Cumulus Documentation

Bo Li, Joshua Gould, and et al.

Contents

1	Version 0.10.0 October 2, 2019	3
2	Version 0.7.0 Feburary 14, 2019	5
3	Version 0.6.0 January 31, 2019	7
4	Version 0.5.0 November 18, 2018	9
5	Version 0.4.0 October 26, 2018	11
6	Version 0.3.0 October 24, 2018	13
7	Version 0.2.0 October 19, 2018	15
8	Version 0.1.0 July 27, 2018	17

All of our docker images are publicly available on Docker Hub and Quay. Our workflows use Docker Hub as the default Docker registry. Users can use Quay as the Docker registry by entering quay.io/cumulus/ for the workflow input docker_registry, or can enter a custom registry URL of their choice.

Contents 1

2 Contents

Version 0.10.0 October 2, 2019

scCloud renamed to cumulus.

cumulus can accept either a sample sheet or a single file.

CHAPTER 2

Version 0.7.0 Feburary 14, 2019

Added support for 10x genomics scATAC assays. cumulus runs FIt-SNE as default.

CHAPTER 3

Version 0.6.0 January 31, 2019

Added support for 10x genomics V3 chemistry.

Added support for extracting feature matrix for Perturb-Seq data.

Added R script to convert output_name.seurat.h5ad to Seurat object. Now the raw.data slot stores filtered raw counts.

Added min_umis and max_umis to filter cells based on UMI counts.

Added QC plots and improved filtration spreadsheet.

Added support for plotting UMAP and FLE.

Now users can upload their JSON file to annotate cell types.

Improved documentation.

Added lightGBM based marker detection.

Version 0.5.0 *November 18, 2018*

Added support for plated-based SMART-Seq2 scRNA-Seq data.

CHAPTER 5

Version 0.4.0 October 26, 2018

Added CITE-Seq module for analyzing CITE-Seq data.

Version 0.3.0 October 24, 2018

Added the demuxEM module for demultiplexing cell-hashing/nuclei-hashing data.

Version 0.2.0 October 19, 2018

Added support for V(D)J and CITE-Seq/cell-hashing/nuclei-hashing.

CHAPTER 8

Version 0.1.0 July 27, 2018

KCO tools released!

8.1 First Time Running

8.1.1 Authenticate with Google

If you've done this before you can skip this step - you only need to do this once.

1. Ensure the Google Cloud SDK is installed on your computer.

Note: Broad users do not have to install this-they can type:

```
reuse Google-Cloud-SDK
```

to make the Google Cloud tools available.

2. Execute the following command to login to Google Cloud.:

```
gcloud auth login
```

- 3. Copy and paste the link in your unix terminal into your web browser.
- 4. Enter authorization code in unix terminal.

8.1.2 Create a Terra workspace

Create a new Terra workspace by clicking Create New Workspace in Terra
For more detailed instructions please see this document.

8.2 Latest and stable versions on Terra

Cumulus is a fast growing project. As a result, we frequently update WDL snapshot versions on Terra. See below for latest and stable WDL versions you can use.

8.2.1 Latest version

WDL	Snapshot	Function
cumulus/cellranger_workflow	3	Run Cell Ranger tools, which include extracting sequence reads us-
		ing cellranger mkfastq or cellranger-atac mkfastq, generate count
		matrix using cellranger count or cellranger-atac count, run cell-
		ranger vdj or feature-barcode extraction
cumulus/smartseq2	3	Run Bowtie2 and RSEM to generate gene-count matrices for
		SMART-Seq2 data from FASTQ files
cumulus/cumulus	7	Run cumulus analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering, visualization, differential
		expression analysis, cell type annotation, etc.
cumulus/cumulus_subcluster	4	Run subcluster analysis using cumulus
cumulus/cumulus_hashing_cite_s	e 4	Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

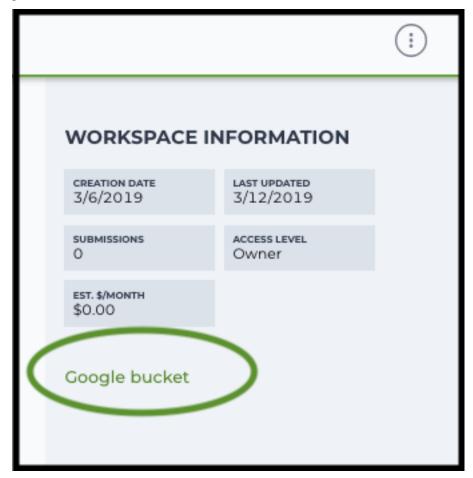
8.2.2 Stable version - v0.10.0

WDL	Snapshot	Function
cumulus/cellranger_workflow	3	Run Cell Ranger tools, which include extracting sequence reads us-
		ing cellranger mkfastq or cellranger-atac mkfastq, generate count
		matrix using cellranger count or cellranger-atac count, run cell-
		ranger vdj or feature-barcode extraction
cumulus/smartseq2	3	Run Bowtie2 and RSEM to generate gene-count matrices for
		SMART-Seq2 data from FASTQ files
cumulus/cumulus	7	Run cumulus analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering, visualization, differential
		expression analysis, cell type annotation, etc.
cumulus/cumulus_subcluster	4	Run subcluster analysis using cumulus
cumulus/cumulus_hashing_cite_seq		Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

8.2.3 Stable version - HTAPP v2

WDL	Snapshot	Function
regev/cellranger_mkfastq_count	45	Run Cell Ranger to extract FASTQ files and generate gene-count
		matrices for 10x genomics data
scCloud/smartseq2	5	Run Bowtie2 and RSEM to generate gene-count matrices for
		SMART-Seq2 data from FASTQ files
scCloud/scCloud	14	Run scCloud analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering and more
scCloud/scCloud_subcluster	9	Run subcluster analysis using scCloud
scCloud/scCloud_hashing_cite_sc	eq9	Run scCloud for cell-hashing/nucleus-hashing/CITE-Seq analysis

8.2.4 Stable version - HTAPP v1


WDL	Snapshot	Function
regev/cellranger_mkfastq_count	39	Run Cell Ranger to extract FASTQ files and generate gene-count
		matrices for 10x genomics data
scCloud/scCloud	3	Run scCloud analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering and more

8.3 Run Cell Ranger tools using cellranger_workflow

Follow the steps below to run CellRanger mkfastq/count/vdj on Terra.

1. Copy your sequencing output to your workspace bucket using gsutil (you already have it if you've installed Google cloud SDK) in your unix terminal.

You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information panel.

Note: Broad users need to be on an UGER node (not a login node) in order to use the -m flag Request an UGER node:

```
reuse UGER qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab
```

The above command requests an interactive node with 4G memory per thread and 8 threads. Feel free to change the memory, thread, and project parameters.

Once you're connected to an UGER node, you can make gsutil available by running:

```
reuse Google-Cloud-SDK
```

Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket. For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4 to a Google bucket:

2. Non Broad Institute users that wish to run cellranger mkfastq must create a custom docker image that contains bcl2fastq.

See bcl2fastq instructions.

3. Create a scRNA-Seq formatted sample sheet.

Please note that the columns in the CSV can be in any order, but that the column names must match the recognized headings.

The sample sheet describes how to demultiplex flowcells and generate channel-specific count matrices. Note that *Sample*, *Lane*, and *Index* columns are defined exactly the same as in 10x's simple CSV layout file.

scRNA-Seq formatted sample sheet description (required column headers are shown in bold):

Column	Description
Sample	Contains sample names. Each 10x channel should have a unique sample name.
Reference	200 Chamber Should have a unique sumple munio.
	Provides the reference genome used by <i>cellranger count</i> for each 10x channel. The elements in the <i>reference</i> column can be either Google bucket URLs to
	reference tarballs or keywords such as GRCh38_v3.0.0 for human GRCh38, cellranger reference 3.0.0, Ensembl v93
	gene annotation hg19_v3.0.0 for human hg19, cellranger reference 3.0.0, Ensembl v87 gene
	annotation mm10_v3.0.0 for mouse mm10, cellranger reference 3.0.0, Ensembl v93 gene
	annotation
	GRCh38_and_mm10_v3.1.0 for human and mouse, built from GRCh38 and mm10 cellranger references (3.1.0), Ensembl v93 gene annotations for both human and mouse
	GRCh38_premrna_v1.2.0 (GRCh38_premrna, obsoleted) for human, introns included, built from GRCh38 cellranger reference 1.2.0, Ensembl v84 gene annotation, treating annotated transcripts as exons
	mm10_premrna_v1.2.0 (mm10_premrna, obsoleted) for mouse, introns included, built from mm10 cellranger reference 1.2.0, Ensembl v84 gene annotation, treating annotated transcripts as exons
	GRCh38_premrna_and_mm10_premrna_v1.2.0
	(GRCh38_premrna_and_mm10_premrna, obsoleted) for human and mouse, introns included, built from GRCh38_premrna and mm10_premrna
	GRCh38_vdj_v3.1.0 for human V(D)J sequences, cellranger reference 3.1.0, annotation built from Ensembl
	Homo_sapiens.GRCh38.94.chr_patch_hapl_scaff.gtf
	GRCm38_vdj_v3.1.0 for mouse V(D)J sequences, cellranger reference 3.1.0, annotation built from Ensembl <i>Mus_musculus.GRCm38.94.gtf</i>
	GRCh38_atac_v1.1.0 for scATAC-Seq, human GRCh38, cellranger-atac reference 1.1.0
	mm10_atac_v1.1.0 for scATAC-Seq, mouse mm10, cellranger-atac reference 1.1.0
	GRCh38_v1.2.0 (GRCh38, obsoleted) for human GRCh38, cellranger reference 1.2.0, Ensembl v84 gene annotation
	hg19_v1.2.0 (hg19, obsoleted) for human hg19, cellranger reference 1.2.0, Ensembl v82 gene annotation
	mm10_v1.2.0 (mm10, obsoleted) for mouse mm10, cellranger reference 1.2.0, Ensembl v84 gene annotation
	GRCh38_and_mm10_v1.2.0 (GRCh38_and_mm10, obsoleted) for human and mouse, built from GRCh38 and mm10 cellranger references (1.2.0), Ensembl v84 gene annotations for both human and mouse
	GRCh38_vdj_v2.0.0 (GRCh38_vdj, obsoleted) for human V(D)J sequences, cellranger reference 2.0.0, annotation built from Ensembl
	Homo_sapiens.GRCh38.87.chr_patch_hapl_scaff.gtf and vdj_GRCh38_alts_ensembl_10x_genes-2.0.0.gtf
	GRCm38_vdj_v2.0.0 (GRCm38_vdj, obsoleted) for mouse V(D)J sequences, cellranger reference 2.0.0, annotation built from Ensembl Mus_musculus.GRCm38.90.chr_patch_hapl_scaff.gtf.
Flowcell	Indicates the Google bucket URL of uploaded BCL folders.
Lane	Tells which lanes the sample was pooled into. tools using cellranger workflow

Contains 10x sample index set names (e.g. SI-GA-A12).

For cell-hashing/nucleus-hashing/CITE-Seq, this field should be the index

8.3. Run Cell Ranger tools using cellranger_workflow

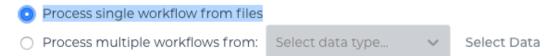
21

The sample sheet supports sequencing the same 10x channels across multiple flowcells. If a sample is sequenced across multiple flowcells, simply list it in multiple rows, with one flowcell per row. In the following example, we have 4 samples sequenced in two flowcells.

Example:

```
Sample, Reference, Flowcell, Lane, Index, Chemistry, DataType, FeatureBarcodeFile
\hookrightarrow2, SI-GA-A8, threeprime, rna
sample_2,GRCh38,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,3-
→4,SI-GA-B8,SC3Pv3,rna
sample_3,mm10,gs://fc-e0000000-0000-0000-0000-00000000000VK18WBC6Z4,5-6,
→SI-GA-C8, fiveprime, rna
sample_4, mm10, gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,7-8,
→SI-GA-D8, fiveprime, rna
sample_1,GRCh38,qs://fc-e0000000-0000-0000-0000-00000000000/VK10WBC9Z2,1-
\hookrightarrow2, SI-GA-A8, threeprime, rna
sample_2,GRCh38,qs://fc-e0000000-0000-0000-0000-00000000000/VK10WBC9Z2,3-
\hookrightarrow 4, SI-GA-B8, SC3Pv3, rna
sample_3,mm10,gs://fc-e0000000-0000-0000-0000-0000000000/VK10WBC9Z2,5-6,
→SI-GA-C8, fiveprime, rna
sample_4,mm10,qs://fc-e0000000-0000-0000-0000-000000000000VK10WBC9Z2,7-8,
→SI-GA-D8, fiveprime, rna
→VK10WBC9ZZ, 1, SI-GA-A1, fiveprime, vdj
sample_6,GRCh38,qs://fc-e0000000-0000-0000-0000-00000000000/VK10WBC9ZZ,2,
→antibody_index.csv
sample_7,GRCh38,qs://fc-e0000000-0000-0000-0000-0000000000/VK10WBC9ZZ,3,
→TCCGGAGA, threeprime, crispr, qs://fc-e0000000-0000-0000-0000-00000000000/
⇔crispr index.csv
→VK10WBC9YB, *, SI-NA-A1, auto, atac
```

4. Upload your sample sheet to the workspace bucket.


Example:

5. Import *cellranger_workflow* workflow to your workspace.

See the Terra documentation for adding a workflow. The *cellranger_workflow* workflow is under Broad Methods Repository with name "cumulus/cellranger_workflow".

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *cellranger_workflow* workflow in the drop-down menu.

6. In your workspace, open cellranger_workflow in WORKFLOWS tab. Select Process single workflow from files as below

and click SAVE button.

8.3.1 cellranger_workflow inputs:

cellranger_workflow takes Illumina outputs as input and runs cellranger mkfastq/cellranger-atac mkfastq and cellranger count/cellranger vdj/cellranger-atac count/cumulus feature extraction. Please see the description of inputs below. Note that required inputs are shown in bold.

Name Description	Example	Default
input csunfile Sheet (contains Sample, Refer-	"gs://fc-e0000000-0000-0000-0000-	
ence, Flowcell, Lane, Index as required and	000000000000/sample_sheet.csv"	
Chemistry, DataType, FeatureBarcodeFile	_	
as optional)		
output_dintectoring ectory	"gs://fc-e0000000-0000-0000-0000-	
	000000000000/cellranger_output"	
run_mkfastqyou want to run cellranger	true	true
mkfastq or cellranger-atac		
mkfastq		
run_coulfit you want to run steps after	true	true
mkfastq, such as cellranger		
count, cellranger vdj,		
cellranger-atac count or		
cumulus feature_extraction		
delete iffpdeldire Bioly directories after demux. If	false	false
false, you should delete this folder yourself		
so as to not incur storage charges		
force_cellorce pipeline to use this number of cells,	6000	
bypassing the cell detection algorithm, mu-		
tually exclusive with expect_cells		
expect_Extrected number of recovered cells. Mutu-	3000	
ally exclusive with force_cells		
secondaPerform cell ranger secondary analysis (di-	false	false
mensionality reduction, clustering, etc.)		
vdj_denDvonot align reads to reference V(D)J se-	false	false
quences before de novo assembly		
vdj_chafforce the web summary HTML and metrics	TR	
summary CSV to only report on a particular		
chain type. The accepted values are: auto		
for autodetection based on TR vs IG repre-		
sentation, TR for T cell receptors, IG for B		
cell receptors, all for all chain types		
scaffo dsseaffordicsequence in sgRNA for Purturb-	"GTTTAAGAGCTAAGCTGGAA"	
seq, only used for crispr data type		
max_miMaxichum hamming distance in feature bar-	3	3
codes for the adt task		
min_realMinitimum read count ratio (non-inclusive)	0.1	0.1
to justify a feature given a cell barcode and		
feature combination, only used for the adt		
task and crispr data type		
cellranger llvansjen version, could be 2.2.0, 3.0.2,	"3.0.2"	"3.0.2"
3.1.0		
cellrangerellatangereatsionversion, currently only 1.1.0	"1.1.0"	"1.1.0"

Continued on next page

Table 1 – continued from previous page

Name Description	Example	Default
cumulu Cwersion for extracting feature bar-	"0.10.0"	"0.10.0"
code matrix, currently only 0.10.0		
docker_Progritatery registry to use for cell-	"cumulusprod/"	"cumulusprod/
ranger_workflow. Options:		
 "cumulusprod/" for Docker Hub im- 		
ages;		
 "quay.io/cumulus/" for backup im- 		
ages on Red Hat registry.		
cellrangDockkfastgistoykter_usgistoy cellranger	"gcr.io/broad-cumulus"	"gcr.io/broad-
mkfastq. Default is the registry to which		cumulus"
only Broad users have access. See bcl2fastq		
for making your own registry.		
zones Google cloud zones	"us-east1-d us-west1-a us-west1-b"	"us-east1-d
		us-west1-a
		us-west1-b"
num_cpNumber of cpus to request for one node	32	32
atac_nunumer of cpus for cellranger-atac count	64	64
memoryMemory size string	"120G"	"120G"
feature Openioonal memory string for extracting fea-	"32G"	"32G"
ture count matrix		
atac_mel/incorpory string for cellranger-atac count	"57.6G"	"57.6G"
mkfastq <u>O</u> phisik <u>n</u> apatisk space in GB for mkfastq	1500	1500
count_dDskspapaece in GB needed for cellranger	500	500
count		
vdj_dislDispaspace in GB needed for cellranger vdj	500	500
feature Disk sprace in GB needed for extracting fea-	100	100
ture count matrix		
atac_disRisspapace in GB needed for cellranger-atac	500	500
count		
preempt Nule nber of preemptible tries	2	2

8.3.2 cellranger_workflow outputs:

See the table below for important *Cell Ranger mkfastq/count* outputs.

Name	Type	Description
output_fastqs_directory	Array[String]	A list of google bucket urls containing FASTQ files, one
		url per flowcell.
output_count_directory	Array[String]	A list of google bucket urls containing count matrices,
		one url per sample.
output_vdj_directory	Array[String]	A list of google bucket urls containing vdj results, one
		url per sample.
output_adt_directory	Array[String]	A list of google bucket urls containing adt count matri-
		ces, one url per sample.
output_atac_count_director	y Array[String]	A list of google bucket urls containing cellranger-atac
		count results, one url per sample.
metrics_summaries	File	A excel spreadsheet containing QCs for each sample.
output_web_summary	Array[File]	A list of htmls visualizing QCs for each sample (cell-
		ranger count output).
count_matrix	String	gs url for a template count_matrix.csv to run cumulus.

8.3.3 Only run the count part

Sometimes, users might want to perform demultiplexing locally and only run the count part on the cloud. This section describes how to only run the count part via cellranger_workflow.

1. Copy your FASTQ files to the workspace using gsutil in your unix terminal.

You should upload folders of FASTQS. Each folder should contain all FASTQ files for one sample.

Example:

2. Create a scRNA-Seq formatted sample sheet.

This sample sheet is the same as the sample sheet described for running mkfastq and count except that the full path to the FASTQ files is FlowCell/Sample.

scRNA-Seq formatted sample sheet description (required column headers are shown in bold):

26

Column	Description
Sample	Contains sample names. Each 10x channel should have a unique sample name.
Reference	
	Provides the reference genome used by <i>cellranger count</i> for each 10x channel.
	The elements in the <i>reference</i> column can be either Google bucket URLs to
	reference tarballs or keywords such as
	GRCh38_v3.0.0 for human GRCh38, cellranger reference 3.0.0, Ensembl v93
	gene annotation
	hg19_v3.0.0 for human hg19, cellranger reference 3.0.0, Ensembl v87 gene
	annotation mm10_v3.0.0 for mouse mm10, cellranger reference 3.0.0, Ensembl v93 gene annotation
	GRCh38_and_mm10_v3.1.0 for human and mouse, built from GRCh38 and
	mm10 cellranger references (3.1.0), Ensembl v93 gene annotations for both human and mouse
	GRCh38_premrna_v1.2.0 (GRCh38_premrna, obsoleted) for human, introns
	included, built from GRCh38 cellranger reference 1.2.0, Ensembl v84 gene
	annotation, treating annotated transcripts as exons
	mm10_premrna_v1.2.0 (mm10_premrna, obsoleted) for mouse, introns included, built from mm10 cellranger reference 1.2.0, Ensembl v84 gene annotation,
	treating annotated transcripts as exons GRCh38_premrna_and_mm10_premrna_v1.2.0
	(GRCh38_premrna_and_mm10_premrna, obsoleted) for human and mouse,
	introns included, built from GRCh38_premrna and mm10_premrna
	GRCh38_vdj_v3.1.0 for human V(D)J sequences, cellranger reference 3.1.0,
	annotation built from Ensembl
	Homo_sapiens.GRCh38.94.chr_patch_hapl_scaff.gtf
	GRCm38_vdj_v3.1.0 for mouse V(D)J sequences, cellranger reference 3.1.0, annotation built from Ensembl <i>Mus_musculus.GRCm38.94.gtf</i>
	GRCh38_atac_v1.1.0 for scATAC-Seq, human GRCh38, cellranger-atac reference 1.1.0
	mm10_atac_v1.1.0 for scATAC-Seq, mouse mm10, cellranger-atac reference 1.1.0
	GRCh38_v1.2.0 (GRCh38, obsoleted) for human GRCh38, cellranger reference 1.2.0, Ensembl v84 gene annotation
	hg19_v1.2.0 (hg19, obsoleted) for human hg19, cellranger reference 1.2.0, Ensembl v82 gene annotation
	mm10_v1.2.0 (mm10, obsoleted) for mouse mm10, cellranger reference 1.2.0, Ensembl v84 gene annotation
	GRCh38_and_mm10_v1.2.0 (GRCh38_and_mm10, obsoleted) for human and
	mouse, built from GRCh38 and mm10 cellranger references (1.2.0), Ensembl v84
	gene annotations for both human and mouse GRCh38_vdj_v2.0.0 (GRCh38_vdj, obsoleted) for human V(D)J sequences,
	cellranger reference 2.0.0, annotation built from Ensembl
	Homo_sapiens.GRCh38.87.chr_patch_hapl_scaff.gtf and
	vdj_GRCh38_alts_ensembl_10x_genes-2.0.0.gtf
	GRCm38_vdj_v2.0.0 (GRCm38_vdj, obsoleted) for mouse V(D)J sequences,
	cellranger reference 2.0.0, annotation built from Ensembl
	Mus_musculus.GRCm38.90.chr_patch_hapl_scaff.gtf.
Flowcell	Indicates the Google bucket URL of uploaded FASTQ folders.
Chemistry	
•	Chapter 8. Version 0.1.0 <i>July 27</i> , Describes the 10x chemistry used for the sample.
	Describes the Tox chemistry used for the sample.

This column is optional. The default chemistry for **rna** data (see DataType column

below) is auto, which will try to detect the chemistry automatically.

3. Set optional input run_mkfastq of cellranger_workflow workflow to false.

8.3.4 Extract feature count matrices from CITE-Seq/Cell-hashing/Nucleus-hashing/Perturb-seq assays

cellranger_workflow can optionally extract feature count matrices from CITE-Seq/Cell-hashing/Nucleus-hashing/Perturb-seq assays. For CITE-Seq/Cell-hashing/Nucleus-hashing, the feature refers to antibody. Note that for CITE-Seq/Cell-hashing, only Biolegend TotalSeq-A is supported. For Perturb-seq, the feature refers to guide RNA. To extract feature count matrices, please follow the instructions below.

Instructions to configure cellranger_workflow

1. Prepare one feature barcode file per assay and upload the files to the Google bucket.

Prepare a CSV file with the following format: feature_barcode,feature_name. See below for an example:

```
TTCCTGCCATTACTA, sample_1
CCGTACCTCATTGTT, sample_2
GGTAGATGTCCTCAG, sample_3
TGGTGTCATTCTTGA, sample_4
```

The above file describes a cell-hashing application with 4 samples.

2. Add assay information into the sample sheet.

See below for an example:

In the sample sheet above, despite the header row,

• First row describes the normal 3' RNA assay;

- Second row describes its associated antibody tag data, which can from either a CITE-Seq, cell-hashing, or nucleus-hashing experiment. Note that for the tag data, the *Index* field is different. The index for tag and crispr data should be Illumina index primer sequence (e.g. ATTACTCG, also known as D701, in row two). In addition, the *DataType* field is changed to adt.
- Third row describes another tag data, which is in 10x genomics' V3 chemistry. For tag and crispr data, it is important to explicitly state the chemistry (e.g. SC3Pv3).
- Last row describes one gRNA guide data for Perturb-seq (see crispr in *DataType* field). Note that it is users' responsibility to avoid index collision between 10x genomics' RNA indexes (e.g. SI-GA-A8) and Illumina index sequences for tag and crispr data (e.g. ATTACTCG).
- 3. Fill in the ADT-specific parameters:

Name Description	Example	Default
scaffoldscathouthcesequence in sgRNA for	"GTTTAAGAGCTAAGCTGGAA"	
Purturb-seq, only used for crispr data		
type		
max_mMaxitchum hamming distance in feature	3	3
barcodes for the adt task		
min_reldinatiom read count ratio (non-	0.1	0.1
inclusive) to justify a feature given a		
cell barcode and feature combination,		
only used for the adt task and crispr		
data type		
feature Openonary memory string for extracting	"32G"	"32G"
ADT count matrix		
feature Opitionspladiesk space in GB needed for	100	100
extracting ADT count matrix		

Parameters used for feature count matrix extraction

If the chemistry is V2, 10x genomics v2 cell barcode white list will be used, a hamming distance of 1 is allowed for matching cell barcodes, and the UMI length is 10. If the chemistry is V3, 10x genomics v3 cell barcode white list will be used, a hamming distance of 0 is allowed for matching cell barcodes, and the UMI length is 12.

For Perturb-seq data, a small number of sgRNA protospace sequences will be sequenced ultra-deeply and we may have PCR chimeric reads. Therefore, we generate filtered feature count matrices as well in a data driven manner:

- 1. First, plot the histogram of UMIs with certain number of read counts. The number of UMIs with x supporting reads decreases when x increases. We start from x=1, and a valley between two peaks is detected if we find count [x] < count [x+1] < count [x+2]. We filter out all UMIs with < x supporting reads since they are likely formed due to chimeric reads.
- 2. In addition, we also filter out barcode-feature-UMI combinations that have their read count ratio, which is defined as total reads supporting barcode-feature-UMI over total reads supporting barcode-UMI, no larger than min_read_ratio parameter set above.

Extracted feature count matrix output

For each antibody tag or crispr tag sample, a folder with the sample ID is generated under cellranger_output_directory. In the folder, two files — sample_id.csv and sample_id.stat.csv.gz — are generated.

sample_id.csv is the feature count matrix. It has the following format. The first line describes the column names: Antibody/CRISPR, cell_barcode_1, cell_barcode_2, ..., cell_barcode_n. The following lines describe UMI counts for each feature barcode, with the following format: feature_name, umi_count_1, umi_count_2, ..., umi_count_n.

sample_id.stat.csv.gz stores the gzipped sufficient statistics. It has the following format. The first line describes the column names: Barcode, UMI, Feature, Count. The following lines describe the read counts for every barcode-umi-feature combination.

If data type is crispr, three additional files, sample_id.umi_count.pdf, sample_id.filt.csv and sample_id.filt.stat.csv.gz, are generated.

sample_id.umi_count.pdf plots number of UMIs against UMI with certain number of reads and colors UMIs with high likelihood of being chimeric in blue and other UMIs in red. This plot is generated purely based on number of reads each UMI has.

sample_id.filt.csv is the filtered feature count matrix. It has the same format as sample_id.csv.

sample_id.filt.stat.csv.gz is the filtered sufficient statistics. It has the same format as sample_id.stat.csv.gz.

8.4 bcl2fastq

8.4.1 License

bcl2fastq license

8.4.2 Docker

Read this tutorial if you are new to Docker and don't know how to write your Dockerfile.

For a Debian based docker, add the lines below into its Dockerfile to install bcl2fastq:

```
RUN apt-get install --no-install-recommends -y alien unzip

ADD https://support.illumina.com/content/dam/illumina-support/documents/downloads/

software/bcl2fastq/bcl2fastq2-v2-20-0-linux-x86-64.zip /software

RUN unzip -d /software/ /software/bcl2fastq2-v2-20-0-linux-x86-64.zip && alien -i /

software/bcl2fastq2-v2.20.0.422-Linux-x86_64.rpm && rm /software/bcl2fastq2-v2*
```

You can host your private docker images in the Google Container Registry.

8.4.3 Workflows

Workflows such as **cellranger_workflow** and **dropseq_workflow** provide the option of running bcl2fastq. We provide dockers containing bcl2fastq that are accessible only by members of the Broad Institute. Non-Broad Institute members will have to provide their own docker images.

8.4.4 Example

In this example we create a docker image for running cellranger mkfastq version 3.0.2.

- 1. Create a GCP project or reuse an existing project.
- 2. Enable the Google Container Registry

8.4. bcl2fastq 29

3. Clone the cumulus repository:

```
git clone https://github.com/klarman-cell-observatory/cumulus.git
```

- 4. Add the lines to cumulus/docker/cellranger/3.0.2/Dockerfile to include bcl2fastq (see *Docker*).
- 5. Ensure you have Docker installed
- Download cellranger from https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/ 3.0
- 7. Build, tag, and push the docker. Remember to replace PROJECT_ID with your GCP project id:

```
cd cumulus/docker/cellranger/3.0.2/
docker build -t cellranger-3.0.2 .
docker tag cellranger-3.0.2 gcr.io/PROJECT_ID/cellranger:3.0.2
gcr.io/PROJECT_ID/cellranger:3.0.2
```

8. Import cellranger_workflow workflow to your workspace (see cellranger_workflow steps), and enter your docker registry URL (in this example, "gcr.io/PROJECT_ID/") in cellranger_mkfastq_docker_registry field of cellranger_workflow inputs.

8.5 Extract gene-count matrices from plated-based SMART-Seq2 data

8.5.1 Run SMART-Seq2 Workflow

Follow the steps below to extract gene-count matrices from SMART-Seq2 data on Terra. This WDL aligns reads using *Bowtie 2* and estimates expression levels using *RSEM*.

1. Copy your sequencing output to your workspace bucket using gsutil in your unix terminal.

You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information panel.

Note: Broad users need to be on an UGER node (not a login node) in order to use the -m flag Request an UGER node:

```
reuse UGER qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab
```

The above command requests an interactive node with 4G memory per thread and 8 threads. Feel free to change the memory, thread, and project parameters.

Once you're connected to an UGER node, you can make gsutil available by running:

```
reuse Google-Cloud-SDK
```

Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket. For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4 to a Google bucket:

-m means copy in parallel, -r means copy the directory recursively.

2. Create a sample sheet.

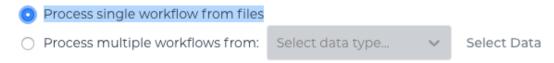
Please note that the columns in the CSV can be in any order, but that the column names must match the recognized headings.

The sample sheet provides metadata for each cell:

Column	Description
Cell	Cell name.
Plate	Plate name. Cells with the same plate name are from the same plate.
Read1	Location of the FASTQ file for read1 in the cloud (gsurl).
Read2	Location of the FASTQ file for read1 in the cloud (gsurl).

Example:

3. Upload your sample sheet to the workspace bucket.


Example:

4. Import *smartseq2* workflow to your workspace.

See the Terra documentation for adding a workflow. The *smartseq2* workflow is under Broad Methods Repository with name "cumulus/smartseq2".

Moreover, in the workflow page, click Export to Workspace... button, and select the workspace to which you want to export *smartseq2* workflow in the drop-down menu.

5. In your workspace, open smartseq2 in WORKFLOWS tab. Select Process single workflow from files as below

and click SAVE button.

Inputs:

Please see the description of inputs below. Note that required inputs are shown in bold.

Name	Description	Example	Default
input_	csarfilde Sheet (contains Cell, Plate, Read1,	"gs://fc-e0000000-0000-0000-0000-	
	Read2)	000000000000/sample_sheet.csv"	
output	t_Murqutorly rectory	"gs://fc-e0000000-0000-0000-0000-	
		000000000000/smartseq2_output"	
refere	 • Pre-created genome references: "GRCh38" for human; "GRCm38" and "mm10" for mouse. • Create a custom genome reference using smartseq2_create_reference workflow, and specify its Google bucket URL here. 	"GRCh38", or "gs://fc-e0000000-0000-0000-0000- 000000000000/rsem_ref.tar.gz"	
smarts	ecp2MvaRTesieq2 version to use. Versions available: 1.0.0.	"1.0.0"	"1.0.0"
docker	"cumulusprod/" for Docker Hub images; "quay.io/cumulus/" for backup images on Red Hat registry.	"cumulusprod/"	"cumulusprod/"
zones	Google cloud zones	"us-east1-d us-west1-a us-west1-b"	"us- east1- d us- west1- a us- west1- b"
num_c	puNumber of cpus to request for one node	4	4
	yMemory size string	"3.60G"	"3.60G"
disk_s ₁	palDesk space in GB	10	10
preemi	ptilslember of preemptible tries	2	2

Outputs:

See the table below for important outputs.

Name	Туре	Description
output_count_matrix	Array[String]	A list of google bucket urls containing gene-count ma-
		trices, one per plate. Each gene-count matrix file has the
		suffix .dge.txt.gz.

This WDL generates one gene-count matrix per SMART-Seq2 plate. The gene-count matrix uses Drop-Seq format:

- The first line starts with "Gene" and then gives cell barcodes separated by tabs.
- Starting from the second line, each line describes one gene. The first item in the line is the gene name and the rest items are TPM-normalized count values of this gene for each cell.

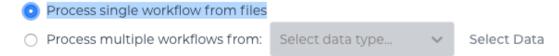
The gene-count matrices can be fed directly into **cumulus** for downstream analysis.

TPM-normalized counts are calculated as follows:

- 1. Estimate the gene expression levels in TPM using RSEM.
- 2. Suppose c reads are achieved for one cell, then calculate TPM-normalized count for gene i as TPM_i / 1e6 * c.

TPM-normalized counts reflect both the relative expression levels and the cell sequencing depth.

8.5.2 Custom Genome


We also provide a way of generating user-customized Genome references for SMART-Seq2 workflow.

1. Import smartseq2_create_reference workflow to your workspace.

See the Terra documentation for adding a workflow. The smartseq2_create_reference workflow is under Broad Methods Repository with name "cumulus/smartseq2_create_reference".

Moreover, in the workflow page, click Export to Workflow... button, and select the workspace to which you want to export smartseq2_create_reference in the drop-down menu.

2. In your workspace, open smartseq2_create_reference in WORKFLOWS tab. Select Process single workflow from files as below

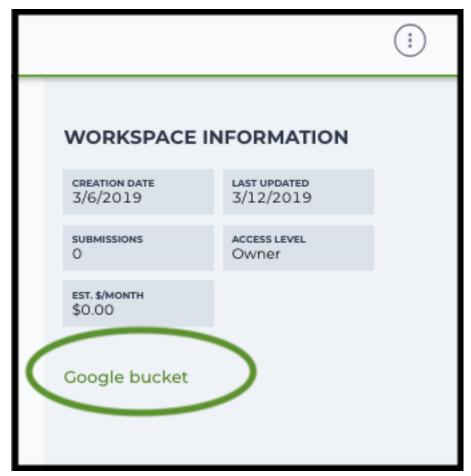
and click SAVE button.

Inputs:

Please see the description of inputs below. Note that required inputs are shown in bold.

Name	Description	Type or Example	Default
fasta	Genome fasta file		
		File. For example, "gs://fc-e0000000-0000-0000-0000- 000000000000/Homo_sapiens.GRCh38.dna.prin	nary_assembly.fa"
gtf	GTF gene annotation file (e.g. Homo_sapiens.GRCh38.83.gtf)	File. For example, "gs://fc-e0000000-0000-0000-0000- 000000000000/Homo_sapiens.GRCh38.83.gtf"	
smarts	eq2_version	String	"1.0.0"
	SMART-Seq2 version to use. Versions available: 1.0.0.		
docker	"cumulusprod/" for Docker Hub images; "quay.io/cumulus/" for backup images on Red Hat registry.	String	"cumulusprod/"
zones	Google cloud zones	String	"us- east1- b us- east1- c us- east1- d"
cpu	Number of CPUs	Integer	8
	yMemory size string	String	"7.2G"
	listx_tspatisk space in GB	Integer	15
preemp	tivilenber of preemptible tries	Integer	2

Outputs


Name	Type	Description	
reference	File	The custom Genome reference generated. Its default file	
		name is rsem_ref.tar.gz.	

8.6 Drop-seq pipeline

This workflow follows the steps outlined in the Drop-seq alignment cookbook from the McCarroll lab , except the default STAR aligner flags are $-limitOutSJcollapsed\ 1000000\ -twopassMode\ Basic$. Additionally the pipeline provides the option to generate count matrices using dropEst.

1. Copy your sequencing output to your workspace bucket using gsutil in your unix terminal.

You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information panel.

Note: Broad users need to be on an UGER node (not a login node) in order to use the -m flag Request an UGER node:

```
reuse UGER qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab
```

The above command requests an interactive node with 4G memory per thread and 8 threads. Feel free to change the memory, thread, and project parameters.

Once you're connected to an UGER node, you can make gsutil available by running:

```
reuse Google-Cloud-SDK
```

Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket. For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4 to a Google bucket:

-m means copy in parallel, -r means copy the directory recursively.

2. Non Broad Institute users that wish to run bcl2fastq must create a custom docker image.

See bcl2fastq instructions.

3. Create a sample sheet.

Please note that the columns in the CSV must be in the order shown below and does not contain a header line. The sample sheet provides either the FASTQ files for each sample if you've already run bcl2fastq or a list of BCL directories if you're starting from BCL directories. Please note that BCL directories must contain a valid bcl2fastq sample sheet (SampleSheet.csv):

Column	Description
Name	Sample name.
Read1	Location of the FASTQ file for read1 in the cloud (gsurl).
Read2	Location of the FASTQ file for read2 in the cloud (gsurl).

Example using FASTQ input files:

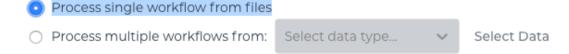
Note that in this example, sample-1 was sequenced across two flowcells.

Example using BCL input directories:

```
gs://fc-e0000000-0000-0000-0000-00000000000/flowcell-1
gs://fc-e0000000-0000-0000-0000-0000000000/flowcell-2
```

Note that the flow cell directory must contain a bcl2fastq sample sheet named SampleSheet.csv.

4. Upload your sample sheet to the workspace bucket.


Example:

5. Import dropseg workflow workflow to your workspace.

See the Terra documentation for adding a workflow. The *dropseq_workflow* is under Broad Methods Repository with name "cumulus/dropseq_workflow".

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace you want to export *dropseq_workflow* workflow in the drop-down menu.

6. In your workspace, open dropseq_workflow in WORKFLOWS tab. Select Process single workflow from files as below

and click the SAVE button.

8.6.1 Inputs

Please see the description of important inputs below.

Name	Description				
input_csv_file	CSV file containing sample name, read1, and read2 or a list of BCL directories.				
output_director	output_directoryPipeline output directory (gs URL e.g. "gs://fc-e0000000-0000-0000-0000-				
	0000000000/dropseq_output")				
reference	hg19, GRCh38, mm10, hg19_mm10, mmul_8.0.1 or a path to a custom reference JSON file				
run_bcl2fastq	Whether your sample sheet contains one BCL directory per line or one sample per line (default				
	false)				
	owhether to generate count matrixes using Drop-Seq tools from the McCarroll lab (default true)				
run_dropest	Whether to generate count matrixes using dropEst (default false)				
	e Ophitonist whitelist of known cellular barcodes				
	_16 range ited, bypass the cell detection algorithm (the elbow method) and use this number of cells.				
	naMaximal number of output cells				
	n M inimal number of genes for cells after the merge procedure (default 100)				
	neilgarestantib for the merge procedure (default 0.2)				
	b Mærgdiedistalistabetween barcodes (default 2)				
-	mManergit_dristantistantween UMIs (default 1)				
dropest_min_gentesi_nburfadre_ummbrege of genes for cells before the merge procedure. Used mostly for optimization.					
(default 10)					
dropest_merge_bdscophescipremisege strategy (can be slow), recommended to use when the list of real barcodes is					
not available (default true)					
dropest_velocytoSave separate count matrices for exons, introns and exon/intron spanning reads (default true)					
trim_sequence	trim_sequence The sequence to look for at the start of reads for trimming (default "AAGCAGTGGTAT-				
CAACGCAGAGTGAATGGG")					
trim_num_bases How many bases at the beginning of the sequence must match before trimming occur (default 5)					
umi_base_range The base location of the molecular barcode (default 13-20)					
cellular_barcode That barcode (default 1-12)					
star_flags	Additional options to pass to STAR aligner				

Please note that run_bcl2fastq must be set to true if you're starting from BCL files instead of FASTQs.

Custom Genome JSON

If you're reference is not one of the predefined choices, you can create a custom JSON file. Example:

(continues on next page)

(continued from previous page)

```
"star_cpus": 32,
    "star_memory": "120G"
}
```

The fields star_cpus and star_memory are optional and are used as the default cpus and memory for running STAR with your genome.

8.6.2 Outputs

The pipeline outputs a list of google bucket urls containing one gene-count matrix per sample. Each gene-count matrix file produced by Drop-seq tools has the suffix 'dge.txt.gz', matrices produced by dropEst have the extension .rds.

Building a Custom Genome

The tool **dropseq_bundle** can be used to build a custom genome. Please see the description of important inputs below.

Name	Description
fasta_file	Array of fasta files. If more than one species, fasta and gtf files must be in the same order.
gtf_file	Array of gtf files. If more than one species, fasta and gtf files must be in the same order.
genomeSAinde	x Nbases (bases) of the SA pre-indexing string. Typically between 10 and 15. Longer strings will
	use much more memory, but allow faster searches. For small genomes, must be scaled down to
	min(14, log2(GenomeLength)/2 - 1)

dropseq workflow Terra Release Notes

Version 4

- · Handle uncompressed fastq files as workflow input.
- Added optional prepare_fastq_disk_space_multiplier input.

Version 3

• Set default value for docker_registry input.

Version 2

• Added docker_registry input.

Version 1

- · Renamed cumulus to cumulus
- Added use_bases_mask option when running bcl2fastq

Version 18

• Created a separate docker image for running bcl2fastq

Version 17

- Fixed bug that ignored WDL input star flags (thanks to Carly Ziegler for reporting)
- Changed default value of star_flags to the empty string (Prior versions of the WDL incorrectly indicated that basic 2-pass mapping was done)

Version 16

- · Use cumulus dockerhub organization
- Changed default dropEst version to 0.8.6

Version 15

• Added drop_deq_tools_prep_bam_memory and drop_deq_tools_dge_memory options

Version 14

• Fix for downloading files from user pays buckets

Version 13

• Set GCLOUD_PROJECT_ID for user pays buckets

Version 12

• Changed default dropEst memory from 52G to 104G

Version 11

• Updated formula for computing disk size for dropseq_count

Version 10

• Added option to specify merge_bam_alignment_memory and sort_bam_max_records_in_ram

Version 9

• Updated default drop_seq_tools_version from 2.2.0 to 2.3.0

Version 8

• Made additional options available for running dropEst

Version 7

• Changed default dropEst memory from 104G to 52G

Version 6

• Added option to run dropEst

Version 5

• Specify full version for bcl2fastq (2.20.0.422-2 instead of 2.20.0.422)

Version 4

• Fixed issue that prevented bcl2fastq from running

Version 3

- Set default run_bcl2fastq to false
- · Create shortcuts for commonly used genomes

Version 2

• Updated QC report

Version 1

Initial release

8.7 Demultiplex cell-hashing/nuclei-hashing data using demuxEM or prepare for CITE-Seq analysis

Follow the steps below to run cumulus for cell-hashing/nuclei-hashing/CITE-Seq data on Terra.

1. Run Cell Ranger tool to generate raw gene count matrices and antibody hashtag data.

Please refer to the cellranger workflow tutorial for details.

When finished, you should be able to find the raw gene count matrix (e.g. raw_gene_be_matrices_h5.h5) and ADT count matrix (e.g. sample_1_ADT.csv) for each sample.

2. Create a sample sheet, **sample_sheet_hashing.csv**, which describes the metadata for each pair of RNA and antibody hashtag data. The sample sheet should contain 4 columns — *OUTNAME*, *RNA*, *ADT*, and *TYPE*. *OUTNAME* is the output name for one pair of RNA and ADT data. *RNA* and *ADT* are the raw gene count matrix and the ADT count matrix generated in Step 1, respectively. *TYPE* is the assay type, which can be cell-hashing, nuclei-hashing, or cite-seq.

Example:

Note that in the example above, sample_2 is 10x genomics' v3 chemistry. Cumulus can automatically detect v2/v3 chemistry when loading hdf5 files.

3. Create an additional antibody-control sheet **antibody_control.csv** if you have CITE-Seq data. This sheet contains 2 columns — *Antibody* and *Control*.

Example:

```
Antibody, Control
CD8, Mouse-IgG1
HLA-ABC, Mouse-IgG2a
CD45RA, Mouse-IgG2b
```

4. Upload your sample sheets to the Google bucket of your workspace.

Example:

5. Import cumulus_hashing_cite_seq to your workspace.

See the Terra documentation for adding a workflow. The *cumulus_hashing_cite_seq* workflow is under Broad Methods Repository with name "cumulus/cumulus hashing cite seq".

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *cumulus_hashing_cite_seq* workflow in the drop-down menu.

 $6. \ In \ your \ workspace, open \ \verb|cumulus_hashing_cite_seq| in \ \verb|WORKFLOWS| \ tab. \ Select \ \verb|Process| \ single \ workflow| \ from \ files \ as \ below$

and click the SAVE button.

8.7.1 cumulus_hashing_cite_seq inputs:

Name	Description	Example	Default
input_samp	le_InheetCSV file describing metadata of RNA and ADT	"gs://fc-e0000000-	
	data pairing	0000-0000-0000-	
		000000000000/sample_she	et_hashing.csv [†]
output_dire	ctoms is the output directory (gs url + path) for all results.	"gs://fc-e0000000-	
_	There will be one folder per RNA-ADT data pair under	0000-0000-0000-	
	this directory	000000000000/my_demux_	dir"
genome	Reference genome name. If not provided, cumulus will	"GRCh38"	
	infer the genome name from data		
demuxEM r	nindemum Endnerarameter. Only demultiplex cells/nuclei	200	100
_	with at least <demuxem_min_num_genes> expressed</demuxem_min_num_genes>		
	genes		
demuxEM_a	Iphamux EMnpales meter. The Dirichlet prior concentration	2.0	0.0
	parameter (alpha) on samples. An alpha value < 1.0 will		
	make the prior sparse.		
demuxFM_r	nidemun El Miparameter. Only demultiplex cells/nuclei	200	100
demaxEivi_i	with at least <demuxem_min_num_umis> of UMIs.</demuxem_min_num_umis>	200	100
demuyEM_r	minlesingux AMiashtagneter. Any cell/nucleus with less than	10.0	10.0
demuxEM_i	count> hashtags from the signal will be marked as un-	10.0	10.0
	known. [default: 10.0]		
1 EM.	-		0
demuxEM_r	and	0	0
	KMeans algorithm to separate empty ADT droplets		
1 77.6	from others		
demuxEM_g	entenatex. His pastiment buts If generate a series of diagnos-	true	true
	tic plots, including the background/signal between HTO		
	counts, estimated background probabilities, HTO distri-		
	butions of cells and non-cells etc		
demuxEM_g	endenatux EMI depanatuter. If generate violin plots us-	"XIST"	
	ing gender-specific genes (e.g. Xist). <de-< td=""><td></td><td></td></de-<>		
	muxEM_generate_gender_plot> is a comma-separated		
	list of gene names		
antibody_co	ntroleres rna_adt parameter. This is a CSV file containing	"gs://fc-e0000000-	
	the IgG control information for each antibody.	0000-0000-0000-	
		00000000000000/antibody_co	ntrol.csv"
cumulus_ver	sioumulus version to use. Versions available: 0.10.0.	"0.10.0"	"0.10.0"
docker_regis	rrDocker registry to use. Options:	"cumulusprod/"	"cumulusprod
	 "cumulusprod/" for Docker Hub images; 	_	
	• "quay.io/cumulus/" for backup images on Red		
	Hat registry.		
zones	Google cloud zones	"us-east1-d us-west1-a us-	"us-east1-d
		west1-b"	us-west1-a
			us-west1-
			b"
num_cpu	Number of CPUs per cumulus_hashing_cite_seq job	8	8
memory	Memory size string	"10G"	"10G"
disk_space	Total disk space in GB	20	20
preemptible	Number of preemptible tries	20	20
preempuole	rumoer or preempuote uses	[∠]	<i>L</i>

8.7.2 cumulus_hashing_cite_seq outputs

See the table below for important *cumulus_hashing_cite_seq* outputs:

Name	Туре	Description
output_folder	Array[String]	A list of google bucket urls containing results for every
		RNA-ADT data pairs.

In the output folder of each cell-hashing/nuclei-hashing RNA-ADT data pair, you can find the following files:

Name	Description	
output_name_demux.h5ad	Demultiplexed RNA count matrix in h5ad format.	
output_name_demux.h5sc	RNA expression matrix with demultiplexed sample identities in cumulus	
	hdf5 (h5sc) format.	
output_name_ADTs.h5ad	Antibody tag matrix in h5ad format.	
output_name.ambient_hashtag.hist.pr	gOptional output. A histogram plot depicting hashtag distributions of empty	
	droplets and non-empty droplets.	
output_name.background_probabilities@ptipngl output. A bar plot visualizing the estimated hashtag backgr		
	probability distribution.	
output_name.real_content.hist.png	Optional output. A histogram plot depicting hashtag distributions of not-	
	real-cells and real-cells as defined by total number of expressed genes in	
	the RNA assay.	
output_name.rna_demux.hist.png	Optional output. A histogram plot depicting RNA UMI distribution for sin-	
	glets, doublets and unknown cells.	
output_name.gene_name.violin.png	Optional outputs. Violin plots depicting gender-specific gene expres-	
	sion across samples. We can have multiple plots if a gene list	
	<pre>is provided in demuxEM_generate_gender_plot field of cumu-</pre>	
	lus_hashing_cite_seq inputs.	

In the output folder of each CITE-Seq RNA-ADT data pair, you can find the following file:

Name	Description
output_name.h5sc	A Cumulus hdf5 format (h5sc) file containing both RNA and ADT count
	matrices.

8.7.3 Load demultiplexing results into Python and R

To load demultiplexing results into Python, you need to install Python package anndata first. Then follow the codes below:

```
import anndata
data = anndata.read_h5ad('output_name_demux.h5ad')
```

Once you load the data object, you can find predicted droplet types (singlet/doublet/unknown) in data. obs['demux_type']. You can find predicted sample assignments in data.obs['assignment']. You can find estimated sample fractions (sample1, sample2, ..., samplen, background) for each droplet in data.obsm['raw_probs'].

To load the results into R, you need to install R package reticulate in addition to Python package annual. Then follow the codes below:

```
library(reticulate)
ad <- import("anndata", convert = FALSE)
data <- ad$read_h5ad("output_name_demux.h5ad")</pre>
```

```
Results are in data$obs['demux_type'], data$obs['assignment'], and data$obsm['raw probs'].
```

8.8 Run Cumulus for sc/snRNA-Seq data analysis

8.8.1 Run Cumulus analysis

Prepare Input Data

Case One: Sample Sheet

Follow the steps below to run cumulus on Terra.

- 1. Create a sample sheet, **count_matrix.csv**, which describes the metadata for each 10x channel. The sample sheet should at least contain 2 columns *Sample* and *Location*. *Sample* refers to sample names and *Location* refers to the location of the channel-specific count matrix in either of

- Drop-seq format. For example, gs://fc-e0000000-0000-0000-0000-00000000000/my_dir/sample_2/sample_2.umi.dge.txt.gz.

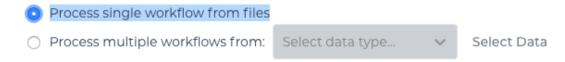
You are free to add any other columns and these columns will be used in selecting channels for futher analysis. In the example below, we have *Source*, which refers to the tissue of origin, *Platform*, which refers to the sequencing platform, *Donor*, which refers to the donor ID, and *Reference*, which refers to the reference genome.

Example:

If you ran **cellranger_workflow** ahead, you should already obtain a template **count_matrix.csv** file that you can modify from **generate_count_config**'s outputs.

1. Upload your sample sheet to the workspace.

Example:


```
gsutil cp /foo/bar/projects/my_count_matrix.csv gs://fc-e0000000-0000-
```

2. Import cumulus workflow to your workspace.

See the Terra documentation for adding a workflow. The *cumulus* workflow is under Broad Methods Repository with name "cumulus/cumulus".

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *cumulus* workflow in the drop-down menu.

3. In your workspace, open cumulus in WORKFLOWS tab. Select Process single workflow from files as below

and click the SAVE button.

Case Two: Single File

Alternatively, if you only have one single count matrix for analysis, you can go without sample sheets. **Cumulus** currently supports the following formats:

- 10x genomics v2/v3 formats (hdf5 or mtx);
- HCA DCP mtx and loom formats;
- Drop-seq dge formats.

Simply upload your data to the Google Bucket of your workspace, and specify its URL in input_file field of Cumulus' global inputs (see below). Notice that for dge and loom files, the genome field in global inputs is required.

In this case, the aggregate_matrices step will be skipped.

Cumulus steps:

Cumulus processes single cell data in the following steps:

- 1. **aggregate_matrices** (optional). When given a CSV format sample sheet, this step aggregates channel-specific count matrices into one big count matrix. Users can specify which channels they want to analyze and which sample attributes they want to import to the count matrix in this step. Otherwise, if a single count matrix file is given, skip this step.
- 2. **cluster**. This is the main analysis step. In this step, **Cumulus** performs low quality cell filtration, highly variable gene selection, batch correction, dimension reduction, diffusion map calculation, graph-based clustering and 2D visualization calculation (e.g. t-SNE/UMAP/FLE).
- 3. **de_analysis**. This step is optional. In this step, **Cumulus** can calculate potential markers for each cluster by performing a variety of differential expression (DE) analysis. The available DE tests include Welch's t test, Fisher's exact test, and Mann-Whitney U test. **Cumulus** can also calculate the area under ROC (AUROC) curve values for putative markers. If find_markers_lightgbm is on, **Cumulus** will try to identify cluster-specific markers by training a LightGBM classifier. If the samples are human or mouse immune cells, **Cumulus** can also optionally annotate putative cell types for each cluster based on known markers.

- 4. **plot**. This step is optional. In this step, **Cumulus** can generate 6 types of figures based on the **cluster** step results:
 - **composition** plots which are bar plots showing the cell compositions (from different conditions) for each cluster. This type of plots is useful to fast assess library quality and batch effects.
 - tsne, fitsne, and net_tsne: t-SNE like plots based on different algorithms, respectively. Users can specify cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.
 - umap and net_umap: UMAP like plots based on different algorithms, respectively. Users can specify cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.
 - **fle** and **net_fle**: FLE (Force-directed Layout Embedding) like plots based on different algorithms, respectively. Users can specify cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.
 - **diffmap** plots which are 3D interactive plots showing the diffusion maps. The 3 coordinates are the first 3 PCs of all diffusion components.
 - If input is CITE-Seq data, there will be **citeseq_fitsne** plots which are FIt-SNE plots based on epitope expression.
- 5. organize_results. Copy analysis results from execution environment to destination location on Google bucket.

In the following sections, we will first introduce global inputs and then introduce the WDL inputs and outputs for each step separately. But please note that you need to set inputs from all steps simultaneously in the Terra WDL.

Note that we will make the required inputs/outputs bold and all other inputs/outputs are optional.

global inputs

Name	Description	Example	Default
input_file	Input CSV sample sheet describing metadata of each	"gs://fc-e0000000-	
	10x channel, or a single input count matrix file	0000-0000-0000-	
		0000000000000/my_count_1	natrix.csv"
output_nam	e This is the prefix for all output files. It should con-	"gs://fc-e0000000-	
	tain the google bucket url, subdirectory name and output	0000-0000-0000-	
	name prefix	0000000000000/my_results_	dir/my_results"
genome	A string contains comma-separated genome names. Cu-	"GRCh38"	
	mulus will read all groups associated with genome		
	names in the list from the hdf5 file. If genome is None,		
	all groups will be considered.		
cumulus_ver	sionmulus version to use. Versions available: 0.10.0.	"0.10.0"	"0.10.0"
docker_regist	rpocker registry to use. Options:	"cumulusprod/"	"cumulusprod/
	 "cumulusprod/" for Docker Hub images; 		
	 "quay.io/cumulus/" for backup images on Red 		
	Hat registry.		
zones	Google cloud zones to consider for execution.	"us-east1-d us-west1-a us-	"us-east1-d
		west1-b"	us-west1-a
			us-west1-
			b"
num_cpu	Number of CPUs per Cumulus job	32	64
memory	Memory size string	"200G"	"200G"
disk_space	Total disk space in GB	100	100
preemptible	Number of preemptible tries	2	2

aggregate_matrices

aggregate_matrices inputs

Name	Description	Example	Default
restrictions	Select channels that satisfy all restrictions. Each restric-	"Source:bone_marrow;Platf	orm:NextSeq"
	tion takes the format of name:value,,value. Multiple		
	restrictions are separated by ';'		
attributes	Specify a comma-separated list of outputted attributes.	"Source,Platform,Donor"	
	These attributes should be column names in the		
	count_matrix.csv file		
minimum_nu	n Obely of egenber codes with at least this number of ex-	100	100
	pressed genes		
is_dropseq	If inputs are dropseq data	true	false

aggregate_matrices output

Name	Туре	Description
output_h5sc	File	Aggregated count matrix in Cumulus hdf5 (h5sc) format

cluster

cluster inputs

Name	Description	Example	Default
channel	Specify the cell barcode attribute to represent different	"Donor"	
	samples.		
black_list	Cell barcode attributes in black list will be poped out.	"attr1,attr2,attr3""	
	Format is "attr1,attr2,,attrn".		
min_genes_c	n Ifamp ut are raw 10x matrix, which include all barcodes,	100	100
	perform a pre-filtration step to keep the data size small.		
	In the pre-filtration step, only keep cells with at least		
	<min_genes_on_raw> of genes</min_genes_on_raw>		
cite_seq		false	false
	Data are CITE-Seq data. cumulus will perform		
	analyses on RNA count matrix first.		
	Then it will attach the ADT matrix to the RNA matrix		
	with all antibody names changing to 'AD-' +		
	antibody_name.		
	Lastly, it will embed the antibody expression using		
	FIt-SNE (the basis used for plotting is 'citeseq_fitsne')		
	•	Continued	

Continued on next page

Table 2 – continued from previous page

	Table 2 – continued from previou		5 (1:
Name	Description	Example	Default
cite_seq_cap	pingr CITE-Seq surface protein expression, make all cells	10.0	99.99
	with expression > <percentile> to the value at <per-< td=""><td></td><td></td></per-<></percentile>		
	centile> to smooth outlier. Set <percentile> to 100.0</percentile>		
	to turn this option off.		
select_only_	inglets have demultiplexed data, turning on this option	false	false
	will make cumulus only include barcodes that are pre-		
	dicted as singlets		
output_filtrat	iolf_wersteltsell and gene filtration results to a spreadsheet	true	true
plot_filtration	_ lfesplot sfiltration results as PDF files	true	true
plot_filtratio	Figsize size for filtration plots. <figsize> is a comma-</figsize>	6,4	
_	separated list of two numbers, the width and height of		
	the figure (e.g. 6,4)		
output seura	Geometratible Seurat-compatible h5ad file. Caution: File	false	false
1 -	size might be large, do not turn this option on for large		
	data sets.		
output_loom	If generate loom-formatted file	false	false
<u> </u>	elf generate parquet-formatted file	false	false
min_genes	Only keep cells with at least <min_genes> of genes</min_genes>	500	500
max_genes	Only keep cells with less than <max_genes> of genes</max_genes>	6000	6000
min_umis	Only keep cells with at least <min_umis> of UMIs</min_umis>	100	100
max_umis	Only keep cells with less than <max_umis> of UMIs</max_umis>	600000	600000
mito_prefix	Prefix of mitochondrial gene names. This is to identify	"mt-"	"MT-"
mito_prenx	mitochondrial genes.		1411
percent_mito	_	50	10.0
percent_mite	cent_mito>% of total counts	30	10.0
gene_percen		50	0.05
gene_percen	<pre><gene_percent_cells>% of cells to select variable</gene_percent_cells></pre>	30	0.03
	genes		
counts nor (elloatterounts per cell after normalization, before trans-	1e5	1e5
counts_per_c	forming the count matrix into Log space.	163	163
1 1 A		\$6	""
select_livi_li	avldrighly variable feature selection method. Options: • "pegasus": New selection method proposed in	"pegasus"	"pegasus"
	Pegasus, the analysis module of Cumulus workflow.		
	"Seurat": Conventional selection method used by		
	Seurat and SCANPY.		
calant harf	adhibat tan galaat huf nassas hishle sasial la Ca	2000	2000
select_nvi_n	gesticet top <select_hvf_ngenes> highly variable fea-</select_hvf_ngenes>	2000	2000
	tures. If <select_hvf_flavor> is "Seurat" and <select_hvf_flavor> is "Norge" extent HVCo mith a second</select_hvf_flavor></select_hvf_flavor>		
	lect_hvf_ngenes> is "None", select HVGs with z-score		
	cutoff at 0.5.	C.1	C. 1.
	f Do not select highly variable features.	false	false
correct_batcl	_Hffcontrect batch effects	false	false

Continued on next page

Table 2 – continued from previous page

Name	Description	Example	Default
batch_group_	_by	"Donor"	None
	Batch correction assumes the differences in gene		
	expression between channels are due to batch effects.		
	However, in many cases, we know that channels can be		
	partitioned into several groups and each group is		
	biologically different from others.		
	In this case, we will only perform batch correction for		
	channels within each group. This option defines the		
	groups.		
	If <expression> is None, we assume all channels are</expression>		
	from one group. Otherwise, groups are defined		
	according to <expression>.</expression>		
	<expression> takes the form of either 'attr', or</expression>		
	'attr1+attr2++attrn', or		
	'attr=value11,,value1n_1;value21,,value2n_2;;v	aluem1,,valuemn_m'.	
	In the first form, 'attr' should be an existing sample		
	attribute, and groups are defined by 'attr'.		
	In the second form, 'attr1',,'attrn' are n existing		
	sample attributes and groups are defined by the		
	Cartesian product of these n attributes.		
	In the last form, there will be $m + 1$ groups.		
	A cell belongs to group i $(i > 0)$ if and only if its sample		
	attribute 'attr' has a value among valuei1,,valuein_i.		
	A cell belongs to group 0 if it does not belong to any		
	other groups		
random state	Random number generator seed	0	0
nPC	Number of principal components	50	50
knn_K	Number of nearest neighbors used for constructing	50	100
	affinity matrix.		
knn full spe	error the sake of reproducibility, we only run one thread	false	false
1	for building kNN indices. Turn on this option will allow		
	multiple threads to be used for index building. How-		
	ever, it will also reduce reproducibility due to the racing		
	between multiple threads.		
run_diffmap	Whether to calculate diffusion map or not. It will	false	false
	be automatically set to true when input run_fle or		
	run_net_fle is set.		
diffmap_ndc	4	100	100
diffmap_max	t Maximum time stamp in diffusion map computation to	5000	5000
	search for the knee point.		
run_louvain	Run Louvain clustering algorithm	true	true
iouvain_reso	uRosolution parameter for the Louvain clustering algo-	1.3	1.3
laurois -1	rithm	"lavvoir lak-1-"	"1anvair 1-1
		"louvain_labels"	"louvain_label
run_leiden	Run Leiden clustering algorithm. tiRussolution parameter for the Leiden clustering algo-	false	false
iciucii_iesolu	rithm.	1.3	1.3
	mini.		

Continued on next page

Table 2 – continued from previous page

Name	Description	Example	Default
leiden_niter	Number of iterations of running the Leiden algorithm. If	2	-1
	negative, run Leiden iteratively until no improvement.		
leiden_class_	labeiden cluster label name in analysis result.	"leiden_labels"	"leiden_labels"
run_spectral_	loRuvaiSpectral Louvain clustering algorithm	false	false
spectral_louv	a Rasissed for KMeans clustering. Use diffusion map	"diffmap"	"diffmap"
	by default. If diffusion map is not calculated, use PCA		
	coordinates. Users can also specify "pca" to directly use		
	PCA coordinates.		
spectral_louv	a Re_re-kotiutiop arameter for louvain.	1.3	1.3
spectral_louv	alspedussi labelin label name in analysis result.	"spectral_louvain_labels"	"spectral_louvain_labels"
run_spectral_	landernSpectral Leiden clustering algorithm.	false	false
spectral_leid	enBassissused for KMeans clustering. Use diffusion map	"diffmap"	"diffmap"
	by default. If diffusion map is not calculated, use PCA		
	coordinates. Users can also specify "pca" to directly use		
	PCA coordinates.		
	enRessolutionparameter for leiden.	1.3	1.3
spectral_leid	er Speass allabiden label name in analysis result.	"spectral_leiden_labels"	"spectral_leiden_labels"
run_tsne	Run multi-core t-SNE for visualization	false	false
tsne_perplex	ty-SNE's perplexity parameter, also used by FIt-SNE.	30	30
run_fitsne	Run FIt-SNE for visualization	true	true
run_umap	Run UMAP for visualization	false	false
umap_K	K neighbors for UMAP.	15	15
	isUMAP parameter.	0.5	0.5
umap_spread	UMAP parameter.	1.0	1.0
run_fle	Run force-directed layout embedding (FLE) for visual-	false	false
	ization		
fle_K	Number of neighbors for building graph for FLE	50	50
fle_target_ch	anigergper_hander per node to stop FLE.	2.0	2.0
fle_target_ste	pMaximum number of iterations before stopping the al-	5000	5000
	goritm		
net_down_sa	mplewfraation for net-related visualization	0.1	0.1
run_net_tsne	Run Net tSNE for visualization	false	false
net_tsne_out	Hasisis name for Net t-SNE coordinates in analysis result	"net_tsne"	"net_tsne"
run_net_uma	pRun Net UMAP for visualization	false	false
net_umap_oi	t Passis name for Net UMAP coordinates in analysis result	"net_umap"	"net_umap"
run_net_fle	Run Net FLE for visualization	false	false
	assis name for Net FLE coordinates in analysis result.	"net_fle"	"net_fle"

cluster outputs

Name	Туре	Description
output_h5ad	File	
		Output file in h5ad format (output_name.h5ad).
		To load this file in Python, you need to first install Pegasus on your local
		machine. Then use import pegasus as pg; data =
		pg.read_input('output_name.h5ad') in Python interpreter.
		The log-normalized expression matrix is stored in data. X as a
		CSR-format sparse matrix.
		The obs field contains cell related attributes, including clustering results.
		For example, data.obs_names records cell barcodes;
		data.obs['Channel'] records the channel each cell comes from;
		data.obs['n_genes'], data.obs['n_counts'], and
		data.obs['percent_mito'] record the number of expressed genes, total UMI count, and mitochondrial rate for each cell respectively;
		data.obs['louvain_labels'],
		data.obs['leiden_labels'],
		data.obs['spectral_louvain_labels'], and
		data.obs['spectral_leiden_labels'] record each cell's
		cluster labels using different clustring algorithms;
		The var field contains gene related attributes.
		For example, data.var_names records gene symbols,
		data.var['gene_ids'] records Ensembl gene IDs, and data.var['highly_variable_features'] records selected
		variable genes.
		The obsm field records embedding coordinates.
		For example, data.obsm['X_pca'] records PCA coordinates,
		data.obsm['X_tsne'] records t-SNE coordinates,
		data.obsm['X_umap'] records UMAP coordinates,
		data.obsm['X_diffmap'] records diffusion map coordinates,
		data.obsm['X_diffmap_pca'] records the first 3 PCs by
		projecting the diffusion components using PCA,
		and data.obsm['X_fle'] records the force-directed layout
		coordinates from the diffusion components.
		The varm field records DE analysis results if performed: data.varm['de_res'].
		The uns field stores other related information, such as reference genome
		(data.uns['genome']), kNN on PCA coordinates
		(data.uns['pca_knn_indices'] and
		data.uns['pca_knn_distances']), etc.
	4001 -	15-161-in
output_seurat_h5	auriie	h5ad file in seurat-compatible manner. This file can be loaded into R and converted into a Seurat object (see here for instructions)
output_filt_xlsx	File	converted into a secural object (see here for instructions)
1		Consolidate and a section of the street of t
		Spreadsheet containing filtration results (output_name.filt.xlsx).
		This file has two sheets — Cell filtration stats and Gene filtration stats.
		The first sheet records cell filtering results and it has 10 columns:
		Channel, channel name; kept, number of cells kept; median_n_genes, median number of expressed genes in kept cells; median_n_umis, median
		number of UMIs in kept cells;
52		median_percent_mito, median ichanterda Vatsion Orit. Octuber 27, 2018
		mitochondrial genes and all genes in kept cells;
		filt, number of cells filtered out; total, total number of cells before
		filtration if the input contain all beroodes this number is the calls left after

filtration, if the input contain all barcodes, this number is the cells left after

de_analysis

de_analysis inputs

Name	Description	Example	Default
perform_de_	arlalpeisorm differential expression (DE) analysis	true	true
cluster_labels	Specify the cluster label used for DE analysis	"louvain_labels"	"louvain_labels"
alpha	Control false discovery rate at <alpha></alpha>	0.05	0.05
auc	Calculate area under ROC (AUROC)	true	true
fisher	Calculate Fisher's exact test	true	true
t_test	Calculate Welch's t-test.	true	true
mwu	Calculate Mann-Whitney U test	false	false
find_markers	lightgbdetect markers using LightGBM	false	false
remove_ribo	Remove ribosomal genes with either RPL or RPS as	false	false
	prefixes. Currently only works for human data		
min_gain	Only report genes with a feature importance score (in	1.0	1.0
	gain) of at least <gain></gain>		
annotate_clus	stef also annotate cell types for clusters based on DE re-	false	false
	sults		
annotate_de_	testifferential Expression test to use for inference on cell	"t"	"t"
	types. Options: "t", "fisher", or "mwu"		
organism	Organism, could either be "human_immune",	"mouse_brain"	"human_immune"
	"mouse_immune", "human_brain", "mouse_brain"		
	or a Google bucket link to a JSON file describing the		
	markers		
minimum_re	polyliniconem cell type score to report a potential cell type	0.5	0.5

de_analysis outputs

Name	Туре	Description	
output_de_h5ad	File	h5ad-formatted results with DE results updated (output_name.h5ad)	
output_de_xlsx	File	Spreadsheet reporting DE results (output_name.de.xlsx)	
output_markers_x	lskile	An excel spreadsheet containing detected markers. Each cluster has one	
		tab in the spreadsheet and each tab has three columns, listing markers that	
		are strongly up-regulated, weakly up-regulated and down-regulated (out-	
		put_name.markers.xlsx)	
output_anno_file	File	Annotation file (output_name.anno.txt)	

How cell type annotation works

In this subsection, we will describe the format of input JSON cell type marker file, the *ad hoc* cell type inference algorithm, and the format of the output putative cell type file.

JSON file

The top level of the JSON file is an object with two name/value pairs:

- title: A string to describe what this JSON file is for (e.g. "Mouse brain cell markers").
- **cell_types**: List of all cell types this JSON file defines. In this list, each cell type is described using a separate object with 2 to 3 name/value pairs:
 - name: Cell type name (e.g. "GABAergic neuron").
 - markers: List of gene-marker describing objects, each of which has 2 name/value pairs:
 - * genes: List of positive and negative gene markers (e.g. ["Rbfox3+", "Flt1-"]).
 - * weight: A real number between 0.0 and 1.0 to describe how much we trust the markers in genes.

All markers in **genes** share the weight evenly. For instance, if we have 4 markers and the weight is 0.1, each marker has a weight of 0.1 / 4 = 0.025.

The weights from all gene-marker describing objects of the same cell type should sum up to 1.0.

 subtypes: Description on cell subtypes for the cell type. It has the same structure as the top level JSON object.

See below for an example JSON snippet:

```
"title" : "Mouse brain cell markers",
  "cell_types" : [
      "name" : "Glutamatergic neuron",
      "markers" : [
          "genes": ["Rbfox3+", "Reln+", "Slc17a6+", "Slc17a7+"],
          "weight" : 1.0
        }
      "subtypes" : {
        "title" : "Glutamatergic neuron subtype markers",
          "cell_types" : [
              "name" : "Glutamatergic layer 4",
              "markers" : [
                  "genes" : ["Rorb+", "Pagr8+"],
                  "weight" : 1.0
                }
              ]
            }
          ]
     }
 ]
```

Inference Algorithm

We have already calculated the up-regulated and down-regulated genes for each cluster in the differential expression analysis step.

First, load gene markers for each cell type from the JSON file specified, and exclude marker genes, along with their associated weights, that are not expressed in the data.

Then scan each cluster to determine its putative cell types. For each cluster and putative cell type, we calculate a score between 0 and 1, which describes how likely cells from the cluster are of this cell type. The higher the score is, the more likely cells are from the cell type.

To calculate the score, each marker is initialized with a maximum impact value (which is 2). Then do case analysis as follows:

- For a positive marker:
 - If it is not up-regulated, its impact value is set to 0.
 - Otherwise, if it is up-regulated:
 - * If it additionally has a fold change in percentage of cells expressing this marker (within cluster vs. out of cluster) no less than 1.5, it has an impact value of 2 and is recorded as a **strong supporting marker**.
 - * If its fold change (fc) is less than 1.5, this marker has an impact value of 1 + (fc 1) / 0.5 and is recorded as a **weak supporting marker**.
- For a negative marker:
 - If it is up-regulated, its impact value is set to 0.
 - If it is neither up-regulated nor down-regulated, its impact value is set to 1.
 - Otherwise, if it is down-regulated:
 - * If it additionally has 1 / fc (where fc is its fold change) no less than 1.5, it has an impact value of 2 and is recorded as a **strong supporting marker**.
 - * If 1 / fc is less than 1.5, it has an impact value of 1 + (1 / fc 1) / 0.5 and is recorded as a **weak supporting marker**.

The score is calculated as the weighted sum of impact values weighted over the sum of weights multiplied by 2 from all expressed markers. If the score is larger than 0.5 and the cell type has cell subtypes, each cell subtype will also be evaluated.

Output annotation file

For each cluster, putative cell types with scores larger than minimum_report_score will be reported in descending order with respect to their scores. The report of each putative cell type contains the following fields:

- name: Cell type name.
- score: Score of cell type.
- average marker percentage: Average percentage of cells expressing marker within the cluster between all positive supporting markers.
- **strong support**: List of strong supporting markers. Each marker is represented by a tuple of its name and percentage of cells expressing it within the cluster.
- weak support: List of week supporting markers. It has the same structure as strong support.

plot

The h5ad file contains a default cell attribute Channel, which records which channel each that single cell comes from. If the input is a CSV format sample sheet, Channel attribute matches the Sample column in the sample sheet. Otherwise, it's specified in channel field of the cluster inputs.

Other cell attributes used in plot must be added via attributes field in the aggregate_matrices inputs.

plot inputs

Name	Description	Example	Default
plot_compos.	Takes the format of "label:attr,label:attr,,label:attr". If non-empty, generate composition plot for each "label:attr" pair. "label" refers to cluster labels and "attr" refers to sample conditions	"louvain_labels:Donor"	None
plot_fitsne	Takes the format of "attr,attr,,attr". If non-empty, plot attr colored FIt-SNEs side by side	"louvain_labels,Donor"	None
plot_tsne	Takes the format of "attr,attr,,attr". If non-empty, plot attr colored t-SNEs side by side	"louvain_labels,Channel"	None
plot_umap	Takes the format of "attr,attr,,attr". If non-empty, plot attr colored UMAP side by side	"louvain_labels,Donor"	None
plot_fle	Takes the format of "attr,attr,,attr". If non-empty, plot attr colored FLE (force-directed layout embedding) side by side	"louvain_labels,Donor"	None
plot_diffmap	Takes the format of "attr,attr,,attr". If non-empty, generate attr colored 3D interactive plot. The 3 coordinates are the first 3 PCs of all diffusion components	"louvain_labels,Donor"	None
plot_citeseq_	plot cells based on FIt-SNE coordinates estimated from antibody expressions. Takes the format of "attr,attr,,attr". If non-empty, plot attr colored FIt-SNEs side by side	"louvain_labels,Donor"	None
plot_net_tsne	Takes the format of "attr,attr,,attr". If non-empty, plot attr colored t-SNEs side by side based on net t-SNE result.	"leiden_labels,Channel"	None
plot_net_uma	Takes the format of "attr,attr,,attr". If non-empty, plot attr colored UMAP side by side	"leiden_labels,Donor"	None
8.8. Run Cu	based on net UMAP result. mulus for sc/snRNA-Seq data analysis		57
plot_net_fle	Takes the format of "attr,attr,,attr".	"leiden_labels,Donor"	None

plot outputs

Name	Туре	Description
output_pdfs	Array[File]	Outputted pdf files
output_htmls	Array[File]	Outputted html files

Generate SCP Output

Generate analysis result in Single Cell Portal (SCP) compatible format.

scp_output inputs

Name	Description	Example	Default
generate_scp	_dWfpathser to generate SCP format output or not.	false	false
output_dense	Output dense expression matrix, instead of the default	false	false
	sparse matrix format.		

scp_output outputs

Name	Type	Description
output_scp_files	Array[File]	Outputted SCP format files.

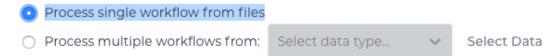
8.8.2 Run CITE-Seq analysis

To run CITE-Seq analysis, turn on cite_seq option in cluster inputs of cumulus workflow.

An embedding of epitope expressions via FIt-SNE is available at basis X_citeseq_fitsne.

To plot this epitope embedding, specify attributes to plot in plot_citeseq_fitsne field of cluster inputs.

8.8.3 Run subcluster analysis


Once we have **cumulus** outputs, we could further analyze a subset of cells by running **cumulus_subcluster**. To run **cumulus_subcluster**, follow the following steps:

1. Import **cumulus_subcluster** method.

See the Terra documentation for adding a workflow. The cumulus workflow is under Broad Methods Repository with name "cumulus/cumulus_subcluster".

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export cumulus workflow in the drop-down menu.

2. In your workspace, open cumulus_subcluster in WORKFLOWS tab. Select Process single workflow from files as below

and click the SAVE button.

cumulus subcluster steps:

cumulus_subcluster processes the subset of single cells in the following steps:

- 1. **subcluster**. In this step, **cumulus_subcluster** first select the subset of cells from **cumulus** outputs according to user-provided criteria. It then performs batch correction, dimension reduction, diffusion map calculation, graph-based clustering and 2D visualization calculation (e.g. t-SNE/UMAP/FLE).
- 2. de_analysis (optional). In this step, cumulus_subcluster calculates potential markers for each cluster by performing a variety of differential expression (DE) analysis. The available DE tests include Welch's t test, Fisher's exact test, and Mann-Whitney U test. cumulus_subcluster can also calculate the area under ROC curve (AU-ROC) values for putative markers. If the samples are human or mouse immune cells, cumulus_subcluster can optionally annotate putative cell types for each cluster based on known markers.
- 3. **plot** (optional). In this step, **cumulus_subcluster** can generate the following 5 types of figures based on the **subcluster** step results:
 - **composition** plots which are bar plots showing the cell compositions (from different conditions) for each cluster. This type of plots is useful to fast assess library quality and batch effects.
 - tsne, fitsne, and net_tsne: t-SNE like plots based on different algorithms, respectively. Users can specify different cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.
 - umap and net_umap: UMAP like plots based on different algorithms, respectively. Users can specify different cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.
 - **fle** and **net_fle**: FLE (Force-directed Layout Embedding) like plots based on different algorithms, respectively. Users can specify different cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.
 - **diffmap** plots which are 3D interactive plots showing the diffusion maps. The 3 coordinates are the first 3 PCs of all diffusion components.

cumulus subcluster's inputs

cumulus_subcluster shares many inputs/outputs with **cumulus**, we will only cover inputs/outputs that are specific to **cumulus_subcluster** in this section.

Note that we will make the required inputs/outputs bold and all other inputs/outputs are optional.

Name	Description	Example	Default	
input_h5ad	Google bucket URL of input h5ad file containing cumu-	"gs://fc-e0000000-		
	lus results	0000-0000-0000-		
		0000000000000/my_results_	dir/my_results.h5	5ad"
output_nam	e This is the prefix for all output files. It should contain	"gs://fc-e0000000-		
	the Google bucket URL, subdirectory name and output	0000-0000-0000-		
	name prefix	0000000000000/my_results_	dir/my_results_si	ub"
subset_selec	tions	"louvain_labels:3,6"		
	Specify which cells will be included in the subcluster analysis.	or "lou- vain_labels:3,6;Donor:1,2"		
	This field contains one or more <subset_selection> strings separated by ';'.</subset_selection>			
	Each <subset_selection> string takes the format of 'attr:value,,value', which means select cells with attr in the values.</subset_selection>			
	If multiple <subset_selection> strings are specified, the subset of cells selected is the intersection of these strings</subset_selection>			
calculate_pse	cu Calimb ate diffusion-based pseudotimes based on croots>. croots> should be a comma-separated list of cell barcodes	"sample_1- ACCCGGGTTT- 1,sample_1- TCCCGGGAAA-2"	None	
num_cpu	Number of cpus per cumulus job	32	64	
memory	Memory size string	"200G"	"200G"	
disk_space	Total disk space in GB	100	100	
preemptible	Number of preemptible tries	2	2	

For other **cumulus_subcluster** inputs, please refer to cumulus cluster inputs list for details. Notice that some inputs (as listed below) in **cumulus cluster** inputs list are DISABLED for **cumulus_subcluster**:

- cite_seq
- cite_seq_capping
- output_filtration_results
- plot_filtration_results
- plot_filtration_figsize
- output_seurat_compatible
- batch_group_by
- min_genes
- max_genes
- min_umis
- max_umis
- mito_prefix
- percent_mito
- gene_percent_cells

- min_genes_on_raw
- counts_per_cell_after

cumulus subcluster's outputs

Name	Туре	Description
output_h5ad	File	
		h5ad-formatted HDF5 file containing all results (output_name.h5ad).
		If perform_de_analysis is on, this file should be the same as output_de_h5ad.
		To load this file in Python, it's similar as in cumulus cluster outputs section.
		Besides, for subcluster results, there is a new cell attributes in
		data.obs['pseudo_time'], which records the inferred pseudotime
		for each cell.
1	T.1	
output_loom_file		Generated loom file (output_name.loom)
output_parquet_fi	leFile	Generated PARQUET file that contains metadata and expression levels for
		every gene (output_name.parquet)
output_de_h5ad	File	Generated h5ad-formatted results with DE results updated (out-
		put_name.h5ad)
output_de_xlsx	File	Generated Spreadsheet reporting DE results (output_name.de.xlsx)
output_pdfs	Array[File]	Generated pdf files
output_htmls	Array[File]	Generated html files

8.8.4 Load Cumulus results into Seurat

First, you need to set output_seurat_compatible field to true in cumulus cluster inputs to generate a Seurat-compatible output file output_name.seurat.h5ad, in addition to the normal result output_name.h5ad.

Notice that python, the anndata python library with version at least 0.6.22.post1, and the reticulate R library are required to load the result into Seurat.

Execute the R code below to load the results into Seurat (working with both Seurat v2 and v3):

```
source("https://raw.githubusercontent.com/klarman-cell-observatory/cumulus/master/
    workflows/cumulus/h5ad2seurat.R")
ad <- import("anndata", convert = FALSE)
test_ad <- ad$read_h5ad("output_name.seurat.h5ad")
result <- convert_h5ad_to_seurat(test_ad)</pre>
```

The resulting Seurat object result has three data slots:

- · raw.data records filtered raw count matrix.
- data records filtered and log-normalized expression matrix.
- scale.data records variable-gene-selected, standardized expression matrix that are ready to perform PCA.

8.8.5 Visualize Cumulus results in Python

Ensure you have Pegasus installed.

Download your analysis result data, say output_name.h5ad, from Google bucket to your local machine.

Load the output:

```
import pegasus as pg
adata = pg.read_input("output_name.h5ad")
```

Violin plot of the computed quality measures:

t-SNE plot colored by louvain cluster labels and channel:

```
fig = pg.embedding(adata, basis = 'tsne', keys = ['louvain_labels', 'Channel'])
fig.savefig('output_file.tsne.pdf', dpi = 500)
```

t-SNE plot colored by genes of interest:

```
fig = pg.embedding(adata, basis = 'tsne', keys = ['CD4', 'CD8A'])
fig.savefig('output_file.genes.tsne.pdf', dpi = 500)
```

For other embedding plots using FIt-SNE (fitsne), Net t-SNE (net_tsne), CITE-Seq FIt-SNE (citeseq_fitsne), UMAP (umap), Net UMAP (net_umap), FLE (fle), or Net FLE (net_fle) coordinates, simply substitute its basis name for tsne in the code above.

Composition plot on louvain cluster labels colored by channel:

```
fig = pg.composition_plot(adata, by = 'louvain_labels', condition = 'Channel')
fig.savefig('output_file.composition.pdf', dpi = 500)
```

8.9 Run Terra pipelines via command line

You can run Terra pipelines via the command line by installing the **altocumulus** package.

8.9.1 Install altocumulus for Broad users

Request an UGER node:

```
reuse UGER qrsh -q interactive -1 h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab
```

The above command requests an interactive shell using the regevlab project with 4G memory per thread, 8 threads. Feel free to change the memory, thread, and project parameters.

Add conda to your path:

```
reuse Anaconda3
```

Activate the alto virtual environment:

```
source activate /seq/regev_genome_portal/conda_env/cumulus
```

8.9.2 Install altocumulus for non-Broad users

1. Make sure you have conda installed. If you haven't installed conda, use the following commands to install it on Linux:

```
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh .
bash Miniconda3-latest-Linux-x86_64.sh -p /home/foo/miniconda3
mv Miniconda3-latest-Linux-x86_64.sh /home/foo/miniconda3
```

where /home/foo/miniconda3 should be replaced by your own folder holding Miniconda3.

Or use the following commdands for MacOS installation:

1. Create a conda environment named "alto" and install altocumulus:

```
conda create -n alto -y pip
source activate alto
git clone https://github.com/klarman-cell-observatory/altocumulus.git
cd altocumulus
pip install -e .
```

When the installation is done, type alto fc_run -h in terminal to see if you can see the help information.

8.9.3 Run Terra workflows via alto fc_run

alto fc_run runs a Terra method. Features:

 Uploads local files/directories in your inputs to a Google Cloud bucket updates the file paths to point to the Google Cloud bucket.

Your sample sheet can point to local file paths. In this case, alto run will take care of uploading directories (e.g. fastq directories) and modifying the sample sheet to point to a Google Cloud bucket.

- Creates or uses an existing workspace.
- Uses the latest version of a method unless the method version is specified.

Options

Required options are in bold.

Name	Description
-m <method> -method <method></method></method>	Specify a Terra workflow < METHOD > to use. <pre><method> is of format Namespace/Name (e.g. cumulus/cellranger_workflow).</method></pre> A snapshot version number can optionally be specified (e.g. cumulus/cellranger_workflow/4); otherwise the latest snapshot of the method is used.
-w <workspace> -workspace <workspace></workspace></workspace>	Specify which Terra workspace <i><workspace></workspace></i> to use. <i><workspace></workspace></i> is also of format <i>Namespace/Name</i> (e.g. foo/bar). The workspace will be created if it does not exist.
-i <wdl_inputs> -inputs <wdl_inputs></wdl_inputs></wdl_inputs>	Specify the WDL input JSON file to use. It can be a local file, a JSON string, or a Google bucket URL directing to a remote JSON file.
-bucket-folder <folder></folder>	Store inputs to <folder> under workspace's google bucket.</folder>
-o <updated_json> -upload <updated_json></updated_json></updated_json>	Upload files/directories to Google bucket of the workspace, and generate an updated input JSON file (with local paths replaced by Google bucket URLs) to <updated_json> on local machine.</updated_json>

Example

This example shows how to use alto fc_run to run cellranger_workflow to extract gene-count matrices from sequencing output.

1. Prepare your sample sheet example_sample_sheet.csv as the following:

```
Sample, Reference, Flowcell, Lane, Index, Chemistry
sample_1, GRCh38, /my-local-path/flowcell1, 1-2, SI-GA-A8, threeprime
sample_2, GRCh38, /my-local-path/flowcell1, 3-4, SI-GA-B8, threeprime
sample_3, mm10, /my-local-path/flowcell1, 5-6, SI-GA-C8, fiveprime
sample_4, mm10, /my-local-path/flowcell1, 7-8, SI-GA-D8, fiveprime
sample_1, GRCh38, /my-local-path/flowcell2, 1-2, SI-GA-A8, threeprime
sample_2, GRCh38, /my-local-path/flowcell2, 3-4, SI-GA-B8, threeprime
sample_3, mm10, /my-local-path/flowcell2, 5-6, SI-GA-C8, fiveprime
sample_4, mm10, /my-local-path/flowcell2, 7-8, SI-GA-D8, fiveprime
```

where /my-local-path is the top-level directory of your BCL files on your local machine.

Note that sample_1, sample_2, sample_3, and sample_4 are sequenced on 2 flowcells.

2. Prepare your JSON input file inputs.json for cellranger_workflow:

```
{
    "cellranger_workflow.input_csv_file" : "/my-local-path/sample_sheet.csv",
    "cellranger_workflow.output_directory" : "gs://url/outputs",
    "cellranger_workflow.delete_input_bcl_directory": true
}
```

where gs://url/outputs is the folder on Google bucket of your workspace to hold output.

3. Run the following command to kick off your Terra workflow:

```
alto fc_run -m cumulus/cellranger_workflow -i inputs.json -w myworkspace_
-namespace/myworkspace_name -o inputs_updated.json
```

where myworkspace_namespace/myworkspace_name should be replaced by your workspace namespace and name.

Upon success, alto fc_run returns a URL pointing to the submitted Terra job for you to monitor.

If for any reason, your job failed. You could rerun it without uploading files again via the following command:

```
alto fc_run -m cumulus/cellranger_workflow -i inputs_updated.json -w myworkspace_

→namespace/myworkspace_name
```

because inputs_updated.json is the updated version of inputs.json with all local paths being replaced by their corresponding Google bucket URLs after uploading.

8.10 Examples

8.10.1 Example of Cell-Hashing and CITE-Seq Analysis on Cloud

In this example, you'll learn how to perform Cell-Hashing and CITE-Seq analysis using **cumulus** on Terra.

0. Workspace and Data Preparation

After registering on Terra and creating a workspace there, you'll need the following two information:

- **Terra workspace name**. This is shown on your Terra workspace webpage, with format "<*workspace-namespace*>/<*workspace-name*>". Let it be ws-lab/ws-01 in this example, which means that your workspace has namespace ws-lab and name ws-01.

Then upload your BCL directories to Google bucket of your workspace using gsutil:

where /my-local-path/BCL is the path to the top-level directory of your BCL files on your local machine, and data-source is the folder on Google bucket to hold the uploaded data.

8.10. Examples 65

1. Extract Gene-Count Matrices

First step is to extract gene-count matrices from sequencing output.

You need two original files from your dataset to start:

• Cell-Hashing Index CSV file, say its filename is cell_hashing_index.csv, of format *feature_barcode,feature_name*. See an example below:

```
AATCATCACAAGAAA, CB1
GGTCACTGTTACGTA, CB2
...
```

where each line is a pair of feature barcode and feature name of a sample.

• CITE-Seq Index CSV file, say its filename is cite_seq_index.csv, of the same format as above. See an example below:

```
TTACATGCATTACGA, CD19
GCATTAGCATGCAGC, HLA-ABC
...
```

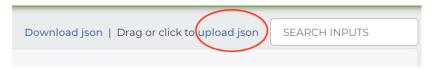
where each line is a pair of Barcode and Specificity of an Antibody.

Then upload them to your Google Bucket using gsutil. Assuming both files are in folder /Users/foo/data-source on your local machine, type the following command to upload:

Next, create a sample sheet, cellranger_sample_sheet.csv, on your local machine with content below:

For the details on how to prepare this sample sheet, please refer to Step 3 of Cell Ranger sample sheet instruction.

When you are done with the sample sheet, upload it to Google bucket:


```
gsutil cp cellranger_sample_sheet.csv gs://fc-e0000000-0000-0000-0000-000000000000/my-
```

Now we are ready to set up **cellranger_workflow** workflow for this phase. If your workspace doesn't have this workflow, import it to your workspace by following Step 5 and 6 of cellranger_workflow documentation.

Then prepare a JSON file, cellranger_inputs.json, which is used to set up the workflow inputs:

where gs://fc-e0000000-0000-0000-0000-00000000000/my-dir is the remote directory in which the output of cellranger_workflow will be generated. For the details on the options above, please refer to Cell Ranger workflow inputs.

When you are done with the JSON file, on cellranger_workflow workflow page, upload cellranger_inputs. json by clicking upload json link as below:

Then Click SAVE button to save the inputs, and click RUN ANALYSIS button as below to start the job:

You'll need 4 files for the next phases. 3 are from the output:

Besides, create a sample sheet, citeseq_antibody_control.csv, with content as the following example:

```
Antibody, Control
CD3-0034, Mouse_IgG1
CD4-0045, Mouse_IgG1
...
```

where each line is a pair of Antibody name and the Control group name to which it is assigned. You should be able to get this information from your experiment setting or the original dataset.

Copy or upload them to gs://fc-e0000000-0000-0000-0000-0000000000/my-dir.

2. Demultiplex Cell-Hashing Data

1. Prepare a sample sheet, cell_hashing_sample_sheet.csv, with the following content:

8.10. Examples 67

where **OUTNAME** specifies the subfolder and file names of output, which is free to change, **RNA** and **ADT** columns specify the RNA and ADT meta-data of samples, and **TYPE** is cell-hashing for this phase.

Then upload it to Google bucket:

- 2. If your workspace doesn't have **cumulus_hashing_cite_seq** workflow, import it to your workspace by following Step 5 and 6 of cumulus_hashing_cite_seq documentation.
- 3. Prepare an input JSON file, cell_hashing_inputs.json with the following content to set up cumulus_hashing_cite_seq workflow inputs:

For the details on these options, please refer to cell-hashing/nuclei-hashing inputs.

4. On the page of cumulus_hashing_cite_seq workflow, upload cell_hashing_inputs.json by clicking upload json link. Save the inputs, and click RUN ANALYSIS button to start the job.

When the execution is done, you'll get a processed file, exp_demux.h5sc, stored on cloud gs://fc-e0000000-0000-0000-0000-00000000000/my-dir/exp/.

3. Merge RNA and ADT Matrices for CITE-Seq Data

1. Prepare a sample sheet, cite_seq_sample_sheet.csv, with the following content:

The structure of sample sheet here is the same as Phase 2. The difference is that you are now using the demultiplexed output h5sc file from Phase 2 as **RNA** here, and the sample **TYPE** is now cite-seq.

Then upload it to Google bucket:

2. Prepare an input JSON file, cite_seq_inputs.json, in the same directory as above, with the following content:

For the details on these options, please refer to cell-hashing/nuclei-hashing inputs.

3. On **cumulus_hashing_cite_seq** workflow page, clear all previous inputs, and then upload cite_seq_inputs.json by clicking upload json link. Save the new inputs, and click RUN ANALYSIS button to start the job.

When the execution is done, you'll get a merged raw matrices file, exp_raw.h5sc, stored on cloud gs://fc-e0000000-0000-0000-0000-000000000000/my-dir/exp raw.

4. Data Analysis

1. Prepare a sample sheet, cumulus_count_matrix.csv, with the following content:

```
Sample, Location exp,gs://fc-e0000000-0000-0000-0000-0000000000/my-dir/exp_raw/exp_raw.h5sc
```

This sample sheet describes the metadata for each 10x channel (as one row in the sheet). **Sample** specifies the name for each channel, which can be renamed; **Location** specifies the file location, which is the output of Phase 3.

Then upload it to Google bucket:

Alternative, if you have only one count matrix for analysis, which is the case here, you can skip this step. See this manual for input file formats that cumulus currently supports.

- 2. If your workspace doesn't have **cumulus** workflow, import it to your workspace by following Step 2 and 3 of cumulus documentation.
- 3. Prepare a JSON file, cumulus_inputs.json with the following content to set up cumulus workflow inputs:

(continues on next page)

8.10. Examples 69

(continued from previous page)

Alternatively, if you have only one count matrix for analysis and has skipped Step 1, directly set its location in cumulus.input_file parameter above. For this example, it is:

All the rest parameters remain the same.

Notice that for some file formats, cumulus.genome is required.

A typical cumulus pipeline consists of 4 steps, which is given here. For the details of options above, please refer to cumulus inputs.

4. On the page of cumulus workflow, upload cumulus_inputs.json by clicking upload json link. Save the inputs, and click RUN ANALYSIS button to start the job.

- exp_merged_out.h5sc: The aggregated count matrix data. This file doesn't exist if your cumulus. input_file parameter is not a sample sheet.
- exp_merged_out.h5ad: The processed RNA matrix data.
- exp_merged_out.filt.xlsx: The Quality-Control (QC) summary of the raw data.
- exp_merged_out.filt.{UMI, gene, mito}.pdf: The QC plots of the raw data.
- exp_merged_out.de.xlsx: Differential Expression analysis result.
- exp_merged_out.markers.xlsx: Result on cluster-specific markers predicted by gradient boosting machine.
- exp_merged_out.anno.txt: Cell type annotation output.
- exp_merged_out.fitsne.pdf: FIt-SNE plot.
- exp_merged_out.citeseq.fitsne.pdf: CITE-Seq FIt-SNE plot.
- $\bullet \ \texttt{exp_merged_out.louvain_labels.assignment.composition.pdf:} \ Composition \ plot.$

You can directly go to your Google Bucket to view or download these results.

(optional) Run Terra Workflows in Command Line

For Phase 1, 2, and 3, besides uploading sample sheets and setting-up workflow inputs on workflow pages, you can also start the workflow execution via command line using **altocumulus** tool.

First, install *altocumulus* by following altocumulus installation instruction.

1. For Phase 1 above, when you are done with creating a sample sheet cellranger_sample_sheet.csv on your local machine, in the same directory, prepare JSON file cellranger_inputs.json as below:

```
{
    "cellranger_workflow.input_csv_file" : "cellranger_sample_sheet.csv",
    ......
}
```

where all the rest parameters remain the same as in Phase 1. Import **cellranger_workflow** workflow to your workspace as usual.

Now run the following command in the same directory on your local machine:

```
alto fc_run -m cumulus/cellranger_workflow -w ws-lab/ws-01 --bucket-folder my-dir_

→-i cellranger_input.json -o cellranger_input_updated.json
```

Notice that if the execution failed, you could rerun the execution by setting cellranger_input_updated. json for -i option to use the sample sheet already uploaded to Google bucket. Similarly below.

2. For Phase 2 above, similarly, in the same directory of your cell_hashing_sample_sheet.csv file, prepare JSON file cell_hashing_inputs.json as below:

where all the rest parameters remain the same as in Phase 2. Import **cumulus_hashing_cite_seq** workflow to your workspace as usual.

Run the following command in the same directory on your local machine:

```
alto fc_run -m cumulus/cumulus_hashing_cite_seq -w ws-lab/ws-01 --bucket-folder_

→my-dir -i cell_hashing_inputs.json -o cell_hashing_inputs_updated.json
```

3. For Phase 3 above, similarly, in the same directory of your cite_seq_sample_sheet.csv file, prepare JSON file cite_seq_inputs.json as below:

where all the rest parameters remain the same as in Phase 3.

Run the following command in the same directory on your local machine:

```
alto fc_run -m cumulus/cumulus_hashing_cite_seq -w ws-lab/ws-01 --bucket-folder_ 
-my-dir -i cite_seq_inputs.json -o cite_seq_inputs_updated.json
```

4. For Phase 4 above, similarly, in the same directory of your cumulus_count_matrix.csv file, prepare JSON file cumulus_inputs.json as below:

```
{
    "cumulus.input_file" : "cumulus_count_matrix.csv",
    ...
}
```

where all the rest parameters remain the same as in Phase 4.

8.10. Examples 71

Alternatively, if your input is not a sample sheet, simply set your cumulus_inputs.json as:

where all the rest parameters remain the same.

Run the following command in the same directory of your cumulus_inputs.json file:

```
alto fc_run -m cumulus/cumulus -w ws-lab/ws-01 --bucket-folder my-dir/results -i_ -cumulus_inputs.json -o cumulus_inputs_updated.json
```

Examples using Terra to perform single-cell sequencing analysis are provided here. Please click the topics on the left panel under title "Examples" to explore.

8.11 Contribution