

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/cutorch/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/cutorch/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

cutorch

** NOTE on API changes and versioning **

Cutorch provides a CUDA backend for torch7.

Cutorch provides the following:

	a new tensor type: torch.CudaTensor that acts like torch.FloatTensor, but all it’s operations are on the GPU. Most of the tensor operations are supported by cutorch. There are a few missing ones, which are being implemented. The missing list can be found here: https://github.com/torch/cutorch/issues/70

	several other GPU tensor types, with limited functionality. Currently limited to copying/conversion, and several indexing and shaping operations.

	cutorch.* - Functions to set/get GPU, get device properties, memory usage, set/get low-level streams, set/get random number generator’s seed, synchronization etc. They are described in more detail below.

torch.CudaTensor

This new tensor type behaves exactly like a torch.FloatTensor, but has a couple of extra functions of note:

	t:getDevice() - Given a CudaTensor t, you can call :getDevice on it to find out the GPU ID on which the tensor memory is allocated.

Other CUDA tensor types

Most other (besides float) CPU torch tensor types now have a cutorch equivalent, with similar names:

	torch.CudaDoubleTensor

	torch.CudaByteTensor

	torch.CudaCharTensor

	torch.CudaIntTensor

	torch.CudaShortTensor

	torch.CudaLongTensor

	and torch.CudaHalfTensor when supported as indicated by cutorch.hasHalf; these are half-precision (16-bit) floats.

Note: these are currently limited to copying/conversion, and several indexing and shaping operations (e.g. narrow, select, unfold, transpose).

CUDA memory allocation

Set the environment variable THC_CACHING_ALLOCATOR=1 to enable the caching CUDA memory allocator.

By default, cutorch calls cudaMalloc and cudaFree when CUDA tensors are allocated and freed. This is expensive because cudaFree synchronizes the CPU with the GPU. Setting THC_CACHING_ALLOCATOR=1 will cause cutorch to cache and re-use CUDA device and pinned memory allocations to avoid synchronizations.

With the caching memory allocator, device allocations and frees should logically be considered “usages” of the memory segment associated with streams, just like kernel launches. The programmer must insert the proper synchronization if memory segments are used from multiple streams.

###cutorch.* API

	cutorch.synchronize() : All of the CUDA API is asynchronous (barring a few functions), which means that you can queue up operations. To wait for the operations to finish, you can issue cutorch.synchronize() in your code, when the code waits for all GPU operations on the current GPU to finish. WARNING: synchronizes the CPU host with respect to the current device (as per cutorch.getDevice()) only.

	cutorch.synchronizeAll() : Same as cutorch.synchronize() except synchronizes the CPU host with all visible GPU devices in the system. Equivalent to calling cutorch.synchronize() once per each device.

	cutorch.setDevice(i) : If one has multiple-GPUs, you can switch the default GPU (to allocate CUDA tensors and do operations). The GPU IDs are 1-indexed, so having 4 GPUs means, you can setDevice(1), setDevice(2), setDevice(3), setDevice(4).

	idx = cutorch.getDevice() : Returns the currently set GPU device index.

	count = cutorch.getDeviceCount() : Gets the number of available GPUs.

	freeMemory, totalMemory = cutorch.getMemoryUsage(devID) : Gets the total and free memory in bytes for the given device ID.

	cutorch.seed([devID]) - Sets and returns a random seed for the current or specified device.

	cutorch.seedAll() - Sets and returns a random seed for all available GPU devices.

	cutorch.initialSeed([devID]) - Returns the seed for the current or specified device

	cutorch.manualSeed(seed [, device]) - Sets a manually specified RNG seed for the current or specified device

	cutorch.manualSeedAll(seed) - Sets a manually specified RNG seed for all available GPUs

	cutorch.getRNGState([device]) - returns the current RNG state in the form of a byte tensor, for the current or specified device.

	cutorch.setRNGState(state [, device]) - Sets the RNG state from a previously saved state, on the current or specified device.

	cutorch.getState() - Returns the global state of the cutorch package. This state is not for users, it stores the raw RNG states, cublas handles and other thread and device-specific stuff.

	cutorch.withDevice(devID, f) - This is a convenience for multi-GPU code, that takes in a device ID as well as a function f. It switches cutorch to the new device, executes the function f, and switches back cutorch to the original device.

	cutorch.createCudaHostTensor([...]) - Allocates a torch.FloatTensor of host-pinned memory [https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/], where dimensions can be given as an argument list of sizes or a torch.LongStorage.

	cutorch.isCachingAllocatorEnabled() - Returns whether the caching CUDA memory allocator is enabled or not.

Low-level streams functions (dont use this as a user, easy to shoot yourself in the foot):

	cutorch.reserveStreams(n [, nonblocking]): creates n user streams for use on every device. NOTE: stream index s on device 1 is a different cudaStream_t than stream s on device 2. Takes an optional non-blocking flag; by default, this is assumed to be false. If true, then the stream is created with cudaStreamNonBlocking.

	n = cutorch.getNumStreams(): returns the number of user streams available on every device. By default, this is 0, meaning only the default stream (stream 0) is available.

	cutorch.setStream(n): specifies that the current stream active for the current device (or any other device) is n. This is preserved across device switches. 1-N are user streams, 0 is the default stream.

	n = cutorch.getStream(): returns the current stream active. By default, returns 0.

	cutorch.setDefaultStream(): an alias for cutorch.setStream(0)

	cutorch.streamWaitFor(streamWaiting, {streamsToWaitOn...}): A 1-to-N-way barrier. streamWaiting will wait for the list of streams specified to finish executing all kernels/events/barriers. Does not block any of the streamsToWaitOn. Current device only.

	cutorch.streamWaitForMultiDevice(deviceWaiting, streamWaiting, {[device]={streamsToWaitOn...}...}): (deviceWaiting, streamWaiting) will wait on the list of (device, streams...) pairs; handles single or multiple device. cutorch.streamWaitForMultiDevice, a, b, {[a]={streams...}}) is equivalent to cutorch.setDevice(a); cutorch.streamWaitFor(b, {streams...}).

	cutorch.streamBarrier({streams...}): an N-to-N-way barrier between all the streams; all streams will wait for the completion of all other streams on the current device only. More efficient than creating the same N-to-N-way dependency via streamWaitFor.

	cutorch.streamBarrierMultiDevice({[device]={streamsToWaitOn...}...}): As with streamBarrier but allows barriers between streams on arbitrary devices. Creates a cross-device N-to-N-way barrier between all (device, stream) values listed.

	cutorch.streamSynchronize(stream): equivalent to cudaStreamSynchronize(stream) for the current device. Blocks the CPU until stream completes its queued kernels/events.

	cutorch.setPeerToPeerAccess(dev, devToAccess, f): explicitly enable (f true) or disable p2p access (f false) from dev accessing memory on devToAccess. Affects copy efficiency (if disabled, copies will be d2d rather than p2p; i.e., the CPU intermediates), and affects kernel p2p access as well. Can only be enabled if the underlying hardware supports p2p access. p2p access is enabled by default for all pairs of devices if the underlying hardware supports it.

	cutorch.getPeerToPeerAccess(dev, devToAccess): returns whether or not p2p access is currently enabled or disabled, for reasons of a prior call of setPeerToPeerAccess or underlying hardware support.

	cutorch.setKernelPeerToPeerAccess(f): by default, kernels running on one device cannot directly access memory on another device. This is a check imposed by cutorch, to prevent synchronization and performance issues. To disable the check, call this with f true. Kernel p2p access is actually only allowed for a pair of devices if both this is true and the underlying getPeerToPeerAccess for the pair involved is true.

	cutorch.getKernelPeerToPeerAccess(): returns whether or not kernel p2p checks are enabled or disabled.

Common Examples

Transfering a FloatTensor src to the GPU:

dest = src:cuda() -- dest is on the current GPU

Allocating a tensor on a given GPU:
Allocate src on GPU 3

cutorch.setDevice(3)
src = torch.CudaTensor(100)

Copying a CUDA tensor from one GPU to another:
Given a tensor called src on GPU 1, if you want to create it’s clone on GPU 2, then:

cutorch.setDevice(2)
local dest = src:clone()

OR

local dest
cutorch.withDevice(2, function() dest = src:clone() end)

API changes and Versioning

Version 1.0 can be installed via: luarocks install cutorch 1.0-0
Compared to version 1.0, these are the following API changes:

operators	1.0	master
—	—	—
lt, le, gt, ge, eq, ne return type	torch.CudaTensor	torch.CudaByteTensor
min,max (2nd return value)	torch.CudaTensor	torch.CudaLongTensor
maskedFill, maskedCopy (mask input)	torch.CudaTensor	torch.CudaByteTensor
topk, sort (2nd return value)	torch.CudaTensor	torch.CudaLongTensor

Inconsistencies with CPU API

| operators | CPU | CUDA |
|—|—|—|

Contributing to Torch7 Core (torch7, nn, cutorch, cunn)

Thanks a lot! There are plenty of ways you can help!

Please take a moment to review this document in order to make the contribution
process easy and effective for everyone involved.

Following these guidelines helps to communicate that you respect the time of
the developers managing and developing this open source project. In return,
they should reciprocate that respect in addressing your issue or assessing
patches and features.

Using the issue tracker

The issue tracker [https://github.com/torch/cutorch/issues] is
the preferred channel for bug reports, features requests
and submitting pull requests, but please respect the following
restrictions:

	Please do not use the issue tracker for personal support requests (use
mailing-list [https://groups.google.com/forum/#!forum/torch7]).

	Please do not open issues regarding the code in a torch package
outside the core. For example dont open issues about the
REPL in the cutorch issue tracker, use the trepl issue tracker for that.

[bookmark: bugs]

Bug reports

A bug is a demonstrable problem that is caused by the code in the repository.
Good bug reports are extremely helpful - thank you!

Guidelines for bug reports:

	Use the GitHub issue search —

 check if the issue has already been
reported.

	Check if the issue has been fixed —

 try to reproduce it using the
latest master or development branch in the repository.

	Isolate the problem —

 ideally create test case that is within reason,
preferably within 100 lines of code.

A good bug report shouldn’t leave others needing to chase you up for more
information. Please try to be as detailed as possible in your report. What is
your environment? What steps will reproduce the issue? What OS do you
experience the problem? What would you expect to be the outcome? All these
details will help people to fix any potential bugs.

[bookmark: features]

Feature requests

Feature requests are welcome to be filed. Torch is community-developed,
the maintainers are not exclusive torch developers, so keep that in mind.
The purpose of feature requests is for others who are looking to implement
a feature are aware of the interest in the feature.

[bookmark: pull-requests]

Pull requests

Good pull requests - patches, improvements, new features - are a fantastic
help. They should remain focused in scope and avoid containing unrelated
commits.

Please ask first before embarking on any significant pull request (e.g.
implementing features, refactoring code, porting to a different language),
otherwise you risk spending a lot of time working on something that the
project’s developers might not want to merge into the project.

Please adhere to the coding conventions used throughout a project (indentation,
accurate comments, etc.) and any other requirements (such as test coverage).

Adhering to the following this process is the best way to get your work
included in the project:

	Fork [https://help.github.com/articles/fork-a-repo] the project, clone your
fork, and configure the remotes:

Clone your fork of the repo into the current directory
git clone https://github.com/<your-username>/cutorch.git
Navigate to the newly cloned directory
cd cutorch
Assign the original repo to a remote called "upstream"
git remote add upstream https://github.com/torch/cutorch.git

	If you cloned a while ago, get the latest changes from upstream:

git checkout master
git pull upstream master

	Create a new topic branch (off the main project development branch) to
contain your feature, change, or fix:

git checkout -b <topic-branch-name>

	Commit your changes in logical chunks. Please try to adhere to these git commit
message guidelines [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html]
. Use Git’s interactive rebase [https://help.github.com/articles/about-git-rebase]
feature to tidy up your commits before making them public. This helps us keep the
commit history in logical blocks and clean, as torch grows.
For example:

	If you are adding a new function or a module, keep the module + tests + doc
to a single commit unless logically warranted.

	If you are fixing a bug, keep the bugfix to a single commit unless logically warranted.

	Locally merge (or rebase) the upstream development branch into your topic branch:

git pull [--rebase] upstream master

	Push your topic branch up to your fork:

git push origin <topic-branch-name>

	Open a Pull Request [https://help.github.com/articles/using-pull-requests/]
with a clear title and description.

IMPORTANT: By submitting a patch, you agree to allow the project owners to
license your work under the terms of the BSD License.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/minus.png

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

