwest({
url: "/node/" + my_node_id + "/transmit",
method: 'post',
type: 'json',
data: {

what: "Meme",
to_whom: 10,

},
});

GET /node/<node_id>/vectors

Returns a list of JSON descriptions of vectors connected to the node as vectors. Vectors are identified by calling
node.vectors(). direction and failed can be passed as data and will be forwarded as arguments. Request-
ing node and list of vectors are also passed to experiment method vector_get_request(node, vectors).

POST /node/<participant_id>

Create a node for the specified participant. The route calls the following experiment methods:
get_network_for_participant(participant), create_node(network, participant),
add_node_to_network(node, network), and node_post_request(participant, node).
Returns a JSON description of the created node as node.

POST /notifications
GET /notifications

This is the route to which notifications from AWS are sent. It is also possible to send your own notifications to this
route, thereby simulating notifications from AWS. Necessary arguments are Event.1.EventType, which can be
AssignmentAccepted, AssignmentAbandoned, AssignmentReturned or AssignmentSubmitted,
and Event.1.AssignmentId, which is the id of the relevant assignment. In addition, Dallinger uses a custom
event type of NotificationMissing.

GET /participant/<participant_id>

Returns a JSON description of the requested participant as participant.

POST /participant/<worker_id>/<hit_id>/<assignment_id>/<mode>

Create a participant. Returns a JSON description of the participant as participant.

POST /question/<participant_id>

Create a question. question, response and question_id should be passed as data. Does not return anything.

POST /transformation/<int:node_id>/<int:info_in_id>/<int:info_out_id>

Create a transformation from info_in to info_out at the specified node. transformation_type can be
passed as data and the transformation will be of that class if it is a known class. Returns a JSON description of the
created transformation.

24.2. Experiment routes 69

Dallinger Documentation, Release 2.7.0

70 Chapter 24. Web API

CHAPTER 25

Communicating With the Server

When an experiment is running, the database and the experiment class (i.e. the instructions for what to do with the
database) will be hosted on a server, the server is also known as the “back-end”. However, participants will take part
in experiments via an interactive web-site (the “front-end”). Accordingly for an experiment to proceed there must be
a means of communication between the front and back ends. This is achieved with routes:

Routes are specific web addresses on the server that respond to requests from the front-end. Routes have direct access
to the database, though most of the time they will pass requests to the experiment which will in turn access the database.
As such, changing the behavior of the experiment is the easiest way to create a new experiment. However it is also
possible to change the behavior of the routes or add new routes entirely.

Requests generally come in two types: “get” requests, which ask for information from the database, and “post” requests
which send new information to be added to the database. Once a request is complete the back-end sends a response
back to the front-end. Minimally, this will include a notification that the request was successfully processed, but often
it will also include additional information.

As long as requests are properly formatted and correctly addressed to routes, the back-end will send the appropriate
response. This means that the front-end could take any form. For instance requests could come from a standard
HTML/CSS/JS webpage, a more sophisticated web-app, or even from the experiment itself.

71

Dallinger Documentation, Release 2.7.0

72 Chapter 25. Communicating With the Server

CHAPTER 26

Acknowledgments

Dallinger is sponsored by the Defense Advanced Research Projects Agency through the NGS2 program. The con-
tents of this documentation does not necessarily reflect the position or the policy of the Government and no official
endorsement should be inferred.

Dallinger’s predecessor, Wallace, was supported in part by the National Science Foundation through grants 1456709
and 1408652.

73

Dallinger Documentation, Release 2.7.0

74 Chapter 26. Acknowledgments

CHAPTER 27

Dallinger’s incubator

Dallinger was one of the first scientists to perform experimental evolution. See his Wikipedia article for the specifics
of his incubation experiments.

75

https://en.wikipedia.org/wiki/William_Dallinger

Dallinger Documentation, Release 2.7.0

76 Chapter 27. Dallinger’s incubator

Index

Symbols
__init__() (dallinger.experiments.Experiment method),

63
__json__() (dallinger.models.Info method), 57
__json__() (dallinger.models.Network method), 51
__json__() (dallinger.models.Node method), 52
__json__() (dallinger.models.Participant method), 60
__json__() (dallinger.models.Question method), 61
__json__() (dallinger.models.Transformation method), 59
__json__() (dallinger.models.Transmission method), 58
__json__() (dallinger.models.Vector method), 55
__repr__() (dallinger.models.Info method), 57
__repr__() (dallinger.models.Network method), 51
__repr__() (dallinger.models.Node method), 52
__repr__() (dallinger.models.Transformation method), 59
__repr__() (dallinger.models.Transmission method), 58
__repr__() (dallinger.models.Vector method), 55
_mutated_contents() (dallinger.models.Info method), 57
_to_whom() (dallinger.models.Node method), 53
_what() (dallinger.models.Node method), 53

A
add_node_to_network() (dallinger.experiments.Experiment

method), 63
all_incoming_transmissions (dallinger.models.Node at-

tribute), 52
all_incoming_vectors (dallinger.models.Node attribute),

52
all_infos (dallinger.models.Network attribute), 51
all_infos (dallinger.models.Node attribute), 52
all_nodes (dallinger.models.Network attribute), 50
all_nodes (dallinger.models.Participant attribute), 60
all_outgoing_transmissions (dallinger.models.Node at-

tribute), 52
all_outgoing_vectors (dallinger.models.Node attribute),

52
all_questions (dallinger.models.Participant attribute), 60
all_transmissions (dallinger.models.Info attribute), 56
all_transmissions (dallinger.models.Vector attribute), 55
all_vectors (dallinger.models.Network attribute), 51

assignment_abandoned()
(dallinger.experiments.Experiment method), 63

assignment_id (dallinger.models.Participant attribute), 59
assignment_returned() (dallinger.experiments.Experiment

method), 63
attention_check() (dallinger.experiments.Experiment

method), 64
attention_check_failed() (dallinger.experiments.Experiment

method), 64

B
base_pay (dallinger.models.Participant attribute), 60
bonus (dallinger.models.Participant attribute), 60
bonus() (dallinger.experiments.Experiment method), 64
bonus_reason() (dallinger.experiments.Experiment

method), 64

C
calculate_full() (dallinger.models.Network method), 51
connect() (dallinger.models.Node method), 53
contents (dallinger.models.Info attribute), 56
create_network() (dallinger.experiments.Experiment

method), 64
create_node() (dallinger.experiments.Experiment

method), 64
creation_time (dallinger.models.Info attribute), 56
creation_time (dallinger.models.SharedMixin attribute),

50

D
data_check() (dallinger.experiments.Experiment

method), 64
data_check_failed() (dallinger.experiments.Experiment

method), 64
destination (dallinger.models.Transmission attribute), 58
destination (dallinger.models.Vector attribute), 55
destination_id (dallinger.models.Transmission attribute),

57
destination_id (dallinger.models.Vector attribute), 55

77

Dallinger Documentation, Release 2.7.0

E
end_time (dallinger.models.Participant attribute), 60
Experiment (class in dallinger.experiments), 63
experiment_repeats (dallinger.experiments.Experiment

attribute), 63

F
fail() (dallinger.models.Info method), 57
fail() (dallinger.models.Network method), 51
fail() (dallinger.models.Node method), 53
fail() (dallinger.models.Participant method), 60
fail() (dallinger.models.Question method), 61
fail() (dallinger.models.Transformation method), 59
fail() (dallinger.models.Transmission method), 58
fail() (dallinger.models.Vector method), 55
fail_participant() (dallinger.experiments.Experiment

method), 64
failed (dallinger.models.Info attribute), 56
failed (dallinger.models.SharedMixin attribute), 50
full (dallinger.models.Network attribute), 50

G
get_network_for_participant()

(dallinger.experiments.Experiment method), 64

H
hit_id (dallinger.models.Participant attribute), 59

I
id (dallinger.models.Info attribute), 56
id (dallinger.models.SharedMixin attribute), 49
Info (class in dallinger.models), 56
info (dallinger.models.Transmission attribute), 58
info_get_request() (dallinger.experiments.Experiment

method), 64
info_id (dallinger.models.Transmission attribute), 57
info_in (dallinger.models.Transformation attribute), 59
info_in_id (dallinger.models.Transformation attribute),

59
info_out (dallinger.models.Transformation attribute), 59
info_out_id (dallinger.models.Transformation attribute),

59
info_post_request() (dallinger.experiments.Experiment

method), 64
infos() (dallinger.models.Network method), 51
infos() (dallinger.models.Node method), 53
infos() (dallinger.models.Participant method), 60
initial_recruitment_size (dallinger.experiments.Experiment

attribute), 63
is_connected() (dallinger.models.Node method), 53

K
known_classes (dallinger.experiments.Experiment

attribute), 63

L
latest_transmission_recipient()

(dallinger.models.Network method), 51
log() (dallinger.experiments.Experiment method), 64
log_summary() (dallinger.experiments.Experiment

method), 65

M
mark_received() (dallinger.models.Transmission

method), 58
max_size (dallinger.models.Network attribute), 50
mode (dallinger.models.Participant attribute), 60
mutate() (dallinger.models.Node method), 53

N
neighbors() (dallinger.models.Node method), 53
Network (class in dallinger.models), 50
network (dallinger.models.Info attribute), 56
network (dallinger.models.Node attribute), 52
network (dallinger.models.Transformation attribute), 59
network (dallinger.models.Transmission attribute), 58
network (dallinger.models.Vector attribute), 55
network_id (dallinger.models.Info attribute), 56
network_id (dallinger.models.Node attribute), 52
network_id (dallinger.models.Transformation attribute),

58
network_id (dallinger.models.Transmission attribute), 57
network_id (dallinger.models.Vector attribute), 55
networks() (dallinger.experiments.Experiment method),

65
networks_transformations (dallinger.models.Network at-

tribute), 51
networks_transmissions (dallinger.models.Network at-

tribute), 51
Node (class in dallinger.models), 52
node (dallinger.models.Transformation attribute), 59
node_get_request() (dallinger.experiments.Experiment

method), 65
node_id (dallinger.models.Transformation attribute), 58
node_post_request() (dallinger.experiments.Experiment

method), 65
nodes() (dallinger.models.Network method), 51
nodes() (dallinger.models.Participant method), 61
number (dallinger.models.Question attribute), 61

O
origin (dallinger.models.Info attribute), 56
origin (dallinger.models.Transmission attribute), 58
origin (dallinger.models.Vector attribute), 55
origin_id (dallinger.models.Info attribute), 56
origin_id (dallinger.models.Transmission attribute), 57
origin_id (dallinger.models.Vector attribute), 55

78 Index

Dallinger Documentation, Release 2.7.0

P
Participant (class in dallinger.models), 59
participant (dallinger.models.Node attribute), 52
participant (dallinger.models.Question attribute), 61
participant_id (dallinger.models.Node attribute), 52
participant_id (dallinger.models.Question attribute), 61
practice_repeats (dallinger.experiments.Experiment at-

tribute), 63
print_verbose() (dallinger.models.Network method), 51
property1 (dallinger.models.Info attribute), 56
property1 (dallinger.models.SharedMixin attribute), 50
property2 (dallinger.models.Info attribute), 56
property2 (dallinger.models.SharedMixin attribute), 50
property3 (dallinger.models.Info attribute), 56
property3 (dallinger.models.SharedMixin attribute), 50
property4 (dallinger.models.Info attribute), 56
property4 (dallinger.models.SharedMixin attribute), 50
property5 (dallinger.models.Info attribute), 56
property5 (dallinger.models.SharedMixin attribute), 50

Q
Question (class in dallinger.models), 61
question (dallinger.models.Question attribute), 61
questions() (dallinger.models.Participant method), 61

R
receive() (dallinger.models.Node method), 54
receive_time (dallinger.models.Transmission attribute),

57
received_infos() (dallinger.models.Node method), 54
recruit() (dallinger.experiments.Experiment method), 65
recruiter (dallinger.experiments.Experiment attribute), 63
replicate() (dallinger.models.Node method), 54
response (dallinger.models.Question attribute), 61
role (dallinger.models.Network attribute), 50

S
save() (dallinger.experiments.Experiment method), 65
session (dallinger.experiments.Experiment attribute), 63
setup() (dallinger.experiments.Experiment method), 65
size() (dallinger.models.Network method), 51
status (dallinger.models.Participant attribute), 60
status (dallinger.models.Transmission attribute), 58
submission_successful() (dallinger.experiments.Experiment

method), 65

T
task (dallinger.experiments.Experiment attribute), 63
time_of_death (dallinger.models.Info attribute), 56
time_of_death (dallinger.models.SharedMixin attribute),

50
Transformation (class in dallinger.models), 58

transformation_applied_to (dallinger.models.Info at-
tribute), 56

transformation_get_request()
(dallinger.experiments.Experiment method), 65

transformation_post_request()
(dallinger.experiments.Experiment method), 65

transformation_whence (dallinger.models.Info attribute),
56

transformations() (dallinger.models.Info method), 57
transformations() (dallinger.models.Network method), 51
transformations() (dallinger.models.Node method), 54
transformations_here (dallinger.models.Node attribute),

52
Transmission (class in dallinger.models), 57
transmission_get_request()

(dallinger.experiments.Experiment method), 65
transmission_post_request()

(dallinger.experiments.Experiment method), 65
transmissions() (dallinger.models.Info method), 57
transmissions() (dallinger.models.Network method), 51
transmissions() (dallinger.models.Node method), 54
transmissions() (dallinger.models.Vector method), 55
transmit() (dallinger.models.Node method), 54
type (dallinger.models.Info attribute), 56
type (dallinger.models.Network attribute), 50
type (dallinger.models.Node attribute), 52
type (dallinger.models.Participant attribute), 59
type (dallinger.models.Question attribute), 61
type (dallinger.models.Transformation attribute), 58

U
unique_id (dallinger.models.Participant attribute), 59
update() (dallinger.models.Node method), 54

V
Vector (class in dallinger.models), 55
vector (dallinger.models.Transmission attribute), 58
vector_get_request() (dallinger.experiments.Experiment

method), 65
vector_id (dallinger.models.Transmission attribute), 57
vector_post_request() (dallinger.experiments.Experiment

method), 65
vectors() (dallinger.models.Network method), 51
vectors() (dallinger.models.Node method), 55
verbose (dallinger.experiments.Experiment attribute), 63

W
worker_id (dallinger.models.Participant attribute), 59

Index 79

	Installation
	Installing Dallinger with Anaconda
	Setting Up AWS, psiTurk, and Heroku
	Demoing Dallinger
	Learning to Use Dallinger
	Monitoring a Live Experiment
	Viewing the PostgreSQL Database
	Command-Line Utility
	2048
	Bartlett (1932), stories
	Networked chatroom-based coordination game
	Concentration
	Transmitting functions
	Bartlett (1932), drawings
	Markov Chain Monte Carlo with People
	Rogers' Paradox
	The Sheep Market
	Snake
	Vox Populi (Wisdom of the crowd)
	Developer Installation
	Required Experimental Files
	Database API
	The Experiment Class
	Web API
	Communicating With the Server
	Acknowledgments
	Dallinger's incubator

