

 Navigation

 	
 index

 	
 next |

 	CernVM-FS 2.1.20 documentation

Welcome to CernVM-FS’s documentation!

What is CernVM-FS?

The CernVM-File System (CernVM-FS) provides a scalable, reliable and low-
maintenance software distribution service. It was developed to assist High
Energy Physics (HEP) collaborations to deploy software on the worldwide-
distributed computing infrastructure used to run data processing applications.
CernVM-FS is implemented as a POSIX read-only file system in user space (a
FUSE module). Files and directories are hosted on standard web servers and
mounted in the universal namespace /cvmfs. Internally, CernVM-FS uses
content-addressable storage and Merkle trees in order to maintain file data
and meta-data. CernVM-FS uses outgoing HTTP connections only, thereby it
avoids most of the firewall issues of other network file systems. It transfers
data and meta-data on demand and verifies data integrity by cryptographic
hashes.

By means of aggressive caching and reduction of latency, CernVM-FS focuses
specifically on the software use case. Software usually comprises many small
files that are frequently opened and read as a whole. Furthermore, the
software use case includes frequent look-ups for files in multiple directories
when search paths are examined.

CernVM-FS is actively used by small and large HEP collaborations. In many
cases, it replaces package managers and shared software areas on cluster file
systems as means to distribute the software used to process experiment data.

Contents

	Overview

	Getting Started
	Getting the Software

	Installation

	Usage

	Debugging Hints

	Client Configuration
	Structure of /etc/cvmfs

	Mounting

	Network Settings

	Cache Settings

	NFS Server Mode

	Hotpatching and Reloading

	Auxiliary Tools

	Debug Logs

	Setting up a Local Squid Proxy

	Creating a Repository (Stratum 0)
	CernVM-FS Server Quick-Start Guide

	Installing the AUFS-enabled Kernel on Scientific Linux 6

	Publishing a new Repository Revision

	Requirements for a new Repository

	Notable CernVM-FS Server Locations and Files

	CernVM-FS Repository Creation and Updating

	Maintaining a CernVM-FS Repository

	Repository Garbage Collection

	Limitations on Repository Content

	Setting up a Replica Server (Stratum 1)
	Recommended Setup

	Squid Configuration

	Monitoring

	Implementation Notes
	File Catalog

	Repository Manifest (.cvmfspublished)

	Use of HTTP

	Name Resolving

	Disk Cache

	NFS Maps

	Loader

	File System Interface

	Repository Publishing

Additional Information

	CernVM-FS Parameters

	CernVM-FS Server Infrastructure

	Available RPMs

	References

Contact and Authors

Visit our website on cernvm.cern.ch [http://cernvm.cern.ch/].

Authors of this documentation:

	Jakob Blomer

	Predrag Buncic

	Dave Dykstra

	René Meusel

 Copyright 2015, CernVM Team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CernVM-FS 2.1.20 documentation

Overview

The CernVM File System (CernVM-FS) is a read-only file system designed
to deliver scientific software onto virtual machines and physical
worker nodes in a fast, scalable, and reliable way. Files and file
metadata are downloaded on demand and aggressively cached. For the
distribution of files, CernVM-FS uses a standard HTTP [BernersLee96]
[Fielding99] transport, which allows exploitation of a variety of web
caches, including commercial content delivery networks. CernVM-FS
ensures data authenticity and integrity over these possibly untrusted
caches and connections. The CernVM-FS software comprises client-side
software to mount “CernVM-FS repositories” (similar to AFS volumes) as
well as a server-side toolkit to create such distributable CernVM-FS
repositories.

[image: General overview over CernVM-File System's Architecture]A CernVM-FS client provides a virtual file system that loads data
only on access. In this example, all releases of a sofware package
(such as an HEP experiment framework) are hosted as a
CernVM-FS repository on a web server.

The first implementation of CernVM-FS was based on grow-fs
[Compostella10] [Thain05], which was originally provided as one of
the private file system options available in Parrot. Ever since the
design evolved and diverged, taking into account the works on HTTP-
Fuse [Suzaki06] and content-delivery networks [Freedman03]
[Nygren10] [Tolia03]. Its current implementation provides the
following key features:

	Use of the the Fuse kernel module [http://fuse.sourceforge.net]
that comes with in-kernel caching of file data and file attributes

	Cache quota management

	Use of a content addressable storage format resulting in immutable
files and automatic file de-duplication

	Possibility to split a directory hierarchy into sub catalogs at
user-defined levels

	Automatic updates of file catalogs controlled by a time to live
stored inside file catalogs

	Digitally signed repositories

	Transparent file compression/decompression and transparent file
chunking

	Capability to work in offline mode providing that all required files
are cached

	File system versioning

	File system hotpatching

	Dynamic expansion of environment variables embedded in symbolic links

	Automatic mirror server selection based on geographic proximity

	Automatic load-balancing of proxy servers

	Support for WPAD/PAC auto-configuration of proxy servers

	Efficient replication of repositories

	Possibility to use S3 compatible storage instead of a file system as
repository storage

In contrast to general purpose network file systems such as nfs or afs,
CernVM-FS is particularly crafted for fast and scalable software
distribution. Running and compiling software is a use case general
purpose distributed file systems are not optimized for. In contrast to
virtual machine images or Docker images, software installed in
CernVM-FS does not need to be further packaged. Instead it is
distributed and versioned file-by-file. In order to create and update a
CernVM-FS repository, a distinguished machine, the so-called Release
Manager Machine, is used. On such a release manager machine, a
CernVM-FS repository is mounted in read/write mode by means of a union
file system [Wright04]. The union file system overlays the CernVM-FS read-only
mount point by a writable scratch area. The CernVM-FS server tool kit
merges changes written to the scratch area into the
CernVM-FS repository. Merging and publishing changes can be triggered at
user-defined points in time; it is an atomic operation. As such, a
CernVM-FS repository is similar to a repository in the sense of a
versioning system.

On the client, only data and metadata of the software releases that are
actually used are downloaded and cached.

[image: CernVM-FS client architectural overview]Opening a file on CernVM-FS. CernVM-FS resolves the name by means of
an SQLite catalog. Downloaded files are verified against the
cryptographic hash of the corresponding catalog entry. The read()
and the stat() system call can be entirely served from the
in-kernel file system buffers.

 Copyright 2015, CernVM Team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CernVM-FS 2.1.20 documentation

Getting Started

This section describes how to install the CernVM-FS client. The
CernVM-FS client is supported on x86, x86_64, and ARMv7 architectures
running Scientific Linux 4-7, Ubuntu \(\geq12.04\), SLES 11 and
openSuSE 13.1, Fedora 19-21, or Mac OS X \(\geq 10.8\).

Getting the Software

The CernVM-FS source code and binary packages are available on our
website [https://cernvm.cern.ch/portal/filesystem/downloads]. Binary
packages are produced for rpm, dpkg, and Mac OS X (.pkg). yum
repositories for 64 bit and 32 bit Scientific Linux 5 and 6 and 64 bit
Scientific Linux 7 are available as a yum repository [http://cvmrepo.web.cern.ch/cvmrepo/yum]. The cvmfs-release
packages can be used to add a these yum repositories to the local yum
installation. The cvmfs-release packages are available on our
download page [https://cernvm.cern.ch/portal/filesystem/downloads].

The CernVM-FS client is not relocatable and needs to be installed under
/usr. On Intel architectures, it needs a gcc \(\geq 4.2\) compiler,
on ARMv7 a gcc \(\geq 4.7\) compiler. In order to compile and
install from sources, use the following cmake command:

cmake .
make
sudo make install

Installation

Linux

To install, proceed according to the following steps:

	Step 1

	Install the CernVM-FS packages. With yum, run

yum install cvmfs cvmfs-config-default

If yum does not show the latest packages, clean the yum cache by
yum clean all. Packages can be also installed with rpm instead
with the command rpm -vi. On Ubuntu, use dpkg -i on the
cvmfs and cvmfs-config-default .deb packages.

	Step 2

	For the base setup, run cvmfs_config setup. Alternatively, you
can do the base setup by hand: ensure that user_allow_other is
set in /etc/fuse.conf, ensure that /cvmfs /etc/auto.cvmfs is set
in /etc/auto.master and that the autofs service is running. If you
migrate from a previous version of CernVM-FS, check the release
notes if there is anything special to do for migration.

	Step 3

	Create /etc/cvmfs/default.local and open the file for editing.

	Step 4

	Select the desired repositories by setting
CVMFS_REPOSITORIES=repo1,repo2,.... For ATLAS, for instance, set

CVMFS_REPOSITORIES=atlas.cern.ch,atlas-condb.cern.ch,grid.cern.ch

Specify the HTTP proxy servers on your site with

CVMFS_HTTP_PROXY="http://myproxy1:port|http://myproxy2:port"

For the syntax of more complex HTTP proxy settings, see
Network Settings. Make sure your local proxy servers allow access to all
the Stratum 1 web servers (more on proxy configuration here). For Cern
repositories, the Stratum 1 web servers are listed in
/etc/cvmfs/domain.d/cern.ch.conf.

	Step 5

	Check if CernVM-FS mounts the specified repositories by
cvmfs_config probe.

Mac OS X

On Mac OS X, CernVM-FS is based on OSXFuse [http://osxfuse.github.io].
It is not integrated with autofs. In order to install, proceed according
to the following steps:

	Step 1

	Install the CernVM-FS package by opening the .pkg file.

	Step 2

	Create /etc/cvmfs/default.local and open the file for editing.

	Step 3

	Select the desired repositories by setting
CVMFS_REPOSITORIES=repo1,repo2,.... For CMS, for instance, set

CVMFS_REPOSITORIES=cms.cern.ch

Specify the HTTP proxy servers on your site with

CVMFS_HTTP_PROXY="http://myproxy1:port|http://myproxy2:port"

If you’re unsure about the proxy names, set
CVMFS_HTTP_PROXY=DIRECT.

	Step 4

	Mount your repositories like

sudo mkdir -p /cvmfs/cms.cern.ch
sudo mount -t cvmfs cms.cern.ch /cvmfs/cms.cern.ch

Usage

The CernVM-FS repositories are located under /cvmfs. Each repository is
identified by a fully qualified repository name. The fully qualified
repository name consists of a repository identifier and a domain name,
similar to DNS records [Mockapetris87]. The domain part of the fully qualified
repository name indicates the location of repository creation and
maintenance. For the ATLAS experiment software, for instance, the fully
qualified repository name is atlas.cern.ch although the hosting web
servers are spread around the world.

Mounting and un-mounting of the CernVM-FS is controlled by autofs and
automount. That is, starting from the base directory /cvmfs different
repositories are mounted automatically just by accessing them. For
instance, running the command ls /cvmfs/atlas.cern.ch will mount the
ATLAS software repository on the fly. This directory gets automatically
unmounted after some automount-defined idle time.

Debugging Hints

In order to check for common misconfigurations in the base setup, run

cvmfs_config chksetup

CernVM-FS gathers its configuration parameter from various configuration
files that can overwrite each others settings (default configuration,
domain specific configuration, local setup, ...). To show the effective
configuration for repository.cern.ch, run

cvmfs_config showconfig repository.cern.ch

In order to exclude autofs/automounter as a source of problems, you can
try to mount repository.cern.ch manually by

mkdir -p /mnt/cvmfs
mount -t cvmfs repository.cern.ch /mnt/cvmfs

In order to exclude SELinux as a source of problems, you can try
mounting after SELinux has been disabled by

/usr/sbin/setenforce 0

Once you sorted out a problem, make sure that you do not get the
original error served from the file system buffers by

service autofs restart

In case you need additional assistance, please don’t hesitate to contact
us at cernvm.support@cern.ch. Together with
the problem description, please send the system information tarball
created by cvmfs_config bugreport.

 Copyright 2015, CernVM Team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CernVM-FS 2.1.20 documentation

Client Configuration

Structure of /etc/cvmfs

The local configuration of CernVM-FS is controlled by several files in
/etc/cvmfs listed in the table below. For every .conf file
except for the files in /etc/cvmfs/default.d you can create a
corresponding .local file having the same prefix in order to customize
the configuration. The .local file will be sourced after the
corresponding .conf file.

In a typical installation, a handful of parameters need to be set in
/etc/cvmfs/default.local. Most likely, this is the list of repositories
(CVMFS_REPOSITORIES), HTTP proxies (see :ref:sct_network`),
and perhaps the cache directory and the cache quota (see
:ref:sct_cache`) In a few cases, one might change a parameter
for a specific domain or a specific repository, provide an exclusive cache for
a specific repository (see :ref:sct_cache`). For a list of all
parameters, see Appendix “Client parameters”.

The .conf and .local configuration files are key-value pairs in the form
PARAMETER=value. They are sourced by /bin/sh. Hence, a limited set
of shell commands can be used inside these files including comments,
if clauses, parameter evaluation, and shell math ($((...))).
Special characters have to be quoted. For instance, instead of
CVMFS_HTTP_PROXY=p1;p2, write CVMFS_HTTP_PROXY='p1;p2' in order
to avoid parsing errors. The shell commands in the configuration files
can use the CVMFS_FQRN parameter, which contains the fully qualified
repository names that is being mounted. The current working directory is
set to the parent directory of the configuration file at hand.

	File
	Purpose

	config.sh
	Set of internal helper functions.

	default.conf
	Set of base parameters.

	default.d/$config.conf
	Adjustments to the default.conf configuration,
usually installed by a cvmfs-config-...
package. Read before default.local.

	domain.d/$domain.conf
	Domain-specific parameters and implementations
of the functions in config.sh

	config.d/$repository.conf
	Repository-specific parameters and
implementations of the functions in config.sh

	keys/
	Contains domain-specific sub directories with
public keys used to verify the digital signature
of file catalogs

The “Config Repository”

In addition to the local system configuration, a client can configure a
dedicated “config repository”. A config repository is a standard
mountable CernVM-FS repository that resembles the directory structure of
/etc/cvmfs. It can be used to centrally maintain the public keys and
configuration of repositories that should not be distributed with rather
static packages. Configuration from the config repository is overwritten
by the local configuration in case of conflicts. The config repository
is set by the CVMFS_CONFIG_REPOSITORY parameter. The default
configuration sets this parameter to cvmfs-config.cern.ch.

Mounting

Mounting of CernVM-FS repositories is typically handled by autofs. Just
by accessing a repository directory under /cvmfs (/cvmfs/atlas.cern.ch),
autofs will take care of mounting. autofs will also automatically
unmount a repository if it is not used for a while.

Instead of using autofs, CernVM-FS repositories can be mounted manually
with the system’s mount command. In order to do so, use the
cvmfs file system type, like

mount -t cvmfs atlas.cern.ch /cvmfs/atlas.cern.ch

Likewise, CernVM-FS repositories can be mounted through entries in
/etc/fstab. A sample entry in /etc/fstab:

atlas.cern.ch /mnt/test cvmfs defaults 0 0

Every mount point corresponds to a CernVM-FS process. Using autofs or
the system’s mount command, every repository can only be mounted once.
Otherwise multiple CernVM-FS processes would collide in the same cache
location. If a repository is needed under several paths, use a bind
mount or use a private file system mount point.

Private Mount Points

In contrast to the system’s mount command which requires root
privileges, CernVM-FS can also be mounted like other Fuse file systems
by normal users. In this case, CernVM-FS uses parameters from one or
several user-provided config files instead of using the files under
/etc/cvmfs. CernVM-FS private mount points do not appear as cvmfs2
file systems but as fuse file systems. The cvmfs_config and
cvmfs_talk commands ignore privately mounted CernVM-FS repositories.
On an interactive machine, private mount points are for instance
unaffected by an administrator unmounting all system’s CernVM-FS mount
points by cvmfs_config umount.

In order to mount CernVM-FS privately, use the cvmfs2 command like

cvmfs2 -o config=myparams.conf atlas.cern.ch /home/user/myatlas

A minimal sample myparams.conf file could look like this:

CVMFS_CACHE_BASE=/home/user/mycache
CVMFS_CLAIM_OWNERSHIP=yes
CVMFS_RELOAD_SOCKETS=/home/user/mycache
CVMFS_SERVER_URL=http://cvmfs-stratum-one.cern.ch/cvmfs/atlas.cern.ch
CVMFS_HTTP_PROXY=DIRECT

Make sure to use absolute path names for the mount point and for the
cache directory. Use fusermount -u in order to unmount a privately
mounted CernVM-FS repository.

The private mount points can also be used to use the CernVM-FS Fuse
module in case it has not been installed under /usr and /etc. If the
public keys are not installed under /etc/cvmfs/keys, the directory of
the keys needs to be specified in the config file by
CVMFS_KEYS_DIR=<directory>. If the libcvmfs_fuse.so library is not
installed in one of the standard search paths, the LD_LIBRARY_PATH
variable has to be set accordingly for the cvmfs2 command.

Docker Containers

There are two options to mount CernVM-FS in docker containers. The first
option is to bind mount a mounted repository as a volume into the
container. This has the advantage that the CernVM-FS cache is shared
among multiple containers. The second option is to mount a repository
inside a container, which requires a privileged container.

In both cases, autofs should not be used. Docker has often issues with
autofs.

Bind mount from the host

In order to bind mount a repository from the host, turn off autofs on
the host and mount the repository manually, like:

service autofs stop # systemd: systemctl stop autofs
chkconfig autofs off # systemd: systemctl disable autofs
mkdir -p /cvmfs/sft.cern.ch
mount -t cvmfs sft.cern.ch /cvmfs/sft.cern.ch

Start the docker container with the -v option to mount the
CernVM-FS repository inside, like

docker run -i -t -v /cvmfs/sft.cern.ch:/cvmfs/sft.cern.ch centos /bin/bash

The -v option can be used multiple times with different
repositories.

Mount inside a container

In order to use mount inside a container, the container must be
started in privileged mode, like

docker run --privileged -i -t centos /bin/bash

In such a container, CernVM-FS can be installed and used the usual way
provided that autofs is turned off.

Network Settings

CernVM-FS uses HTTP for the data transfer. Repository data can be
replicated to multiple web servers and cached by standard web proxies
such as Squid [Guerrero99]. In a typical setup, repositories are replicated to
a handful of web servers in different locations. These replicas form the
CernVM-FS Stratum 1 service, whereas the replication source server is
the CernVM-FS Stratum 0 server. In every cluster of client machines,
there should be two or more web proxy servers that CernVM-FS can use
(see Setting up a Local Squid Proxy). These site-local web proxies reduce the
network latency for the CernVM-FS clients and they reduce the load for
the Stratum 1 service. CernVM-FS supports WPAD/PAC proxy auto
configuration [Gauthier99], choosing a random proxy for load-balancing, and
automatic fail-over to other hosts and proxies in case of network
errors. Roaming clients can connect directly to the Stratum 1 service.

Stratum 1 List

To specify the Stratum 1 servers, set CVMFS_SERVER_URL to a
semicolon-separated list of known replica servers (enclose in quotes).
The so defined URLs are organized as a ring buffer. Whenever download of
files fails from a server, CernVM-FS automatically switches to the next
mirror server. For repositories under the cern.ch domain, the Stratum 1
servers are specified in /etc/cvmfs/domain.d/cern.ch.conf.

It is recommended to adjust the order of Stratum 1 servers so that the closest
servers are used with priority. This can be done automatically by using
geographic ordering. Alternatively, for roaming
clients (clients not using a proxy server), the Stratum 1 servers can be
automatically sorted according to round trip time by cvmfs_talk host probe
(see Auxiliary Tools). Otherwise, the proxy server would invalidate round
trip time measurement.

The special sequence @fqrn@ in the CVMFS_SERVER_URL string is
replaced by fully qualified repository name (atlas.cern.cn, cms.cern.ch,
...). That allows to use the same parameter for many repositories hosted
under the same domain. For instance,
http://cvmfs-stratum-one.cern.ch/cvmfs/@fqrn@ can resolve to
http://cvmfs-stratum-one.cern.ch/cvmfs/atlas.cern.ch,
http://cvmfs-stratum-one.cern.ch/cvmfs/cms.cern.ch, and so on depending
on the repository that is being mounted. The same works for the sequence
@org@ which is replaced by the unqualified repository name (atlas,
cms, ...).

Proxy Lists

CernVM-FS uses a dedicated HTTP proxy configuration, independent from
system-wide settings. Instead of a single proxy, CernVM-FS uses a chain
of load-balanced proxy groups. The CernVM-FS proxies are set by the
CVMFS_HTTP_PROXY parameter.

Proxies within the same proxy group are considered as a load-balance
group and a proxy is selected randomly. If a proxy fails,
CernVM-FS automatically switches to another proxy from the current
group. If all proxies from a group have failed, CernVM-FS switches to
the next proxy group. After probing the last proxy group in the chain,
the first proxy is probed again. To avoid endless loops, for each file
download the number of switches is restricted by the total number of
proxies.

The chain of proxy groups is specified by a string of semicolon
separated entries, each group is a list of pipe separated
hostnames [1]. Multiple IP addresses behind a single proxy host name
(DNS round-robin entry) are automatically transformed into a
load-balanced group. The DIRECT keyword for a hostname avoids using
proxies. Note that the CVMFS_HTTP_PROXY parameter is necessary in
order to mount. If you don’t use proxies, set the parameter to
DIRECT.

Multiple proxy groups are often organized as a primary proxy group at
the local site and backup proxy groups at remote sites. In order to
avoid CernVM-FS being stuck with proxies at a remote site after a
fail-over, CernVM-FS will automatically retry to use proxies from the
primary group after some time. The delay for re-trying a proxies from
the primary group is set in seconds by CVMFS_PROXY_RESET_AFTER. The
distinction of primary and backup proxy groups can be turned off by
setting this parameter to 0.

Automatic Proxy Configuration

The proxy settings can be automatically gathered through WPAD. The
special proxy server “auto” in CVMFS_HTTP_PROXY is resolved
according to the proxy server specification loaded from a PAC file. PAC
files can be on a file system or accessible via HTTP. CernVM-FS looks
for PAC files in the order given by the semicolon separated URLs in the
CVMFS_PAC_URLS environment variable. This variable defaults to
http://wpad/wpad.dat. The auto keyword used as a URL in
CVMFS_PAC_URLS is resolved to http://wpad/wpad.dat, too, in order to
be compatible with Frontier [Blumenfeld08].

Fallback Proxy List

In addition to the regular proxy list set by CVMFS_HTTP_PROXY, a
fallback proxy list is supported in CVMFS_FALLBACK_PROXY. The syntax
of both lists is the same. The fallback proxy list is appended to the
regular proxy list, and if the fallback proxy list is set, any DIRECT is
removed from both lists. The automatic proxy configuration of the
previous section only sets the regular proxy list, not the fallback
proxy list. Also the fallback proxy list can be automatically reordered;
see the next section.

Ordering of Servers according to Geographic Proximity

CernVM-FS Stratum 1 servers provide a RESTful service for geographic
ordering. Clients can request
http://<HOST>/cvmfs/<FQRN>/api/v1.0/geo/<proxy_address>/<server_list>
The proxy address can be replaced by a UUID if no proxies are used, and
the CernVM-FS client does that if there are no regular proxies. The
server list is comma-separated. The result is an ordered list of indexes
of the input host names. Use of this API can be enabled in a
CernVM-FS client with CVMFS_USE_GEOAPI=yes. That will geographically
sort both the servers set by CVMFS_SERVER_URL and the fallback
proxies set by CVMFS_FALLBACK_PROXY.

Timeouts

CernVM-FS tries to gracefully recover from broken network links and
temporarily overloaded paths. The timeout for connection attempts and
for very slow downloads can be set by CVMFS_TIMEOUT and
CVMFS_TIMEOUT_DIRECT. The two timeout parameters apply to a
connection with a proxy server and to a direct connection to a Stratum 1
server, respectively. A download is considered to be “very slow” if the
transfer rate is below for more than the timeout interval. The threshold
can be adjusted with the CVMFS_LOW_SPEED_LIMIT parameter. A very
slow download is treated like a broken connection.

On timeout errors and on connection failures (but not on name resolving
failures), CernVM-FS will retry the path using an exponential backoff.
This introduces a jitter in case there are many concurrent requests by a
cluster of nodes, allowing a proxy server or web server to serve all the
nodes consecutively. CVMFS_MAX_RETRIES sets the number of retries on
a given path before CernVM-FS tries to switch to another proxy or host.
The overall number of requests with a given proxy/host combination is
$CVMFS_MAX_RETRIES+1. CVMFS_BACKOFF_INIT sets the maximum
initial backoff in seconds. The actual initial backoff is picked with
milliseconds precision randomly in the interval
\([1, \text{\$CVMFS_BACKOFF_INIT}\cdot 1000]\). With every retry,
the backoff is then doubled.

Cache Settings

Downloaded files will be stored in a local cache directory. The
CernVM-FS cache has a soft quota; as a safety margin, the partition
hosting the cache should provide more space than the soft quota limit.
Once the quota limit is reached, CernVM-FS will automatically remove
files from the cache according to the least recently used policy
[Panagiotou06].
Removal of files is performed bunch-wise until half of the maximum cache
size has been freed. The quota limit can be set in Megabytes by
CVMFS_QUOTA_LIMIT. For typical repositories, a few Gigabytes make a
good quota limit. For repositories hosted at cern, quota recommendations
can be found under http://cernvm.cern.ch/portal/cvmfs/examples.

The cache directory needs to be on a local file system in order to allow
each host the accurate accounting of the cache contents; on a network
file system, the cache can potentially be modified by other hosts.
Furthermore, the cache directory is used to create (transient) sockets
and pipes, which is usually only supported by a local file system. The
location of the cache directory can be set by CVMFS_CACHE_BASE.

On SELinux enabled systems, the cache directory and its content need to
be labeled as cvmfs_cache_t. During the installation of
CernVM-FS RPMs, this label is set for the default cache directory
/var/lib/cvmfs. For other directories, the label needs to be set
manually by chcon -Rv --type=cvmfs_cache_t $CVMFS_CACHE_BASE.

Each repository can either have an exclusive cache or join the
CernVM-FS shared cache. The shared cache enforces a common quota for all
repositories used on the host. File duplicates across repositories are
stored only once in the shared cache. The quota limit of the shared
directory should be at least the maximum of the recommended limits of
its participating repositories. In order to have a repository not join
the shared cache but use an exclusive cache, set
CVMFS_SHARED_CACHE=no.

Alien Cache

An “alien cache” provides the possibility to use a data cache outside
the control of CernVM-FS. This can be necessary, for instance, in HPC
environments where local disk space is not available or scarce but
powerful cluster file systems are available. The alien cache directory
is a directory in addition to the ordinary cache directory. The ordinary
cache directory is still used to store control files.

The alien cache directory is set by the CVMFS_ALIEN_CACHE option. It
can be located anywhere including cluster and network file systems. If
configured, all data chunks are stored there. CernVM-FS ensures atomic
access to the cache directory. It is safe to have the alien directory
shared by multiple CernVM-FS processes and it is safe to unlink files
from the alien cache directory anytime. The contents of files, however,
must not be touched by third-party programs.

In contrast to normal cache mode where files are store in mode 0600, in
the alien cache files are stored in mode 0660. So all users being part
of the alien cache directory’s owner group can use it.

The skeleton of the alien cache directory should be created upfront.
Otherwise, the first CernVM-FS process accessing the alien cache
determines the ownership. The cvmfs2 binary can create such a
skeleton using

cvmfs2 __MK_ALIEN_CACHE__ $alien_cachedir $owner_uid $owner_gid

Since the alien cache is unmanaged, there is no automatic quota
management provided by CernVM-FS; the alien cache directory is
ever-growing. The CVMFS_ALIEN_CACHE requires
CVMFS_QUOTA_LIMIT=-1 and CVMFS_SHARED_CACHE=no.

The alien cache might be used in combination with a special repository
replication mode that preloads a cache directory
(Section Setting up a Replica Server (Stratum 1)). This allows to propagate an entire repository
into the cache of a cluster file system for HPC setups that do not allow
outgoing connectivity.

NFS Server Mode

In case there is no local hard disk space available on a cluster of
worker nodes, a single CernVM-FS client can be exported via
nfs [Callaghan95] [Shepler03] to these worker nodes.This mode of deployment
will inevitably introduce a performance bottleneck and a single point of
failure and should be only used if necessary.

NSF export requires Linux kernel >= 2.6.27 on the NFS server. For
instance, exporting works for Scientific Linux 6 but not for Scientific
Linux 5. The NFS server should run a lock server as well. For proper NFS
support, set CVMFS_NFS_SOURCE=yes. Also, autofs for CernVM-FS needs
to be turned off and repositories need to be mounted manually. On the
client side, all available nfs implementations should work.

In the NFS mode, upon mount an additionally directory
nfs_maps.$repository_name appears in the CernVM-FS cache directory.
These NFS maps use leveldb to store the virtual inode CernVM-FS issues
for any accessed path. The virtual inode may be requested by NFS clients
anytime later. As the NFS server has no control over the lifetime of
client caches, entries in the NFS maps cannot be removed.

Typically, every entry in the NFS maps requires some 150-200 Bytes. A
recursive find on /cvmfs/atlas.cern.ch with 25 million entries, for
instance, would add up in the cache directory. For a CernVM-FS instance
that is exported via NFS, the safety margin for the NFS maps needs be
taken into account. It also might be necessary to monitor the actual
space consumption.

Tuning

The default settings in CernVM-FS are tailored to the normal, non-NFS
use case. For decent performance in the NFS deployment, the amount of
memory given to the meta-data cache should be increased. By default,
this is 16M. It can be increased, for instance, to 256M by setting
CVMFS_MEMCACHE_SIZE to 256. Furthermore, the maximum number of
download retries should be increased to at least 2.

The number of NFS daemons should be increased as well. A value of 128
NFS daemons has shown perform well. In Scientific Linux, the number of
NFS daemons is set by the RPCNFSDCOUNT parameter in
/etc/sysconfig/nfs.

The performance will benefit from large RAM on the NFS server
(\(\geq\) 16GB) and CernVM-FS caches hosted on an SSD
hard drive.

Shared NFS Maps (HA-NFS)

As an alternative to the existing, leveldb [https://github.com/google/leveldb] managed NFS maps, the NFS
maps can optionally be managed out of the CernVM-FS cache directory by
SQLite. This allows the NFS maps to be placed on shared storage and
accessed by multiple CernVM-FS NFS export nodes simultaneously for
clustering and active high-availablity setups. In order to enable shared
NFS maps, set CVMFS_NFS_SHARED to the path that should be used to
host the SQLite database. If the path is on shared storage, the shared
storage has to support POSIX file locks. The drawback of the
SQLite managed NFS maps is a significant performance penalty which in
practice can be covered by the memory caches.

Example

An example entry /etc/exports (note: the fsid needs to be different for
every exported CernVM-FS repository)

/cvmfs/atlas.cern.ch 172.16.192.0/24(ro,sync,no_root_squash,\
 no_subtree_check,fsid=101)

A sample entry /etc/fstab entry on a client:

172.16.192.210:/cvmfs/atlas.cern.ch /cvmfs/atlas.cern.ch nfs4 \
 ro,ac,actimeo=60,lookupcache=all,nolock,rsize=1048576,wsize=1048576 0 0

Hotpatching and Reloading

By hotpatching a running CernVM-FS instance, most of the code can be
reloaded without unmounting the file system. The current active code is
unloaded and the code from the currently installed binaries is loaded.
Hotpatching is logged to syslog. Since CernVM-FS is re-initialized
during hotpatching and configuration parameters are re-read, hotpatching
can be also seen as a “reload”.

Hotpatching has to be done for all repositories concurrently by

cvmfs_config [-c] reload

The optional parameter -c specifies if the CernVM-FS cache should be
wiped out during the hotpatch. Reloading of the parameters of a specific
repository can be done like

cvmfs_config reload atlas.cern.ch

In order to see the history of loaded CernVM-FS Fuse modules, run

cvmfs_talk hotpatch history

The currently loaded set of parameters can be shown by

cvmfs_talk parameters

The CernVM-FS packages use hotpatching in the package upgrade process.

Auxiliary Tools

cvmfs_fsck

CernVM-FS assumes that the local cache directory is trustworthy.
However, it might happen that files get corrupted in the cache directory
caused by errors outside the scope of CernVM-FS. CernVM-FS stores files
in the local disk cache with their cryptographic content hash key as
name, which makes it easy to verify file integrity. CernVM-FS contains
the cvmfs_fsck utility to do so for a specific cache directory. Its
return value is comparable to the system’s fsck. For example,

cvmfs_fsck -j 8 /var/lib/cvmfs/shared

checks all the data files and catalogs in /var/lib/cvmfs/shared
using 8 concurrent threads. Supported options are:

	-v
	Produce more verbose output.

	-j #threads
	Sets the number of concurrent threads that check files in the
cache directory. Defaults to 4.

	-p
	Tries to automatically fix problems.

	-f
	Unlinks the cache database. The database will be automatically
rebuilt by CernVM-FS on next mount.

cvmfs_config

The cvmfs_config utility provides commands in order to setup the
system for use with CernVM-FS.

	setup

	The setup command takes care of basic setup tasks, such as
creating the cvmfs user and allowing access to CernVM-FS mount
points by all users.

	chksetup

	The chksetup command inspects the system and the
CernVM-FS configuration in /etc/cvmfs for common problems.

	showconfig

	The showconfig command prints the CernVM-FS parameters for all
repositories or for the specific repository given as argument.

	stat

	The stat command prints file system and network statistics for
currently mounted repositories.

	status

	The status command shows all currently mounted repositories and
the process id (PID) of the CernVM-FS processes managing a mount
point.

	probe

	The probe command tries to access /cvmfs/$repository for all
repositories specified in CVMFS_REPOSITORIES.

	reload

	The reload command is used to reload or hotpatch
CernVM-FS instances.

	umount

	The umount command unmounts all currently mounted
CernVM-FS repositories, which will only succeed if there are no open
file handles on the repositories.

	wipecache

	The wipecache command is an alias for reload -c.

	bugreport

	The bugreport command creates a tarball with collected system
information which helps to debug a problem.

cvmfs_talk

The cvmfs_talk command provides a way to control a currently running
CernVM-FS process and to extract information about the status of the
corresponding mount point. Most of the commands are for special purposes
only or covered by more convenient commands, such as
cvmfs_config showconfig or cvmfs_config stat. Two commands might
be of particular interest though.

cvmfs_talk cleanup 0

will, without interruption of service, immediately cleanup the cache
from all files that are not currently pinned in the cache.

cvmfs_talk internal affairs

prints the internal status information and performance counters. It can
be helpful for performance engineering.

Other

Information about the current cache usage can be gathered using the
df utility. For repositories created with the CernVM-FS 2.1
toolchain, information about the overall number of file system entries
in the repository as well as the number of entries covered by currently
loaded meta-data can be gathered by df -i.

For the Nagios monitoring system [http://www.nagios.org] [Schubert08], a
checker plugin is available on our website [http://cernvm.cern.ch/portal/filesystem/downloads].

Debug Logs

The cvmfs2 binary forks a watchdog process on start. Using this
watchdog, CernVM-FS is able to create a stack trace in case certain
signals (such as a segmentation fault) are received. The watchdog writes
the stack trace into syslog as well as into a file stacktrace in the
cache directory.

In addition to these debugging hints, CernVM-FS
can be started in debug mode. In the debug mode, CernVM-FS will log with high
verbosity which makes the debug mode unsuitable for production use. In order
to turn on the debug mode, set CVMFS_DEBUGFILE=/tmp/cvmfs.log.

Footnotes

	[1]	The usual proxy notation rules apply, like
http://proxy1:8080|http://proxy2:8080;DIRECT

 Copyright 2015, CernVM Team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CernVM-FS 2.1.20 documentation

Setting up a Local Squid Proxy

For clusters of nodes with CernVM-FS clients, we strongly recommend to
setup two or more Squid forward proxy [http://www.squid-cache.org] servers as well. The forward proxies will reduce the
latency for the local worker nodes, which is critical for cold cache
performance. They also reduce the load on the Stratum 1 servers.

From what we have seen, a Squid server on commodity hardware scales well
for at least a couple of hundred worker nodes. The more RAM and hard
disk you can devote for caching the better. We have good experience with
of memory cache and of hard disk cache. We suggest to setup two
identical Squid servers for reliability and load-balancing. Assuming the
two servers are A and B, set

CVMFS_HTTP_PROXY="http://A:3128|http://B:3128"

Squid is very powerful and has lots of configuration and tuning
options. For CernVM-FS we require only the very basic static content
caching. If you already have a Frontier Squid [http://frontier.cern.ch]
[Blumenfeld08] [Dykstra10] installed you can use it as well for CernVM-FS.

Otherwise, cache sizes and access control needs to be configured in
order to use the Squid server with CernVM-FS. In order to do so, browse
through your /etc/squid/squid.conf and make sure the following lines
appear accordingly:

max_filedesc 8192
maximum_object_size 1024 MB

cache_mem 128 MB
maximum_object_size_in_memory 128 KB
50 GB disk cache
cache_dir ufs /var/spool/squid 50000 16 256

Furthermore, Squid needs to allow access to all Stratum 1 servers. This
is controlled through Squid ACLs. For the Stratum 1 servers for the
cern.ch, egi.eu, and opensciencegrid.org domains, add the following
lines to you Squid configuration:

acl cvmfs dst cvmfs-stratum-one.cern.ch
acl cvmfs dst cernvmfs.gridpp.rl.ac.uk
acl cvmfs dst cvmfs.racf.bnl.gov
acl cvmfs dst cvmfs02.grid.sinica.edu.tw
acl cvmfs dst cvmfs.fnal.gov
acl cvmfs dst cvmfs-atlas-nightlies.cern.ch
acl cvmfs dst cvmfs-egi.gridpp.rl.ac.uk
acl cvmfs dst klei.nikhef.nl
acl cvmfs dst cvmfsrepo.lcg.triumf.ca
acl cvmfs dst cvmfsrep.grid.sinica.edu.tw
acl cvmfs dst cvmfs-s1bnl.opensciencegrid.org
acl cvmfs dst cvmfs-s1fnal.opensciencegrid.org
http_access allow cvmfs

The Squid configuration can be verified by squid -k parse. Before
the first service start, the cache space on the hard disk needs to be
prepared by squid -z. In order to make the increased number of file
descriptors effective for Squid, execute ulimit -n 8192 prior to
starting the squid service.

 Copyright 2015, CernVM Team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CernVM-FS 2.1.20 documentation

Creating a Repository (Stratum 0)

CernVM-FS is a file system with a single source of (new) data. This
single source, the repository Stratum 0, is maintained by a dedicated
release manager machine or installation box. A read-writable copy of
the repository is accessible on the release manager machine. The
CernVM-FS server tool kit is used to publish the current state of the
repository on the release manager machine. Publishing is an atomic
operation.

All data stored in CernVM-FS have to be converted into a
CernVM-FS repository during the process of publishing. The
CernVM-FS repository is a form of content-addressable storage.
Conversion includes creating the file catalog(s), compressing new and
updated files and calculating content hashes. Storing the data in a
content-addressable format results in automatic file de-duplication. It
furthermore simplifies data verification and it allows for file system
snapshots.

In order to provide a writable CernVM-FS repository, CernVM-FS uses a union
file system that combines a read-only CernVM-FS mount point with a writable
scratch area [Wright04]. This figure below outlines
the process of publishing a repository.

CernVM-FS Server Quick-Start Guide

System Requirements

	Apache HTTP server OR S3 compatible storage service

	aufs union file system in the kernel (see Installing the AUFS-enabled Kernel on Scientific Linux 6)

	Officially supported platforms
	Scientific Linux 5 (64 bit)

	Scientific Linux 6 (64 bit - with custom AUFS enabled kernel -
Appendix “Available RPMs”)

	Ubuntu 13.10 and above (64 bit - with installed AUFS kernel
module)

Installation

	Install cvmfs and cvmfs-server packages

	Ensure enough disk space in /var/spool/cvmfs (>50GiB)

	For local storage: Ensure enough disk space in /srv/cvmfs

	Create a repository with cvmfs_server mkfs (See Repository Creation)

Content Publishing

	cvmfs_server transaction <repository name>

	Install content into /cvmfs/<repository name>

	Create nested catalogs at proper locations
	Create .cvmfscatalog files (See Managing Nested Catalogs)
or

	Consider using a .cvmfsdirtab file (See Managing Nested Catalogs with .cvmfsdirtab)

	cvmfs_server publish <repository name>

Backup Policy

	Create backups of signing key files in /etc/cvmfs/keys

	Entire repository content
	For local storage: /srv/cvmfs

	Stratum 1s can serve as last-ressort backup of repository content

Installing the AUFS-enabled Kernel on Scientific Linux 6

CernVM-FS uses the union file-system aufs [http://aufs.sourceforge.net] to efficiently determine file-system
tree updates while publishing repository transactions on the server
(see Figure below). Note that this is
only required on a CernVM-FS server and not on the client
machines.

We provide customised kernel packages for Scientific Linux 6 (see
Appendix “Available RPMs”) and keep them up-to-date with upstream kernel
updates. The kernel RPMs are published in the cernvm-kernel yum
repository.

Please follow these steps to install the provided customised kernel:

	Download the latest cvmfs-release package from the CernVM website [https://cernvm.cern.ch/portal/filesystem/downloads]

	
Install the cvmfs-release package:
yum install cvmfs-release*.rpm

This adds the CernVM yum repositories to your machine’s
configuration.

	
Install the aufs enabled kernel from cernvm-kernel:

yum --disablerepo=* --enablerepo=cernvm-kernel install kernel

	
Install the aufs user utilities:

yum --enablerepo=cernvm-kernel install aufs2-util

	Reboot the machine

Once a new kernel version is released yum update will not pick the
upstream version but it will wait until the patched kernel with
aufs support is published by the CernVM team. We always try to follow
the kernel updates as quickly as possible.

Publishing a new Repository Revision

[image: CernVM-FS server schematic update overview]Updating a mounted CernVM-FS repository by overlaying it with a
copy-on-write aufs volume. Any changes will be accumulated in a
writable volume (yellow) and can be synchronized into the
CernVM-FS repository afterwards. The file catalog contains the
directory structure as well as file metadata, symbolic links, and
secure hash keys of regular files. Regular files are compressed and
renamed to their cryptographic content hash before copied into the
data store.

Since the repositories may contain many file system objects, we
cannot afford to generate an entire repository from scratch for every
update. Instead, we add a writable file system layer on top of a mounted
read-only CernVM-FS repository using the union file system aufs [http://aufs.sourceforge.net].
This renders a read-only CernVM-FS mount point writable to the user,
while all performed changes are stored in a special writable scratch
area managed by aufs. A similar approach is used by Linux Live
Distributions that are shipped on read-only media, but allow virtual
editing of files where changes are stored on a RAM disk.

If a file in the CernVM-FS repository gets changed, aufs first copies it
to the writable volume and applies any changes to this copy
(copy-on-write semantics). aufs will put newly created files or
directories in the writable volume as well. Additionally it creates
special hidden files (called white-outs) to keep track of file
deletions in the CernVM-FS repository.

Eventually, all changes applied to the repository are stored in aufs’s
scratch area and can be merged into the actual CernVM-FS repository by a
subsequent synchronization step. Up until the actual synchronization
step takes place, no changes are applied to the CernVM-FS repository.
Therefore, any unsuccessful updates to a repository can be rolled back
by simply clearing the writable file system layer of aufs.

Requirements for a new Repository

In order to create a repository, the server and client part of
CernVM-FS must be installed on the release manager machine. Furthermore
your machine should provide an aufs enabled kernel as well as a running
Apache2 web server. Currently we support Scientific Linux 6 and
Ubuntu 12.04 distributions. Please note, that Scientific Linux 6 does
not ship with an aufs enabled kernel, therefore we provide a compatible
patched kernel as RPMs (see Installing the AUFS-enabled Kernel on Scientific Linux 6 for
details).

Notable CernVM-FS Server Locations and Files

There are a number of possible customisations in the CernVM-FS server
installation. The following table provides an overview of important
configuration files and intrinsical paths together with some
customisation hints. For an exhaustive description of the
CernVM-FS server infrastructure please consult
Appendix “CernVM-FS Server Infrastructure”.

	File Path
	Description

	/cvmfs
	Repository mount points
Contains read-only AUFS mountpoints
that become writable during repository
updates. Do not symlink or manually
mount anything here.

	/srv/cvmfs
	Central repository storage location
Can be mounted or symlinked to another
location before creating the first
repository.

	/srv/cvmfs/<fqrn>
	Storage location of a repository
Can be symlinked to another location
before creating the repository
<fqrn>.

	/var/spool/cvmfs
	Internal states of repositories
Can be mounted or symlinked to another
location before creating the first
repository.
Hosts the scratch area described
here,
thus might consume notable disk space
during repository updates.

	/etc/cvmfs
	Configuration files and keychains
Similar to the structure described in
this table. Do
not symlink this directory.

	/etc/cvmfs/cvmfs_server_hooks.sh
	Customisable server behaviour
See “Customizable Actions Using Server Hooks” for
further details

	/etc/cvmfs/repositories.d
	Repository configuration location
Contains repository server specific
configuration files.

CernVM-FS Repository Creation and Updating

The CernVM-FS server tool kit provides the cvmfs_server utility in
order to perform all operations related to repository creation,
updating, deletion, replication and inspection. Without any parameters
it prints a short documentation of its commands.

Repository Creation

A new repository is created by cvmfs_server mkfs:

cvmfs_server mkfs my.repo.name

The utility will ask for a user that should act as the owner of the
repository and afterwards create all the infrastructure for the new
CernVM-FS repository. Additionally it will create a reasonable default
configuration and generate a new release manager certificate and
software signing key. The public key in
/etc/cvmfs/keys/my.repo.name.pub needs to be distributed to all
client machines.

The cvmfs_server utility will use /srv/cvmfs as storage location
by default. In case a separate hard disk should be used, a partition can
be mounted on /src/cvmfs or /srv/cvmfs can be symlinked to another
location (see Notable CernVM-FS Server Locations and Files). Besides local storage it is
possible to use an S3 compatible storage service
as data backend.

Once created, the repository is mounted under /cvmfs/my.repo.name
containing only a single file called new_repository. The next steps
describe how to change the repository content.

Repositories for Volatile Files

Repositories can be flagged as containing volatile files using the
-v option:

cvmfs_server mkfs -v my.repo.name

When CernVM-FS clients perform a cache cleanup, they treat files from
volatile repositories with priority. Such volatile repositories can be
useful, for instance, for experiment conditions data.

S3 Compatible Storage Systems

CernVM-FS can store files directly to S3 compatible storage systems,
such as Amazon S3, Huawei UDS and OpenStack SWIFT. The S3 storage
settings are given as parameters to cvmfs_server mkfs:

cvmfs_server mkfs -s /etc/cvmfs/.../mys3.conf \
 -w http://s3.amazonaws.com/mybucket-1-1 my.repo.name

The file “mys3.conf” contains the S3 settings (see :ref: table below
<tab_s3confparameters>). The “-w” option is used define the S3 server URL,
e.g. http://localhost:3128, which is used for accessing the repository’s
backend storage on S3. Note that this URL can be different than the S3 server
address that is used for uploads, e.g. if a proxy server is deployed in front
of the server. Note that the buckets need to exist before the repository is
created. In the example above, a single bucket mybucket-1-1 needs to be
created beforehand.

	Parameter
	Meaning

	CVMFS_S3_ACCOUNTS
	Number of S3 accounts to be used, e.g. 1.
With some S3 servers use of multiple
accounts can increase the upload speed
significantly

	CVMFS_S3_ACCESS_KEY
	S3 account access key(s) separated with
:, e.g. KEY-A:KEY-B:...

	CVMFS_S3_SECRET_KEY
	S3 account secret key(s) separated with
:, e.g. KEY-A:KEY-B:...

	CVMFS_S3_BUCKETS_PER_ACCOUNT
	S3 buckets used per account, e.g. 1. With
some S3 servers use of multiple buckets can
increase the upload speed significantly

	CVMFS_S3_HOST
	S3 server hostname, e.g. s3.amazonaws.com

	CVMFS_S3_BUCKET
	S3 bucket base name. Account and bucket
index are appended to the bucket base name.
If you use just one account and one bucket,
e.g. named mybucket, then you need to
create only one bucket called
mybucket-1-1

	CVMFS_S3_MAX_NUMBER_OF_PARALLEL_CONNECTIONS
	Number of parallel uploads to the S3
server, e.g. 400

In addition, if the S3 backend is configured to use multiple accounts or
buckets, a proxy server is needed to map HTTP requests to correct
buckets. This mapping is needed because CernVM-FS does not support
buckets but assumes that all files are stored in a flat namespace. The
recommendation is to use a Squid proxy server (version
\(\geq 3.1.10\)). The squid.conf can look like this:

http_access allow all
http_port 127.0.0.1:3128 intercept
cache_peer swift.cern.ch parent 80 0 no-query originserver
url_rewrite_program /usr/bin/s3_squid_rewrite.py
cache deny all

The bucket mapping logic is implemented in s3_squid_rewrite.py file.
This script is not provided by CernVM-FS but needs to be written by the
repository owner. The script needs to read requests from stdin and write
mapped URLs to stdout, for instance:

in: http://localhost:3128/data/.cvmfswhitelist
out: http://swift.cern.ch/cernbucket-9-91/data/.cvmfswhitelist

Repository Update

Typically a repository publisher does the following steps in order to
create a new revision of a repository:

	Run cvmfs_server transaction to switch to a copy-on-write enabled
CernVM-FS volume

	Make the necessary changes to the repository, add new directories,
patch certain binaries, ...

	Test the software installation

	Do one of the following:
	Run cvmfs_server publish to finalize the new repository
revision or

	Run cvmfs_server abort to clear all changes and start over
again

CernVM-FS supports having more than one repository on a single server
machine. In case of a multi-repository host, the target repository of a
command needs to be given as a parameter when running the
cvmfs_server utility. The cvmfs_server resign command should run
every 30 days to update the signatures of the repository. Most
cvmfs_server commands allow for wildcards to do manipulations on
more than one repository at once, cvmfs_server migrate *.cern.ch
would migrate all present repositories ending with .cern.ch.

Repository Import

The CernVM-FS 2.1 server tools support the import of a CernVM-FS file
storage together with its corresponding signing keychain. With
cvmfs_server import both CernVM-FS 2.0 and 2.1 compliant repository
file storages can be imported.

cvmfs_server import works similar to cvmfs_server mkfs (described in
Repository Creation) except it uses the provided data storage instead of
creating a fresh (and empty) storage. In case of a CernVM-FS 2.0 file storage
cvmfs_server import also takes care of the file catalog migration into the
CernVM-FS 2.1 schema.

Legacy Repository Import

We strongly recommend to install CernVM-FS 2.1 on a fresh or at least a
properly cleaned machine without any traces of the CernVM-FS 2.0
installation before installing CernVM-FS 2.1 server tools.

The command cvmfs_server import requires the full CernVM-FS 2.0 data
storage which is located at /srv/cvmfs by default as well as the
repository’s signing keys. Since the CernVM-FS 2.1 server backend
supports multiple repositories in contrast to its 2.0 counterpart, we
recommend to move the repository’s data storage to /srv/cvmfs/<FQRN>
upfront to avoid later inconsistencies.

The following steps describe the transformation of a repository from
CernVM-FS 2.0 into 2.1. As an example we are using a repository called
legacy.cern.ch.

	Make sure that you have backups of both the repository’s backend
storage and its signing keys

	Install and test the CernVM-FS 2.1 server tools on the machine that
is going to be used as new Stratum 0 maintenance machine

	
Place the repository’s backend storage data in
/srv/cvmfs/legacy.cern.ch

(default storage location)

	Transfer the repository’s signing keychain to the machine (f.e. to
/legacy_keys/)

	Run cvmfs_server import like this:

cvmfs_server import
 -o <username of repo maintainer> \
 -k ~/legacy_keys \
 -l \ # for 2.0.x file catalog migration
 -s \ # for further repository statistics
 legacy.cern.ch

	Check the imported repository with
cvmfs_server check legacy.cern.ch for integrity
(see Integrity Check)

Customizable Actions Using Server Hooks

The cvmfs_server utility allows release managers to trigger custom
actions before and after crucial repository manipulation steps. This can
be useful for example for logging purposes, establishing backend storage
connections automatically or other workflow triggers, depending on the
application.

There are six designated server hooks that are potentially invoked
during the repository update procedure:

	When running cvmfs_server transaction:
	before the given repository is transitioned into transaction
mode

	after the transition was successful

	When running cvmfs_server publish:
	before the publish procedure for the given repository is started

	after it was published and remounted successfully

	When running cvmfs_server abort:
	before the unpublished changes will be erased for the given
repository

	after the repository was successfully reverted to the last
published state

All server hooks must be defined in a single shell script file called:

/etc/cvmfs/cvmfs_server_hooks.sh

The cvmfs_server utility will check the existence of this script and
source it. To subscribe to the described hooks one needs to define one
or more of the following shell script functions:

	transaction_before_hook()

	transaction_after_hook()

	publish_before_hook()

	publish_after_hook()

	abort_before_hook()

	abort_after_hook()

The defined functions get called at the specified positions in the
repository update process and are provided with the fully qualified
repository name as their only parameter ($1). Undefined functions
automatically default to a NO-OP. An example script is located at
cvmfs/cvmfs_server_hooks.sh.demo in the CernVM-FS sources.

Maintaining a CernVM-FS Repository

CernVM-FS is a versioning, snapshot-based file system. Similar to
versioning systems, changes to /cvmfs/...are temporary until they are
committed (cvmfs_server publish) or discarded
(cvmfs_server abort). That allows you to test and verify changes,
for instance to test a newly installed release before publishing it to
clients. Whenever changes are published (committed), a new file system
snapshot of the current state is created. These file system snapshots
can be tagged with a name, which makes them named snapshots. A named
snapshot is meant to stay in the file system. One can rollback to named
snapshots and it is possible, on the client side, to mount any of the
named snapshots in lieu of the newest available snapshot.

Two named snapshots are managed automatically by CernVM-FS, trunk
and trunk-previous. This allows for easy unpublishing of a mistake,
by rolling back to the trunk-previous tag.

Integrity Check

CernVM-FS provides an integrity checker for repositories. It is invoked
by

cvmfs_server check

The integrity checker verifies the sanity of file catalogs and verifies
that referenced data chunks are present. Ideally, the integrity checker
is used after every publish operation. Where this is not affordable due
to the size of the repositories, the integrity checker should run
regularly.

Optionally cvmfs_server check can also verify the data integrity
(command line flag -i) of each data object in the repository. This
is a time consuming process and we recommend it only for diagnostic
purposes.

Named Snapshots

Named snapshots or tags are an easy way to organise checkpoints in the
file system history. CernVM-FS clients can explicitly mount a repository
at a specific named snapshot to expose the file system content published
with this tag. It also allows for rollbacks to previously created and
tagged file system revisions. Tag names need to be unique for each
repository and are not allowed to contain spaces or spacial characters.
Besides the actual tag’s name they can also contain a free descriptive
text and store a creation timestamp.

Named snapshots are best to use for larger modifications to the
repository, for instance when a new major software release is installed.
Named snapshots provide the ability to easily undo modifications and to
preserve the state of the file system for the future. Nevertheless,
named snapshots should not be used excessively. Less than 50 named
snapshots are a good number of named snapshots in many cases.

By default, new repositories will automatically create a generic tag if
no explicit tag is given during publish. The automatic tagging can be
turned off using the -g option during repository creation or by setting
CVMFS_AUTO_TAG=false in the
/etc/cvmfs/repositories.d/$repository/server.conf file.

Creating a Named Snapshot

Tags can be added while publishing a new file system revision. To do so,
the -a and -m options for cvmfs_server publish are used. The
following command publishes a CernVM-FS revision with a new revision
that is tagged as “release-1.0”:

cvmfs_server transaction
Changes
cvmfs_server publish -a release-1.0 -m "first stable release"

Managing Existing Named Snapshots

Management of existing tags is done by using the cvmfs_server tag
command. Without any command line parameters, it will print all
currently available named snapshots. Snapshots can be inspected
(-i <tag name>), removed (-r <tag name>) or created
(-a <tag name> -m <tag description> -h <catalog root hash>).
Furthermore machine readable modes for both listing (-l -x) as well
as inspection (-i <tag name> -x) is available.

Rollbacks

A repository can be rolled back to any of the named snapshots. Rolling
back is achieved through the command
cvmfs_server rollback -t release-1.0 A rollback is, like restoring
from backups, not something one would do often. Use caution, a rollback
is irreversible.

Managing Nested Catalogs

CernVM-FS stores meta-data (path names, file sizes, ...) in file catalogs.
When a client accesses a repository, it has to download the file catalog
first and then it downloads the files as they are opened. A single file
catalog for an entire repository can quickly become large and
impractical. Also, clients typically do not need all of the repository’s
meta-data at the same time. For instance, clients using software release
1.0 do not need to know about the contents of software release 2.0.

With nested catalogs, CernVM-FS has a mechanism to partition the
directory tree of a repository into many catalogs. Repository
maintainers are responsible for sensible cutting of the directory trees
into nested catalogs. They can do so by creating and removing magic
files named .cvmfscatalog.

For example, in order to create a nested catalog for software release
1.0 in the hypothetical repository experiment.cern.ch, one would invoke

cvmfs_server transaction
touch /cvmfs/experiment.cern.ch/software/1.0/.cvmfscatalog
cvmfs_server publish

In order to merge a nested catalog with its parent catalog, the
corresponding .cvmfscatalog file needs to be removed. Nested
catalogs can be nested on arbitrary many levels.

Recommendations for Nested Catalogs

Nested catalogs should be created having in mind which files and
directories are accessed together. This is typically the case for
software releases, but can be also on the directory level that separates
platforms. For instance, for a directory layout like

/cvmfs/experiment.cern.ch
 |- /software
 | |- /i686
 | | |- 1.0
 | | |- 2.0
 | ` |- common
 | |- /x86_64
 | | |- 1.0
 | ` |- common
 |- /grid-certificates
 |- /scripts

it makes sense to have nested catalogs at

/cvmfs/experiment.cern.ch/software/i686
/cvmfs/experiment.cern.ch/software/x86_64
/cvmfs/experiment.cern.ch/software/i686/1.0
/cvmfs/experiment.cern.ch/software/i686/2.0
/cvmfs/experiment.cern.ch/software/x86_64/1.0

A nested catalog at the top level of each software package release is
generally the best approach because once package releases are installed
they tend to never change, which reduces churn and garbage generated in
the repository from old catalogs that have changed. In addition, each
run only tends to access one version of any package so having a separate
catalog per version avoids loading catalog information that will not be
used. A nested catalog at the top level of each platform may make sense
if there is a significant number of platform-specific files that aren’t
included in other catalogs.

It could also make sense to have a nested catalog under
grid-certificates, if the certificates are updated much more frequently
than the other directories. It would not make sense to create a nested
catalog under /cvmfs/experiment.cern.ch/software/i686/common, because
this directory needs to be accessed anyway whenever its parent directory
is needed. As a rule of thumb, a single file catalog should contain more
than 1000 files and directories but not contain more than
\(\approx\)200000 files. See Inspecting Nested Catalog Structure how to find
catalogs that do not satisfy this recommendation.

Restructuring the repository’s directory tree is an expensive operation
in CernVM-FS. Moreover, it can easily break client applications when
they switch to a restructured file system snapshot. Therefore, the
software directory tree layout should be relatively stable before
filling the CernVM-FS repository.

Managing Nested Catalogs with .cvmfsdirtab

Rather than managing .cvmfscatalog files by hand, a repository
administrator may create a file called .cvmfsdirtab, in the top
directory of the repository, which contains a list of paths relative to
the top of the repository where .cvmfscatalog files will be created.
Those paths may contain shell wildcards such as asterisk (*) and
question mark (?). This is useful for specifying patterns for
creating nested catalogs as new files are installed. A very good use of
the patterns is to identify directories where software releases will be
installed.

In addition, lines in .cvmfsdirtab that begin with an exclamation
point (!) are shell patterns that will be excluded from those
matched by lines without an exclamation point. For example a
.cvmfsdirtab might contain these lines for the repository of the
previous subsection:

/software/*
/software/*/*
! */common
/grid-certificates

This will create nested catalogs at

/cvmfs/experiment.cern.ch/software/i686
/cvmfs/experiment.cern.ch/software/i686/1.0
/cvmfs/experiment.cern.ch/software/i686/2.0
/cvmfs/experiment.cern.ch/software/x86_64
/cvmfs/experiment.cern.ch/software/x86_64/1.0
/cvmfs/experiment.cern.ch/grid-certificates

Note that unlike the regular lines that add catalogs, asterisks in the
exclamation point exclusion lines can span the slashes separating
directory levels.

Inspecting Nested Catalog Structure

The following command visualizes the current nested file catalog layout
of a repository.

cvmfs_server list-catalogs

Additionally this command allows to spot degenerated nested catalogs. As
stated here the recommended
maximal file entry count of a single catalog should not exceed
\(\approx\)200000. One can use the switch list-catalogs -e to
inspect the current nested catalog entry counts in the repository.
Furthermore list-catalgos -s will print the file sizes of the
catalogs in bytes.

Migrate File Catalogs

In rare cases the further development of CernVM-FS makes it necessary to
change the internal structure of file catalogs. Updating the
CernVM-FS installation on a Stratum 0 machine might require a migration
of the file catalogs.

It is recommended that cvmfs_server list is issued after any
CernVM-FS update to review if any of the maintained repositories need a
migration. Outdated repositories will be marked as “INCOMPATIBLE” and
cvmfs_server refuses all actions on these repositories until the
file catalogs have been updated.

In order to run a file catalog migration use cvmfs_server migrate
for each of the outdated repositories. This will essentially create a
new repository revision that contains the exact same file structure as
the current revision. However, all file catalogs will be recreated from
scratch using the updated internal structure. Note that historic file
catalogs of all previous repository revisions stay untouched and are not
migrated.

After cvmfs_server migrate has successfully updated all file
catalogs repository maintenance can continue as usual.

Repository Garbage Collection

Since CernVM-FS is a versioning file system it is following an
insert-only policy regarding its backend storage. When files are deleted
from a CernVM-FS repository, they are not automatically deleted from the
underlying storage. Therefore legacy revisions stay intact and usable
forever (cf. Named Snapshots) at the expense of an
ever-growing storage volume both on the Stratum 0 and the Stratum 1s.

For this reason, applications that frequently install files into a
repository and delete older ones - for example the output from nightly
software builds - might quickly fill up the repository’s backend
storage. Furthermore these applications might actually never make use of
the aforementioned long-term revision preservation rendering most of the
stored objects “garbage”.

CernVM-FS supports garbage-collected repositories that automatically
remove unreferenced data objects and free storage space. This feature
needs to be enabled on the Stratum 0 and automatically scans the
repository’s catalog structure for unreferenced objects both on the
Stratum 0 and the Stratum 1 installations on every publish respectively
snapshot operation.

Garbage Sweeping Policy

The garbage collector of CernVM-FS is using a mark-and-sweep algorithm
to detect unused files in the internal catalog graph. Revisions that are
referenced by named snapshots (cf. Named Snapshots) or that
are recent enough are preserved while all other revisions are condemned
to be removed. By default this time-based threshold is three days but
can be changed using the configuration variable
CVMFS_AUTO_GC_TIMESPAN both on Stratum 0 and Stratum 1. The value of
this variable is expected to be parseable by the date command, for
example 3 days ago or 1 week ago.

Enabling Garbage Collection

Creating a Garbage Collectable Repository

Repositories can be created as garbage-collectable from the start by adding
-z to the cvmfs_server mkfs command (cf. Repository Creation). It
is generally recommended to also add -g to switch off automatic tagging in
a garbage collectable repository.

Enabling Garbage Collection on an Existing Repository (Stratum 0)

Existing repositories can be reconfigured to be garbage collectable by
adding

CVMFS_GARBAGE_COLLECTION=true and CVMFS_AUTO_GC=true to the
server.conf of the repository. Furthermore it is recommended to
switch off automatic tagging by setting CVMFS_AUTO_TAG=false for a
garbage collectable repository. The garbage collection will be enabled
with the next published transaction.

Enabling Garbage Collection on an Existing Replication (Stratum 1)

In order to use automatic garbage collection on a stratum 1 replica
CVMFS_AUTO_GC=true needs to be added in the server.conf file of
the stratum 1 installation. This will only work if the upstream stratum
0 repository has garbage collection enabled.

Limitations on Repository Content

Because CernVM-FS provides what appears to be a POSIX filesystem to
clients, it is easy to think that it is a general purpose filesystem and
that it will work well with all kinds of files. That is not the case,
however, because CernVM-FS is optimized for particular types of files
and usage. This section contains guidelines for limitations on the
content of repositories for best operation.

Data files

First and foremost, CernVM-FS is designed to distribute executable code
that is shared between a large number of jobs that run together at grid
sites, clouds, or clusters. Worker node cache sizes and web proxy
bandwidth are generally engineered to accommodate that application. The
total amount read per job is expected to be roughly limited by the
amount of RAM per job slot. The same files are also expected to be read
from the worker node cache multiple times for the same type of job, and
read from a caching web proxy by multiple worker nodes.

If there are data files distributed by CernVM-FS that follow similar
access patterns and size limits as executable code, it will probably
work fine. In addition, if there are files that are larger but read
slowly throughout long jobs, as opposed to all at once at the beginning,
that can also work well if the same files are read by many jobs. That is
because web proxies have to be engineered for handling bursts at the
beginning of jobs and so they tend to be lightly loaded a majority of
the time.

In general, a good rule of thumb is to calculate the maximum rate at
which jobs typically start and limit the amount of data that might be
read from a web proxy to per thousand jobs, assuming a reasonable amount
of overlap of jobs onto the same worker nodes. Also, limit the amount of
data that will be put into any one worker node cache to . Of course, if
you have a special arrangement with particular sites to have large
caches and bandwidths available, these limits can be made higher at
those sites. Web proxies may also need to be engineered with faster
disks if the data causes their cache hit ratios to be reduced.

Also, keep in mind that the total amount of data distributed is not
unlimited. The files are stored and distributed compressed, and files
with the same content stored in multiple places in the same repository
are collapsed to the same file in storage, but the storage space is used
not only on the original repository server, it is also replicated onto
multiple Stratum 1 servers. Generally if only executable code is
distributed, there is no problem with the space taken on Stratum 1s, but
if many large data files are distributed they may exceed the Stratum 1
storage capacity. Data files also tend to not compress as well, and that
is especially the case of course if they are already compressed before
installation.

Tarballs, zip files, and other archive files

If the contents of a tarball, zip file, or some other type of archive
file is desired to be distributed by CernVM-FS, it is usually better to
first unpack it into its separate pieces first. This is because it
allows better sharing of content between multiple releases of the file;
some pieces inside the archive file might change and other pieces might
not in the next release, and pieces that don’t change will be stored as
the same file in the repository. CernVM-FS will compress the content of
the individual pieces, so even if there’s no sharing between releases it
shouldn’t take much more space.

File permissions

Care should be taken to make all the files in a repository readable by
“other”. This is because permissions on files in the original repository
are generally the same as those seen by end clients, except the files
are owned by the “cvmfs” user and group. The write permissions are
ignored by the client since it is a read-only filesystem. However,
unless the client has set

CVMFS_CHECK_PERMISSIONS=no

(and most do not), unprivileged users will not be able to read files
unless they are readable by “other” and all their parent directories
have at least “execute” permissions. It makes little sense to publish
files in CernVM-FS if they won’t be able to be read by anyone.

Hardlinks

By default CernVM-FS does not allow hardlinks of a file to be in
different directories. If there might be any such hardlinks in a
repository, set the option

CVMFS_IGNORE_XDIR_HARDLINKS=true

in the repository’s server.conf. The file will not appear to be
hardlinked to the client, but it will still be stored as only one file
in the repository just like any other files that have identical content.
Note that if, in a subsequent publish operation, only one of these
cross-directory hardlinks gets changed, the other hardlinks remain
unchanged (the hardlink got “broken”).

 Copyright 2015, CernVM Team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CernVM-FS 2.1.20 documentation

Setting up a Replica Server (Stratum 1)

While a CernVM-FS Stratum 0 repository server is able to serve clients
directly, a large number of clients is better be served by a set of Stratum 1
replica servers. Multiple Stratum 1 servers improve the reliability, reduce
the load, and protect the Stratum 0 master copy of the repository from direct
accesses. Stratum 0 server, Stratum 1 servers and the site-local proxy servers
can be seen as content distribution network. The figure below shows the situation for the repositories hosted in the
cern.ch domain.

[image: Concept overview of the CernVM-FS Content Delivery Network]
CernVM-FS content distribution network for the cern.ch domain: Stratum1
replica servers are located in Europe, the U.S. and Asia. One protected
read/write instance (Stratum 0) is feeding up the public, distributed
mirror servers. A distributed hierarchy of proxy servers fetches content
from the closest public mirror server.

A Stratum 1 server is a standard web server that uses the
CernVM-FS server toolkit to create and maintain a mirror of a
CernVM-FS repository served by a Stratum 0 server. To this end, the
cvmfs_server utility provides the add-replica command. This
command will register the Stratum 0 URL and prepare the local web
server. Periodical synchronization has to be scheduled, for instance
with cron, using the cvmfs_server snapshot command. The
advantage over general purpose mirroring tools such as rSync is that all
CernVM-FS file integrity verifications mechanisms from the Fuse client
are reused. Additionally, by the aid of the CernVM-FS file catalogs, the
cvmfs_server utility knows beforehand (without remote listing) which
files to transfer.

In order to prevent accidental synchronization from a repository, the
Stratum 0 repository maintainer has to create a
.cvmfs_master_replica file in the HTTP root directory. This file is
created by default when a new repository is created. Note that
replication can thrash caches that might exist between Stratum 1 and
Stratum 0. A direct connection is therefore preferable.

Recommended Setup

The vast majority of HTTP requests will be served by the site’s local
proxy servers. Being a publicly available service, however, we recommend
to install a Squid frontend in front of the Stratum 1 web server.

We suggest the following key parameters:

	Storage

	RAID-protected storage. The cvmfs_server utility should have low
latency to the storage because it runs a large number of system
calls (stat()) against it. For the local storage backends ext3/4
filesystems are preferred (rather than XFS).

	Web server

	A standard Apache server. Directory listing is not required. In
addition, it is a good practice to exclude search engines from the
replica web server by an appropriate robots.txt. The webserver
should be close to the storage in terms of latency.

	Squid frontend

	Squid should be used as a frontend to Apache, configured as a
reverse proxy. It is recommended to run it on the same machine as
Apache to reduce the number of points of failure. Alternatively,
separate Squid server machines may be configured in load-balance
mode forwarding to the Apache server, but note that if any of them
are down the entire service will be considered down by
CernVM-FS clients. The Squid frontend should listen on ports 80 and
8000. The more RAM that the operating system can use for file system
caching, the better.

	DNS cache

	A Stratum 1 does a lot of DNS lookups, so we recommend installing a
DNS caching mechanism on the machine such as dnsmasq or
bind. We do not recommend nscd since it does not honor the
DNS Time-To-Live protocol.

Squid Configuration

The Squid configuration differs from the site-local Squids because the
Stratum 1 Squid servers are transparent to the clients (reverse
proxy). As the expiry rules are set by the web server, Squid cache
expiry rules remain unchanged.

The following lines should appear accordingly in /etc/squid/squid.conf:

http_port 80 accel
http_port 8000 accel
http_access allow all
cache_peer <APACHE_HOSTNAME> parent <APACHE_PORT> 0 no-query originserver

cache_mem <MEM_CACHE_SIZE> MB
cache_dir ufs /var/spool/squid <DISK_CACHE_SIZE in MB> 16 256
maximum_object_size 1024 MB
maximum_object_size_in_memory 128 KB

Note that http_access allow all has to be inserted before (or
instead of) the line http_access deny all. If Apache is running on
the same host, the APACHE_HOSTNAME will be localhost. Also, in
that case there is not a performance advantage for squid to cache
files that came from the same machine, so you can configure squid to
not cache files. Do that with the following lines:

acl CVMFSAPI urlpath_regex ^/cvmfs/[^/]*/api/
cache deny !CVMFSAPI

Then the squid will only cache API calls. You can then set
MEM_CACHE_SIZE and DISK_CACHE_SIZE quite small.

Check the configuration syntax by squid -k parse. Create the hard
disk cache area with squid -z. In order to make the increased number
of file descriptors effective for Squid, execute ulimit -n 8192
prior to starting the squid service.

Monitoring

The cvmfs_server utility reports status and problems to stdout
and stderr.

For the web server infrastructure, we recommend standard Nagios HTTP
checks. They should be configured with the URL
http://$replica-server/cvmfs/$repository_name/.cvmfspublished. This file
can also be used to monitor if the same repository revision is served by
the Stratum 0 server and all the Stratum 1 servers. In order to tune the
hardware and cache sizes, keep an eye on the Squid server’s CPU and I/O
load.

Keep an eye on HTTP 404 errors. For normal CernVM-FS traffic, such
failures should not occur. Traffic from CernVM-FS clients is marked by
an X-CVMFS2 header.

 Copyright 2015, CernVM Team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CernVM-FS 2.1.20 documentation

Implementation Notes

CernVM-FS has a modular structure and relies on several open source libraries.
Figure below shows the internal building blocks of
CernVM-FS. Most of these libraries are shipped with the CernVM-FS sources and
are linked statically in order to facilitate debugging and to keep the system
dependencies minimal.

[image: CernVM-FS building blocks]

File Catalog

A CernVM-FS repository is defined by its file catalog. The file
catalog is an SQLite database [https://www.sqlite.org] [Allen10]
having a single table that lists files and directories together with
its metadata. The table layout is shown in the table below:

	Field
	Type

	Path MD5
	128Bit Integer

	Parent Path MD5
	128Bit Integer

	Hardlinks
	Integer

	SHA1 Content Hash
	160Bit Integer

	Size
	Integer

	Mode
	Integer

	Last Modified
	Timestamp

	Flags
	Integer

	Name
	String

	Symlink
	String

	uid
	Integer

	gid
	Integer

In order to save space we do not store absolute paths. Instead we
store MD5 [Rivest92], [Turner11] hash values of the absolute path
names. Symbolic links are kept in the catalog. Symbolic links may
contain environment variables in the form $(VAR_NAME) or
$(VAR_NAME:-/default/path) that will be dynamically resolved by
CernVM-FS on access. Hardlinks are emulated by CernVM-FS. The hardlink
count is stored in the lower 32bit of the hardlinks field, a hardlink
group is stored in the higher 32 bit. If the hardlink group is
greater than zero, all files with the same hardlink group will get the
same inode issued by the CernVM-FS Fuse client. The emulated hardlinks
work within the same directory, only. The cryptographic content hash
refers to the zlib-compressed [Deutsch96] version of the file. Flags
indicate the type of an directory entry (see table below).

	Flags
	Meaning

	1
	Directory

	2
	Transition point to a nested catalog

	33
	Root directory of a nested catalog

	3
	Regular file

	4
	Symbolic link

A file catalog contains a time to live (TTL), stored in seconds. The
catalog TTL advises clients to check for a new version of the catalog,
when expired. Checking for a new catalog version takes place with the
first file system operation on a CernVM-FS volume after the TTL has
expired. The default TTL is 15 minutes. If a new catalog is available,
CernVM-FS delays the loading for the period of the CernVM-FS kernel
cache life time (default: 1 minute). During this drain-out period, the
kernel caching is turned off. The first file system operation on a
CernVM-FS volume after that additional delay will apply a new file
catalog and kernel caching is turned back on.

Content Hashes

CernVM-FS can use SHA-1 [Jones01], RIPEMD-160 [Dobbertin96] and
SHAKE-128 [Bertoni09] as cryptographic hash function. The hash function
can be changed on the Stratum 0 during the lifetime of repositories.
On a change, new and updated files will use the new cryptographic hash
while existing files remain unchanged. This is transparent to the clients
since the hash function is stored in the flags field of file catalogs for
each and every file. The default hash function is SHA-1.
New software versions might introduce support for further cryptographic
hash functions.

Nested Catalogs

In order to keep catalog sizes reasonable [1], repository subtrees may be cut
and stored as separate nested catalogs. There is no limit on the level of
nesting. A reasonable approach is to store separate software versions as
separate nested catalogs. The figure below shows the
simplified directory structure which we use for the ATLAS repository.

[image: CernVM-FS nested catalogs schema]
Directory structure useds for the ATLAS repository (simplified).

When a subtree is moved into a nested catalog, its entry directory
serves as transition point for nested catalogs. This directory appears
as empty directory in the parent catalog with flags set to 2. The same
path appears as root-directory in the nested catalog with flags set to
33. Because the MD5 hash values refer to full absolute paths, nested
catalogs store the root path prefix. This prefix is prepended
transparently by CernVM-FS. The cryptographic hash of nested catalogs is
stored in the parent catalog. Therefore, the root catalog fully defines
an entire repository.

Loading of nested catalogs happens on demand by CernVM-FS on the first
attempt to access of anything inside, a user won’t see the difference
between a single large catalog and several nested catalogs. While this
usually avoids unnecessary catalogs to be loaded, recursive operations
like find can easily bypass this optimization.

Catalog Statistics

A CernVM-FS file catalog maintains several counters about its contents
and the contents of all of its nested catalogs. The idea is that the
catalogs know how many entries there are in their sub catalogs even
without opening them. This way, one can immediately tell how many
entries, for instance, the entire ATLAS repository has. Some of the
numbers are shown using the number of inodes in statvfs. So
df -i shows the overall number of entries in the repository and (as
number of used inodes) the number of entries of currently loaded
catalogs. Nested catalogs create an additional entry (the transition
directory is stored in both the parent and the child catalog). File
hardlinks are still individual entries (inodes) in the cvmfs catalogs.
The following counters are maintained for both a catalog itself and for
the subtree this catalog is root of:

	Number of regular files

	Number of symbolic links

	Number of directories

	Number of nested catalogs

	Number of chunked files

	Number of individual file chunks

	Overall file content size

	File content size stored in chunked files

Repository Manifest (.cvmfspublished)

Every CernVM-FS repository contains a repository manifest file that
serves as entry point into the repository’s catalog structure. The
repository manifest is the first file accessed by the CernVM-FS client
at mount time and therefore must be accessible via HTTP on the
repository root URL. It is always called .cvmfspublished and
contains fundamental repository meta data like the root catalog’s
cryptographic hash and the repository revision number as a key-value
list.

Internal Manifest Structure

Below is an example of a typical manifest file. Each line starts with a
capital letter specifying the meta data field, followed by the actual data
string. The list of meta information is ended by a separator line (--)
followed by signature information further described here.

C64551dccfbe0a48de7618dd7deb290200b474759
B1442336
Rd41d8cd98f00b204e9800998ecf8427e
D900
S42
Nexample.cern.ch
X731cca9476eb882f5a3f24aaa38001105a0e35eb
T1390301299
--
edde5308e502dd5e8fe405c56f5700f7477dc319
[...]

Please refer to
table below for detailed information about each of the
meta data fields.

	Field
	Meta Data Description

	C
	Cryptographic hash of the repository’s current root catalog

	R
	MD5 hash of the repository’s root path

(usually always d41d8cd98f00b204e9800998ecf8427e)

	B
	File size of the root catalog in bytes

	X
	Cryptographic hash of the signing certificate

	H
	Cryptographic hash of the repository’s named tag history
database

	T
	Unix timestamp of this particular revision

	D
	Time To Live (TTL) of the root catalog

	S
	Revision number of this published revision

	N
	The full name of the manifested repository

	L
	currently unused (reserved for micro catalogs)

Repository Signature

In order to provide authoritative information about a repository
publisher, the repository manifest is signed by an X.509 certificate
together with its private key.

Signing a Repository

It is important to note that it is sufficient to sign just the manifest
file itself to gain a secure chain of the whole repository. The manifest
refers to the cryptographic content hash of the root catalog which in
turn recursively references all sub-catalogs with their cryptographic
content hashes. Each catalog lists its files along with their
cryptographic content hashes. This concept is called a merkle tree and
eventually provides a single hash that depends on the complete content
of the repository.

The top level hash used for the repository signature can be found in the
repository manifest right below the separator line (-- / see above).
It is the cryptographic hash of the manifest’s meta data lines excluding
the separator line. Following the top level hash is the actual signature
produced by the X.509 certificate signing procedure in binary form.

Signature Validation

In order to validate repository manifest signatures, CernVM-FS uses a
white-list of valid publisher certificates. The white-list contains the
cryptographic fingerprints of known publisher certificates and a
timestamp. A white-list is valid for 30 days. It is signed by a private
RSA key, which we refer to as master key. The public RSA key that
corresponds to the master key is distributed with the
cvmfs-config-\cdots RPMs as well as with every instance of CernVM.

In addition, CernVM-FS checks certificate fingerprints against the local
blacklist /etc/cvmfs/blacklist. The blacklisted fingerprints have to be
in the same format than the fingerprints on the white-list. The
blacklist has precedence over the white-list.

As crypto engine, CernVM-FS uses libcrypto from the OpenSSL project [http://www.openssl.org/docs/crypto/crypto.html].

Use of HTTP

The particular way of using the HTTP protocol has significant impact on
the performance and usability of CernVM-FS. If possible, CernVM-FS tries
to benefit from the HTTP/1.1 features keep-alive and cache-control.
Internally, CernVM-FS uses the libcurl library [http://curl.haxx.se/libcurl].

The HTTP behaviour affects a system with cold caches only. As soon as
all necessary files are cached, there is only network traffic when a
catalog TTL expires. The CernVM-FS download manager runs as a separate
thread that handles download requests asynchronously in parallel.
Concurrent download requests for the same URL are collapsed into a
single request.

DoS Protection

A subtle denial of service attack (DoS) can occur when CernVM-FS is
successfully able to download a file but fails to store it in the local
cache. This situation escalates into a DoS when the application using
CernVM-FS remains in an endless loop and tries to open a file over and
over again. Such a situation is prevented by CernVM-FS by re-trying with
an exponential backoff. The backoff is triggered by consequtive filaures
to cache a downloaded file within 10 seconds.

Keep-Alive

Although the HTTP protocol overhead is small in terms of data volume, in
high latency networks we suffer from the bare number of requests: Each
request-response cycle has a penalty of at least the network round trip
time. Using plain HTTP/1.0, this results in at least
\(3\cdot\text{round trip time}\) additional running time per file
download for TCP handshake, HTTP GET, and TCP connection finalisation.
By including the Connection: Keep-Alive header into HTTP requests,
we advise the HTTP server end to keep the underlying TCP connection
opened. This way, overhead ideally drops to just round trip time for a
single HTTP GET. The impact of the keep-alive feature is shown in
here.

[image: Keep-Alive impact illustration]

This feature, of course, somewhat sabotages a server-side
load-balancing. However, exploiting the HTTP keep-alive feature does not
affect scalability per se. The servers and proxies may safely close idle
connections anytime, in particular if they run out of resources.

Cache Control

In a limited way, CernVM-FS advises intermediate web caches how to
handle its requests. Therefor it uses the Pragma: no-cache and the
Cache-Control: no-cache headers in certain cases. These cache
control headers apply to both, forward proxies as well as reverse
proxies. This is not a guarantee that intermediate proxies fetch a fresh
original copy (though they should).

By including these headers, CernVM-FS tries to not fetch outdated cache
copies. Only in case CernVM-FS downloads a corrupted file from a proxy
server, it retries having the HTTP no-cache header set. This way,
the corrupted file gets replaced in the proxy server by a fresh copy
from the backend.

Identification Header

CernVM-FS sends a custom header (X-CVMFS2) to be identified by the
web server. If you have set the CernVM GUID, this GUID is also
transmitted.

Redirects

Normally, the Stratum-1 servers directly respond to HTTP requests so
CernVM-FS has no need to support HTTP redirect response codes. However,
there are some high-bandwidth applications where HTTP redirects are used
to transfer requests to multiple data servers. To enable support for
redirects in the CernVM-FS client, set CVMFS_FOLLOW_REDIRECTS=yes.

Name Resolving

Round-robin DNS entries for proxy servers are treated specially by
CernVM-FS. Multiple IP addresses for the same proxy name are
automatically transformed into multiple proxy servers within the same
load-balance group. So the usual rules for load-balancing and fail-over
apply to the different servers in a round-robin entry.
CernVM-FS resolves all the proxy servers at once (and in parallel) at
mount time. From that point on, proxy server names are resolved on
demand, when a download takes place and the TTL of the active proxy
expired. CernVM-FS resolves using /etc/host (resp. the file referenced
in the HOST_ALIASES environment variable) or, if a host name is not
resolvable locally, it uses the c-ares resolver. Proxy servers given in
IP notation remain unchanged.

CernVM-FS uses the TTLs that come from DNS servers. However, there is a
cutoff at 1 minute minimum TTL and 1 day maximum TTL. Locally resolved
host names get a TTL of 1 minute. The host alias file is re-read with
every attempt to resolve a name. Failed attempts to resolve a name
remain cached for 1 minute, too. If a name has been successfully
resolved previously, this result stays active until another successful
attempt is done. If the DNS entries change for a host name,
CernVM-FS adjust the corresponding load-balance group and picks a new
server from the group at random.

The name resolving silently ignores errors in individual records. Only
if no valid IP address is returned at all it counts as an error. IPv4
addresses have precedence if available. If the CVMFS_IPV4_ONLY
environment variable is set,CernVM-FS does not try to resolve IPv6
records.

The timeout for name resolving is hard-coded to 2 attempts with a
timeout of 3 seconds each. This is independent from the
CVMFS_TIMEOUT and CVMFS_TIMEOUT(_DIRECT) settings. The effective
timeout can be a bit longer than 6 seconds because of a backoff.

The name server used by CernVM-FS is looked up only once on start. If
the name server changes during the life time of a CernVM-FS mount point,
this change needs to be manually advertised to CernVM-FS using
cvmfs_talk nameserver set.

Disk Cache

Each running CernVM-FS instance requires a local cache directory. Data
are downloaded into a temporary files. Only at the very latest point
they are renamed into their content-addressable names atomically by
rename().

The hard disk cache is managed, CernVM-FS maintains cache size
restrictions and replaces files according to the least recently used
(LRU) strategy [Panagiotou06]. In order to keep track of files sizes
and relative file access times, CernVM-FS sets up another SQLite
database in the cache directory, the cache catalog. The cache
catalog contains a single table; its structure is shown here:

	Field
	Type

	SHA-1
	String (hex notation)

	Size
	Integer

	Access Sequence
	Integer

	Pinned
	Integer

	File type (chunk or file catalog)
	Integer

CernVM-FS does not strictly enforce the cache limit. Instead
CernVM-FS works with two customizable soft limits, the cache quota and
the cache threshold. When exceeding the cache quota, files are deleted
until the overall cache size is less than or equal to the cache
threshold. The cache threshold is currently hard-wired to half of the
cache quota. The cache quota is for data files as well as file catalogs.
Currently loaded catalogs are pinned in the cache, they will not be
deleted until unmount or until a new repository revision is applied. On
unmount, pinned file catalogs are updated with the highest sequence
number. As a pre-caution against a cache that is blocked by pinned
catalogs, all catalogs except the root catalog are unpinned when the
volume of pinned catalogs exceeds of the overall cache volume.

The cache catalog can be re-constructed from scratch on mount.
Re-constructing the cache catalog is necessary when the managed cache is
used for the first time and every time when “unmanaged” changes occurred
to the cache directory, when CernVM-FS was terminated unexpectedly.

In case of an exclusive cache, the cache manager runs as a separate thread of
the cvmfs2 process. This thread gets notified by the Fuse module whenever
a file is opened or inserted. Notification is done through a pipe. The shared
cache uses the very same code, except that the thread becomes a separate
process (see Figure below). This cache manager
process is not another binary but cvmfs2 forks to itself with special
arguments, indicating that it is supposed to run as a cache manager. The cache
manager does not need to be started as a service. The first CernVM-FS instance
that uses a shared cache will automatically spawn the cache manager process.
Subsequent CernVM-FS instances will connect to the pipe of this cache manager.
Once the last CernVM-FS instance that uses the shared cache is unmounted, the
communication pipe is left without any writers and the cache manager
automatically quits.

[image: CernVM-FS shared local hard disk cache]

The CernVM-FS cache supports two classes of files with respect to the
cache replacement strategy: normal files and volatile files. The
sequence numbers of volatile files have bit 63 set. Hence they are
interpreted as negative numbers and have precedence over normal files
when it comes to cache cleanup. On automatic rebuild the volatile
property of entries in the cache database is lost.

NFS Maps

In normal mode, CernVM-FS issues inodes based on the row number of an
entry in the file catalog. When exported via NFS, this scheme can
result in inconsistencies because CernVM-FS does not control the cache
lifetime of NFS clients. A once issued inode can be asked for anytime
later by a client. To be able to reply to such client queries even
after reloading catalogs or remounts of CernVM-FS, the CernVM-FS NFS
maps implement a persistent store of the path names \(\mapsto\)
inode mappings. Storing them on hard disk allows for control of the
CernVM-FS memory consumption (currently \(\approx\) 45 MB extra)
and ensures consistency between remounts of CernVM-FS. The performance
penalty for doing so is small. CernVM-FS uses Google’s leveldb
<https://github.com/google/leveldb>, a fast, local key value store.
Reads and writes are only performed when meta-data are looked up in
SQLite, in which case the SQLite query supposedly dominates the
running time.

A drawback of the NFS maps is that there is no easy way to account for
them by the cache quota. They sum up to some 150-200 Bytes per path name
that has been accessed. A recursive find on /cvmfs/atlas.cern.ch
with 25 million entries, for instance, would add up in the cache
directory. This is mitigated by the fact that the NFS mode will be only
used on few servers that can be given large enough spare space on hard
disk.

Loader

The CernVM-FS Fuse module comprises a minimal loader loader process
(the cvmfs2 binary) and a shared library containing the actual
Fuse module (libcvmfs_fuse.so). This structure makes it possible to
reload CernVM-FS code and parameters without unmounting the file system.
Loader and library don’t share any symbols except for two global structs
cvmfs_exports and loader_exports used to call each others
functions. The loader process opens the Fuse channel and implements stub
Fuse callbacks that redirect all calls to the CernVM-FS shared library.
Hotpatch is implemented as unloading and reloading of the shared
library, while the loader temporarily queues all file system calls
in-between. Among file system calls, the Fuse module has to keep very
little state. The kernel caches are drained out before reloading. Open
file handles are just file descriptors that are held open by the
process. Open directory listings are stored in a Google dense_hash that
is saved and restored.

File System Interface

CernVM-FS implements the following read-only file system call-backs.

mount

On mount, the file catalog has to be loaded. First, the file catalog
manifest .cvmfspublished is loaded. The manifest is only accepted
on successful validation of the signature. In order to validate the
signature, the certificate and the white-list are downloaded in addition
if not found in cache. If the download fails for whatever reason,
CernVM-FS tries to load a local file catalog copy. As long as all
requested files are in the disk cache as well, CernVM-FS continues to
operate even without network access (offline mode). If there is no
local copy of the manifest or the downloaded manifest and the cache copy
differ, CernVM-FS downloads a fresh copy of the file catalog.

getattr and lookup

Requests for file attributes are entirely served from the mounted
catalogs, there is no network traffic involved. This function is called
as pre-requisite to other file system operations and therefore the most
frequently called Fuse callback. In order to minimize relatively
expensive SQLite queries, CernVM-FS uses a hash table to store negative
and positive query results. The default size of for this memory cache is
determined according to benchmarks with LHC experiment software.

Additionally, the callback takes care of the catalog TTL. If the TTL is
expired, the catalog is re-mounted on the fly. Note that a re-mount
might possibly break running programs. We rely on careful repository
publishers that produce more or less immutable directory trees, new
repository versions just add files.

If a directory with a nested catalog is accessed for the first time, the
respective catalog is mounted in addition to the already mounted
catalogs. Loading nested catalogs is transparent to the user.

readlink

A symbolic link is served from the file catalog. As a special extension,
CernVM-FS detects environment variables in symlink strings written as
$(VARIABLE) or $(VARIABLE:-/default/path). These variables are
expanded by CernVM-FS dynamically on access (in the context of the
cvmfs2 process). This way, a single symlink can point to different
locations depending on the environment. This is helpful, for instance,
to dynamically select software package versions residing in different
directories.

readdir

A directory listing is served by a query on the file catalog. Although the
“parent”-column is indexed (see Catalog table schema),
this is a relatively slow function. We expect directory listing to happen
rather seldom.

open / read

The open() call has to provide a file descriptor for a given path
name. In CernVM-FS file requests are always served from the disk cache.
The Fuse file handle is a file descriptor valid in the context of the
CernVM-FS process. It points into the disk cache directory. Read
requests are translated into the pread() system call.

getxattr

CernVM-FS uses extended attributes to display additional repository
information. There are two supported attributes:

	expires

	Shows the remaining life time of the mounted root file catalog in
minutes.

	fqrn

	Shows the fully qualified repository name of the mounted repository.

	inode_max

	Shows the highest possible inode with the current set of loaded
catalogs.

	hash

	Shows the cryptographic hash of a regular file as listed in the file
catalog.

	host

	Shows the currently active HTTP server.

	host_list

	Shows the ordered list of HTTP servers.

	lhash

	Shows the cryptographic hash of a regular file as stored in the
local cache, if available.

	maxfd

	Shows the maximum number of file descriptors available to file
system clients.

	nclg

	Shows the number of currently loaded nested catalogs.

	ndiropen

	Shows the overall number of opened directories.

	ndownload

	Shows the overall number of downloaded files since mounting.

	nioerr

	Shows the total number of I/O errors encoutered since mounting.

	nopen

	Shows the overall number of open() calls since mounting.

	pid

	Shows the process id of the CernVM-FS Fuse process.

	proxy

	Shows the currently active HTTP proxy.

	rawlink

	Shows unresolved variant symbolic links; only accessible as root.

	revision

	Shows the file catalog revision of the mounted root catalog, an
auto-increment counter increased on every repository publish.

	root_hash

	Shows the cryptographic hash of the root file catalog.

	rx

	Shows the overall amount of downloaded kilobytes.

	speed

	Shows the average download speed.

	timeout

	Shows the timeout for proxied connections in seconds.

	timeout_direct

	Shows the timeout for direct connections in seconds.

	rawlink

	Shows the unresolved variant symlink.

	uptime

	Shows the time passed since mounting in minutes.

	usedfd

	Shows the number of file descriptors currently issued to file system
clients.

	version

	Shows the version of the loaded CernVM-FS binary.

Extended attributes can be queried using the attr command. For
instance, attr -g hash /cvmfs/atlas.cern.ch/ChangeLog returns the
cryptographic hash of the file at hand. The extended attributes are used
by the cvmfs_config stat command in order to show a current overview
of health and performance numbers.

Repository Publishing

Repositories are not immutable, every now and then they get updated.
This might be installation of a new release or a patch for an existing
release. But, of course, each time only a small portion of the
repository is touched, say out of . In order not to re-process an entire
repository on every update, we create a read-write file system interface
to a CernVM-FS repository where all changes are written into a distinct
scratch area.

Read-write Interface using a Union File System

Union file systems combine several directories into one virtual file
system that provides the view of merging these directories. These
underlying directories are often called branches. Branches are
ordered; in the case of operations on paths that exist in multiple
branches, the branch selection is well-defined. By stacking a read-write
branch on top of a read-only branch, union file systems can provide the
illusion of a read-write file system for a read-only file system. All
changes are in fact written to the read-write branch.

Preserving POSIX semantics in union file systems is non-trivial; the
first fully functional implementation has been presented by Wright et
al. [Wright04]. By now, union file systems are well established for
“Live CD” builders, which use a RAM disk overlay on top of the read-
only system partition in order to provide the illusion of a fully
read-writable system. CernVM-FS uses the AUFS union file system.
Another union file system with similar semantics can be plugged in if
necessary. OverlayFS is supported as an experimental alternative.

Union file systems can be used to track changes on CernVM-FS repositories
(Figure below). In this case, the read-only file system
interface of CernVM-FS is used in conjunction with a writable scratch area for
changes.

[image: CernVM-FS Server update workflow]A union file system combines a CernVM-FS read-only mount point and
a writable scratch area. It provides the illusion of a writable
CernVM-FS mount point, tracking changes on the scratch area.

Based on the read-write interface to CernVM-FS, we create a feed-back
loop that represents the addition of new software releases to a
CernVM-FS repository. A repository in base revision \(r\) is mounted
in read-write mode on the publisher’s end. Changes are written to the
scratch area and, once published, are re-mounted as repository revision
\(r+1\). In this way, CernVM-FS provides snapshots. In case of
errors, one can safely resume from a previously committed revision.

Footnotes

	[1]	As a rule of thumb, file catalogs up to (compressed) are reasonably
small.

 Copyright 2015, CernVM Team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CernVM-FS 2.1.20 documentation

CernVM-FS Parameters

Client parameters

Parameters recognized in configuration files under /etc/cvmfs:

	Parameter
	Meaning

	CVMFS_ALIEN_CACHE
	If set, use an alien cache at the given location

	CVMFS_AUTO_UPDATE
	If set to no, disables the automatic update of file catalogs.

	CVMFS_BACKOFF_INIT
	Seconds for the maximum initial backoff when retrying to download data.

	CVMFS_BACKOFF_MAX
	Maximum backoff in seconds when retrying to download data.

	CVMFS_CACHE_BASE
	Location (directory) of the CernVM-FS cache.

	CVMFS_CHECK_PERMISSIONS
	If set to no, disable checking of file ownership and permissions (open all files).

	CVMFS_CLAIM_OWNERSHIP
	If set to yes, allows CernVM-FS to claim ownership of files and directories.

	CVMFS_DEBUGLOG
	If set, run CernVM-FS in debug mode and write a verbose log the the specified file.

	CVMFS_DEFAULT_DOMAIN
	The default domain will be automatically appended to repository names when given without a domain.

	CVMFS_FALLBACK_PROXY
	List of HTTP proxies similar to CVMFS_HTTP_PROXY. The fallback proxies are added to the end of the normal proxies, and disable DIRECT connections.

	CVMFS_FOLLOW_REDIRECTS
	When set to yes, follow up to 4 HTTP redirects in requests.

	CVMFS_HOST_RESET_AFTER
	See CVMFS_PROXY_RESET_AFTER.

	CVMFS_HTTP_PROXY
	Chain of HTTP proxy groups used by CernVM-FS. Necessary. Set to DIRECT if you don’t use proxies.

	CVMFS_IGNORE_SIGNATURE
	When set to yes, don’t verify CernVM-FS file catalog signatures.

	CVMFS_INITIAL_GENERATION
	Initial inode generation. Used for testing.

	CVMFS_KCACHE_TIMEOUT
	Timeout for path names and file attributes in the kernel file system buffers.

	CVMFS_KEYS_DIR
	Directory containing *.pub files used as repository signing keys. If set, this parameter has precedence over CVMFS_PUBLIC_KEY.

	CVMFS_LOW_SPEED_LIMIT
	Minimum transfer rate a server or proxy must provide.

	CVMFS_MAX_IPADDR_PER_PROXY
	Limit the number of IP addresses a proxy names resolves into. From all registered addresses, up to the limit are randomly selected.

	CVMFS_MAX_RETRIES
	Maximum number of retries for a given proxy/host combination.

	CVMFS_MAX_TTL
	Maximum file catalog TTL in minutes. Can overwrite the TTL stored in the catalog.

	CVMFS_MEMCACHE_SIZE
	Size of the CernVM-FS meta-data memory cache in Megabyte.

	CVMFS_MOUNT_RW
	Mount CernVM-FS as a read/write file system. Write operations will fail but this option can workaround faulty open() flags.

	CVMFS_NFILES
	Maximum number of open file descriptors that can be used by the CernVM-FS process.

	CVMFS_NFS_SOURCE
	If set to yes, act as a source for the NFS daemon (NFS export).

	CVMFS_NFS_SHARED
	If set a path, used to store the NFS maps in an SQlite database, instead of the usual LevelDB storage in the cache directory.

	CVMFS_PAC_URLS
	Chain of URLs pointing to PAC files with HTTP proxy configuration information.

	CVMFS_PROXY_RESET_AFTER
	Delay in seconds after which CernVM-FS will retry the primary proxy group in case of a fail-over to another group.

	CVMFS_PUBLIC_KEY
	Colon-separated list of repository signing keys.

	CVMFS_QUOTA_LIMIT
	Soft-limit of the cache in Megabyte.

	CVMFS_RELOAD_SOCKETS
	Directory of the sockets used by the CernVM-FS loader to trigger hotpatching/reloading.

	CVMFS_REPOSITORIES
	Comma-separated list of fully qualified repository names that shall be mountable under /cvmfs.

	CVMFS_REPOSITORY_TAG
	Select a named repository snapshot that should be mounted instead of trunk.

	CVMFS_ROOT_HASH
	Hash of the root file catalog, implies CVMFS_AUTO_UPDATE=no.

	CVMFS_SERVER_URL
	Semicolon-separated chain of Stratum~1 servers.

	CVMFS_SHARED_CACHE
	If set to no, makes a repository use an exclusive cache.

	CVMFS_STRICT_MOUNT
	If set to yes, mount only repositories that are listed in CVMFS_REPOSITORIES.

	CVMFS_SYSLOG_FACILITY
	If set to a number between 0 and 7, uses the corresponding LOCALn facility for syslog messages.

	CVMFS_SYSLOG_LEVEL
	If set to 1 or 2, sets the syslog level for CernVM-FS messages to LOG_DEBUG or LOG_INFO respectively.

	CVMFS_TIMEOUT
	Timeout in seconds for HTTP requests with a proxy server.

	CVMFS_TIMEOUT_DIRECT
	Timeout in seconds for HTTP requests without a proxy server.

	CVMFS_TRACEFILE
	If set, enables the tracer and trace file system calls to the given file.

	CVMFS_USE_GEOAPI
	Request order of Stratum 1 servers and fallback proxies via Geo-API.

	CVMFS_USER
	Sets the gid and uid mount options. Don’t touch or overwrite.

	CVMFS_USYSLOG
	All messages that normally are logged to syslog are re-directed to the given file. This file can grow up to 500kB and there is one step of log rotation. Required for muCernVM.

Server parameters

	Parameter
	Meaning

	CVMFS_CREATOR_VERSION
	The CernVM-FS version that was used to create this repository (do not change manually).

	CVMFS_IGNORE_XDIR_HARDLINKS
	If set to yes, do not abort the publish operation when cross-directory hardlinks are found. Instead automatically break the hardlinks across directories.

	CVMFS_REPOSITORY_NAME
	The fully qualified name of the specific repository.

	CVMFS_REPOSITORY_TYPE
	Defines if the repository is a master copy (stratum0) or a replica (stratum1).

	CVMFS_SPOOL_DIR
	Location of the upstream spooler scratch directories; the read-only CernVM-FS moint point and copy-on-write storage reside here.

	CVMFS_UPSTREAM_STORAGE
	Upstream spooler description defining the basic upstream storage type and configuration.

	CVMFS_STRATUM0
	URL of the master copy (stratum0) of this specific repository.

	CVMFS_STRATUM1
	URL of the Stratum1 HTTP server for this specific repository.

	CVMFS_AUTO_REPAIR_MOUNTPOINT
	Set to true to enable automatic recovery from bogus server mount states.

	CVMFS_UNION_DIR
	Mount point of the union file system between CernVM-FS and AUFS. Here, changes to the repository are performed (see CernVM-FS Repository Creation and Updating).

	CVMFS_UNION_FS_TYPE
	Defines the union file system to be used for the repository.
 (currently AUFS is fully supported)

	CVMFS_AUFS_WARNING
	Set to false to silence AUFS kernel deadlock warning.

	CVMFS_HASH_ALGORITHM
	Define which secure hash algorithm should be used by CernVM-FS for CAS objects
 (supported are: sha1 and rmd160)

	CVMFS_CATALOG_ENTRY_WARN_THRESHOLD
	Threshold of catalog entry count before triggering a warning message.

	CVMFS_USER
	The user name that owns and manipulates the files inside the repository.

	CVMFS_USE_FILE_CHUNKING
	Allows backend to split big files into small chunks (true | false)

	CVMFS_MIN_CHUNK_SIZE
	Minimal size of a file chunk in bytes
 (see also CVMFS_USE_FILE_CHUNKING)

	CVMFS_AVG_CHUNK_SIZE
	Desired Average size of a file chunk in bytes
 (see also CVMFS_USE_FILE_CHUNKING)

	CVMFS_MAX_CHUNK_SIZE
	Maximal size of a file chunk in bytes
 (see also CVMFS_USE_FILE_CHUNKING)

	CVMFS_MAXIMAL_CONCURRENT_WRITES
	Maximal number of concurrently processed files during publishing.

	CVMFS_NUM_WORKERS
	Maximal number of concurrently downloaded files during a Stratum1 pull operation (Stratum~1 only).

	CVMFS_PUBLIC_KEY
	Path to the public key file of the repository to be replicated. (Stratum~1 only).

	CVMFS_AUTO_TAG
	Creates a generic revision tag for each published revision (if set to true).

	CVMFS_GARBAGE_COLLECTION
	Enables repository garbage collection
 (Stratum~0 only | if set to true)

	CVMFS_AUTO_GC
	Enables the automatic garbage collection on publish and snapshot

	CVMFS_AUTO_GC_TIMESPAN
	Date-threshold for automatic garbage collection
 (For example: 3 days ago, 1 week ago, ...)

 Copyright 2015, CernVM Team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CernVM-FS 2.1.20 documentation

CernVM-FS Server Infrastructure

This section provides technical details on the CernVM-FS server setup
including the infrastructure necessary for an individual repository. It
is highly recommended to first consult “Notable CernVM-FS Server Locations and Files” for a
more general overview of the involved directory structure.

Prerequisites

A CernVM-FS server installation depends on the following environment
setup and tools to be in place:

	aufs support in the kernel (see Section Installing the AUFS-enabled Kernel on Scientific Linux 6)

	Backend storage location available through HTTP

	Backend storage accessible at /srv/cvmfs/... (unless stored on
S3)

	cvmfs and cvmfs-server packages installed

Local Backend Storage Infrastructure

CernVM-FS stores the entire repository content (file content and
meta-data catalogs) into a content addressable storage (CAS). This
storage can either be a file system at /srv/cvmfs or an S3
compatible object storage system (see “S3 Compatible Storage Systems” for
details). In the former case the contents of /srv/cvmfs are as
follows:

	File Path
	Description

	/srv/cvmfs
	Central repository storage location

Can be mounted or symlinked to another location
before creating the first repository.

	/srv/cvmfs/<fqrn>
	Storage location of a specific repository

Can be symlinked to another location before
creating the repository <fqrn>. This location
needs to be both writable by the repository owner
and accessible through an HTTP server.

	/srv/cvmfs/<fqrn>/.cvmfspublished
	Manifest file of the repository

The manifest provides the entry point into the
repository. It is the only file that needs to be
signed by the repository’s private key.

	/srv/cvmfs/<fqrn>/.cvmfswhitelist
	List of trusted repository certificates

Contains a list of certificate fingerprints that
should be allowed to sign a repository manifest
(see .cvmfspublished). The whitelist needs to be
signed by a globally trusted private key.

	/srv/cvmfs/<fqrn>/data
	CAS location of the repository

Data storage of the repository. Contains catalogs,
files, file chunks, certificates and history
databases in a content addressable file format.
This directory and all its contents need to be
writable by the repository owner.

	/srv/cvmfs/<fqrn>/data/00..ff
	Second CAS level directories

Splits the flat CAS namespace into multiple
directories. First two digits of the file content
hash defines the directory the remainder is used
as file name inside the corresponding directory.

	/srv/cvmfs/<fqrn>/data/txn
	CAS transaction directory

Stores partial files during creation. Once writing
has completed, the file is committed into the CAS
using an atomic rename operation.

Server Spool Area of a Repository (Stratum0)

The spool area of a repository contains transaction infrastructure and
scratch area of a Stratum0 or specifically a release manager machine
installation. It is always located inside /var/spool/cvmfs with
directories for individual repositories. Note that the data volume of
the spool area can grow very large for massive repository updates since
it contains the writable AUFS branch and a CernVM-FS client cache
directory.

	File Path
	Description

	/var/spool/cvmfs
	CernVM-FS server spool area

Contains administrative and scratch space for
CernVM-FS repositories. This directory should
only contain directories corresponding to
individual CernVM-FS repositories.

	/var/spool/cvmfs/<fqrn>
	Individual repository spool area

Contains the spool area of an individual
repository and might temporarily contain large
data volumes during massive repository updates.
This location can be mounted or symlinked to
other locations. Furthermore it must be
writable by the repository owner.

	/var/spool/cvmfs/<fqrn>/cache
	CernVM-FS client cache directory

Contains the cache of the CernVM-FS client
mounting the r/o branch
(i.e. /var/spool/cvmfs/<fqrn>/rdonly) of the
AUFS mount point located at /cvmfs/<fqrn>.
The content of this directory is fully managed
by the CernVM-FS client and hence must be
configured as a CernVM-FS cache and writable for
the repository owner.

	/var/spool/cvmfs/<fqrn>/rdonly
	CernVM-FS client mount point

Serves as the mount point of the CernVM-FS
client exposing the latest published state of
the CernVM-FS repository. It needs to be owned
by the repository owner and should be empty if
CernVM-FS is not mounted to it.

	/var/spool/cvmfs/<fqrn>/scratch
	Writable aufsscratch area

All file system changes applied to
/cvmfs/<fqrn> during a transaction will be
stored in this directory. Hence, it potentially
needs to accommodate a large data volume
during massive repository updates. Furthermore
it needs to be writable by the repository
owner.

	/var/spool/cvmfs/<fqrn>/tmp
	Temporary scratch location

Some CernVM-FS server operations like
publishing store temporary data files here,
hence it needs to be writable by the repository
owner. If the repository is idle this directory
should be empty.

	/var/spool/cvmfs/<fqrn>/client.config
	CernVM-FS client configuration

This contains client configuration variables for
the CernVM-FS client mounted to
/var/spool/cvmfs/<fqrn>/rdonly. Most notibly
it needs to contain CVMFS_ROOT_HASH
configured to the latest revision published in
the corresponding repository. This file needs to
be writable by the repository owner.

Repository Configuration Directory

The authoritative configuration of a CernVM-FS repository is located in
/etc/cvmfs/repositories.d and should only be writable by the
administrator. Furthermore the repository’s keychain is located in
/etc/cvmfs/keys and follows the naming convention <fqrn>.crt for
the certificate, <fqrn>.key for the repository’s private key and
<fqrn>.pub for the public key. All of those files can be symlinked
somewhere else if necessary.

	File Path
	Description

	/etc/cvmfs/repositories.d
	CernVM-FS server config directory

This contains the configuration directories for
individual CernVM-FS repositories. Note that this
path is shortened using /.../repos.d/ in the
rest of this table.

	/.../repos.d/<fqrn>
	Config directory for specific repo

This contains the configuration files for one
specific CernVM-FS repository server.

	/.../repos.d/<fqrn>/server.conf
	Server configuration file

Authoriative configuration file for the CernVM-FS
server tools. This file should only contain
valid server configuration variables as it controls the
behaviour of the CernVM-FS server operations like
publishing, pulling and so forth.

	/.../repos.d/<fqrn>/client.conf
	Client configuration file

Authoriative configuration file for the CernVM-FS
client used to mount the latest revision of a
Stratum 0 release manager machine. This file should
only contain valid client configuration
variables. This file
must not exist for Stratum 1 repositories.

	/.../repos.d/<fqrn>/replica.conf
	Replication configuration file

Contains configuration variables for Stratum 1
specific repositories. This file must not exist
for Stratum 0 repositories.

Environment Setup

Apart from file and directory locations a CernVM-FS server installation
depends on a few environment configurations. Most notably the
possibility to access the backend storage through HTTP and to allow for
mounting of both the CernVM-FS client at
/var/spool/cvmfs/<fqrn>/rdonly and aufs on /cvmfs/<fqrn>.

Granting HTTP access can happen in various ways and depends on the
chosen backend storage type. For an S3 hosted backend storage, the
CernVM-FS client can usually be directly pointed to the S3 bucket used
for storage (see “S3 Compatible Storage Systems” for details). In case of a
local file system backend any web server can be used for this purpose.
By default CernVM-FS assumes Apache and uses that automatically.

Internally the CernVM-FS server uses a SUID binary (i.e.
cvmfs_suid_helper) to manipulate its mount points. This is necessary
since transactional CernVM-FS commands must be accessible to the
repository owner that is usually different from root. Both the mount
directives for /var/spool/cvmfs/<fqrn>/rdonly and /cvmfs/<fqrn>
must be placed into /etc/fstab for this reason. By default
CernVM-FS uses the following entries for these mount points:

cvmfs2#<fqrn> /var/spool/cvmfs/<fqrn>/rdonly fuse \
allow_other,config=/etc/cvmfs/repositories.d/<fqrn>/client.conf: \
/var/spool/cvmfs/<fqrn>/client.local,cvmfs_suid 0 0

aufs_<fqrn> /cvmfs/<fqrn> aufs br=/var/spool/cvmfs/<fqrn>/scratch=rw: \
/var/spool/cvmfs/<fqrn>/rdonly=rr,udba=none,ro 0 0

 Copyright 2015, CernVM Team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CernVM-FS 2.1.20 documentation

Available RPMs

The CernVM-FS software is available in form of several RPM packages:

	cvmfs-release

	Adds the CernVM-FS yum repository.

	cvmfs-config-default

	Contains a configuration and public keys suitable for nodes in the
Worldwide LHC Computing Grid. Provides access to repositories in the
cern.ch, egi.eu, and opensciencegrid.org domains.

	cvmfs-config-none

	Empty package to satisfy the cvmfs-config requirement of the cvmfs
package without actually installing any configuration.

	cvmfs

	Contains the Fuse module and additional client tools. It has
dependencies to at least one of the cvmfs-config-\(\cdots\)
packages.

	cvmfs-devel

	Contains the libcvmfs.a static library and the libcvmfs.h
header file for use of CernVM-FS with Parrot [Thain05].

	cvmfs-auto-setup

	Only available through yum. This is a wrapper for
cvmfs_config setup. This is supposed to provide automatic
configuration for the ATLAS Tier3s. Depends on cvmfs.

	cvmfs-server

	Contains the CernVM-FS server tool kit for maintaining Stratum 0 and
Stratum 1 servers.

	kernel-:math:`cdots`-.aufs21

	Scientific Linux 6 kernel with aufs. Required for SL6 based
Stratum 0 servers.

	kernel-:math:`cdots`-.aufs3

	Scientific Linux 7 kernel with aufs. Required for SL7/CC7 based
Stratum 0 servers.

	cvmfs-unittests

	Contains the cvmfs_unittests binary. Only required for testing.

 Copyright 2015, CernVM Team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	CernVM-FS 2.1.20 documentation

References

	[Blumenfeld08]	Blumenfeld, B. et al. 2008. CMS conditions data access using
FroNTier. Journal of Physics: Conference Series. 119, (2008).

	[Callaghan95]	Callaghan, B. et al. 1995. NFS Version 3 Protocol Specification.
Technical Report #1813. Internet Engineering Task Force.

	[Gauthier99]	Gauthier, P. et al. 1999. Web proxy auto-discovery protocol. IETF
Secretariat.

	[Guerrero99]	Guerrero, D. 1999. Caching the web, part 2. Linux Journal. 58
(Feburary 1999).

	[Panagiotou06]	Panagiotou, K. and Souza, A. 2006. On adequate performance measures
for paging. Annual ACM Symposium on Theory Of Computing. 38, (2006), 487-496.

	[Schubert08]	Schubert, M. et al. 2008. Nagios 3 enterprise network monitoring.
Syngress.

	[Shepler03]	Shepler, S. et al. 2003. Network File System (NFS) version 4
Protocol. Technical Report #3530. Internet Engineering Task Force.

	[Jones01]	3rd, D.E. and Jones, P. 2001. US Secure Hash Algorithm 1 (SHA1).
Technical Report #3174. Internet Engineering Task Force.

	[Dobbertin96]	Dobbertin, H. et al. 1996. RIPEMD-160: A strengthened version of
RIPEMD. Springer. 71-82.

	[Bertoni09]	Bertoni, G., Daemen, J., Peeters, M. and Van Assche, G., 2009.
Keccak sponge function family main document.
Submission to NIST (Round 2), 3, p.30.

	[Rivest92]	Rivest, R. 1992. The MD5 Message-Digest Algorithm. Technical
Report #1321. Internet Engineering Task Force.

	[Turner11]	Turner, S. and Chen, L. 2011. Updated Security Considerations for
the MD5 Message-Digest and the HMAC-MD5 Algorithms. Technical Report
#6151. Internet Engineering Task Force.

	[Deutsch96]	Deutsch, P. and Gailly, J.-L. 1996. ZLIB Compressed Data Format
Specification version 3.3. Technical Report #1950. Internet Engineering
Task Force.

	[Allen10]	Allen, G. and Owens, M. 2010. The definitive guide to SQLite.
Apress.

	[Wright04]	Wright, C.P. et al. 2004. Versatility and unix semantics in a
fan-out unification file system. Technical Report #FSL-04-01b.
Stony Brook University.

	[BernersLee96]	Berners-Lee, T. et al. 1996. Hypertext Transfer Protocol - HTTP/1.0.
Technical Report #1945. Internet Engineering Task Force.

	[Fielding99]	Fielding, R. et al. 1999. Hypertext Transfer Protocol - HTTP/1.1.
Technical Report #2616. Internet Engineering Task Force.

	[Compostella10]	Compostella, G. et al. 2010. CDF software distribution on the Grid
using Parrot. Journal of Physics: Conference Series. 219, (2010).

	[Thain05]	Thain, D. and Livny, M. 2005. Parrot: an application environment for
data-intensive computing. Scalable Computing: Practice and Experience.
6, 3 (18 2005), 9.

	[Suzaki06]	Suzaki, K. et al. 2006. HTTP-FUSE Xenoppix. Proc. of the 2006 linux
symposium (2006), 379-392.

	[Freedman03]	Freedman, M.J. and Mazières, D. 2003. Sloppy hashing and
self-organizing clusters. M.F. Kaashoek and I. Stoica, eds. Springer. 45-55.

	[Nygren10]	Nygren, E. et al. 2010. The Akamai network: A platform for
high-performance internet applications. ACM SIGOPS Operating Systems
Review. 44, 3 (2010), 2-19.

	[Tolia03]	Tolia, N. et al. 2003. Opportunistic use of content addressable
storage for distributed file systems. Proc. of the uSENIX annual
technical conference (2003).

	[Mockapetris87]	Mockapetris, P. 1987. Domain names - implementation and
specification. Technical Report #1035. Internet Engineering Task Force.

	[Dykstra10]	Dykstra, D. and Lueking, L. 2010. Greatly improved cache update
times for conditions data with frontier/Squid. Journal of Physics:
Conference Series. 219, (2010).

 Copyright 2015, CernVM Team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	CernVM-FS 2.1.20 documentation

Index

 Copyright 2015, CernVM Team.
 Created using Sphinx 1.3.5.

 _static/down-pressed.png

_static/ajax-loader.gif

_static/plus.png

_static/stratum1.png
uuuuuu

_static/file.png

search.html

 Navigation

 		
 index

 		CernVM-FS 2.1.20 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, CernVM Team.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_images/stratum1.png
uuuuuu

_static/comment-bright.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-close.png

_static/up.png

