cw-eval Documentation
Release 1.0.0

David Lindenbaum and Nick Weir

Mar 12, 2019






Contents

1 CosmiQ Works Evaluation API reference 3
1.1 Core functionality . . . . . . . . . . . e e e e e e e e 3

1.2 SpaceNet Challenge evalcode . . . . . . . . . . .. . . 6

2  CosmiQ Works Evaluation Cookbook 7
2.1  Evaluate a proposal for one chip against ground truth . . . . . . .. .. ... ... L. 7
2.1.1  CSVEval . . . . e 7

2.1.2  GeoJSONEval . . . . . . e 9

2.2 Score an entire competition (or a whole AOI) using cw—eval . . . . . ... ... ... ... .... 10
2.2.1  Things to understand before starting . . . . . . . . . . .. .. e 10

222 IMPOTES . o v v o e e e e e e e e e e e e e e e e e e 10

223 Groundtruth CSV format . . . . . . . . . . . . . e 10

224  Proposal CSV format . . . . . . . . . . L e e e 11

2.2.5 Running eval on the Off-Nadir challenge: Python APT. . . . . . ... ... ... ... ... 12

2.3 Running eval on the Off-Nadir Challenge usingthe CLI . . . . ... ... ... ... ... .... 13

3 Indices and tables 15

Python Module Index 17







cw-eval Documentation, Release 1.0.0

Author CosmiQ Works
Release 1.0.0
Copyright 2018, CosmiQ Works

License This work is licensed under an Apache 2.0 License.

Contents 1


https://www.cosmiqworks.org
https://www.apache.org/licenses/LICENSE-2.0

cw-eval Documentation, Release 1.0.0

2 Contents



CHAPTER 1

CosmiQ Works Evaluation API reference

1.1 Core functionality

class cw_eval.baseeval.EvalBase (ground_truth_vector_file)
Object to test IoU for predictions and ground truth polygons.

Parameters ground_truth_vector_file (st r)— Path to .geojson file for ground truth.

eval_iou (miniou=0.5, iou_field_prefix="iou_score’, ground_truth_class_field=", calcu-

late_class_scores=True, class_list=["all’])
Evaluate IoU between the ground truth and proposals.

Parameters

* miniou (float, optional)-— Minimum intersection over union score to qualify as
a successful object detection event. Defaults to 0. 5.

* iou_field prefix (str, optional) — The name of the IoU score column in
self.proposal_GDF. Defaults to "iou_score".

* ground_truth_class_field (str, optional) — The column in self.
ground_truth_GDF that indicates the class of each polygon. Required if using
calculate_class_scores.

* calculate_class_scores (bool, optional)- Should class-by-class scores be
calculated? Defaults to True.

e class_list (list, optional) — List of classes to be scored. Defaults to
['all'] (score all classes).

Returns

scoring_dict_list — list of score output dicts for each image in the ground truth and evaluated
image datasets. The dicts contain the following keys:

('class_id', 'iou_field', 'TruePos', 'FalsePos', 'FalseNeg',
'"Precision', 'Recall', 'FlScore')



https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

cw-eval Documentation, Release 1.0.0

Return type list

eval_iou_spacenet_csv (miniou=0.5, iou_field_prefix="iou_score’, imagelDField="Imageld’, de-
bug=False, minArea=0)
Evaluate IoU between the ground truth and proposals in CSVs.

Parameters

* miniou(float , optional)-—Minimum intersection over union score to qualify as
a successful object detection event. Defaults to 0. 5.

¢ iou_field prefix (str , optional) - The name of the IoU score column in
self.proposal_GDF. Defaults to "iou_score" .

* imageIDField (str , optional)- The name of the column corresponding to the
image IDs in the ground truth data. Defaults to " ImageId".

* debug (bool , optional)- Argument for verbose execution during debugging. De-
faults to False (silent execution).

* minArea (float or int , optional)-— Minimum area of a ground truth poly-
gon to be considered during evaluation. Often set to 20 in SpaceNet competitions. De-
faults to O (consider all ground truth polygons).

Returns

scoring_dict_list — list of score output dicts for each image in the ground truth and evaluated
image datasets. The dicts contain the following keys:

('imageID', 'iou_field', 'TruePos', 'FalsePos', 'FalseNeg',
'Precision', 'Recall', 'FlScore')

Return type list

load_proposal (proposal_vector_file, conf_field_list=[conf’], proposalCSV=False,

pred_row_geo_value="PolygonWKT_Pix’, conf_field_mapping=[])
Load in a proposal geojson or CSV.

Parameters

* proposal_vector_file (str)— Path to the file containing proposal vector objects.
This can be a .geojson or a .csv.

* conf field list (list, optional) — List of columns corresponding to confi-
dence value(s) in the proposal vector file. Defaults to [ 'conf'].

* proposalCSV (bool, optional) — Is the proposal file a CSV? Defaults to no
(False), in which case it’s assumed to be a .geojson.

* pred_row_geo_value (str, optional)-— The name of the geometry-containing
column in the proposal vector file. Defaults to 'PolygonWKT_Pix'. Note: this method
assumes the geometry is in WKT format.

e conf_field mapping (dict, optional) — '__max_conf_class' column
value:class ID mapping dict for multiclass use. Only required in multiclass cases.

Returns

Return type 0 upon successful completion.

4 Chapter 1. CosmiQ Works Evaluation API reference


https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

cw-eval Documentation, Release 1.0.0

Notes

Loads in a .geojson or .csv-formatted file of proposal polygons for comparison to the ground truth and
stores it as part of the EvalBase instance. This method assumes the geometry contained in the proposal
file is in WKT format.

load_truth (ground_truth_vector_file, truthCSV=False, truth_geo_value="PolygonWKT_Pix’)
Load in the ground truth geometry data.

Parameters

e ground_truth_vector_file (str)— Path to the ground truth vector file. Must be
either .geojson or .csv format.

* truthCSV (bool, optional) - Is the ground truth a CSV? Defaults to False, in
which case it’s assumed to be a .geojson.

e truth_geo_value (str, optional)- Column of the ground truth vector file that
corresponds to geometry.

Returns

Return type Nothing.

Notes

Loads the ground truth vector data into the EvalBase instance.

cw_eval.baseeval.eval_base (ground_truth_vector_file, csvFile=False,
truth_geo_value="PolygonWKT_Pix’)
Deprecated API to EvalBase.

Deprecated since version 0.3: Use EvalBase instead.

cw_eval.evalfunctions.calculate_iou (pred_poly, test_data_GDF)
Get the best intersection over union for a predicted polygon.

Parameters
* pred_poly (shapely.Polygon) — Prediction polygon to test.

* test_data_GDF (geopandas.GeoDataFrame) — GeoDataFrame of ground truth
polygons to test pred_poly against.

Returns iou_GDF — A subset of test_data_GDF that overlaps pred_poly with an added col-
umn iou_score which indicates the intersection over union value.

Return type geopandas.GeoDataFrame

cw_eval.evalfunctions.process_iou (pred_poly, test_data_GDF, re-

move_matching_element=True)
Get the maximum intersection over union score for a predicted polygon.

Parameters
* pred_poly (shapely.geometry.Polygon) — Prediction polygon to test.

* test_data_GDF (geopandas.GeoDataFrame) — GeoDataFrame of ground truth
polygons to test pred_poly against.

* remove_matching element (bool, optional)- Should the maximum IoU row
be dropped from test_data_GDF? Defaults to True.

Returns

1.1. Core functionality 5


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
http://geopandas.org/reference/geopandas.GeoDataFrame.html#geopandas.GeoDataFrame
http://geopandas.org/reference/geopandas.GeoDataFrame.html#geopandas.GeoDataFrame
http://geopandas.org/reference/geopandas.GeoDataFrame.html#geopandas.GeoDataFrame
https://docs.python.org/3/library/functions.html#bool

cw-eval Documentation, Release 1.0.0

Return type *This function doesn’t currently return anything.*

1.2 SpaceNet Challenge eval code

cw_eval.challenge_eval.off_nadir_dataset.eval_off nadir (prop_csv, truth_csv,
imageColumns={},  min-

iou=0.5, minArea=20)
Evaluate an off-nadir competition proposal csv.

Uses EvalBase to evaluate off-nadir challenge proposals. See imageColumns in the source code for how
collects are broken into Nadir, Off-Nadir, and Very-Off-Nadir bins.

Parameters
* prop_csv (str) — Path to the proposal polygon CSV file.
* truth_csv (str)— Path to the ground truth polygon CSV file.

* imageColumns (dict, optional) — dict of (collect: nadir bin) pairs
used to separate collects into sets. Nadir bin values must be one of ["Nadir",
"Off-Nadir", "Very-Off-Nadir"] . See source code for collect name options.

* miniou (float, optional) — Minimum IoU score between a region proposal and
ground truth to define as a successful identification. Defaults to 0.5.

* minArea (float or int, optional)— Minimum area of ground truth regions to
include in scoring calculation. Defaults to 20.

* Returnss -

* results_DF_Full (results_DF,)—

results DF [pd.DataFrame] Summary pd.DataFrame of score outputs grouped by
nadir angle bin, along with the overall score.

results DF Full [pd.DataFrame] pd.DataFrame of scores by individual image chip
across the ground truth and proposal datasets.

cw_eval.challenge_eval.off_nadir_dataset.get_collect_id (imagelD)
Get the collect ID for an image name using a regex.

6 Chapter 1. CosmiQ Works Evaluation API reference


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

CHAPTER 2

CosmiQ Works Evaluation Cookbook

2.1 Evaluate a proposal for one chip against ground truth

This recipe describes how to run evaluation of a proposal (CSV or .geojson) for a single chip against a ground truth
(CSV or .geojson) for the same chip.

2.1.1 CSV Eval
Steps

1. Imports
2. Load ground truth CSV
3. Load proposal CSV

4. Perform evaluation

Imports

For this test case we will only need cw_eval installed - Installation instructions for cw_eval

: # imports

import os

import cw_eval

from cw_eval.baseeval import EvalBase # class used for evaluation

from cw_eval.data import data_dir # get the path to the sample eval data
import pandas as pd # just for visualizing the outputs in this recipe



https://github.com/cosmiq/cw-eval/#installation-instructions

cw-eval Documentation, Release 1.0.0

Load ground truth CSV

We will first instantiate an EvalBase () object, which is the core class cw_eval uses for comparing predicted labls
to ground truth labels. EvalBase () takes one argument - the path to the CSV or .geojson ground truth label object.
It can alternatively accept a pre-loaded GeoDataFrame of ground truth label geometries.

: ground_truth_path = os.path.join(data_dir, 'sample_ truth.csv')

eval_object = EvalBase (ground_truth_path)
eval_object

]: EvalBase sample_truth.csv

At this point, eval_object has the following attributes:

* ground_truth_fname: the filename corresponding to the ground truth data.  This is simply
'GeoDataFrame' if a GDF was passed during instantiation.

* ground_truth_GDF: GeoDataFrame-formatted geometries for the ground truth polygon labels.

* ground_truth_GDF_Edit: A deep copy of eval_object.ground_truth_GDF which is edited dur-
ing the process of matching ground truth label polygons to proposals.

* ground_truth_sindex: The RTree/libspatialindex spatial index for rapid spatial referencing.

e proposal_GDF: An empty GeoDataFrame instantiated to hold proposals later.

Load proposal CSV

Next we will load in the proposal CSV file. Note that the proposalCSV flag must be set to true for CSV data. If
the CSV contains confidence column(s) that indicate confidence in proprosals, the name(s) of the column(s) should
be passed as a list of strings with the conf_field_1ist argument; because no such column exists in this case, we
will simply pass conf_field_ list=[]. There are additional arguments available (see the method documentation)
which can be used for multi-class problems; those will be covered in another recipe. The defaults suffice for single-
class problems.

: proposals_path = os.path.join(data_dir, 'sample_preds.csv')

eval_object.load_proposal (proposals_path, proposalCSV=True, conf_field_list=[])

Perform evaluation

Evaluation iteratively steps through the proposal polygons in eval_object.proposal_GDF and determines
if any of the polygons in eval_ object.ground_truth_ GDF_Edit have IoU overlap > miniou (see the
method documentation) with that proposed polygon. If one does, that proposal polygon is scored as a true posi-
tive. The matched ground truth polygon with the highest IoU (in case multiple had IoU > miniou) is removed from
eval_object.ground_truth_GDF_Edit so it cannot be matched against another proposal. If no ground truth
polygon matches with IoU > miniou, that proposal polygon is scored as a false positive. After iterating through
all proposal polygons, any remaining ground truth polygons in eval_object.ground_truth_GDF_Edit are
scored as false negatives.

There are several additional arguments to this method related to multi-class evaluation which will be covered in a later
recipe. See the method documentation for usage.

The prediction outputs a 1ist of dicts for each class evaluated (only one dict in this single-class case). The
dict(s) have the following keys:

8 Chapter 2. CosmiQ Works Evaluation Cookbook


https://cw-eval.readthedocs.io/en/latest/api.html#cw_eval.baseeval.EvalBase.load_proposal
https://cw-eval.readthedocs.io/en/latest/api.html#cw_eval.baseeval.EvalBase.eval_iou
https://cw-eval.readthedocs.io/en/latest/api.html#cw_eval.baseeval.EvalBase.eval_iou
https://cw-eval.readthedocs.io/en/latest/api.html#cw_eval.baseeval.EvalBase.eval_iou

[(4]:

[4]:

cw-eval Documentation, Release 1.0.0

e 'class_id": The class being scored in the dict, 'all"' for single-class scoring.

e '"iou_field': The name of the column in eval_object.proposal_GDF for the IoU score for this
class. See the method documentation for more information.

e 'TruePos': The number of polygons in eval_object.proposal_GDF that matched a polygon in
eval_object.ground_truth_GDF_Edit.

* 'FalsePos': The number of polygons in eval_object.proposal_GDF that had no match in
eval_object.ground_truth_GDF_Edit.

* 'FalseNeg': The number of polygonsin eval_object.ground_truth_GDF_Edit that had no match
ineval_object.proposal_GDF.

e 'Precision': The precision statistic for IoU between the proposals and the ground truth polygons.
e 'Recall': The recall statistic for IoU between the proposals and the ground truth polygons.

e 'Fl1Score': Also known as the SpaceNet Metric, the F1 score for IoU between the proposals and the ground
truth polygons.

eval_object.eval_iou(calculate_class_scores=False)

151it [00:01, 110.15it/s]

[{'class_id': 'all',
'iou_field': 'iou_score_all',
'TruePos': 151,

'FalsePos': 0,
'FalseNeg': O,
'Precision': 1.0,

'Recall': 1.0,
'FlScore': 1.0}]

In this case, the score is perfect because the polygons in the ground truth CSV and the proposal CSV are identical.
At this point, a new proposal CSV can be loaded (for example, for a new nadir angle at the same chip location) and
scoring can be repeated.

2.1.2 GeodJSON Eval

The same operation can be completed with .geojson-formatted ground truth and proposal files. See the example below,
and see the detailed explanation above for a description of each step’s operations.

ground_truth_geojson = os.path.join(data_dir, 'gt.geojson')
proposal_geojson os.path. join(data_dir, 'pred.geojson')

eval_object = EvalBase (ground_truth_geojson)
eval_object.load_proposal (proposal_geojson, proposalCSV=False, conf_field_list=[])
eval_object.eval_iou(calculate_class_scores=False)

28it [00:00, 85.50it/s]

[{'class_id': 'all',
'iou_field': 'iou_score_all',
'TruePos': 8,

'FalsePos': 20,
'FalseNeg': 20,
'Precision': 0.2857142857142857,

(continues on next page)

2.1. Evaluate a proposal for one chip against ground truth 9


https://cw-eval.readthedocs.io/en/latest/api.html#cw_eval.baseeval.EvalBase.eval_iou
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
https://medium.com/the-downlinq/the-spacenet-metric-612183cc2ddb
https://en.wikipedia.org/wiki/F1_score

cw-eval Documentation, Release 1.0.0

(continued from previous page)

'Recall': 0.2857142857142857,
'FlScore': 0.2857142857142857}]

(Note that the above comes from a different chip location and different proposal than the CSV example, hence the
difference in scores)

2.2 Score an entire competition (or a whole AOIl) using cw-eval

This recipe describes how to run evaluation of a proposal CSV for an entire competition against a ground truth CSV.

2.2.1 Things to understand before starting

When we score entire competitions, we want to ensure that competitors provide submissions for the entire area of
interest (AOI), not just the subset that competitors provide scores for, in case they leave out chips that they can’t
predict well. Therefore, proposal files scored using this pipeline should contain predictions for every chip in the
ground truth CSV. The score outputs also provide chip-by-chip results which can be used to remove non-predicted
chips if needed.

When CosmiQ Works runs competitions in partnership with TopCoder, we set some cutoffs for scoring buildings:
* An IoU score of > 0.5 is required to ID a building as correctly identified.

* Ground truth buildings fewer than 20 pixels in extent are ignored. However, it is up to competitors to filter out
their own small footprint predictions.

2.2.2 Imports

For this test case we will only need cw_eval installed - Installation instructions for cw_eval

# imports

import os

import cw_eval

from cw_eval.challenge_eval.off nadir_ dataset import eval_off nadir # runs eval
from cw_eval.data import data_dir # get the path to the sample eval data

import pandas as pd # just for visualizing the outputs in this recipe

2.2.3 Ground truth CSV format

The following shows a sample ground truth CSV and the elements it must contain.

: ground_truth_path = os.path.join(data_dir, 'sample_truth_competition.csv')

pd.read_csv (ground_truth_path) .head (10)

10 Chapter 2. CosmiQ Works Evaluation Cookbook


https://github.com/cosmiq/cw-eval/#installation-instructions

cw-eval Documentation, Release 1.0.0

ImageId BuildingId \
Atlanta_nadir8_catid_10300100023BC100_743501_3...
Atlanta_nadir8_catid_10300100023BC100_743501_3...
Atlanta_nadir8_catid_10300100023BC100_743501_3...
Atlanta_nadir8_catid_10300100023BC100_743501_3...
Atlanta_nadir8_catid_10300100023BC100_743501_3...
Atlanta_nadir8_catid_10300100023BC100_743501_3...
Atlanta_nadir8_catid_10300100023BC100_743501_3...
Atlanta_nadir8_catid_10300100023BC100_743501_3...
Atlanta_nadir8_catid_10300100023BC100_743501_3...
Atlanta_nadir8_catid_10300100023BC100_743501_3...

O 00 J oy U WDN O
O 00 J o U WDN P O

PolygonWKT_Pix PolygonWKT_Geo
476.88 884.61, 485.59 877.64, 490.50...
459.45 858.97, 467.41 853.09, 463.37...
407.34 754.17, 434.90 780.55, 420.27...
311.00 760.22, 318.38 746.78, 341.02...

POLYGON (
(
(
(
(490.49 742.67, 509.81 731.14, 534.12...
(
(
(
(
(

(
POLYGON (
POLYGON (
POLYGON (
POLYGON (
POLYGON ((319.28 723.07, 339.97 698.22, 354.29...

((466.49 709.69, 484.26 696.45, 502.59...
((433.84 673.34, 443.90 663.96, 448.70...
((459.24 649.03, 467.38 641.90, 472.84...
((403.55 643.50, 416.98 630.51, 440.36...

POLYGON
POLYGON
POLYGON
POLYGON

O W JoU s WN RO
R N N e e

Important points about the CSV format:
* The column denoting the chip ID for a given geospatial location must be titled ImageId.
* The column containing geometries must be in WKT format and should be titled PolygonWKT_Pix.

e The BuildingId column provides a numeric identifier sequentially numbering each building within each
chip. Order doesn’t matter.

e For chips with no buildings, a single row should be provided with BuildingID=-1 and
PolygonWKT_Pix="POLYGON EMPTY"

2.2.4 Proposal CSV format

: proposals_path = os.path.join(data_dir, 'sample_preds_competition.csv')

pd.read_csv (proposals_path) .head (10)

ImageId BuildingId \
Atlanta_nadir8_catid_10300100023BC100_743501_3...
Atlanta_nadir8_catid_10300100023BC100_743501_3...
Atlanta_nadir8_ _catid_10300100023BC100_743501_3...
Atlanta_nadir8_catid_10300100023BC100_743501_3...
Atlanta_nadir8_catid_10300100023BC100_743501_3...
Atlanta_nadir8_ _catid_10300100023BC100_743501_3...
Atlanta_nadir8_catid_10300100023BC100_743501_3...
Atlanta_nadir8_catid_10300100023BC100_743501_3...
Atlanta_nadir8_ catid_10300100023BC100_743501_3...
Atlanta_nadir8_catid_10300100023BC100_743501_3...

OW 0 J oy U WD K- O
S w NPk ONE O O

PolygonWKT_Pix Confidence
POLYGON ((0.00 712.83, 158.37 710.28, 160.59 6... 1
POLYGON ((665.82 0.00, 676.56 1.50, 591.36 603... 1
2 POLYGON ((182.62 324.15, 194.25 323.52, 197.97... 1

= O

(continues on next page)

2.2. Score an entire competition (or a whole AOIl) using cw-eval 11


https://en.wikipedia.org/wiki/Well-known_text

cw-eval Documentation, Release 1.0.0

59
41
90
38
81

877.

853

114.72 12...
80 51.00, ...
50...

64,

.09,
780.
746.
731.

3 POLYGON ((92.99 96.94, 117.20 99.64,
4 POLYGON ((0.82 29.96, 3.48 40.71, 2.
5 POLYGON ((476.88 884.61, 485.
6 POLYGON ((459.45 858.97, 467.
7 POLYGON ((407.34 754.17, 434.
8 POLYGON ((311.00 760.22, 318.
9 POLYGON ((490.49 742.67, 509.

55,
78,
14,

490.
463.
420.
341.
534.

37...
27. ..
02...
12...

(continued from previous page)

[ N = T N = S SRy e

The only difference between the ground truth CSV format and the prediction CSV format is the Confidence column,
which can be used to provide prediction confidence for a polygon. Alternatively, it can be set to 1 for all polygons to

indicate equal confidence.

2.2.5 Running eval on the Off-Nadir challenge: Python API

cw-eval currently contains code for scoring proposals from the Off-Nadir Building Detection challenge. There are
two ways to run scoring: using the Python API or using the CLI (see later in this recipe). The below provides an

example using the Python APIL.

If you provide proposals and ground truth formatted as described earlier, no additional arguments are required unless
you would like to alter the default scoring settings. If so, see the API docs linked above.

The scoring function provides two outputs:

* results_DF, a summary Pandas DataFrame with scores for the entire AOI split into the nadir/off-nadir/very

off-nadir bins

e results_DF_Full, a DataFrame with chip-by-chip score outputs for detailed analysis. For large AOIs this
function takes a fair amount of time to run.

results_DF, results_DF_Full = eval_off_ nadir (proposals_path, ground_truth_path)

100%|| 33/33 [00:14<00:00, 2.11it/s]

results_DF

FlScore FalseNeg FalsePos

nadir-category
Nadir 1.0

Precision Recall TruePos

1.0 1.0 2319

(This ground truth dataset only contained nadir imagery, hence the absence of the other bins)

results_DF_Full.head(10)

FlScore FalseNeg FalsePos

© W Jo U WN RO
I = T = T T S S SO SRy
OO0 00000 o0
OO0 00000 OO
OO 000000 O0OOo

Precision

e S e e e

O O O O O O o o o o

Recall

[ N T = N B =S S

O O O O OO oo o o

TruePos \

96

3
43
67

3
91
80
96
112
78

(continues on next page)

12

Chapter 2. CosmiQ Works Evaluation Cookbook


https://topcoder.com/spacenet
https://cw-eval.readthedocs.io/en/latest/api.html#cw_eval.challenge_eval.off_nadir_dataset.eval_off_nadir

cw-eval Documentation, Release 1.0.0

(continued from previous page)

imageID iou_field nadir-category

0 Atlanta_nadir8_catid _10300100023BC100_743501_3... iou_score Nadir
1 Atlanta_nadir8_catid _10300100023BC100_743501_3... iou_score Nadir
2 Atlanta_nadir8_catid_10300100023BC100_743501_3... iou_score Nadir
3 Atlanta_nadir8_catid _10300100023BC100_743501_3... iou_score Nadir
4 Atlanta_nadir8_catid_10300100023BC100_743501_3... iou_score Nadir
5 Atlanta nadir8_catid 10300100023BC100_743501_3... iou_score Nadir
6 Atlanta_nadir8_catid_10300100023BC100_743501_3... iou_score Nadir
7 Atlanta_nadir8_catid_10300100023BC100_743501_3... iou_score Nadir
8 Atlanta nadir8_catid 10300100023BC100_743501_3... iou_score Nadir
9 Atlanta_nadir8_catid_10300100023BC100_743501_3... iou_score Nadir

2.3 Running eval on the Off-Nadir Challenge using the CLI

The cw-eval CLI allows competition scoring without even needing to open a Python shell. Its usage is as follows:

$ spacenet_eval —--proposal_csv [proposal_csv_path] —--truth_csv [truth_csv_path] --
—output_file [output_csv_path]

Argument details:

e ——proposal_csv, —p: Path to the proposal CSV. Required argument. See the API usage details above for
CSYV specifications.

e ——truth_csv, —t: Path to the ground truth CSV. Required argument. See the API usage details above for
CSV specifications.

e ——output_file, —o: Path to save the output CSVs to. This script will produce two CSV outputs:
[output_file].csv, which is the summary DataFrame described above, and [output_file]_full.
csv, which contains the chip-by-chip scoring results.

Not implemented yet: The CLI also provides a ——challenge command, which is not yet implemented, but will be
available in future versions to enable scoring of other SpaceNet challenges.

Example:

%$%bash -s "Sproposals_path" "S$ground_truth_path" # ignore this line - magic line to,
—run bash shell command

spacenet_eval —--proposal_csv $1 ——-truth_csv $2 —--output_file results # argument_

—values taken from magic line above

FlScore FalseNeg FalsePos Precision Recall TruePos
nadir-category
Nadir 1.0 0 0 1.0 1.0 2319
Writing summary results to result.csv
Writing full results to result_full.csv

100%1| 33/33 [00:17<00:00, 1.16it/s]

2.3. Running eval on the Off-Nadir Challenge using the CLI 13




cw-eval Documentation, Release 1.0.0

14 Chapter 2. CosmiQ Works Evaluation Cookbook



CHAPTER 3

Indices and tables

* genindex
* modindex

e search

15



cw-eval Documentation, Release 1.0.0

16 Chapter 3. Indices and tables



Python Module Index

C

cw_eval.baseeval, 3
cw_eval.challenge_eval.off nadir_dataset,
6

cw_eval.evalfunctions,5

17



cw-eval Documentation, Release 1.0.0

18 Python Module Index



Index

C

calculate_iou() (in module
cw_eval.evalfunctions), 5
cw_eval .baseeval (module), 3

cw_eval.challenge_eval.off_nadir_dataset

(module), 6
cw_eval.evalfunctions (module), 5

E

eval_base () (in module cw_eval baseeval), 5

eval_iou () (cw_eval.baseeval EvalBase method), 3

eval_iou_spacenet_csv ()
(cw_eval.baseeval.EvalBase method), 4

eval_off_nadir () (in module
cw_eval.challenge_eval.off_nadir_dataset),
6

EvalBase (class in cw_eval.baseeval), 3

G

get_collect_id() (in module
cw_eval.challenge_eval.off_nadir_dataset),
6

L

load_proposal () (cw_eval.baseeval. EvalBase
method), 4

load_truth () (cw_eval baseeval .EvalBase method),
5

P

process_iou () (in module cw_eval.evalfunctions), 5

19



	CosmiQ Works Evaluation API reference
	Core functionality
	SpaceNet Challenge eval code

	CosmiQ Works Evaluation Cookbook
	Evaluate a proposal for one chip against ground truth
	CSV Eval
	GeoJSON Eval

	Score an entire competition (or a whole AOI) using cw-eval
	Things to understand before starting
	Imports
	Ground truth CSV format
	Proposal CSV format
	Running eval on the Off-Nadir challenge: Python API

	Running eval on the Off-Nadir Challenge using the CLI

	Indices and tables
	Python Module Index

