

 Navigation

 	
 index

 	
 next |

 	daisy 0.1.0 documentation

daisy

dask + lazy = daisy

A dask [http://dask.readthedocs.io/en/latest/] backend for lazy [https://github.com/llllllllll/lazy_python]

What is daisy?

daisy is an experiment to finally use lazy [https://github.com/llllllllll/lazy_python] for something useful. daisy
is meant to be an alternative to dask.delayed() for automatically creating
computation graphs from functions.

Example

Given the following setup:

from daisy import autodask, inline, register_get
from dask import delayed
from dask.threaded import get
from lazy import strict
import numpy as np

@inline
def f(a, b):
 return a + b

def g(a, b):
 return f(f(a, b), f(a, b))

autodask_g = autodask(g, inline=True)
delayed_g = delayed(g)

register_get(get)

arr = np.arange(1000000)

To start, let’s make sure these all do the same thing:

>>> (g(arr, arr) == delayed_g(arr, arr).compute()).all()
True

>>> (g(arr, arr) == autodask_g(arr, arr)).all()
True

Now we will run some not very scientific profiling runs:

In [1]: %timeit g(arr, arr)
100 loops, best of 3: 9.34 ms per loop

In [2]: %timeit delayed_g(arr, arr).compute()
100 loops, best of 3: 10.2 ms per loop

In [3]: %timeit strict(autodask_g(arr, arr))
100 loops, best of 3: 3.63 ms per loop

Why is this faster?

This is a very good case for autodask because we can dramatically reduce the
amount of work we are doing. In the normal function and dask.delayed cases
we will fall f(a, b) twice, and then add those together. In the autodask
case will will just directly execute a + b once, and then add that to
itself. We have totally removed f from the graph, and instead just use +
directly.

We have used a very large input here to see a speedup. One goal I have is to
reduce the overhead to make this work for smaller inputs and smaller
expressions. I would like to try this with real workloads to see if the amount
of reduced work causes as dramatic of speedups.

More shared work

Let’s look at a more radical example:

from daisy import inline, autodask, ltree_to_dask
from lazy.tree import LTree

@inline
def f(a, b):
 return a + b

@inline
def g(a, b):
 return a + b + 1

def h(a, b):
 return f(a, b) + g(a, b)

In [1]: (h(arr, arr) == autodask_h(arr, arr)).all()
Out[1]: True

In [2]: %timeit h(arr, arr)
100 loops, best of 3: 9.02 ms per loop

In [3]: %timeit strict(autodask_h(arr, arr))
100 loops, best of 3: 5.9 ms per loop

The reason this is faster is that we can actually share the work of computing
a + b even though they are in totally separate functions!

In [4]: from lazy.tree import LTree

In [5]: from daisy import ltree_to_dask

In [6]: ltree_to_dask(LTree.parse(autodask_h(arr, arr)))[0]
Out[6]:
{'4876ef4b-832a-4058-94f7-29a6fb998ea6': <wrapped-function add>,
 '5a2bee49-2a31-4e01-887f-bfaef7ebb27a': 1,
 'add-39c81b36-ad91-4c2e-93c7-2a74d485fd7b': (<function dask.compatibility.apply>,
 '4876ef4b-832a-4058-94f7-29a6fb998ea6',
 ['add-d581fba1-d73f-42db-8e41-9bff1c803941',
 'add-54f2153f-4cbe-4dfc-babe-cbde4c7d66c1'],
 (dict, [])),
 'add-54f2153f-4cbe-4dfc-babe-cbde4c7d66c1': (<function dask.compatibility.apply>,
 '4876ef4b-832a-4058-94f7-29a6fb998ea6',
 ['add-d581fba1-d73f-42db-8e41-9bff1c803941',
 '5a2bee49-2a31-4e01-887f-bfaef7ebb27a'],
 (dict, [])),
 'add-d581fba1-d73f-42db-8e41-9bff1c803941': (<function dask.compatibility.apply>,
 '4876ef4b-832a-4058-94f7-29a6fb998ea6',
 ['f174fab9-9eb1-4448-991c-5437bd2d709e',
 'f174fab9-9eb1-4448-991c-5437bd2d709e'],
 (dict, [])),
 'f174fab9-9eb1-4448-991c-5437bd2d709e': array([0, 1, 2, ..., 999997, 999998, 999999])}

The key point here is that we only ever have a + b once in this graph.

Contents

	API Reference
	Main

	Miscellaneous

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Joe Jevnik.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	daisy 0.1.0 documentation

API Reference

Main

	
daisy.autodask(func, *, inline)

	Mark that a function should lazily build up a call graph to be
executed by dask.

	Parameters:	
	func (callable [https://docs.python.org/library/functions.html#callable]) – The function to transform.

	inline (bool [https://docs.python.org/library/functions.html#bool]) – Should the function be inlined into other autodask functions?
This should normally be True unless the function is strict on the
argument.

	Returns:	transformed –
func with the transformations needed to build the call graph.

	Return type:	callable [https://docs.python.org/library/functions.html#callable]

Notes

autodask transforms a function to build up a call graph which can be
executed by dask. This is very similar to dask.delayed() which
provides an imperitive API to dask.

Functional purity

autodask may only be applied to functions which a pure functions of
their inputs. This means that a function must always be safe to memoize.

There is no guarantee about the execution order of autodask defered
code. Repeated calls to a function with the same arguments may only be
computed a single time.

Note

Things to be on the look out for when checking if a function is pure:

	IO

	Mutating structures

	Reading or writing to shared state (please stop this)

	Randomness

IO may be okay if you are alright with only executing the call once
and in an undefined order. You may force the partial order of execution
by explicitly passing the results of one IO call into the other calls
that must follow it.

Building up our task graph

Unlike dask.delayed(), autodask is lazy by default. This
means that f(a, b) will automatically turn into a dask task graph like:

{'name': (f, a, b)}

Note

f, a and, b may also be deferred computations themselves.

Dask will perform best if we can encode more information into the task
graph before feeding it to dask. To do this, we can pass inline=True
to autodask before decorating. If a function is inlineable then instead of
defering the computation, we will enter the code and add the body of that
function to the dask graph. For example, imagine we have defined f
like:

@autodask(inline=True)
def f(a, b):
 return a + b + 1

When calling this function we know that it is safe to replace the task
(f, a, b) with the task graph:

{'name_1': (add, a, b),
 'result': (add, 'name_1', 1)}

This will give dask more information to optimize the expression.
We can also use this to collapse shared work. For example, imagine we have

@autodask(inline=True)
def g(a, b):
 return f(a, b) + f(a, b)

Because f is inlineable, we will enter the code and see what it adds to
the graph. Because we are doing the same work twice, we can reduce it to
a more simple task graph that will look more like:

{'name_1': (add, a, b),
 'f_result': (add, 'name_1', 1),
 'result': (add, 'f_result', 'f_result')}

This shows that we will not duplicate the work needed to add compute
f(a, b) twice.

When it is unsafe to pass inline=True

There is no default for inline because it is a very important decision!
On the one hand, we almost always want to pass inline=True; however,
there are cases when inlining is not possible, and attempting to do so will
give much worse performance.

Functions cannot be inlined into the graph if they are strict on their
inputs. This means that to return a final defered computation they must
scrutinize at least one of the inputs and normalize it to a concrete value.

There are many operations which will force computation, here are some
common cases:

Branching on the input

def f(x):
 if p(x):
 return x + 1
 else:
 return x - 1

Iterating over the input with a for loop

def f(xs):
 total = 0
 for x in xs:
 total += 0
 return total

Explicitly strictly evaluating an input

def f(x):
 return strict(x)

Differences with dask.delayed

Lazy by default vs eager by default

While both autodask and dask.delayed() serve the same purpose,
they go about it in different ways. dask.delayed() is strict by
default. This means that by default, most functions will be entered
immediatly instead of creating a task. This can be bad if the function
does not know how to work with the dask.delayed.Delayed object or
is strict on an input. Here is an example of a function in the
dask.delayed() API:

@dask.delayed
def f(a, b):
 # lazy call: this will create a node like ``(f, a, b)`` in the
 # resulting task graph
 c = delayed(g)(a, b)

 # strict call: this will enter the code ``h`` immediatly and add the
 # body to the graph. This may not be safe!
 return h(c, b)

autodask takes a different approach and is lazy by default. This
means that by default function calls just create a new task for the graph
and are not executed eagerly. Here is the same function in the autodask
API:

@autodask
def f(a, b):
 # lazy call: this will create a node like ``(f, a, b)`` in the
 # resulting task graph **unless ``g`` is an inline function**!
 c = g(a, b)

 # strict call: this will enter the code ``h`` immediatly and add the
 # body to the graph. This may not be safe!
 return inline(h)(c, b)

One advantage of the autodask approach is that that the potentially
unsafe operation is called out explicitly, while we choose a more
conservative graph construction strategy by default. We also allow
functions to opt-in to inlining if they know it is safe to do so.

Magic

autodask uses much darker magic than dask.delayed(). This is nice
because it allows us to do things like translate:

@autodask(inline=True)
def f(a, b):
 return a is b

into a dask graph like:

{'result': (operator.is_, a, b)}

We can also defer things like comprehensions and even literal construction.

Warning

The magic required for autodask may be too much for people. It will
not be easy to debug! dask.delayed() is a much more reasonable
solution for most cases. You have been warned.

See also

daisy.inline(), lazy.strict(), dask.delayed()

	
class daisy.inline(func)

	A box that denotes that a function should be inlined in autodask.

	Parameters:	func (callable [https://docs.python.org/library/functions.html#callable]) – The function to wrap.

Notes

inline can allow non-autodask functions to be inlined into the task
graph. This is nice if you know that a function is a pure computation of
its inputs and does not need to scrutinize an input to return a final
computation.

Functions cannot be inlined into the graph if they are strict on their
inputs. This means that to return a final defered computation they must
scrutinize at least one of the inputs and normalize it to a concrete value.

There are many operations which will force computation, here are some
common cases:

Branching on the input

def f(x):
 if p(x):
 return x + 1
 else:
 return x - 1

Iterating over the input with a for loop

def f(xs):
 total = 0
 for x in xs:
 total += 0
 return total

Explicitly strictly evaluating an input

def f(x):
 return strict(x)

See also

daisy.autodask()

	
daisy.register_get(get)

	Register the get function which will be used to evaluate
autodaskthunk generated dask graphs.

By default, dask.get() will be used.

	Parameters:	get (callable[dict, str, any]) – The get function.

	Returns:	get –
The get function unchanged.

	Return type:	callable[dict, str, any]

Miscellaneous

	
class daisy.autodaskthunk

	A thunk which is evaluated with dask.

	Parameters:	
	func (callable [https://docs.python.org/library/functions.html#callable]) – The code for the closure.

	*args – The free variables.

	**kwargs – The free variables.

	
daisy.ltree_to_dask(node)

	Convert an lazy.tree.LTree into a dask task graph.

	Parameters:	node (LTree) – The node to convert into a dask graph.

	Returns:	dask –
The equivalent dask task graph.

	Return type:	dict[str, any]

Notes

This function does common subexpression folding to produce a minimal graph.

 Copyright 2016, Joe Jevnik.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	daisy 0.1.0 documentation

Index

 A
 | I
 | L
 | R

A

 	

 	autodask() (in module daisy)

 	

 	autodaskthunk (class in daisy)

I

 	

 	inline (class in daisy)

L

 	

 	ltree_to_dask() (in module daisy)

R

 	

 	register_get() (in module daisy)

 Copyright 2016, Joe Jevnik.
 Created using Sphinx 1.3.5.

 _static/plus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		daisy 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Joe Jevnik.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		daisy 0.1.0 documentation »

 All modules for which code is available

		daisy

 © Copyright 2016, Joe Jevnik.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

