
DaisySuite Documentation
Release 1

Enrico Seiler, Kathrin Trappe, Tobias Marschall, Bernhard Y. Renard

May 10, 2019

Contents

1 Getting started 3

2 Citation 5

3 Tools used 7

4 Contact 9
4.1 Install with Conda . 9
4.2 Install with git . 10
4.3 Database requirements . 11
4.4 DaisySuite configuration . 14
4.5 Using DaisySuite . 17
4.6 DaisySuite example . 21

i

ii

DaisySuite Documentation, Release 1

DaisySuite is a mapping-based workflow for analyzing horizontal gene transfer (HGT) events in bacterial data. The
Next Generation Sequencing (NGS) input is processed in two major steps. First, DaisyGPS identifies possible acceptor
and donor candidates. Second, Daisy determines exact HGT-regions for the acceptor/donor pairs.

Contents 1

DaisySuite Documentation, Release 1

2 Contents

CHAPTER 1

Getting started

You can either install DaisySuite with Conda or git

3

DaisySuite Documentation, Release 1

4 Chapter 1. Getting started

CHAPTER 2

Citation

• Trappe, K., Marschall, T., Renard, B.Y. “Detecting horizontal gene transfer by mapping sequencing reads across
species boundaries”. Bioinformatics. 2016

• Seiler, E., Trappe, K., Renard, B.Y., Marschall, T. “Where did you come from, where did you go: Enhancing
Metagenomic Approaches for Pathogen Identification”. biorxiv. 2018

5

https://doi.org/10.1093/bioinformatics/btw423
https://doi.org/10.1093/bioinformatics/btw423
https://www.biorxiv.org/content/early/2018/08/27/401349
https://www.biorxiv.org/content/early/2018/08/27/401349

DaisySuite Documentation, Release 1

6 Chapter 2. Citation

CHAPTER 3

Tools used

• Bioconda: Bioconda website

• Biopython: Cock, P.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A., Friedberg, I., Hamel-
ryck, T., Kauff, F., Wilczynski, B. and de Hoon, M.J.L. (2009) Biopython: freely available Python tools for
computational molecular biology and bioinformatics. Bioinformatics

• bwa: Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform.
Bioinformatics.

• Conda: Conda website

• Gustaf: Trappe, K., Emde, A., Ehrlich, H., Reinert, K. (2014) Gustaf: Detecting and correctly classifying SVs
in the NGS twilight zone. Bioinformatics.

• Laser: Marschall, T. and Schönhuth., A. (2013) LASER: Sensitive Long-Indel-Aware Alignment of Sequencing
Reads. arXiv..

• Mason2: Holtgrewe, M. (2010) Mason – A Read Simulator for Second Generation Sequencing Data. Technical
Report FU Berlin.

• MicrobeGPS: Lindner, M.S., Renard, B.Y. (2015) Metagenomic Profiling of Known and Unknown Microbes
with MicrobeGPS. PLoS ONE

• NumPy: van der Walt, S., Colber, S. and Varoquaux, G. (2011) The NumPy Array: A Structure for Efficient
Numerical Computation. Computing in Science & Engineering.

• Pandas: McKinney, W. (2010) Data Structures for Statistical Computing in Python. Proceedings of the 9th
Python in Science Conference.

• pysam: pysam website

• sak: Github

• samtools: Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R.
and 1000 Genome Project Data Processing Subgroup (2009) The Sequence alignment/map (SAM) format and
SAMtools. Bioinformatics.

• SciPy: Jones, E., Peterson, P., et al. (2001) SciPy: Open Source Scientific Tools for Python

7

https://bioconda.github.io/
http://dx.doi.org/10.1093/bioinformatics/btp163
http://dx.doi.org/10.1093/bioinformatics/btp163
http://dx.doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://conda.io/docs/
https://doi.org/10.1093/bioinformatics/btu431
https://doi.org/10.1093/bioinformatics/btu431
https://arxiv.org/abs/1303.3520
https://arxiv.org/abs/1303.3520
http://publications.imp.fu-berlin.de/962/2/mason201009.pdf
http://publications.imp.fu-berlin.de/962/2/mason201009.pdf
https://doi.org/10.1371/journal.pone.0117711
https://doi.org/10.1371/journal.pone.0117711
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
http://conference.scipy.org/proceedings/scipy2010/mckinney.html
http://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://github.com/pysam-developers/pysam
https://github.com/seqan/seqan/tree/master/apps/sak
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
http://www.scipy.org/

DaisySuite Documentation, Release 1

• Snakemake: Köster, J. and Rahmann, S. (2012) Snakemake - scalable bioinformatics workflow engine. Bioin-
formatics.

• Stellar: Kehr, B., Weese, D., Reiner, K. (2011) STELLAR: fast and exact local alignments. BMC Bioinformat-
ics.

• Yara: Siragusa, E. (2015). Approximate string matching for high-throughput sequencing. PhD Dissertation,
Free University of Berlin.

8 Chapter 3. Tools used

http://dx.doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1186/1471-2105-12-S9-S15
https://doi.org/10.1186/1471-2105-12-S9-S15
http://www.diss.fu-berlin.de/diss/servlets/MCRFileNodeServlet/FUDISS_derivate_000000017479/Diss_EnricoSiragusa_NoCV.pdf
http://www.diss.fu-berlin.de/diss/servlets/MCRFileNodeServlet/FUDISS_derivate_000000017479/Diss_EnricoSiragusa_NoCV.pdf

CHAPTER 4

Contact

Issue Tracker Enrico Seiler Kathrin Trappe

4.1 Install with Conda

4.1.1 Installing DaisySuite

We recommend the usage of Conda to install DaisySuite. If you prefer to not use Conda, you can find instructions in
the Install with git chapter.

To install Conda under Linux 64bit, run

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
chmod +x Miniconda3-latest-Linux-x86_64.sh
./Miniconda3-latest-Linux-x86_64.sh

and follow the instructions. Please visit the Miniconda homepage for further information.

Next, add the bioconda channel to your conda installation.

conda config --add channels defaults
conda config --add channels conda-forge
conda config --add channels bioconda

Once Conda is available, DaisySuite can be easily installed via

conda install daisysuite

Note that older or newer versions of already on your system existing tools, e.g. bwa, will be installed according to the
specified requirements for DaisySuite in the Conda package. To install DaisySuite in a new environment and thereby
not altering any of your existing installations, use

conda create -n daisysuite_env daisysuite

9

https://gitlab.com/eseiler/DaisySuite/issues
mailto:enrico.seiler@fu-berlin.de
mailto:kathrin.trappe@fu-berlin.de
https://conda.io/miniconda.html
https://bioconda.github.io

DaisySuite Documentation, Release 1

where -n daisysuite_env specifies the environment name and can be chosen freely. Use source activate
daisysuite_env to activate your new environment and source deactivate to exit the environment.

4.1.2 Additional dependency for Laser

Laser uses bwa for structural variation analysis and requires the additional bwa perl script xa2multi.pl that is
usually not installed with bwa, but is available in the bwa github. xa2multi.pl needs to be present in the $PATH
variable in order to use Laser, for example:

mkdir ~/bin
cd ~/bin
wget https://raw.githubusercontent.com/lh3/bwa/master/xa2multi.pl
export PATH=~/bin:$PATH

4.1.3 Setting DaisySuite up

You can automatically download and create all required data by running DaisySuite_setup <dir>. This will
put the NCBI database and corresponding indices into the directory <dir>. Alternatively, the requirements are
explained in the Database requirements section. Yara needs up to 1 TB of temporary disk space to create its index.
Currently, the setup script will fail if one of the steps fails. In this case, consider running the individual steps one by
one (see the Database creation section).

4.2 Install with git

4.2.1 Installing DaisySuite

If you prefer to use Conda, you can find instructions in the Install with Conda chapter.

To use DaisySuite, the following dependencies need to be satisfied and globally available:

• bedtools

• biopython

• bwa

• clever-toolkit (Laser)

• gustaf

• mason2

• pandas

• pysam

• sak

• samtools

• scipy

• snakemake

• stellar

• yara

10 Chapter 4. Contact

https://raw.githubusercontent.com/lh3/bwa/master/xa2multi.pl
http://bedtools.readthedocs.io/en/latest/content/installation.html
http://biopython.org/wiki/Download
https://sourceforge.net/projects/bio-bwa/files/
https://bitbucket.org/tobiasmarschall/clever-toolkit/wiki/Home#markdown-header-installation
http://packages.seqan.de/gustaf/
http://packages.seqan.de/mason2/
http://pandas.pydata.org/getpandas.html
http://pysam.readthedocs.io/en/latest/installation.html
http://packages.seqan.de/sak/
http://www.htslib.org/download/
https://www.scipy.org/install.html
https://snakemake.readthedocs.io/en/stable/index.html
http://packages.seqan.de/stellar/
http://packages.seqan.de/yara/

DaisySuite Documentation, Release 1

To install DaisySuite, run

git clone https://gitlab.com/eseiler/DaisySuite.git
cd DaisySuite
chmod +x DaisySuite*

For easy access, you might want to add the DaisySuite directory to your PATH variable, e.g.

export PATH=~/DaisySuite/:$PATH

4.2.2 Additional dependency for Laser

Laser uses bwa for structural variation analysis and requires the additional bwa perl script xa2multi.pl that is
usually not installed with bwa, but is available in the bwa github. xa2multi.pl needs to be present in the $PATH
variable in order to use Laser, for example:

mkdir ~/bin
cd ~/bin
wget https://raw.githubusercontent.com/lh3/bwa/master/xa2multi.pl
export PATH=~/bin:$PATH

4.2.3 Setting DaisySuite up

You can automatically download and create all required data by running DaisySuite_setup <dir>. This will
put the NCBI database and corresponding indices into the directory <dir>. Alternatively, the requirements are
explained in the Database requirements section.

4.3 Database requirements

You can automatically download and create all required data by running DaisySuite_setup <dir>. This will
put the NCBI database and corresponding indices into the directory <dir>. Alternatively, the individual requirements
are explained in this section.

DaisySuite requires following data:

• NCBI RefSeq

• bwa index of the NCBI RefSeq

• yara index of the NCBI RefSeq

• MicrobeGPS taxonomy files

We will provide example code snippets to solving each one of the requirements.

4.3.1 NCBI RefSeq

First, download all NCBI entries that are tagged as “complete genomes” into a directory of your choice, e.g.

Download NCBI database
mkdir ncbi
wget ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/assembly_summary.txt
wget --directory-prefix ncbi -q ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/367/
→˓745/GCF_000367745.1_ASM36774v1/GCF_000367745.1_ASM36774v1_genomic.fna.gz

4.3. Database requirements 11

https://raw.githubusercontent.com/lh3/bwa/master/xa2multi.pl

DaisySuite Documentation, Release 1

cat assembly_summary.txt | \
awk '{FS="\t"} !/^#/ $12 ~ "Complete Genome" {print $20}' | \
sed -r 's|(ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/[0-9]*/[0-9]*/[0-9]*/)(GCF_.
→˓+)|\1\2/\2_genomic.fna.gz|' | \
xargs -n 1 -P 12 wget --directory-prefix ncbi -q
rm assembly_summary.txt

Note that we download an additionial file in line 4. It contains the acceptor reference of one of our datasets and is
wrongly labeled as not complete, hence the manual download.

4.3.2 Preprocessing NCBI

Next, we want to

• extract the downloaded references

• split references containing multiple sequences

• remove plasmid references

• rename the fasta files to <accession.version>.fasta

• get a list of all accessions for future use

• merge the fasta files (while keeping the originals)

• gzip all fasta files

First, we need to extract the references.

Extract NCBI database
gzip -d /ncbi/*_genomic.fna.gz

The pipeline requires the fasta files to only contain a single reference. This can be done, for example, with the python
script split_fasta.py in the data/scripts/src directory of your DaisySuite installation.

Split fasta files
for f in ncbi/*.fna;
do

src/split_fasta.py $f
done

#!/usr/bin/python3
import os

def split_multifasta(fname):
count = 0
g = None
with open(fname, 'r') as f:

comp = fname.split('.')
for line in f:

if '>' in line:
if g is not None:

g.close()
g = open('{}_split{}.{}'.format('.'.join(comp[:-1]), count, comp[-1]),

→˓ 'w')
count += 1
g.write(line)

else:

12 Chapter 4. Contact

DaisySuite Documentation, Release 1

g.write(line)
os.remove(fname)

if __name__ == '__main__':
import sys
import os
split_multifasta(os.path.realpath(sys.argv[1]))

The DaisyGPS part of DaisySuite currently can not detect plasmids as potential HGT donors. The plasmids need to
be excluded from the database and the remaining references should be named <accession.version>.fasta

Rename fasta files and exclude plasmids
for f in ../ncbi/*.fna;
do

if [[$(head -n 1 $f) != *"Plasmid"*]] && [[$(head -n 1 $f) != *"plasmid"*]]
then

accession=$(sed 's/>\([A-Za-z0-9\._]*\) .*/\1/' <(head -n 1 $f))
new=$(dirname $f)/$accession.fasta

mv $f $new
else

rm -f $f
fi

done

For the creation of a taxonomic file for MicrobeGPS we need a list of all references included in our database:

Get accession list
for i in ../ncbi/*.fasta*;
do

n=$(sed 's/\(.*\)\.fasta.*/\1/' <(basename $i))
cat <(echo $n) >> acc.txt

done

Most mapper indexer accept only one fasta file containing all references, so we merge our sequences. We also compress
the resulting fasta to save space.

Merge fasta files
cat ncbi/*.fasta > ncbi/reference.fasta

Gzip fasta files
gzip ncbi/*.fasta

4.3.3 Taxonomy

MicrobeGPS is used in DaisyGPS and leverages taxonomic information for the profiling of the sample. Therefore,
several taxonomic files are needed:

• NCBI’s nodes.dmp

• NCBI’s names.dmp

• a catalog (bact.catalog) containing accession.taxid, taxid and name of each reference present in the NCBI
database

The nodes.dmp, names.dmp and bact.catalog must be saved in the data/microbeGPS/data folder of
your DaisySuite installation.

4.3. Database requirements 13

DaisySuite Documentation, Release 1

Get names.dmp and nodes.dmp
wget ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz
tar xfz taxdump.tar.gz names.dmp nodes.dmp
mv names.dmp data/microbeGPS/data/names.dmp
mv nodes.dmp data/microbeGPS/data/nodes.dmp
rm taxdump.tar.gz

To create the catalog file, you can use the createMinimalMGPSCatalog.py in the data/scripts/src
directory of your DaisySuite installation. It requires the NCBI nucl_gb.accession2taxid file, names.dmp and the list of
all accessions in the NCBI database generated in the preprocessing step.

Get catalog
wget -T 1800 -qO- ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/accession2taxid/nucl_gb.
→˓accession2taxid.gz | gzip -dc > nucl_gb.accession2taxid
data/src/createMinimalMGPSCatalog.py nucl_gb.accession2taxid data/microbeGPS/data/
→˓names.dmp data/microbeGPS/data/bact.catalog -ref acc.txt
rm nucl_gb.accession2taxid

The accession list is now no longer needed and can be deleted.

Remove accession list
rm acc.txt

4.3.4 Indices

In a last step, we need to generate the yara or bwa index (one is sufficient to run DaisySuite). During development we
found Yara to be more sensitive regarding the mapping, but it needs up to 1 TB of temporary disk space to build its
index.

Create bwa index
bwa index ncbi/reference.fasta.gz -p bwa/bwa_index

Create yara index
yara_indexer ncbi/reference.fasta.gz -o yara/yara_index

After this, we can delete the merged reference file.

Remove merged fasta file
rm ../ncbi/reference.fasta.gz

4.4 DaisySuite configuration

The configuration of DaisySuite is done by a yaml file. You can generate a template containing all options with
explanation by using

DaisySuite_template .

to create a template in the current working directory. Additionally, the options are explained on this page.

14 Chapter 4. Contact

DaisySuite Documentation, Release 1

4.4.1 General configuration

There are three parameters that determine which steps of the pipeline are run (read simulation, DaisyGPS, Daisy).
Possible values are true and false. To run, for example, DaisyGPS and Daisy on an existing read dataset, use:

sim: false
daisygps: true
daisy: true

Also, an output directory must be defined via the outputdir variable:

outputdir: 'path/to/output/directory'

If sim is set to true this directory can be empty, otherwise the reads are expected to be in the read directory of the
output directory. The reads must be named <sample>.1.fq and <sample>.2.fq, see also Using DaisySuite.

4.4.2 Simulation configuration

The simulation needs the NCBI folder created by the setup (see Using DaisySuite), e.g.:

ncbidir: 'path/to/DaisySuite/data/ncbi'

You can futher specify how many simulations are to be run, the coverage and the read length:

simulates: 1
coverage: 100
readlength: 150

This will create one simulated read data set where the reference is covered about 100 times by reads with an average
length of 150.

You can also choose to not incorporate any HGT event, e.g. to test for specificity:

negative: true

Furthermore, there are various parameters to configure the read simulation done by mason, e.g. SNP rate:

Acceptor: Mason variator SNP rate
a_snp: 0.01
Acceptor: Mason variator small indel rate
a_sir: 0.001
Acceptor: Mason variator sv indel rate
a_svir: 0.00001
Donor: Mason variator SNP rate
d_snp: 0.001
Donor: Mason variator small indel rate
d_sir: 0.001
Donor: Mason variator max small indel size
d_msis: 4

4.4.3 DaisyGPS configuration

You can select a mapper (bwa or yara) and the number of threads used by the mapper:

4.4. DaisySuite configuration 15

DaisySuite Documentation, Release 1

bwa: false
threads: 20

Those settings are shared with Daisy.

According to the choice of your mapper, you need to specify the location of the index. The indices are generated
during the setup (see Using DaisySuite):

yara_index: 'path/to/yara_index'
bwa_index: 'path/to/bwa_index'

Note that you can specify both indices, the pipeline will pick the index according to your chosen mapper.

You also need to specify the NCBI directory as described in the Simulation section.

You can select taxons per sample that should not be included in the candidate selection. You can either blacklist single
taxons, a whole species or all children of a taxon:

taxon_blacklist:
- sample1:
- 672612

- sample2:
- 726312

species_blacklist:
- sample2:
- 1270

parent_blacklist:
- sample2:
- 3173

You can also opt to only report candidates that are classified more specific than species level, i.e. if a taxon has the
same taxonomic ID as the corresponding species taxonomic ID, the taxon is not reported. If the resulting candidates
list would be empty with this filter activated, the filter is ignored.

filter_species: true

Furthermore, you can set how many acceptors, donors and acceptor-like donors are reported:

number_acceptors: 2
number_donors: 3
number_accdons: 2

4.4.4 Daisy configuration

The mapper and threads choices are shared with DaisyGPS.

You can either use a sensitive mode (using Stellar and Gustaf) or less sensitive mode (using laser).

sensitivemode: true

In case you are using the sensitive mode, the reads are mapped and filtered for not properly aligned pairs. There is an
option to only filter for reads where at least one mate is unmapped, if the filtering for not properly aligned pairs should
yield more than 750000 entires. This will decrease the runtime at the cost of decreased sensitivity.

16 Chapter 4. Contact

DaisySuite Documentation, Release 1

samflag_filter: true

Another option for the sensitive mode is to define the needed number of reads that support a breakpoint for Gustaf.
The default is 2 and increasing it will lead to a more strict search for breakpoints. This option is set per sample.

gustaf_st:
- sample1:
- 4

Daisy can also search against a phage database. An empty entry will result in no search against the phage DB. If you
wish to search against a database, inlclude the full path to the fasta file.

phage: ''

Furthermore, you can set parameters regarding the HGT detection, i.e. the minimum/maximum HGT size and the
needed support by sampling.

hgt_min: 100
hgt_max: 55000
hgt_sens: 90

4.4.5 Command line help

DaisySuite -h provides a short command overview

DaisySuite Pipeline (powered by Snakemake)

Usage: DaisySuite --configfile FILE [Snakemake options]

Useful Snakemake parameters:
-j, --cores number of cores
-k, --keep-going go on with independent jobs if a job fails
-n, --dryrun do not execute anything
-p, --printshellcmds print out the shell commands that will be executed

Full list of parameters:
--help show Snakemake help (or snakemake -h)

4.5 Using DaisySuite

4.5.1 Preparation

If you want to simulate reads and then analyze them, you only need to specify the outputdir and your database directo-
ries in the config. If you already have (gzipped) fastq reads, these files need to be present within the `reads` folder
in the outputdir. Furthermore, the reads need to follow a specific naming scheme: {sample}.1.fq for single end
reads {sample}.1.fq and {sample}.2.fq for paired end reads {sample} is an arbitrary name for the read data
set The reads can be either in plain fastq format or gzipped (fq.gz). Please note that Laser cannot be used with single
end reads.

The read names (the read names within the fastq file) can not contain a slash (‘/’) symbol. For example, simu-
lated.1/1 will not work. (remove, e.g. by using `sed -i 's/\(@simulated\.[0-9]*\)\/[0-9]*/\1/'
<fq-file>`)

4.5. Using DaisySuite 17

DaisySuite Documentation, Release 1

4.5.2 Running with known acceptors and donors

If you have a read dataset and know possible acceptor and donor organisms, you can skip the DaisyGPS and directly
use Daisy to detect HGT events. To do this, you need to set `sim` and `daisygps` in the config to `false` and
`daisy` to `true`. Now create the following directory structure: . – outputdir | – reads | – {sample}.1.fq.gz read
file 1 | – {sample}.2.fq.gz read file 2 | – candidates | – {sample}_acceptors.fa Sequences for all acceptor candidates | –
{sample}_acceptors.txt Accession.Version for all acceptor candidates | – {sample}_donors.fa Sequences for all donor
candidates | – {sample}_donors.txt Accession.Version for all donor candidates

The `reads` folder contains your read dataset (paired or single end) and is prefixed with `sample`.
`candidates/{sample}_acceptors.fa` is the concatenation of all the sequences of the acceptor candi-
dates (a (multi-)FASTA file). `candidates/{sample}_acceptors.txt` lists all the accesions that appear
in `candidates/{sample}_acceptors.fa` (one accession per line). Analogously, you have to provide
`{sample}_donors.fa` and `{sample}_donors.txt`.

4.5.3 Example directory

. – outputdir | – reads | – {sample1}.1.fq.gz | – {sample1}.2.fq.gz | – {sample2}.1.fq.gz | – {sample2}.2.fq.gz | –
{sample3}.1.fq.gz

All samples inside the outputdir will be run.

4.5.4 Config file

All necessary parameters are set in a configfile. A template file can be generated by running
DaisySuite_template . For further information, visit the Configuration section.

4.5.5 Running a job

This pipeline uses Snakemake and therefore supports all parameters implemented by Snakemake.

DaisySuite --configfile config/example.yaml

See DaisySuite -h or the Command line help section for additional options.

4.5.6 Output

The results of DaisyGPS are in the candidates directory. The results of Daisy are in the hgt_eval directory.

. – outputdir | – log-{timestamp}.txt logfile containing information about the run | – reads | – {sample1}.1.fq.gz read
file 1 | – {sample1}.2.fq.gz read file 2 | – candidates | – {sample1}_acceptors.fa Sequences for all acceptor candidates
| – {sample1}_acceptors.txt Accession.Version for all acceptor candidates | – {sample1}_candidates.tsv All reported
candidates including several metrics | – {sample1}_complete.tsv All mapped references including several metrics |
– {sample1}_donors.fa Sequences for all donor candidates | – {sample1}_donors.txt Accession.Version for all donor
candidates | – hgt_eval | – {sample1}.fasta Sequences of filtered horizontally transferred regions | – {sample1}.tsv All
hgt regions | – {sample1}.vcf All filtered hgt regions

Additonally, there are many intermediate directories, which can be kept with `--nt`.

18 Chapter 4. Contact

DaisySuite Documentation, Release 1

Directory Description
bwa/yara [Daisy] contains index for acceptor/donor candidates
candidate_mapping [Daisy] contains mapping of candidates against ncbi
fasta_npa [Daisy] contains not properly aligned reads in fasta format
fastq_npa [Daisy] contains not properly aligned reads in fastq format
gustaf [Daisy] contains results of gustaf
hgt_candidates [Daisy] contains hgt candidates generated in the hgt evaluation step
hgt_eval_pair [Daisy] single result files, merged files are found in hgt_eval
joined [Daisy] contains joined sequences of acceptor and donor candidates
mapping [DaisyGPS] contains mapping of reads against ncbi
mgps [DaisyGPS] contains results of MicrobeGPS
npa_joined [Daisy] contains merged fasta_npa files
process [DaisyGPS] contains intermediate results of candidate detection
sort_mapping [Daisy] contains sorted alignment file from candidate_mapping
sort_npa [Daisy] contains sorted fasta file from npa_joined
stellar [Daisy] contains results of stellar

4.5.7 Explanation

The objective of the DaisyGPS workflow is to identify possible acceptor (organism that receives genetic information)
and donor (organism that the information is transferred from) candidates given reads of a potential HGT organism. The
HGT organism’s genome consists mainly of the acceptor genome. When the reads of the HGT organism are mapped
against the acceptor reference, most reads should map properly. Therefore a high and continuous mapping coverage
pattern of the acceptor genome can be expected.

In contrast to that, only a small part of the donor genome is present within the HGT organism’s genome, hence only
a small fraction of the reads should map against the donor reference and then only within a zoned part (i.e. the part
that has been transferred). This results in a discontinuous mapping coverage pattern where only a small part of the
reference shows a high mapping coverage.

Given only the reads of the HGT organism, the acceptor and donor candidate identification problem is similar to what
is done in metagenomic profiling. We hence use the metagenomic profiling tool MicrobeGPS to gather a profile of
our given HGT organism and mapping coverage metrics. MicrobeGPS fits our requirements as it uses metrics that can
be adapted to represent acceptor and donor attributes. The candidates are ranked by this score and a list with putative
acceptor and donor candidates is generated. These acceptor and donor candidates can then be further analysed with
tools like Daisy.

MicrobeGPS

MicrobeGPS is a metagenomic profiling tool. Given a set of references and sequencing reads from a sample it uses
references to describe the potential (new) organisms in the sample. That is, it uses available references to model the
composition of the organisms present in the sample instead of directly assigning reference organisms to characterize
the sample. To do this, MicrobeGPS developed metrics to compare the genomes in the sample with the reference
genomes. In doing so, MicrobeGPS computes a genome coverage and a metric that corresponds to whether a mapping
pattern is continuous or not. Therefore, it is possible to use MicrobeGPS to identify not only acceptor but also the
donor by leveraging those metrics. We generated the alignment file required for MicrobeGPS by mapping the HGT
organism’s reads against the NCBI RefSeq using bwa and yara.

To to describe the similarity between an organism found in the sample and the corresponding reference genome based
on read evidence, MicrobeGPS facilitates a genomic distance measurement, namely the Genome Dataset Validity
(GDV, validity for short). It describes the fraction of the reference genome for which there is read evidence. A
taxonomic position then can be estimated by using the GDV as a measurement for the distance between an organism
found in the sample and the closest reference genome. To account for possible biases arising from the use of short
NGS reads, the read mapping is modelled as a mixture distribution:

4.5. Using DaisySuite 19

DaisySuite Documentation, Release 1

𝑓(𝑥|𝛼, 𝜆) = 𝛼1 · 𝑧(𝑥) + 𝛼2 · 𝑃 (𝑥|𝜆) + 𝛼3 · 𝑇𝛼(𝑥)

where 𝑧(𝑥) (zero distribution) and 𝑃 (𝑥) (Poisson distribution) form a zero-inflated Poisson distribution that allows to
account for zero coverage regions. The tail distribution accounts for differences between reads and reference genome.
𝛼1, 𝛼2 and 𝛼3 are the mixture coefficients of the different distributions, respectively. Since 𝑧(𝑥) represents the zero
coverage regions, the validity can be easily calculated by 1− 𝛼1

Secondly, another key point of interest is to determine how evenly the reads are distributed. In MicrobeGPS, a
Kolmogorov-Smirnov (KS)-Test is used to compare the actual read distribution with an theoretical read distribution
that is generated by placing the reads uniformly across the genome, i.e. after having seen 𝑥% of the genome also 𝑥%
of the reads should have been seen. The heterogeneity (note: called homogeneity in the original work) is then the
KS-Statistic:

𝐷𝑛 = sup𝑥 | 𝐹𝑛(𝑥)− 𝐹 (𝑥) |

𝐷𝑛 is the KS statistic, 𝐹𝑛(𝑥) is the empirical distribution function (what we expect), 𝐹 (𝑥) the given cumulative
distribution function (what we have)

𝐹𝑛(𝑥) =
1
𝑛

∑︀𝑛
𝑖=1 𝐼[−∞,𝑥](𝑋𝑖)𝐼[−∞,𝑥](𝑋𝑖) =

{︃
1 𝑋𝑖 < 𝑥00

𝑒𝑙𝑠𝑒

Validity and Heterogeneity describe how much of the reference is covered and how evenly the reads are distributed,
respectively. Therefore, they can be used to classify acceptor and donor candidates for an HGT event.

Acceptor and donor classification

For an acceptor, the mapping coverage is relatively high and homogeneous. Hence, we expect a high validity score
and a low heterogeneity score. In contrast to that, we expect a low validity and high heterogeneity for donors. These
assumptions can be used to define a property score that reflects how much the attributes of a given organism matches
the properties of an acceptor or donor:

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 = 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 − ℎ𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 with 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 ∈ (−1, 1]

Therefore, the value for a completely covered acceptor with uniform read distribution would approach +1. Likewise,
the value for a donor that is only covered in a small region would approach −1. We tested weighted scores that include
additional information such as the number of unique reads or k-mer counts (taken, e.g., directly from Kraken), but they
did not improve the classification of suitable candidates. For both mentioned criteria, a high count did not correlate
with the candidate being an acceptor or donor (data not shown). There is, however, a high evidence by sheer read
numbers for acceptors:

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑠𝑐𝑜𝑟𝑒 = #𝑚𝑎𝑝𝑝𝑒𝑑_𝑟𝑒𝑎𝑑𝑠/#𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑎𝑑𝑠 * 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦

Where #𝑚𝑎𝑝𝑝𝑒𝑑_𝑟𝑒𝑎𝑑𝑠/#𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑎𝑑𝑠 is the fraction of all mapped reads that mapped to the specific acceptor
candidate.

For the donor, however, the size of the transferred region is not known in advance, hence, we do not expect a specific
read number evidence and therefore omit the weighting, which yields 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 as metric. We select the acceptors
with the highest property scores (approximating 1) and the donors with the lowest property (approximating −1) as
candidates.

In case acceptor and donor are very similar, the donor might not express the attributes we are looking for. In particular,
the donor might have a significant read number evidence arising from acceptor reads also mapping to the donor.

As a result, the property score will likely indicate an acceptor instead of a donor (approximating +0), while still being
relatively low compared to the property of other acceptors.

To account for this, we also classify candidates with a 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑠𝑐𝑜𝑟𝑒 > 0 as possible acceptor-like donors. The
entries with the lowest property among them are selected as acceptor-like donors.

For more information and publications, see Citations

20 Chapter 4. Contact

http://daisysuite.readthedocs.io/en/latest/index.html#citation

DaisySuite Documentation, Release 1

4.6 DaisySuite example

To run DaisySuite on an example dataset, first copy the example into a directory of your choice by running

DaisySuite_example .

to copy the folder example into the current working directory.

Next, you need to edit the following parameters in the example/example.yaml:

• outputdir (full path to example/output/)

• ncbidir

• bwa (in case you are using bwa)

• yara_index or bwa_index

Finally, you can run DaisySuite:

DaisySuite --configfile example/example.yaml

You can also use multiple threads by adding --cores <thread_number>, e.g. --cores 10, to the command.

4.6.1 DaisyGPS results

You will find the acceptor Escherichia coli str. K-12 substr. DH10B [NC_010473.1] and the donor Helicobacter pylori
[NZ_AP014710.1] in the example/output/candidates/sim1HP_candidates.tsv file.

4.6. DaisySuite example 21

DaisySuite Documentation, Release 1

Table 4.1: DaisyGPS Results
Type Name Ac-

ces-
sion.Version

TaxID Par-
ent
TaxID

Species
TaxID

Abun-
dance

Num.
Reads

Unique
Reads

Cov-
er-
age

Va-
lid-
ity

Ho-
mo-
gene-
ity

Map-
ping
Er-
ror

Prop-
erty
Score

Prop-
erty

Ac-
cep-
tor

Escherichia
coli str. K-12
substr. DH10B

NC_010473.131638583333 562 0.946692320209823197800136 36.86581525450.254276759640.081469341893774750.0214969666330.00300791013417541250.17280741774622527

Ac-
cep-
tor

Escherichia
coli K-12

NZ_CP010445.183333 562 562 0.89524165063320221870500 35.72820331890.2372486265810.074968155013203750.02143975764060.00267116159909420220.16228047156779624

Donor [Haemophilus]
ducreyi

NZ_CP015434.1730 724 730 0.0015411270328997118322 0 24.79466119050.001097153876980.92548764304386220.0265838509317-
2.619313788987036e-
05

-
0.9243904891668824

Donor Salmonella
enterica
subsp. enter-
ica serovar
Anatum str.
USDA-ARS-
USMARC-
1676

NZ_CP014620.1145458758712 28901 0.0006030497085259743126 0 0.06457839516870.001085282431230.91934436871145720.013492063492100002-
1.0181504759172115e-
05

-
0.9182590862802272

Donor Klebsiella
oxytoca
KONIH1

NZ_CP008788.11333852571 571 0.0085719208569049191791 0 41.29265293580.001057509602270.79466317819490770.0263539921831-
0.00012507673507004732

-
0.7936056685926377

Donor Helicobacter
pylori

NZ_AP014710.1210 209 210 0.0438120399352918069154 9091 47.35154148560.01779220340960.79999968902797520.00920544752749-
0.0006300993983310352

-
0.7822074856183753

Acceptor-
like
Donor

Escherichia
coli

NZ_CP016182.1562 561 562 0.3569479941418028474580 0 6.995379432250.09391484633990.08794206023260420.02112317868963.919904897022354e-
05

0.00597278610729579

4.6.2 Daisy results

Furthermore, you will find the base pair positions of the transfer in example/output/hgt_eval/sim1HP.
vcf. Bases 1322000 to 1350000 of the donor have been inserted at base 1120262 of the acceptor. This is indicated by
two breakpoints in the vcf, one representing the beginning of the insert (acceptor 1120261, donor 1322000) and one
representing the end of the insert (acceptor 1120263, donor 1350000).

The example/output/hgt_eval/sim1HP.tsv also provides a more intuitive representation of putative trans-
ferred regions, but please note that those candidates have not been filtered by the sampling values.

Listing 4.1: Daisy TSV header

#AN: Acceptor name
#DN: Donor name
#AS: Acceptor start position
#AE: Acceptor end position
#DS: Donor start position
#DE: Donor end position
#MC: Mean coverage in region
#Split: Total number split-reads per region (including duplicates!)
#PS-S: Pairs spanning HGT boundaries
#PS-W: Pairs within HGT boundaries

22 Chapter 4. Contact

DaisySuite Documentation, Release 1

#Phage: PS-S and PS-W reads mapping to phage database
#BS:MC/PS-S/PS-W: Percent of bootstrapped random regions with MC/PS-S/PS-W smaller
→˓than candidate

Table 4.2: Daisy Results TSV
AN DN AS AE MC BS:MCDS DE MC Split PS-

S
PS-
W

PhageBS:MCBS:PS-
S

BS:PS-
W

NZ_CP010445.1NZ_AP014710.11880235188023744.00 7 1322002135000094.62 152 182 8712 0.0000100 100 100
NZ_CP010445.1NZ_CP015434.13904873390488640.54 3 11492812695730.41 871 156 884 0.0000100 100 100
NZ_CP010445.1NZ_CP015434.13904873391600797.63 20 125626126957129.681571 108 258 0.0000100 100 100
NZ_CP010445.1NZ_CP015434.13904885391600797.69 18 11492712562618.06 253 43 279 0.0000100 99 100
NC_010473.1NZ_AP014710.11120261112026343.00 3 1322002135000094.62 154 182 8712 0.0000100 100 100

Listing 4.2: Daisy VCF header

##fileformat=VCFv4.2
##source=DAISY
##INFO=<ID=EVENT,Number=1,Type=String,Description="Event identifier for breakends.">
##contig=<ID=NC_010473.1>
##contig=<ID=NZ_CP010445.1>
##contig=<ID=NZ_CP015434.1>
##contig=<ID=NZ_CP014620.1>
##contig=<ID=NZ_CP008788.1>
##contig=<ID=NZ_AP014710.1>
##contig=<ID=NZ_CP016182.1>

Table 4.3: Daisy Results VCF
CHROM POS ID REF ALT QUAL FILTER INFO FOR-

MAT
NZ_CP010445.11880235 BND_1_1A A[NZ_AP014710.1:1322002[PASS SV-

TYPE=BND;EVENT=HGT1
. 1

NZ_CP010445.11880237 BND_1_2G]NZ_AP014710.1:1350000]GPASS SV-
TYPE=BND;EVENT=HGT1

. 1

NZ_CP010445.13904873 BND_1_1T T[NZ_CP015434.1:114928[PASS SV-
TYPE=BND;EVENT=HGT1

. 1

NZ_CP010445.13904886 BND_1_2C]NZ_CP015434.1:126957]CPASS SV-
TYPE=BND;EVENT=HGT1

. 1

NC_010473.1 1120261 BND_1_1A A[NZ_AP014710.1:1322002[PASS SV-
TYPE=BND;EVENT=HGT1

. 1

NC_010473.1 1120263 BND_1_2G]NZ_AP014710.1:1350000]GPASS SV-
TYPE=BND;EVENT=HGT1

. 1

4.6. DaisySuite example 23

	Getting started
	Citation
	Tools used
	Contact
	Install with Conda
	Install with git
	Database requirements
	DaisySuite configuration
	Using DaisySuite
	DaisySuite example

