
CUED Part IA Flood Monitoring and
Warning System Documentation

Release 2024.0

Garth N. Wells

Jan 11, 2024

PROJECT SPECIFICATION

1 Requirements 3
1.1 Language and library structure . 3
1.2 Documentation . 3
1.3 Development practices . 3
1.4 Data source . 3

2 Deliverables 5
2.1 Milestone 1 . 6
2.2 Milestone 2 . 12

3 Getting started 19
3.1 Development environment . 19
3.2 Creating a team development repository . 20
3.3 Editing and executing Python code . 20
3.4 Automated testing . 21
3.5 Project planning . 21

4 Development tools and practices 23
4.1 Working in a team . 23
4.2 Using Git . 23
4.3 Test framework . 25

5 Help and feedback 29
5.1 Help . 29
5.2 Feedback . 29

6 Suggestions for experienced developers 31

7 Learning objectives and assessment 33
7.1 Learning objectives . 33
7.2 Assessment guidelines . 33

i

ii

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

Lent Term 2024, Department of Engineering, University of Cambridge

Your team has been tasked with building the computational backend (library) to a new real-time flood warning system
for England. The library should:

1. Fetch real-time river level data over the Internet from the Department for Environment Food and Rural Affairs
data service.

2. Support specified data query types on river level monitoring stations.

3. Analyse monitoring station data in order to assess flood risks, and issue flood warnings for areas of the country.

The mandated development practices are listed in the Requirements section. The library is required to support specific
query interfaces (API), as outlined in the Deliverables section, which form the public interface of the library. Another
company has been contracted to build a user interface using the prescribed public interfaces to the library, hence they
cannot be changed.

Development team

Your development team is your laboratory group.

PROJECT SPECIFICATION 1

https://data.gov.uk/publisher/department-for-environment-food-and-rural-affairs
https://data.gov.uk/publisher/department-for-environment-food-and-rural-affairs
https://en.wikipedia.org/wiki/Application_programming_interface

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

2 PROJECT SPECIFICATION

CHAPTER

ONE

REQUIREMENTS

This section defines the technical requirements for the implementation.

1.1 Language and library structure

Library is to be developed in Python 3 and using multiple modules (files). Each file should collect related functionality.

1.2 Documentation

All classes, methods (a function that belongs to a class) and functions must be documented with a ‘docstring’. The
docstring shall explain what the class or function does. For a function, the docstring shall make clear the purpose, what
arguments are expected and what is returned.

Simple examples of Python docstrings can be viewed here.

1.3 Development practices

The quality of a flood warning software library is paramount; implementation errors could put lives at risk and lead
to substantial financial losses. You are therefore required to adopt software engineering best practices. Your team is
required to:

• Use the Git version control system (see Using Git).

• Provide automated tests for your implementations using pytest to demonstrate the quality of the system (see Test
framework)

• Use automated continuous integration testing (see Automated testing)

1.4 Data source

The system is to be built on the (near) real-time river level data at the nearly 2000 monitoring stations that is made
available by the Department for Environment Food and Rural Affairs (DEFRA) at https://environment.data.gov.uk/.
For most stations river level data is updated every 15 minutes. The data service is summarised at https://data.gov.uk/
dataset/real-time-and-near-real-time-river-level-data1.

REST interface for data retrieval
Data is fetched from https://environment.data.gov.uk/ using a REST interface. With a suitably formed URL (a
string), as defined in the service documentation, the server returns the requested data as a JSON object. JSON

3

https://en.wikipedia.org/wiki/Docstring#Python
https://git-scm.com/
http://docs.pytest.org//
https://environment.data.gov.uk/
https://data.gov.uk/dataset/real-time-and-near-real-time-river-level-data1
https://data.gov.uk/dataset/real-time-and-near-real-time-river-level-data1
https://environment.data.gov.uk/
https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.json.org/

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

objects are represented in Python as data structures made up of dictionaries, lists and strings. JSON objects
are straightforward to manipulate from Python. The interface to the DEFRA service is documented at https:
//environment.data.gov.uk/flood-monitoring/doc/reference.

4 Chapter 1. Requirements

https://environment.data.gov.uk/flood-monitoring/doc/reference
https://environment.data.gov.uk/flood-monitoring/doc/reference

CHAPTER

TWO

DELIVERABLES

This section defines the project deliverables. Functionality is to be implemented in the module named floodsystem.

Milestones and deadlines

Project deliverables/tasks are structured into two milestones. Milestone 1 must be delivered by the interim marking
session, and Milestone 2 by the final marking session. You may deliver early by signing off at the Help Desk.

Clarifications

Clarifications can be sought at the Help Desk.

Task completion, interfaces and demonstration programs

Each task requires the implementation of functionality that can be accessed via a specified interface, usually a function
signature (function name and arguments, and return values). At the end of each task is a description of a demonstration
program that must be be provided. Demonstration programs must have the structure:

def run():
Put code here that demonstrates functionality

if __name__ == "__main__":
run()

You should expect to run demonstration programs during a marking session.

Important: Conforming to the specified public interface is critical as this will allow the interface team to work
independently of your development (and it will allow automated testing of your work).

5

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

Testing

Write tests as you progress through the tasks (see Test framework) and add deliverables and tests to the automated
testing system (see Automated testing).

Tip: To deliver on a Task, you will often want to implement more functions than just the required function interface.
Use additional functions to:

• Modularise and simplify your library.

• Allow re-use of functions across tasks.

• Simplify testing.

As you work through the Tasks, look for opportunities to re-structure code in order to re-use functions.

Units

Distances in kilometres (km) and heights in metres (m).

2.1 Milestone 1

Processing of monitoring station properties.

Deadline
Mid-term sign-up session

Points
4

Caution: Do not use the ‘representative output’ in your pytest tests. Representative output is provided to help you,
but would not be part of a real contract. Moreover, you are working with real-time data which will change.

2.1.1 Task 1A: build monitoring station data

This task has been completed for you in the template repository.

1. In a submodule station, create a class MonitoringStation that represents a monitoring station, and has
attributes:

• Station ID (string)

• Measurement ID (string)

• Name (string)

• Geographic coordinate (tuple(float, float))

• Typical low/high levels (tuple(float, float))

• River on which the station is located (string)

• Closest town to the station (string)

6 Chapter 2. Deliverables

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

2. Implement the methods __init__ to initialise a station with data, and __repr__ for printing a description of
the station.

3. In the submodule stationdata implement a function that returns a list of MonitoringStation objects (for
active stations with water level monitoring). To avoid excessive data requests, the function should save fetched
data to file, and then optionally read from a cache file. The function should have the signature:

def build_station_list(use_cache=True):

The data should be retrieved from the online service documented at http://environment.data.gov.uk/
flood-monitoring/doc/reference.

Demonstration program

In the program file Task1A.py, use the function stationdata.build_station_list to build a list of monitoring
stations. Print the total number of stations, and a summary of the stations named ‘Bourton Dickler’, ‘Surfleet Sluice’
and ‘Gaw Bridge’. Representative output is:

Number of stations: 1840
Station name: Bourton Dickler

id: http://environment.data.gov.uk/flood-monitoring/id/stations/1029TH
measure id: http://environment.data.gov.uk/flood-monitoring/id/measures/1029TH-

→˓level-stage-i-15_min-mASD
coordinate: (51.874767, -1.740083)
town: Little Rissington
river: Dikler
typical range: (0.068, 0.42)

Station name: Surfleet Sluice
id: http://environment.data.gov.uk/flood-monitoring/id/stations/E2043
measure id: http://environment.data.gov.uk/flood-monitoring/id/measures/E2043-

→˓level-stage-i-15_min-mASD
coordinate: (52.845991, -0.100848)
town: Surfleet Seas End
river: River Glen
typical range: (0.15, 0.895)

Station name: Gaw Bridge
id: http://environment.data.gov.uk/flood-monitoring/id/stations/52119
measure id: http://environment.data.gov.uk/flood-monitoring/id/measures/52119-

→˓level-stage-i-15_min-mASD
coordinate: (50.976043, -2.793549)
town: Kingsbury Episcopi
river: River Parrett
typical range: (0.231, 0.971)

2.1. Milestone 1 7

https://docs.python.org/3/library/stdtypes.html#lists
http://environment.data.gov.uk/flood-monitoring/doc/reference
http://environment.data.gov.uk/flood-monitoring/doc/reference

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

2.1.2 Task 1B: sort stations by distance

1. In the submodule geo implement a function that, given a list of station objects and a coordinate p, re-
turns a list of (station, distance) tuples, where distance (float) is the distance of the station
(MonitoringStation) from the coordinate p. The returned list should be sorted by distance. The required
function signature is:

def stations_by_distance(stations, p):

where stations is a list of MonitoringStation objects and p is a tuple of floats for the coordinate p.

Tip: The distance between two geographic coordinates (latitude/longitude) is computed using the haver-
sine formula. You could program the haversine formula, or you could use a Python library to perform the
computation for you, e.g. https://pypi.org/project/haversine/.

Hint: Build a list of all (station, distance) tuples, and use the provided function utils.
sort_by_key to produce a list that is sorted by the second entry in the tuple.

Demonstration program

Provide a program file Task1B.py that uses geo.stations_by_distance and prints a list of tuples (station name,
town, distance) for the 10 closest and the 10 furthest stations from the Cambridge city centre, (52.2053, 0.1218).
The closest 10 entries (e.g., x[:10]) in the list may be:

[('Cambridge Jesus Lock', 'Cambridge', 0.8402364350834995), ('Bin Brook', 'Cambridge',␣
→˓2.502274086951454), ("Cambridge Byron's Pool", 'Grantchester', 4.0720438555077125), (
→˓'Cambridge Baits Bite', 'Milton', 5.115589516578674), ('Girton', 'Girton', 5.
→˓227070345811418), ('Haslingfield Burnt Mill', 'Haslingfield', 7.044388165868453), (
→˓'Oakington', 'Oakington', 7.128249171700346), ('Stapleford', 'Stapleford', 7.
→˓265694306995238), ('Comberton', 'Comberton', 7.7350743760373675), ('Dernford',
→˓'Great Shelford', 7.993861351711722)]

and the furthest 10 (e.g., x[-10:]):

[('Boscadjack', 'Wendron', 440.0026482838576), ('Gwithian', 'Gwithian', 442.
→˓05491558132354), ('Helston County Bridge', 'Helston', 443.37824966454974), ('Loe Pool
→˓', 'Helston', 445.07184458260684), ('Relubbus', 'Relubbus', 448.64944322554413), (
→˓'St Erth', 'St Erth', 449.03415711886015), ('St Ives Consols Farm', 'St Ives', 450.
→˓0734690482922), ('Penzance Tesco', 'Penzance', 456.3857579793324), ('Penzance␣
→˓Alverton', 'Penzance', 458.5766422710278), ('Penberth', 'Penberth', 467.
→˓53367291629183)]

8 Chapter 2. Deliverables

https://docs.python.org/3/library/stdtypes.html#lists
https://docs.python.org/3/library/stdtypes.html#tuples
https://en.wikipedia.org/wiki/Haversine_formula
https://en.wikipedia.org/wiki/Haversine_formula
https://pypi.org/project/haversine/

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

2.1.3 Task 1C: stations within radius

1. In the submodule geo implement a function that returns a list of all stations (type MonitoringStation) within
radius r of a geographic coordinate x. The required function signature is:

def stations_within_radius(stations, centre, r):

where stations is a list of MonitoringStation objects, centre is the coordinate x and r is the radius.

Demonstration program

Provide a program file Task1C.py that uses the function geo.stations_within_radius to build a list of stations
within 10 km of the Cambridge city centre (coordinate (52.2053, 0.1218)). Print the names of the stations, listed in
alphabetical order. Representative output:

['Bin Brook', 'Cambridge Baits Bite', "Cambridge Byron's Pool",
'Cambridge Jesus Lock', 'Comberton', 'Dernford', 'Girton',
'Haslingfield Burnt Mill', 'Lode', 'Oakington', 'Stapleford']

2.1.4 Task 1D: rivers with a station(s)

1. In the submodule geo develop a function that, given a list of station objects, returns a container
(list/tuple/set) with the names of the rivers with a monitoring station. The function should have the sig-
nature:

def rivers_with_station(stations):

where stations is a list of MonitoringStation objects. The returned container should not contain duplicate
entries.

Tip: Consider returning a Python set object. A set contains only unique elements. This is useful for building a
collection of river names since a set will never contain duplicate entries, no matter how many times a river name
is added. A brief example of using a set is available here.

2. In the submodule geo implement a function that returns a Python dict (dictionary) that maps river names (the
‘key’) to a list of station objects on a given river. The function should have the signature:

def stations_by_river(stations):

where stations is a list of MonitoringStation objects.

Demonstration program

Provide a program file Task1D.py that:

• Uses geo.rivers_with_station to print how many rivers have at least one monitoring station (Represen-
tative result: 843) and prints the first 10 of these rivers in alphabetical order. Representative output:

843 stations. First 10 - ['Addlestone Bourne', 'Adur', 'Aire Washlands',
→˓'Alconbury Brook',
'Aldbourne', 'Aller Brook', 'Alre', 'Alt', 'Alverthorpe Beck', 'Ampney Brook']

2.1. Milestone 1 9

https://docs.python.org/3/library/stdtypes.html#lists
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/tutorial/datastructures.html#sets

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

• Uses geo.stations_by_river to print the names of the stations located on the following rivers in alpha-
betical order:

– ‘River Aire’

Representative output:

['Airmyn', 'Apperley Bridge', 'Armley', 'Beal Weir Bridge', 'Bingley',
→˓'Birkin Holme Washlands', 'Carlton Bridge', 'Castleford', 'Chapel Haddlesey
→˓', 'Cononley', 'Cottingley Bridge', 'Ferrybridge Lock', 'Fleet Weir',
→˓'Gargrave', 'Kildwick', 'Kirkstall Abbey', 'Knottingley Lock', 'Leeds Crown␣
→˓Point', 'Saltaire', 'Snaygill', 'Stockbridge']

– ‘River Cam’

Representative output:

['Cam', 'Cambridge', 'Cambridge Baits Bite', 'Cambridge Jesus Lock', 'Dernford
→˓', 'Weston Bampfylde']

– ‘River Thames’

Representative output:
['Abingdon Lock', 'Bell Weir', 'Benson Lock', 'Boulters Lock', 'Bray Lock',
→˓'Buscot Lock', 'Caversham Lock', 'Chertsey Lock', 'Cleeve Lock', 'Clifton␣
→˓Lock', 'Cookham Lock', 'Cricklade', 'Culham Lock', 'Days Lock', 'Ewen',
→˓'Eynsham Lock', 'Farmoor', 'Godstow Lock', 'Goring Lock', 'Grafton Lock',
→˓'Hannington Bridge', 'Hurley Lock', 'Iffley Lock', 'Kings Lock', 'Kingston',
→˓ 'Maidenhead', 'Mapledurham Lock', 'Marlow Lock', 'Marsh Lock', 'Molesey␣
→˓Lock', 'Northmoor Lock', 'Old Windsor Lock', 'Osney Lock', 'Penton Hook',
→˓'Pinkhill Lock', 'Radcot Lock', 'Reading', 'Romney Lock', 'Rushey Lock',
→˓'Sandford-on-Thames', 'Shepperton Lock', 'Shifford Lock', 'Shiplake Lock',
→˓'Somerford Keynes', 'Sonning Lock', 'St Johns Lock', 'Staines', 'Sunbury ␣
→˓Lock', 'Sutton Courtenay', 'Teddington Lock', 'Thames Ditton Island',
→˓'Trowlock Island', 'Walton', 'Whitchurch Lock', 'Windsor Park']

2.1.5 Task 1E: rivers by number of stations

1. Implement a function in geo that determines the N rivers with the greatest number of monitoring stations. It
should return a list of (river name, number of stations) tuples, sorted by the number of stations. In the case
that there are more rivers with the same number of stations as the N th entry, include these rivers in the list. The
function should have the signature:

def rivers_by_station_number(stations, N):

where stations is a list of MonitoringStation objects.

Demonstration program

Provide a program file Task1E.py that prints the list of (river, number stations) tuples when N = 9. Representative
result is:
[('Thames', 55), ('River Great Ouse', 31), ('River Avon', 30), ('River Calder', 24), (
→˓'River Aire', 21), ('River Severn', 20), ('River Derwent', 18), ('River Stour', 16),␣
→˓('River Wharfe', 14), ('River Trent', 14), ('Witham', 14)]

10 Chapter 2. Deliverables

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

The above list has more then 9 entries since a number of rivers have 14 stations.

2.1.6 Task 1F: typical low/high range consistency

It is suspected that some stations have inconsistent data for typical low/high ranges, namely that (i) no data is available;
or (ii) the reported typical high range is less than the reported typical low. This needs to be checked so that stations
with inconsistent data are not used erroneously in flood warning analysis.

1. Add a method to the MonitoringStation class that checks the typical high/low range data for consistency. The
method should return True if the data is consistent and False if the data is inconsistent or unavailable. The
method should have the signature:

def typical_range_consistent(self):

2. Implement in the submodule station a function that, given a list of station objects, returns a list of stations
that have inconsistent data. The function should use MonitoringStation.typical_range_consistent,
and should have the signature:

def inconsistent_typical_range_stations(stations):

where stations is a list of MonitoringStation objects.

Demonstration program

Provide a program file Task1F.py that builds a list of all stations with inconsistent typical range data. Print a list
of station names, in alphabetical order, for stations with inconsistent data. The representative result (at the time of
writing) is:

['Addlestone', 'Airmyn', 'Allerford', 'Arundel Queen St Bridge', 'Blacktoft', 'Braunton
→˓', 'Brentford', 'Broomfleet Weighton Lock', 'East Hull Hedon Road', 'Eccelsfield␣
→˓Morrisons', 'Fleetwood', 'Goole', 'Gravesend', 'Hedon Thorn Road Bridge', 'Hedon␣
→˓Westlands Drain', 'Hull Barrier Victoria Pier', 'Hull High Flaggs, Lincoln Street',
→˓"King's Lynn", 'Littlehampton', 'Paull', 'Salt end', 'Silloth Docks', 'Stone Creek',
→˓'Templers Road', 'Topsham', 'Totnes', 'Truro Harbour', 'Weare Giffard', 'Westbrook␣
→˓Mill', 'Wilfholme PS', 'Wilfholme PS Hull Level']

2.1.7 Optional extensions

1. Display the location of each station on a map (perhaps from Google Maps). Suitable Python libraries tools for
this include Bokeh and Plotly.

2. Explore what other station information is available in the retrieved data. The function stationdata.
build_station_list is a good place to start. Extend MonitoringStation to store any interesting station
data as attributes.

3. Advanced: The MonitoringStation attributes (station data) are properties of the station and will not generally
change. However, we could accidentally and mistakenly change an attribute in our code. For flood forecasting and
warning, such an error could have dire consequences. Use property decorators to prevent accidental modification
of the attributes.

2.1. Milestone 1 11

http://bokeh.pydata.org/
https://plot.ly/python/#maps
https://docs.python.org/3/library/functions.html#property

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

2.2 Milestone 2

The focus of the Milestone 2 is processing monitoring station real-time data to warn of flood risks.

Deadline
End-of-term sign-up session

Points
8

Caution: Representative output for each demonstration program is provided as a guide. You will be working with
real-time data, so the precise output will change with time.

2.2.1 Task 2A: fetch real-time river levels

This task has been completed for you in the template repository.

1. Extend the MonitoringStation class with an attribute latest_level (float), and implement in the
stationdata submodule a function that updates the latest water level for all stations in a list using data fetched
from the Internet. If level data is not available, the attribute latest_level should be set to None. The function
should have the signature:

def update_water_levels(stations):

where stations is a list of MonitoringStation objects.

Demonstration program

Provide a program file Task2A.py that sets the latest water level for all stations, and prints the latest levels at the
stations ‘Bourton Dickler’, ‘Surfleet Sluice’, ‘Gaw Bridge’, ‘Hemingford’ and ‘Swindon’. Typical output is:

Station name and current level: Bourton Dickler, 0.146
Station name and current level: Surfleet Sluice, 0.84
Station name and current level: Gaw Bridge, 0.463
Station name and current level: Hemingford, 0.197
Station name and current level: Swindon, 1.192

2.2.2 Task 2B: assess flood risk by level

1. Add a method to MonitoringStation that the returns the latest water level as a fraction of the typical range,
i.e. a ratio of 1.0 corresponds to a level at the typical high and a ratio of 0.0 corresponds to a level at the typical
low. The method should have the signature:

def relative_water_level(self):

If the necessary data is not available or is inconsistent, the function should return None.

2. In the submodule flood, implement a function that returns a list of tuples, where each tuple holds (i) a station
(object) at which the latest relative water level is over tol and (ii) the relative water level at the station. The
returned list should be sorted by the relative level in descending order. The function should have the signature:

12 Chapter 2. Deliverables

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

def stations_level_over_threshold(stations, tol):

where stations is a list of MonitoringStation objects. Consider only stations with consistent typical
low/high data.

Demonstration program

Provide a program file Task2B.py that prints the name of each station at which the current relative level is over
0.8, with the relative level alongside the name (do not forget to handle the cases of inconsistent range data). Typical
output will be of the form:

Ledgard Bridge 3.982
Godstow Lock 1.56198347107438
Windyridge Road 1.4470588235294117
Castle Mill (Bedford) 1.3333333333333328
Newark Weir 1.249999999999988
Cam 1.1813725490196074
Hayes Basin 1.166666666666667
Eckington Sluice 1.0875462392108504
Romney Lock 1.0829268292682928
Pinkhill Lock 1.0524475524475525
.
.

Explore your implementation for different tolerances.

2.2.3 Task 2C: most at risk stations

1. Implement a function in the submodule flood that returns a list of the N stations (objects) at which the water
level, relative to the typical range, is highest. The list should be sorted in descending order by relative level. The
function should have the signature:

def stations_highest_rel_level(stations, N):

where stations is a list of MonitoringStation objects.

Demonstration program

Provide a program file Task2C.py that prints the names of the 10 stations at which the current relative level is
highest, with the relative level beside each station name. Typical output will be of the form:

Ledgard Bridge 3.982
Godstow Lock 1.56198347107438
Windyridge Road 1.4470588235294117
Castle Mill (Bedford) 1.3333333333333328
Newark Weir 1.249999999999988
Cam 1.1813725490196074
Hayes Basin 1.166666666666667
Eckington Sluice 1.0875462392108504
Romney Lock 1.0829268292682928
Pinkhill Lock 1.0524475524475525

2.2. Milestone 2 13

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

2.2.4 Task 2D: level data time history

This task has been completed for you in the template repository.

1. Implement in the submodule datafetcher a function that retrieves from the Internet the water level data for a
given station ‘measure id’ over the period from the current time back to d days ago. It should return a tuple with
the first entry being the sample times and the second entry being the water levels. The function should have the
signature:

def fetch_measure_levels(measure_id, dt):

Typical use to retrieve the level data at a station over the past 10 days would be:

import datetime
dt = 10
dates, levels = fetch_measure_levels(station.measure_id,

dt=datetime.timedelta(days=dt))

Demonstration program

Provide a program file Task2D.py that fetches and prints the level history at the station ‘Cam’ over the past 2 days.
Typical output:

2017-01-08 04:00:00+00:00 0.819
2017-01-08 03:45:00+00:00 0.819
2017-01-08 03:30:00+00:00 0.819
2017-01-08 03:15:00+00:00 0.819
2017-01-08 03:00:00+00:00 0.819
2017-01-08 02:45:00+00:00 0.819
2017-01-08 02:30:00+00:00 0.819
2017-01-08 02:15:00+00:00 0.819
2017-01-08 02:00:00+00:00 0.82
2017-01-08 01:45:00+00:00 0.82
.
.

2.2.5 Task 2E: plot water level

1. Implement in a submodule plot a function that displays a plot (using Matplotlib) of the water level data against
time for a station, and include on the plot lines for the typical low and high levels. The axes should be labelled
and use the station name as the plot title. The function should have the signature:

def plot_water_levels(station, dates, levels):

where station is a MonitoringStation object.

Hint: Example code to display a plot using Matplotlib:

import matplotlib.pyplot as plt
from datetime import datetime, timedelta

(continues on next page)

14 Chapter 2. Deliverables

http://matplotlib.org/

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

(continued from previous page)

t = [datetime(2016, 12, 30), datetime(2016, 12, 31), datetime(2017, 1, 1),
datetime(2017, 1, 2), datetime(2017, 1, 3), datetime(2017, 1, 4),
datetime(2017, 1, 5)]

level = [0.2, 0.7, 0.95, 0.92, 1.02, 0.91, 0.64]

Plot
plt.plot(t, level)

Add axis labels, rotate date labels and add plot title
plt.xlabel('date')
plt.ylabel('water level (m)')
plt.xticks(rotation=45);
plt.title("Station A")

Display plot
plt.tight_layout() # This makes sure plot does not cut off date labels

plt.show()

2. Optional: In place of Matplotlib, try using a web-centric plotting library such as Bokeh or Plotly.

3. Optional extension: Generalise your implementation such that it takes a list of up to 6 stations displays the level
at each station as subplot inside a single plot.

Demonstration program

Provide a program file Task2E.py that plots the water levels over the past 10 days for the 5 stations at which the
current relative water level is greatest.

2.2.6 Task 2F: function fitting

Least-squares polynomial fit

A least-squares polynomial fit is finding a polynomial that ‘best’ fits data points in the least-squares sense, i.e. for a
set of 𝑛 data points

((𝑥0, 𝑦0), (𝑥1, 𝑦1), . . . , (𝑥𝑛−1, 𝑦𝑛−1))

the best-fit polynomial 𝑓(𝑥) minimises the error

𝑒 =

𝑛−1∑︁
𝑖=0

(𝑦𝑖 − 𝑓(𝑥𝑖))
2.

Details of how to compute least-squares fits is covered in Part IB.

1. In a submodule analysis implement a function that given the water level time history (dates, levels) for a station
computes a least-squares fit of a polynomial of degree p to water level data. The function should return a tuple
of (i) the polynomial object and (ii) any shift of the time (date) axis (see below). The function should have the

2.2. Milestone 2 15

http://bokeh.pydata.org/
https://plot.ly/python/

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

signature:

def polyfit(dates, levels, p):

Typical usage for a polynomial of degree 3 would be:

poly, d0 = polyfit(dates, levels, 3)

where poly is a numpy.poly1d object an d0 is any shift of the date (time) axis.

Hint: To work with dates as function arguments, e.g. a polynomial that depends on time, the dates need to be
converted to floats. Matplotlib has a function date2num that from a list of datetime objects returns a list of
float, where the floats are the time in days (including fractions of days) since the year 0001:

import matplotlib
x = matplotlib.dates.date2num(dates)

Hint: NumPy has tools for computing least-squares fits to data. The below example computes a least-squares
fit for some data points, and plots the data points and the least-squares polynomial:

import numpy as np
import matplotlib.pyplot as plt

Create set of 10 data points on interval (0, 2)
x = np.linspace(0, 2, 10)
y = [0.1, 0.09, 0.23, 0.34, 0.78, 0.74, 0.43, 0.31, 0.01, -0.05]

Find coefficients of best-fit polynomial f(x) of degree 4
p_coeff = np.polyfit(x, y, 4)

Convert coefficient into a polynomial that can be evaluated,
e.g. poly(0.3)
poly = np.poly1d(p_coeff)

Plot original data points
plt.plot(x, y, '.')

Plot polynomial fit at 30 points along interval
x1 = np.linspace(x[0], x[-1], 30)
plt.plot(x1, poly(x1))

Display plot
plt.show()

Caution: In the above example, if we changed the x interval (0, 2) to (10000, 10002), i.e.:

x = np.linspace(10000, 10002, 10)

NumPy prints the warning message:

RankWarning: Polyfit may be poorly conditioned warnings.warn(msg, RankWarning)

16 Chapter 2. Deliverables

https://docs.scipy.org/doc/numpy/reference/generated/numpy.poly1d.html
https://matplotlib.org/api/dates_api.html#matplotlib.dates.date2num

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

This message is warning that floating point round-off errors will be significant and will affect accuracy. In
simple terms, the issues is that when we raise a number between 10000 and 10002 to a power, small but
important differences are effectively ‘lost’.

This issues arises if we work with dates converted to floats using matplotlib.dates.date2num since it
returns the number of days since the origin of the Gregorian calendar. The numbers will therefore be large.
A way to improve the situation is with a change-of-variable:
import numpy as np
import matplotlib.pyplot as plt

Create set of 10 data points on interval (1000, 1002)
x = np.linspace(10000, 10002, 10)
y = [0.1, 0.09, 0.23, 0.34, 0.78, 0.74, 0.43, 0.31, 0.01, -0.05]

Using shifted x values, find coefficient of best-fit
polynomial f(x) of degree 4
p_coeff = np.polyfit(x - x[0], y, 4)

Convert coefficient into a polynomial that can be evaluated
e.g. poly(0.3)
poly = np.poly1d(p_coeff)

Plot original data points
plt.plot(x, y, '.')

Plot polynomial fit at 30 points along interval (note that polynomial
is evaluated using the shift x)
x1 = np.linspace(x[0], x[-1], 30)
plt.plot(x1, poly(x1 - x[0]))

Display plot
plt.show()

2. In the submodule plot, add a function that plots the water level data and the best-fit polynomial. The function
must have the signature:

def plot_water_level_with_fit(station, dates, levels, p):

where station is a MonitoringStation object.

Demonstration program

Provide a program file Task2F.py that for each of the 5 stations at which the current relative water level is greatest
and for a time period extending back 2 days, plots the level data and the best-fit polynomial of degree 4 against time.
Show the typical range low/high on your plot.

Caution: Fitting high-degree polynomials to data is notoriously tricky, especially if the data is not very smooth (as
will often be the case with water level data). The problem is that oscillations can appear at the ends of the interval.
The is known as Runge’s phenomenon. You can observe this with the river level data by increasing the polynomial
degree, say to 10, and the time interval, say to 10 days.

2.2. Milestone 2 17

https://en.wikipedia.org/wiki/Runge's_phenomenon

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

2.2.7 Task 2G: issuing flood warnings for towns

1. Using your implementation, list the towns where you assess the risk of flooding to be greatest. Explain the
criteria that you have used in making your assessment, and rate the risk at ‘severe’, ‘high’, ‘moderate’ or ‘low’.

Note: This task is an opportunity to demonstrate your creativity and technical insights.

Tip: Consider how you could forecast whether the water level at a station is rising or falling.

2.2.8 Optional extensions

1. Show all stations on a map, and indicate by colour stations that are (i) below the typical range; (ii) within the
typical range; (iii) above the typical range; or (iv) for which there is not level data.

2. Provide a web-based interface to your flood warning system.

3. Incorporate rainfall data from http://environment.data.gov.uk/flood-monitoring/doc/reference into your system.

4. Explore what other data from http://environment.data.gov.uk/flood-monitoring/doc/reference you could use to
improve your monitoring and warning system. To start, examine the data that is already being retrieved but has
not been used.

18 Chapter 2. Deliverables

http://environment.data.gov.uk/flood-monitoring/doc/reference
http://environment.data.gov.uk/flood-monitoring/doc/reference

CHAPTER

THREE

GETTING STARTED

1. Read the Requirements section.

2. Install, configure and test your development environment (Development environment).

3. Create a Git repository for your team/project (Creating a team development repository) from the provided tem-
plate.

4. Read Using Git.

5. Read the Deliverables section, and with your team consider dependencies between ‘tasks’ in the deliverables and
allocate independent tasks to a team member (Project planning).

6. Start implementing your tasks (Editing and executing Python code).

Tip: Start simple and work in small steps. It is much easier to add functionality to a working program than to fix a
complicated non-working program.

Note: When developing your programs, you may need to review the activity notebooks from Michaelmas Term.

3.1 Development environment

Note: Experienced developers have their preferred tools and development environments. If you are experienced with
Git, Python and using editors, you are free to use your preferred tools.

The following procedures and tools are suggested.

3.1.1 Option 1: Web-based environment

You can use GitHub Codespaces, which provides a development environment in your browser.

19

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

3.1.2 Option 2: Local software installation

1. Install Visual Studio Code (https://code.visualstudio.com/).

Visual Studio Code will provide instructions on how to install git and python when you need them. Oth-
erwise, instructions at https://code.visualstudio.com/docs/sourcecontrol/overview and https://code.visualstudio.
com/docs/languages/python.

3.1.3 Testing your Python installation

1. Create a file in VS Code with the extension .py and enter some simple Python code, e.g.:

print("Testing Python install")

2. Click the ‘play’ button at the top of the open file.

3.2 Creating a team development repository

1. Log into GitHub (create an account using your @cam.ac.uk email address, or use any other GitHub account you
wish).

2. One team member only: The template start code is at https://github.com/CambridgeEngineering/
PartIA-Flood-Warning-System. Click on the green “Use this template” button, select “Create a new repository”
give your new repository a name. Make your repository “private”. In the “Settings” section for your repository
add your team members as “Collaborators” and share the name of the repository with team members.

3. Clone your team’s repository using VS Code “Source control”.

4. From VS Code, execute file Task1A.py. You should see some output on river level monitoring stations.

Note: The Python code uses some modules (requests and dateutil) that are not part of the Python standard library.
If you see an error that a module is missing, you can install the module using pip. Use:

pip install requests python-dateutil

in the terminal window.

3.3 Editing and executing Python code

1. Launch VS Code and open your local code repository directory.

2. Open/create the files you wish to edit. ‘Module’ files should go in the directory floodsystem/. The Task*.py
files should go in the root directory of the repository.

3. Use right-click -> ‘Run Python File in Terminal’ on the program text in VS Code to run the Python code.

As you develop you programs, commit your changes (using Git) and push these to your shared online repository. If
you are unsure how often to commit and push changes, err on the side of committing and pushing frequently. Commit
at least upon the completion of each task.

20 Chapter 3. Getting started

https://code.visualstudio.com/
https://code.visualstudio.com/docs/sourcecontrol/overview
https://code.visualstudio.com/docs/languages/python
https://code.visualstudio.com/docs/languages/python
https://github.com/CambridgeEngineering/PartIA-Flood-Warning-System
https://github.com/CambridgeEngineering/PartIA-Flood-Warning-System

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

3.4 Automated testing

The starter template repository includes the file .github/workflows/pythonapp.yml which configures automated
testing, known as continuous integration (CI), on GitHub. Against each commit you will see on the GitHub repository
page whether or not the tests are passing.

Edit .github/workflows/pythonapp.yml to run your deliverables in the test system and to add code tests to your
test suite.

3.5 Project planning

1. Examine the first few project deliverables, and divide independent tasks amongst team members. Each team
member can then work on tasks independently.

2. Communicate frequently with team members to update them on your progress, and seek help from a team member
if required.

3. As tasks are completed review each others work and provide feedback.

4. As you progress through the tasks, periodically assess which tasks are independent and allocate these to a team
member.

3.4. Automated testing 21

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

22 Chapter 3. Getting started

CHAPTER

FOUR

DEVELOPMENT TOOLS AND PRACTICES

4.1 Working in a team

Most software is developed in teams, and working effectively in a development team requires certain skills and practices.
At a planning level:

• Examine the required tasks, then discuss and decide on the dependencies between tasks. To start, allocate inde-
pendent tasks to team members.

• Let your team know when a task or piece of functionality is complete.

• Discuss frequently.

At the implementation level:

• Use a version control system, such as Git. With Git:

– Work that is committed cannot be lost (unless you try really hard) - your team members cannot accidentally
delete your code.

– Commit changes frequently and in small chunks. This makes clear to others what you are working on, and
any conflicts will be easier to resolve.

– It is easy to switch between computers.

• Add tests as functionality is developed. This:

– Builds confidence that your implementation is correct.

– Can detect if a change by you or a team member has affected your implementations. (One of the most
frustrating situations in team development is when a change by another team members breaks your carefully
constructed functionality.)

4.2 Using Git

Git is modern widely used version control system (VCS). A version control system tracks changes to source code. It
can show what has changed, and who has made changes and when they made them. Git is very powerful and can be
challenging to learn. Elementary Git usage for getting started is summarised below.

Git is generally used from the command line (terminal), but here are tools that provide graphical interfaces and some
editors (e.g. VS Code) have built-in Git support.

23

https://git-scm.com/

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

4.2.1 VS Code

VS Code provides helpers for the operations in the following section.

4.2.2 Command-line use

Creating or cloning a repository

To clone a repository (typically hosted by an online service), e.g.:

git clone https://github.com/CambridgeEngineering/PartIA-Computing-Michaelmas.git

The location for a particular repository can be found on the online repository page.

To create a new repository, create a directory and execute in the directory the command:

git init

Adding a new file or adding file changes to the staging area

The command:

git add myfile.py

instructs Git that we want to track the file myfile.py, or if the file is already tracked that we will want to add any
changes to the repository history.

Committing changes to the project history

The commit command commits changes to the project history, and each commit has a ‘commit message’ associated
with it:

git commit -m "Complete Task 1C"

It is possible at any time to see the changes between any two commits, and to revert a repository to a particular commit.

Collaborating: merging changes

To fetch remote changes into your repository, e.g. changes made by your team mate:

git pull

In general, you should commit your changes before using pull.

To send your changes to the remote server:

git push

If team members have ‘pushed’ changes, you will need to use git pull before you can push. Once you have pushed
changes, other team members will receive your changes when they next ‘pull’.

24 Chapter 4. Development tools and practices

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

Seeing changes in your working directory

The command:

git diff

shows any changes to your code since the last commit. The command:

git status

will show any changes to files that are (a) tracked but have changed since the most recent commit, and (b) files that are
not tracked (have not been added using git add).

Project history

The log of project commits is displayed by the command:

git log

The output will include the commit messages and the author of each commit.

Project history is shown by online services, like GitHub, and this the simplest way to examine project change. It is also
possible to add comments and suggestions on particular code changes to discuss with team members.

How often should I commit changes?

Often. Structure your work into small chunks, and commit after completing each ‘chunk’. At the very least, you should
commit changes at the completion of each Task in the Deliverables section.

Also, pull and push frequently.

Getting help with Git

There are many online resources for learning Git, and search engines for very useful. Helpful tutorials for beginners
are:

• https://guides.github.com/introduction/git-handbook/

• https://code.visualstudio.com/docs/sourcecontrol/overview

• https://learngitbranching.js.org/

• https://swcarpentry.github.io/git-novice/

4.3 Test framework

Testing is critical for high quality software development, and there are many tools for helping with this. In this project
you will use pytest. Some tests are in the project starter repository.

Write tests as you go, and run the tests frequently to check that nothing has been inadvertently broken.

4.3. Test framework 25

https://guides.github.com/introduction/git-handbook/
https://code.visualstudio.com/docs/sourcecontrol/overview
https://learngitbranching.js.org/
https://swcarpentry.github.io/git-novice/
http://docs.pytest.org/

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

4.3.1 Running tests

pytest is very simple to use:

1. Put tests in files starting with test_, e.g. test_data.py.

2. In the test file, prefix test function with test_, e.g.:

def test_sum():
a, b = 2, 3
assert a + b == 5

3. To run all tests in all test_*.py files in a directory, use:

pytest .

To run all tests in the file test_data,py:

pytest test_data.py

pytest will print a summary of the number of tests run, with the number that pass and the number that fail.

4.3.2 Writing tests

Aim to have at least one test for every function in your library. Some tests will just check that a function can be called
successfully, e.g.:

import mymodule

def test_call():
x = mymodule.do_something(4)

More useful test will check results, e.g.:

import mymodule

def test_my_sum():
sum = mymodule.sum(7, -8)
assert sum == -1

Take care when comparing floating point values, since round-off errors can make precise comparison difficult. Use
rounding to compare floats, e.g:

import math

def test_math_sine():

x = math.sin(0.0)
assert round(x, 8) == 0 # 'round' keep 8 digits after the decimal point

pi = 3.14159265359
x = math.sin(pi)
assert round(x, 8) == 0

(continues on next page)

26 Chapter 4. Development tools and practices

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

(continued from previous page)

pi = 3.14159265359
x = math.sin(pi/2.0)
assert round(x - 1, 8) == 0

4.3. Test framework 27

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

28 Chapter 4. Development tools and practices

CHAPTER

FIVE

HELP AND FEEDBACK

Get started early to give your team time to seek feedback and resolve issues. Issues/bugs are a feature of all software
development and engineering.

There is a significant design component to this project. There is no one ‘best’ solution.

5.1 Help

Help channels for the activity are:

1. Peer support - this is encouraged, but be sure that you understand what you are doing.

2. Moodle forum.

3. Help Desk (see Moodle page for details).

5.2 Feedback

You can get feedback on your work from demonstrators at the Help Desk.

29

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

30 Chapter 5. Help and feedback

CHAPTER

SIX

SUGGESTIONS FOR EXPERIENCED DEVELOPERS

These development topics are optional, but are suggested for those who are already experienced with Git and Python
and those who wish to develop their skills further.

Branching with Git and pull requests

Use a Git branch for each task, and merge your topic branch into master once it is complete and tests pass. Use
merge requests to merge code into the master branch.

Code style

Use flake8 for static analysis and to check your code for style.

Test coverage

Check your test coverage using pytest-cov.

Installing the module and using from a Jupyter notebook

The template repository has a setup.py file which allows the floodsystem module to be installed. Install the
module from the project directory using:

pip install . --user

Once the module has been installed, you should be able to import it from any location. Try using your module from
a Jupyter notebook.

31

http://flake8.pycqa.org/
http://pytest-cov.readthedocs.io/

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

32 Chapter 6. Suggestions for experienced developers

CHAPTER

SEVEN

LEARNING OBJECTIVES AND ASSESSMENT

7.1 Learning objectives

Development skills

1. Approaches for working in teams.

2. Designing a working library for specific technical requirements.

3. Working to a realistic project specification.

4. Effective use of version control.

5. Devising tests.

Programming skills

1. Reinforcement of skills developed in Michaelmas Term.

2. Introduction to user modules and multi-file library implementations.

3. Working with user-defined objects.

7.2 Assessment guidelines

The following points will be used in assessing your implementation. Markers will want to view your Git log.

Code

1. Programs should execute without error.

2. Interfaces should conform to the specification in the Deliverables.

3. Programs should be correct.

4. Clarity and structure of the implementations.

5. Appropriate re-use of functions.

33

CUED Part IA Flood Monitoring and Warning System Documentation, Release 2024.0

Documentation and process

1. Documentation of the library (both docstrings and comments in the code).

2. Unit tests.

3. Effective use of version control (commits of small steps with clear messages).

4. Balance of work within the team (as shown by the Git log).

5. Use of continuous integration.

Document license and copyright

These documents are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. See http:
//creativecommons.org/licenses/by-sa/4.0/ for the license.

Copyright 2016-2024 by Garth N. Wells (gnw20@cam.ac.uk).

Documentation repository

These documents are managed at https://github.com/CambridgeEngineering/PartIA-Computing-Lent-doc.

34 Chapter 7. Learning objectives and assessment

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
mailto:gnw20@cam.ac.uk
https://github.com/CambridgeEngineering/PartIA-Computing-Lent-doc

	Requirements
	Language and library structure
	Documentation
	Development practices
	Data source

	Deliverables
	Milestone 1
	Task 1A: build monitoring station data
	Task 1B: sort stations by distance
	Task 1C: stations within radius
	Task 1D: rivers with a station(s)
	Task 1E: rivers by number of stations
	Task 1F: typical low/high range consistency
	Optional extensions

	Milestone 2
	Task 2A: fetch real-time river levels
	Task 2B: assess flood risk by level
	Task 2C: most at risk stations
	Task 2D: level data time history
	Task 2E: plot water level
	Task 2F: function fitting
	Task 2G: issuing flood warnings for towns
	Optional extensions

	Getting started
	Development environment
	Option 1: Web-based environment
	Option 2: Local software installation
	Testing your Python installation

	Creating a team development repository
	Editing and executing Python code
	Automated testing
	Project planning

	Development tools and practices
	Working in a team
	Using Git
	VS Code
	Command-line use
	Creating or cloning a repository
	Adding a new file or adding file changes to the staging area
	Committing changes to the project history
	Collaborating: merging changes
	Seeing changes in your working directory
	Project history
	How often should I commit changes?
	Getting help with Git

	Test framework
	Running tests
	Writing tests

	Help and feedback
	Help
	Feedback

	Suggestions for experienced developers
	Learning objectives and assessment
	Learning objectives
	Assessment guidelines

