
Cubes Documentation
Release 1.1

Stefan Urbanek

Apr 04, 2017

Contents

1 Getting Started 3
1.1 Introduction . 3
1.2 Installation . 5
1.3 Related Projects . 6
1.4 Tutorial . 7
1.5 Credits . 9

2 Data Modeling 11
2.1 Logical Model and Metadata . 11
2.2 Schemas and Models . 25
2.3 Localization . 38

3 Aggregation, Slicing and Dicing 41
3.1 Slicing and Dicing . 41
3.2 Data Formatters . 46

4 Analytical Workspace 47
4.1 Analytical Workspace . 47
4.2 Authorization and Authentication . 49
4.3 Configuration . 51
4.4 SQL Backend . 60
4.5 Slicer Server . 72

5 Slicer Server and Tool 75
5.1 OLAP Server . 75
5.2 Server Deployment . 88
5.3 slicer - Command Line Tool . 90

6 Recipes 95
6.1 Recipes . 95

7 Extension Development 105
7.1 Plugin Reference . 105
7.2 Backends . 105
7.3 Model Providers . 109
7.4 Authenticators and Authorizers . 112

8 Developer’s Reference 115
8.1 Workspace Reference . 115
8.2 Model Reference . 115
8.3 Model Providers Reference . 116
8.4 Aggregation Browser Reference . 116

i

8.5 Formatters Reference . 117
8.6 Aggregation Browsing Backends . 117
8.7 HTTP WSGI OLAP Server Reference . 118
8.8 Authentication and Authorization . 118
8.9 Utility functions . 118

9 Release Notes 119
9.1 Cubes Release Notes . 119
9.2 Contact and Getting Help . 140

10 License 141
10.1 Indices and tables . 141

Python Module Index 143

ii

Cubes Documentation, Release 1.1

Cubes is a light-weight Python framework and set of tools for development of reporting and analytical applications,
Online Analytical Processing (OLAP), multidimensional analysis and browsing of aggregated data. It is part of
Data Brewery.

Contents 1

http://databrewery.org/

Cubes Documentation, Release 1.1

2 Contents

CHAPTER 1

Getting Started

Introduction

Why cubes?

Purpose is to provide a framework for giving analyst or any application end-user understandable and natural way
of reporting using concept of data Cubes – multidimensional data objects.

It is meant to be used by application builders that want to provide analytical functionality.

Features:

• logical view of analysed data - how analysts look at data, how they think of data, not how the data are
physically implemented in the data stores

• OLAP and aggregated browsing (default backend is for relational database - ROLAP)

• hierarchical dimensions (attributes that have hierarchical dependencies, such as category-subcategory or
country-region)

• multiple hierarchies in a dimension

• localizable metadata and data (see Localization)

• authentication and authorization of cubes and their data

• pluggable data warehouse – plug-in other cube-like (multidimensional) data sources

The framework is very extensible.

Cube, Dimensions, Facts and Measures

The framework models the data as a cube with multiple dimensions:

The most detailed unit of the data is a fact. Fact can be a contract, invoice, spending, task, etc. Each fact might
have a measure – an attribute that can be measured, such as: price, amount, revenue, duration, tax, discount, etc.

The dimension provides context for facts. Is used to:

• filter queries or reports

• controls scope of aggregation of facts

3

Cubes Documentation, Release 1.1

Fig. 1.1: a data cube

• used for ordering or sorting

• defines master-detail relationship

Dimension can have multiple hierarchies, for example the date dimension might have year, month and day levels
in a hierarchy.

Feature Overview

Core cube features:

• Workspace – Cubes analytical workspace (see docs, reference)

• Model - Description of data (metadata): cubes, dimensions, concept hierarchies, attributes, labels, localiza-
tions. (see docs, reference)

• Browser - Aggregation browsing, slicing-and-dicing, drill-down. (see docs, reference)

• Backend - Actual aggregation implementation and utility functions. (see docs, reference)

• Server - WSGI HTTP server for Cubes (see docs, reference)

• Formatters - Data formatters (see docs, reference)

• slicer - Command Line Tool - command-line tool

Model

Logical model describes the data from user’s or analyst’s perspective: data how they are being measured, aggre-
gated and reported. Model is independent of physical implementation of data. This physical independence makes
it easier to focus on data instead on ways of how to get the data in understandable form.

More information about logical model can be found in the chapter Logical Model and Metadata.

See also developer’s reference.

Browser

Core of the Cubes analytics functionality is the aggregation browser. The browser module contains utility classes
and functions for the browser to work.

More information about browser can be found in the chapter Slicing and Dicing. See also programming reference.

4 Chapter 1. Getting Started

Cubes Documentation, Release 1.1

Backends

Backends provide the actual data aggregation and browsing functionality. Cubes comes with built-in ROLAP
backend which uses SQL database using SQLAlchemy.

Framework has modular nature and supports multiple database backends, therefore different ways of cube com-
putation and ways of browsing aggregated data.

Multiple backends can be used at once, even multiple sources from the same backend might be used in the analyt-
ical workspace.

More about existing backends can be found in the backends documentation. See also the backends programming
reference reference.

Server

Cubes comes with built-in WSGI HTTP OLAP server called slicer - Command Line Tool and provides json API
for most of the cubes framework functionality. The server is based on the Werkzeug WSGI framework.

More information about the Slicer server requests can be found in the chapter OLAP Server. See also programming
reference of the server module.

See also:

Schemas and Models Example database schemas and use patterns with their respective models.

Installation

There are two options how to install cubes: basic common installation - recommended mostly for users starting
with Cubes. Then there is customized installation with requirements explained.

Dependencies:

• SQLAlchemy

• expressions

• python-dateutil

Basic Installation

The cubes has optional requirements:

• Flask for Slicer OLAP HTTP server

Note: If you never used Python before, you might have to get the pip installer first, if you do not have it already.

Note: The command-line tool Slicer does not require knowledge of Python. You do not need to know the
language if you just want to serve OLAP data.

You may install Cubes with the minimal dependencies,

pip install cubes

with certain extras (html, sql, mongo, or slicer),

pip install cubes[slicer]

1.2. Installation 5

http://en.wikipedia.org/wiki/ROLAP
http://www.sqlalchemy.org/download.html
http://www.sqlalchemy.org/download.html
http://flask.pocoo.org/
https://pip.pypa.io/en/stable/installing/

Cubes Documentation, Release 1.1

or with all of the extras.

pip install cubes[all]

If you are developing cubes, you should install cubes[all].

Quick Start or Hello World!

Download the sources from the Cubes Github repository. Go to the examples/hello_world folder:

git clone git://github.com/DataBrewery/cubes.git
cd cubes
cd examples/hello_world

Prepare data and run the OLAP server:

python prepare_data.py
slicer serve slicer.ini

And try to do some queries:

curl "http://localhost:5000/cube/irbd_balance/aggregate"
curl "http://localhost:5000/cube/irbd_balance/aggregate?drilldown=year"
curl "http://localhost:5000/cube/irbd_balance/aggregate?drilldown=item"
curl "http://localhost:5000/cube/irbd_balance/aggregate?drilldown=item&cut=item:e"

Customized Installation

The project sources are stored in the Github repository.

Download from Github:

git clone git://github.com/DataBrewery/cubes.git

Install:

cd cubes
pip install -r requirements.txt
pip install -r requirements-optional.txt
python setup.py install

Note: The requirements for SQLAlchemy and Flask are optional and you do not need them if you are going to
use another kind of backend or don’t going to use the Slicer server.

Related Projects

Visualization

Cubes Viewer

Author: Jose Juan Montes

Links: Home , Github source

Cubes Viewer is a visual, responsive HTML5 application and library for exploring and visualizing different types
of datasets.

6 Chapter 1. Getting Started

https://github.com/DataBrewery/cubes
https://github.com/DataBrewery/cubes
http://www.sqlalchemy.org/download.html
http://flask.pocoo.org/
http://www.cubesviewer.com
https://github.com/jjmontesl/cubesviewer

Cubes Documentation, Release 1.1

CubesViewer can be used for data exploration and data auditory, generation of reports, chart design and embed-
ding, and as a (simple) company-wide analytics application.

Other Languages

TypeScript: Static typed version of cubes.js

Author: Abbas (martianboy)

Tutorial

This chapter describes step-by-step how to use the Cubes. You will learn:

• model preparation

• measure aggregation

• drill-down through dimensions

• how to slice&dice the dube

The tutorial contains examples for both: standard tool use and Python use. You don’t need to know Python to
follow this tutorial.

Data Preparation

The example data used are IBRD Balance Sheet taken from The World Bank. Backend used for the examples is
sql.browser.

Create a tutorial directory and download IBRD_Balance_Sheet__FY2010.csv.

Start with imports:

>>> from sqlalchemy import create_engine
>>> from cubes.tutorial.sql import create_table_from_csv

Note: Cubes comes with tutorial helper methods in cubes.tutorial. It is advised not to use them in
production; they are provided just to simplify the tutorial.

Prepare the data using the tutorial helpers. This will create a table and populate it with contents of the CSV file:

>>> engine = create_engine('sqlite:///data.sqlite')
... create_table_from_csv(engine,
... "IBRD_Balance_Sheet__FY2010.csv",
... table_name="ibrd_balance",
... fields=[
... ("category", "string"),
... ("category_label", "string"),
... ("subcategory", "string"),
... ("subcategory_label", "string"),
... ("line_item", "string"),
... ("year", "integer"),
... ("amount", "integer")],
... create_id=True
...)

1.4. Tutorial 7

https://github.com/martianboy/cubes.ts
https://finances.worldbank.org/Accounting-and-Control/IBRD-Balance-Sheet-FY2010/e8yz-96c6

Cubes Documentation, Release 1.1

Analytical Workspace

Everything in Cubes happens in an analytical workspace. It contains cubes, maintains connections to the data
stores (with cube data), provides connection to external cubes and more.

Fig. 1.2: Analytical workspace and it’s content

The workspace properties are specified in a configuration file slicer.ini (default name). First thing we have to do
is to specify a data store – the database containing the cube’s data:

[store]
type: sql
url: sqlite:///data.sqlite

In Python, a workspace can be configured using the ini configuration:

from cubes import Workspace

workspace = Workspace(config="slicer.ini")

or programatically:

workspace = Workspace()
workspace.register_default_store("sql", url="sqlite:///data.sqlite")

Model

Download the tutorial model and save it as tutorial_model.json.

In the slicer.ini file specify the model:

[workspace]
model: tutorial_model.json

For more information about how to add more models to the workspace see the configuration documentation.

Equivalent in Python is:

>>> workspace.import_model("tutorial_model.json")

You might call import_model() with as many models as you need. Only limitation is that the public cubes
and public dimensions should have unique names.

8 Chapter 1. Getting Started

Cubes Documentation, Release 1.1

Aggregations

Browser is an object that does the actual aggregations and other data queries for a cube. To obtain one:

>>> browser = workspace.browser("ibrd_balance")

Compute the aggregate. Measure fields of AggregationResult have aggregation suffix. Also a total record
count within the cell is included as record_count.

>>> result = browser.aggregate()
>>> result.summary["record_count"]
62
>>> result.summary["amount_sum"]
1116860

Now try some drill-down by year dimension:

>>> result = browser.aggregate(drilldown=["year"])
>>> for record in result:
... print record
{u'record_count': 31, u'amount_sum': 550840, u'year': 2009}
{u'record_count': 31, u'amount_sum': 566020, u'year': 2010}

Drill-down by item category:

>>> result = browser.aggregate(drilldown=["item"])
>>> for record in result:
... print record
{u'item.category': u'a', u'item.category_label': u'Assets', u'record_count': 32, u
→˓'amount_sum': 558430}
{u'item.category': u'e', u'item.category_label': u'Equity', u'record_count': 8, u
→˓'amount_sum': 77592}
{u'item.category': u'l', u'item.category_label': u'Liabilities', u'record_count':
→˓22, u'amount_sum': 480838}

Credits

Cubes was created and is maintained by Stefan Urbanek.

Major contributing authors:

• Stefan Urbanek, stefan.urbanek@gmail.com, Twitter, Github

• Robin Thomas, rthomas@squarespace.com, Github

Thanks to Squarespace for sponsoring the development time.

People who have submitted patches, reported bugs, consulted features or generally made Cubes better:

• Jose Juan Montes (jjmontesl)

• Jonathan Camile (deytao)

• Cristian Salamea

• Travis Truman

1.5. Credits 9

mailto:stefan.urbanek@gmail.com
https://twitter.com/stiivi
https://github.com/Stiivi
mailto:rthomas@squarespace.com
https://github.com/robin900

Cubes Documentation, Release 1.1

10 Chapter 1. Getting Started

CHAPTER 2

Data Modeling

Logical Model and Metadata

Logical model describes the data from user’s or analyst’s perspective: data how they are being measured, aggre-
gated and reported. Model is independent of physical implementation of data. This physical independence makes
it easier to focus on data instead on ways of how to get the data in understandable form.

See also:

Schemas and Models Example database schemas and their respective models.

Model Reference Reference of model classes and functions.

Cubes Models Repository of basic cubes models.

Introduction

The logical model enables users to:

• see the data from the business perspective

• hide physical structure of the data (“how application’s use it”)

• specify concept hierarchies of attributes, such as:

– product category > product > subcategory > product

– country > region > county > town.

• provide more descriptive attribute labels for display in the applications or reports

• transparent localization of metadata and data

Analysts or report writers do not have to know where name of an organisation or category is stored, nor he does not
have to care whether customer data is stored in single table or spread across multiple tables (customer, customer
types, ...). They just ask for customer.name or category.code.

In addition to abstraction over physical model, localization abstraction is included. When working in multi-lingual
environment, only one version of report/query has to be written, locales can be switched as desired. If requesting
“contract type name”, analyst just writes contract_type.name and Cubes framework takes care about appropriate
localisation of the value.

11

https://github.com/DataBrewery/cubes-models

Cubes Documentation, Release 1.1

Example: Analysts wants to report contract amounts by geography which has two levels: country level and region
level. In original physical database, the geography information is normalised and stored in two separate tables,
one for countries and another for regions. Analyst does not have to know where the data are stored, he just queries
for geography.country and/or geography.region and will get the proper data. How it is done is depicted on the
following image:

Fig. 2.1: Mapping from logical model to physical data.

The logical model describes dimensions geography in which default hierarchy has two levels: country and region.
Each level can have more attributes, such as code, name, population... In our example report we are interested
only in geographical names, that is: country.name and region.name.

Model

The logical model is described using model metadata dictionary. The content is description of logical objects,
physical storage and other additional information.

Logical part of the model description:

12 Chapter 2. Data Modeling

Cubes Documentation, Release 1.1

Fig. 2.2: Logical model metadata

• name – model name

• label – human readable model label (optional)

• description – human readable description of the model (optional)

• locale – locale the model metadata are written in (optional, used for localizable models)

• cubes – list of cubes metadata (see below)

• dimensions – list of dimension metadata (see below)

Physical part of the model description:

• store – name of the datastore where model’s cubes are stored. Default is default. See Analytical
Workspace for more information.

• mappings - backend-specific logical to physical mapping dictionary. This dictionary is inherited by every
cube in the model.

• joins - backend-specific join specification (used for example in the SQL backend). It should be a list of
dictionaries. This list is inherited by the cubes in the model.

• browser_options – options passed to the browser. The options are merged with options in the cubes.

Example model snippet:

{
"name": "public_procurements",
"label": "Public Procurements of Slovakia",
"description": "Contracts of public procurement winners in Slovakia"
"cubes": [...]
"dimensions": [...]

}

2.1. Logical Model and Metadata 13

Cubes Documentation, Release 1.1

Mappings and Joins

One can specify shared mappings and joins on the model-level. Those mappings and joins are inherited by all the
cubes in the model.

The mappings dictionary of a cube is merged with model’s global mapping dictionary. Cube’s values overwrite
the model’s values.

The joins can be considered as named templates. They should contain name property that will be referenced
by a cube.

Visibility: The joins and mappings are local to a single model. They are not shared within the workspace.

Inheritance

Cubes in a model will inherit mappings and joins from the model. The mappings are merged in a way that cube’s
mappings replace existing model’s mappings with the same name. Joins are concatenated or merged by their
name.

Example from the SQL backend: Say you would like to join a date dimension table in dim_date to every cube.
Then you specify the join at the model level as:

"joins": [
{

"name": "date",
"detail": "dim_date.date_id",
"method": "match"

}
]

The join has a name specified, which is used to match joins in the cube. Note that the join contains incomplete
information: it contains only the detail part, that is the dimension key. To use the join in a cube which has two
date dimensions start date and end date:

"joins": [
{

"name": "date",
"master": "fact_contract.contract_start_date_id",

},
{

"name": "date",
"master": "fact_sales.contract_sign_date_id",

}
]

The model’s joins are searched for a template with given name and then cube completes (or even replaces) the join
information.

For more information about mappings and joins refer to the backend documentation for your data store, such as
SQL

File Representation

The model can be represented either as a JSON file or as a directory with JSON files. The single-file model
specification is just a dictionary with model properties. The model directory bundle should have the following
content:

• model.json – model’s master metadata – same as single-file model

• dim_*.json – dimension metadata file – single dimension dictionary

• cube_*.json – cube metadata – single cube dictionary

14 Chapter 2. Data Modeling

Cubes Documentation, Release 1.1

The list of dimensions and cubes in the model.json are merged with the dimensions and cubes in the separate
files. Avoid duplicate definitions.

Example directory bundle model:

model.cubesmodel/
model.json
dim_date.json
dim_organization.json
dim_category.json
cube_contracts.json
cube_events.json

Model Provider and External Models

If the model is provided from an external source, such as an API or a database, then name of the provider should
be specified in provider.

The provider receives the model’s metadata and the model’s data store (if the provider so desires). Then the
provider generates all the cubes and the dimensions.

Example of a model that is provided from an external source (Mixpanel):

{
"name": "Events",
"provider": "mixpanel"

}

Note: The cubes and dimensions in the generated model are just informative for the model provider. The provider
can yield different set of cubes and dimensions as specified in the metadata.

See also:

cubes.ModelProvider() Load a model from a file or a URL.

cubes.StaticModelProvider() Create model from a dictionary.

Dimension Visibility

All dimensions from a static (file) model are shared in the workspace by default. That means that the dimensions
can be reused freely among cubes from different models.

One can define a master model with dimensions only and no cubes. Then define one model per cube category,
datamart or any other categorization. The models can share the master model dimensions.

To expose only certain dimensions from a model specify a list of dimension names in the public_dimensions
model property. Only dimensions from the list can be shared by other cubes in the workspace.

Note: Some backends, such as Mixpanel, don’t share dimensions at all.

Cubes

Cube descriptions are stored as a dictionary for key cubes in the model description dictionary or in json files
with prefix cube_ like cube_contracts.

2.1. Logical Model and Metadata 15

Cubes Documentation, Release 1.1

Key Description
Basic
name * Cube name, unique identifier. Required.
label Human readable name - can be used in an application
descriptionLonger human-readable description of the cube (optional)
info Custom info, such as formatting. Not used by cubes framework.
dimensions
*

List of dimension names or dimension links (recommended, but might be empty for
dimension-less cubes). Recommended.

measures List of cube measures (recommended, but might be empty for measure-less, record count only
cubes). Recommended.

aggregates List of aggregated measures. Required, if no measures are specified.
details List of fact details (as Attributes) - attributes that are not relevant to aggregation, but are

nice-to-have when displaying facts (might be separately stored)
Physical
joins Specification of physical table joins (required for star/snowflake schema)
mappings Mapping of logical attributes to physical attributes
key Fact key field or column name. If not specified, backends might either refuse to generate facts

or might use some default column name such as id.
fact Fact table, collection or source name – interpreted by the backend. The fact table does not

have to be specified, as most of the backends will derive the name from the cube’s name.
Advanced
browser_optionsBrowser specific options, consult the backend for more information
store Name of a datastore where the cube is stored. Use this only when default store assignment is

different from your requirements.

Fields marked with * are required.

Example:

{
"name": "sales",
"label": "Sales",
"dimensions": ["date", ...]

"measures": [...],
"aggregates": [...],
"details": [...],

"fact": "fact_table_name",
"mappings": { ... },
"joins": [...]

}

Note: The key might be required by some backends, such as SQL, to be able to generate detailed facts or to get
a single fact. Please refer to the backend’s documentation for more information.

Measures and Aggregates

Measures are numerical properties of a fact. They might be represented, for example, as a table column. Measures
are aggregated into measure aggregates. The measure is described as:

• name – measure identifier (required)

• label – human readable name to be displayed (localized)

• info – additional custom information (unspecified)

• aggregates – list of aggregate functions that are provided for this measure. This property is for gener-
ating default aggregates automatically. It is highly recommended to list the aggregates explicitly and avoid

16 Chapter 2. Data Modeling

Cubes Documentation, Release 1.1

Fig. 2.3: Measure and measure aggregate

using this property.

• window_size – number of elements within a window for window functions such as moving average. If
not provided and function requires it then 1 (one element) is assumed.

Example:

"measures": [
{

"name": "amount",
"label": "Sales Amount"

},
{

"name": "vat",
"label": "VAT"

}
]

Measure aggregate is a value computed by aggregating measures over facts. It’s properties are:

• name – aggregate identifier, such as: amount_sum, price_avg, total, record_count

• label – human readable label to be displayed (localized)

• measure – measure the aggregate is derived from, if it exists or it is known. Might be empty.

• function - name of an aggregate function applied to the measure, if known. For example: sum, min, max.

• window_size – number of elements within a window for window functions such as moving average. If
not provided and function requires it then 1 (one element) is assumed.

• info – additional custom information (unspecified)

• expression - to be used instead of function, this allows you to use simple, SQL-like expressions to
calculate the value of an aggregate based on attributes of the fact. Alternatively, remind that fields can also
be calculated at database level if your database system supports views.

Example:

"aggregates": [
{

"name": "amount_sum",
"label": "Total Sales Amount",
"measure": "amount",
"function": "sum"

},
{

"name": "vat_sum",

2.1. Logical Model and Metadata 17

Cubes Documentation, Release 1.1

"label": "Total VAT",
"measure": "vat",
"function": "sum"

},
{

"name": "sales_minus_tax",
"label": "Sales less VAT",
"expression": "sum(amount) - sum(vat)"

},
{

"name": "item_count",
"label": "Item Count",
"function": "count"

}

]

Note the last aggregate item_count – it counts number of the facts within a cell. No measure required as a
source for the aggregate.

If no aggregates are specified, Cubes generates default aggregates from the measures. For a measure:

"measures": [
{

"name": "amount",
"aggregates": ["sum", "min", "max"]

}
]

The following aggregates are created:

"aggregates" = [
{

"name": "amount_sum",
"measure": "amount",
"function": "sum"

},
{

"name": "amount_min",
"measure": "amount",
"function": "min"

},
{

"name": "amount_max",
"measure": "amount",
"function": "max"

}
]

If there is a list of aggregates already specified in the cube explicitly, both lists are merged together.

Note: To prevent automated creation of default aggregates from measures, there is an advanced cube option
implicit_aggregates. Set this property to False if you want to keep only explicit list of aggregates.

In previous version of Cubes there was omnipresent measure aggregate called record_count. It is no longer
provided by default and has to be explicitly defined in the model. The name can be of any choice, it is not a built-in
aggregate anymore. To keep the original behavior, the following aggregate should be added:

"aggregates": [
{

"name": "record_count",

18 Chapter 2. Data Modeling

Cubes Documentation, Release 1.1

"function": "count"
}

]

Note: Some aggregates do not have to be computed from measures. They might be already provided by the data
store as computed aggregate values (for example Mixpanel’s total). In this case the measure and function serves
only for the backend or for informational purposes. Consult the backend documentation for more information
about the aggregates and measures.

See also:

cubes.Cube Cube class reference.

cubes.Measure Measure class reference.

cubes.MeasureAggregate Measure Aggregate class reference.

Customized Dimension Linking

It is possible to specify how dimensions are linked to the cube. The dimensions list might contain, besides di-
mension names, also a specification how the dimension is going to be used in the cube’s context. The specification
might contain:

• hierarchies – list of hierarchies that are relevant for the cube. For example the date dimension might
be defined as having day granularity, but some cubes might be only at the month level. To specify only
relevant hierarchies use hierarchies metadata property:

• exclude_hierarchies – hierarchies to be excluded when cloning the original dimension. Use this
instead of hierarchies if you would like to preserve most of the hierarchies and remove just a few.

• default_hierarchy_name – name of default hierarchy for a dimension in the context of the cube

• cardinality – cardinality of the dimension with regards to the cube. For example one cube might
contain housands product types, another might have only a few, but they both share the same products
dimension

• alias – how the dimension is going to be called in the cube. For example, you might have two date
dimensions and name them start_date and end_date using the alias

Example:

{
"name": "churn",

"dimensions": [
{"name": "date", "hierarchies": ["ym", "yqm"]},
"customer",
{"name": "date", "alias": "contract_date"}

],

...
}

The above cube will have three dimensions: date, customer and contract_date. The date dimension will have
only two hierarchies with lowest granularity of month, the customer dimension will be assigned as-is and the
contract_date dimension will be the same as the original date dimension.

Dimensions

Dimension descriptions are stored in model dictionary under the key dimensions.

2.1. Logical Model and Metadata 19

Cubes Documentation, Release 1.1

Fig. 2.4: Dimension description - attributes.

20 Chapter 2. Data Modeling

Cubes Documentation, Release 1.1

The dimension description contains keys:

Key Description
Basic
name * dimension name, used as identifier
label human readable name - can be used in an application
description longer human-readable description of the dimension (optional)
info custom info, such as formatting. Passed to the front-end.
levels list of level descriptions
hierarchies list of dimension hierarchies
default_hierarchy_name name of a hierarchy that will be used as default
Advanced
cardinality dimension cardinality (see Level for more info)
role dimension role
category logical category (user oriented metadata)
template name of a dimension that will be used as template

Fields marked with * are required.

If no levels are specified, then one default level will be created.

If no hierarchy is specified, then the default hierarchy will contain all levels of the dimension.

Example:

{
"name": "date",
"label": "Dátum",
"levels": [...]
"hierarchies": [...]

}

Use either hierarchies or hierarchy, using both results in an error.

Dimension Templates

If you are creating more dimensions with the same or similar structure, such as multiple dates or different types
of organisational relationships, you might create a template dimension and then use it as base for the other dimen-
sions:

"dimensions" = [
{

"name": "date",
"levels": [...]

},
{

"name": "creation_date",
"template": "date"

},
{

"name": "closing_date",
"template": "date"

}
]

All properties from the template dimension will be copied to the new dimension. Properties can be redefined in the
new dimension. In that case, the old value is discarded. You might change levels, hierarchies or default hierarchy.
There is no way how to add or drop a level from the template, all new levels have to be specified again if they are
different than in the original template dimension. However, you might want to just redefine hierarchies to omit
unnecessary levels.

2.1. Logical Model and Metadata 21

Cubes Documentation, Release 1.1

Note: In mappings name of the new dimension should be used. The template dimension was used only to create
the new dimension and the connection between the new dimension and the template is lost. In our example above,
if cube uses the creation_date and closing_date dimensions and any mappings would be necessary, then they
should be for those two dimensions, not for the date dimension.

Level

Dimension hierarchy levels are described as:

Key Description
name * level name, used as identifier
label human readable name - can be used in an application
attributes list of other additional attributes that are related to the level. The attributes are not being used

for aggregations, they provide additional useful information.
key key field of the level (customer number for customer level, region code for region level,

year-month for month level). key will be used as a grouping field for aggregations. Key
should be unique within level.

label_attributename of attribute containing label to be displayed (customer name for customer level, region
name for region level, month name for month level)

order_attributename of attribute that is used for sorting, default is the first attribute (key)
cardinalitysymbolic approximation of the number of level’s members
role Level role (see below)
info custom info, such as formatting. Not used by cubes framework.

Fields marked with * are required.

If no attributes are specified then only one attribute is assumed with the same name as the level.

If no key is specified, then first attribute is assumed.

If no label_attribute is specified, then second attribute is assumed if level has more than one attribute, otherwise
the first attribute is used.

Example of month level of date dimension:

{
"month",
"label": "Mesiac",
"key": "month",
"label_attribute": "month_name",
"attributes": ["month", "month_name", "month_sname"]

},

Example of supplier level of supplier dimension:

{
"name": "supplier",
"label": "Dodávatel’",
"key": "ico",
"label_attribute": "name",
"attributes": ["ico", "name", "address", "date_start", "date_end",

"legal_form", "ownership"]
}

See also:

cubes.Dimension Dimension class reference

cubes.create_dimension() Create a dimension object from a description dictionary.

cubes.Level Level class reference

22 Chapter 2. Data Modeling

Cubes Documentation, Release 1.1

cubes.create_level() Create level object from a description dictionary.

Note: Level attribute names have to be unique within a dimension that owns the level.

Cardinality

The cardinality property is used optionally by backends and front-ends for various purposes. The possible values
are:

• tiny – few values, each value can have it’s representation on the screen, recommended: up to 5.

• low – can be used in a list UI element, recommended 5 to 50 (if sorted)

• medium – UI element is a search/text field, recommended for more than 50 elements

• high – backends might refuse to yield results without explicit pagination or cut through this level.

Hierarchy

Hierarchies are described as:

Key Description
name hierarchy name, used as identifier
label human readable name - can be used in an application
levels ordered list of level names from top to bottom - from least detailed to most detailed (for example:

from year to day, from country to city)

Required is only name.

Example:

"hierarchies": [
{

"name": "default",
"levels": ["year", "month"]

},
{

"name": "ymd",
"levels": ["year", "month", "day"]

},
{

"name": "yqmd",
"levels": ["year", "quarter", "month", "day"]

}
]

Attributes

Dimension level attributes can be specified either as rich metadata or just simply as strings. If only string is
specified, then all attribute metadata will have default values, label will be equal to the attribute name.

2.1. Logical Model and Metadata 23

Cubes Documentation, Release 1.1

Key Description
name attribute name (should be unique within a dimension)
label human readable name - can be used in an application, localizable
order natural order of the attribute (optional), can be asc or desc
format application specific display format information
miss-
ing_value

Value to be substituted when there is no value (NULL) in the source (backend has to support
this feature)

locales list of locales in which the attribute values are available in (optional)
info custom info, such as formatting. Not used by cubes framework.

The optional order is used in aggregation browsing and reporting. If specified, then all queries will have results
sorted by this field in specified direction. Level hierarchy is used to order ordered attributes. Only one ordered
attribute should be specified per dimension level, otherwise the behavior is unpredictable. This natural (or default)
order can be later overridden in reports by explicitly specified another ordering direction or attribute. Explicit
order takes precedence before natural order.

For example, you might want to specify that all dates should be ordered by default:

"attributes" = [
{"name" = "year", "order": "asc"}

]

Locales is a list of locale names. Say we have a CPV dimension (common procurement vocabulary - EU procure-
ment subject hierarchy) and we are reporting in Slovak, English and Hungarian. The attributes will be therefore
specified as:

"attributes" = [
{

"name" = "group_code"
},
{

"name" = "group_name",
"order": "asc",
"locales" = ["sk", "en", "hu"]

}
]

group name is localized, but group code is not. Also you can see that the result will always be sorted by group
name alphabetical in ascending order.

In reports you do not specify locale for each localized attribute, you specify locale for whole report or browsing
session. Report queries remain the same for all languages.

Roles

Some dimensions and levels might have special, but well known, roles. One example of a role is time. There
might be more recognized roles in the future, for example geography.

Front-ends that respect roles might provide different user interface elements, such as date and time pickers for
selecting values of a date/time dimension. For the date picker to work, the front-end has to know, which dimension
represents date and which levels of the dimension represent calendar units such as year, month or day.

The role of a dimension has to be explicitly stated. Front-ends are not required to assume a dimension named date
is really a full date dimension.

The level roles do not have to be mentioned explicitly, if the level name can be recognized to match a particuliar
role. For example, in a dimension with role time level with name year will have automatically role year.

Level roles have to be specified when level names are in different language or for any reason don’t match english
calendar unit names.

24 Chapter 2. Data Modeling

Cubes Documentation, Release 1.1

Currently there is only one recognized dimension role: time. Recognized level roles with their default assign-
ment by level name are: year, quarter, month, day, hour, minute, second, week, weeknum, dow,
isoyear, isoweek, isoweekday.

The key value of level with role week is expected to have format YYYY-MM-DD.

Schemas and Models

This section contains example database schemas and their respective models with description. The examples are
for the SQL backend. Please refer to the backend documentation of your choice for more information about
non-SQL setups.

See also:

Logical Model and Metadata Logical model description.

backends/index Backend references.

Model Reference Developer’s reference of model classes and functions.

Basic Schemas

Simple Star Schema

Synopsis: Fact table has the same name as the cube, dimension tables have same names as dimensions.

Fact table is called sales, has one measure amount and two dimensions: store and product. Each dimension has
two attributes.

"cubes": [
{

"name": "sales",
"dimensions": ["product", "store"],
"joins": [

{"master":"product_id", "detail":"product.id"},
{"master":"store_id", "detail":"store.id"}

]
}

],
"dimensions": [

{ "name": "product", "attributes": ["code", "name"] },
{ "name": "store", "attributes": ["code", "address"] }

]

Simple Dimension

Synopsis: Dimension is represented only by one attribute, has no details, neither hierarchy.

Similar schema as Simple Star Schema Note the dimension year which is represented just by one numeric attribute.

2.2. Schemas and Models 25

Cubes Documentation, Release 1.1

It is important that no attributes are specified for the dimension. There dimension will be referenced just by its
name and dimension label is going to be used as attribute label as well.

"cubes": [
{

"name": "sales",
"dimensions": ["product", "store", "year"],
"joins": [

{"master":"product_id", "detail":"product.id"},
{"master":"store_id", "detail":"store.id"}

]
}

],
"dimensions": [

{ "name": "product", "attributes": ["code", "name"] },
{ "name": "store", "attributes": ["code", "address"] }
{ "name": "year" }

]

Table Prefix

Synopsis: dimension tables share a common prefix, fact tables share common prefix.

In our example the dimension tables have prefix dim_ as in dim_product or dim_store and facts have prefix
fact_ as in fact_sales.

There is no need to change the model, only the data store configuration. In Python code we specify the prefix
during the data store registration in cubes.Workspace.register_store():

workspace = Workspace()
workspace.register_store("default", "sql",

url=DATABASE_URL,
dimension_prefix="dim_",
dimension_suffix="_dim",
fact_suffix="_fact",
fact_prefix="fact_")

When using the OLAP Server we specify the prefixes in the [store] section of the slicer.ini configuration file:

26 Chapter 2. Data Modeling

Cubes Documentation, Release 1.1

[store]
...
dimension_prefix="dim_"
fact_prefix="fact_"

Not Default Database Schema

Synopsis: all tables are stored in one common schema that is other than default database schema.

To specify database schema (in our example sales_datamart) in Python pass it in the schema argument of
cubes.Workspace.register_store():

workspace = Workspace()
workspace.register_store("default", "sql",

url=DATABASE_URL,
schema="sales_datamart")

For the OLAP Server the schema is specified in in the [store] section of the slicer.ini configuration file:

[store]
...
schema="sales_datamart"

Separate Dimension Schema

Synopsis: dimension tables share one database schema and fact tables share another database schema

Dimensions can be stored in a different database schema than the fact table schema.

To specify database schema of dimensions (in our example dimensions) in Python pass it in the dimen-
sion_schema argument of cubes.Workspace.register_store():

2.2. Schemas and Models 27

Cubes Documentation, Release 1.1

workspace = Workspace()
workspace.register_store("default", "sql",

url=DATABASE_URL,
schema="facts",
dimension_schema="dimensions")

For the OLAP Server the dimension schema is specified in the [store] section of the slicer.ini configuration
file:

[store]
...
schema="facts"
dimension_schema="dimensions"

Many-to-Many Relationship

Synopsis: One fact might have multiple dimension members assigned

There are several options how the case of multiple dimension members per fact can be solved. Each has it
advantages and disadvantages. Here is one of them: using a bridge table.

This is our logical intention: there might be multiple representatives involved in an interaction cases:

We can solve the problem with adding a bridge table and by creating artificial level representative_group. This
group is unique combination of representatives that were involved in an interaction.

The model looks like:

"cubes": [
{

"dimensions": ["representative", ...],
"joins": [

{
"master":"representative_group_id",
"detail":"bridge_representative.group_id"

},
{

"master":"bridge_representative.representative_id",
"detail":"representative.id"

}
]

}
],
"dimensions": [

{
"name": "representative",
"levels": [

28 Chapter 2. Data Modeling

Cubes Documentation, Release 1.1

{ "name":"team" },
{ "name":"name", "nonadditive": "any"}

]
}

]

You might have noticed that the bridge table is hidden – you can’t see it’s contents anywhere in the cube.

There is one problem with aggregations when such dimension is involved: by aggregating over any level that is not
the most detailed (deepest) we might get double (multiple) counting of the dimension members. For this reason
it is important to specify all higher levels as nonadditive for any other dimension. It his case, backends that are
aware of the issue, might handle it appropriately.

Some front-ends might not even allow to aggregate by levels that are marked as nonadditivy.

Mappings

Following patterns use the Explicit Mapping.

Basic Attribute Mapping

Synopsis: table column has different name than a dimension attribute or a measure.

In our example we have a flat dimension called year, but the physical table column is “sales_year”. In addition we
have a measure amount however respective physical column is named total_amount.

We define the mappings within a cube:

"cubes": [
{

"dimensions": [..., "year"],
"measures": ["amount"],
"mappings": {

"year":"sales_year",
"amount":"total_amount"]

}
}

],
"dimensions": [

...
{ "name": "year" }

]

Shared Dimension Table

Synopsis: multiple dimensions share the same dimension table

2.2. Schemas and Models 29

Cubes Documentation, Release 1.1

Clients and suppliers might share one table with all organisations and companies. We have to specify a table alias
in the joins part of the cube definition. The table aliases should follow the same naming pattern as the other tables
– that is, if we are using dimension prefix, then the alias should include the prefix as well:

If the alias follows dimension naming convention, as in the example, then no mapping is required.

"cubes": [
{

"name": "sales"
"dimensions": ["supplier", "client"],
"measures": ["amount"],
"joins": [

{
"master":"supplier_id",
"detail":"dim_organisation.id",
"alias":"dim_supplier"

},
{

"master":"client_id",
"detail":"dim_organisation.id",
"alias":"dim_client"

}
]

}
],
"dimensions": [

{
"name": "supplier",
"attributes": ["id", "name", "address"]

},
{

"name": "client",
"attributes": ["id", "name", "address"

}
]

Hierarchies

Following patterns show how to specify one or multiple dimension hierarchies.

Simple Hierarchy

Synopsis: Dimension has more than one level.

30 Chapter 2. Data Modeling

Cubes Documentation, Release 1.1

Product dimension has two levels: product category and product. The product category level is represented by two
attributes category_code (as key) and category. The product has also two attributes: product_code
and name.

"cubes": [
{

"dimensions": ["product", ...],
"measures": ["amount"],
"joins": [

{"master":"product_id", "detail":"product.id"}
]

}
],
"dimensions": [

{
"name": "product",
"levels": [

{
"name":"category",
"attributes": ["category_code", "category"]

},
{

"name":"product",
"attributes": ["code", "name"]

}
]

}
]

Multiple Hierarchies

Synopsis: Dimension has multiple ways how to organise levels into hierarchies.

2.2. Schemas and Models 31

Cubes Documentation, Release 1.1

Dimensions such as date (depicted below) or geography might have multiple ways of organizing their attributes
into a hierarchy. The date can be composed of year-month-day or year-quarter-month-day.

To define multiple hierarchies, first define all possible levels. Then create list of hierarchies where you specify
order of levels for that particular hierarchy.

The code example below is in the “dimensions” section of the model:

{
"name":"date",
"levels": [

{ "name": "year", "attributes": ["year"] },
{ "name": "quarter", "attributes": ["quarter"] },
{ "name": "month", "attributes": ["month", "month_name"] },
{ "name": "week", "attributes": ["week"] },
{ "name": "weekday", "attributes": ["weekday"] },
{ "name": "day", "attributes": ["day"] }

],
"hierarchies": [

{"name": "ymd", "levels":["year", "month", "day"]},
{"name": "ym", "levels":["year", "month"]},
{"name": "yqmd", "levels":["year", "quarter", "month", "day"]},
{"name": "ywd", "levels":["year", "week", "weekday"]}

],
"default_hierarchy_name": "ymd"

}

The default_hierarchy_name specifies which hierarchy will be used if not mentioned explicitly.

Multiple Tables for Dimension Levels

Synopsis: Each dimension level has a separate table

We have to join additional tables and map the attributes that are not in the “main” dimension table (table with the
same name as the dimension):

32 Chapter 2. Data Modeling

Cubes Documentation, Release 1.1

"cubes": [
{

"dimensions": ["product", ...],
"measures": ["amount"],
"joins": [

{"master":"product_id", "detail":"product.id"},
{"master":"product.category_id", "detail":"category.id"}

],
"mappings": {

"product.category_code": "category.code",
"product.category": "category.name"

}
}

],
"dimensions": [

{
"name": "product",
"levels": [

{
"name":"category",
"attributes": ["category_code", "category"]

},
{

"name":"product",
"attributes": ["code", "name"]

}
]

}
]

Note: Joins should be ordered “from the master towards the details”. That means that always join tables closer
to the fact table before the other tables.

User-oriented Metadata

Model Labels

Synopsis: Labels for parts of model that are to be displayed to the user

Labels are used in report tables as column headings or as filter descriptions. Attribute (and column) names should
be used only for report creation and despite being readable and understandable, they should not be presented to
the user in the raw form.

2.2. Schemas and Models 33

Cubes Documentation, Release 1.1

Labels can be specified for any model object (cube, dimension, level, attribute) with the label attribute:

"cubes": [
{

"name": "sales",
"label": "Product Sales",
"dimensions": ["product", ...]

}
],
"dimensions": [

{
"name": "product",
"label": "Product",
"attributes": [

{"name": "code", "label": "Code"},
{"name": "name", "label": "Product"},
{"name": "price", "label": "Unit Price"},

]
}

]

Key and Label Attribute

Synopsis: specify which attributes are going to be used for flitering (keys) and which are going to be displayed in
the user interface (labels)

"dimensions": [
{

"name": "product",
"levels": [

{
"name": "product",
"attributes": ["code", "name", "price"]
"key": "code",
"label_attribute": "name"

}
]

}
]

Example use:

result = browser.aggregate(drilldown=["product"])

for row in result.table_rows("product"):
print "%s: %s" % (row.label, row.record["amount_sum"])

34 Chapter 2. Data Modeling

Cubes Documentation, Release 1.1

Localization

Localized Data

Synopsis: attributes might have values in multiple languages

Dimension attributes might have language-specific content. In cubes it can be achieved by providing one column
per language (denormalized localization). The default column name should be the same as the localized attribute
name with locale suffix, for example if the reported attribute is called name then the columns should be name_en
for English localization and name_hu for Hungarian localization.

"dimensions": [
{

"name": "product",
"label": "Product",
"attributes": [

{"name": "code", "label": "Code"},
{

"name": "name",
"label": "Product",
"locales": ["en", "fr", "es"]

}
]

}
]

Use in Python:

browser = workspace.browser(cube, locale="fr")

The browser instance will now use only the French localization of attributes if available.

In slicer server requests language can be specified by the lang= parameter in the URL.

The dimension attributes are referred in the same way, regardless of localization. No change to reports is necessary
when a new language is added.

Notes:

• only one locale per browser instance – either switch the locale or create another browser

• when non-existing locale is requested, then the default (first in the list of the localized attribute) locale is
used

Localized Model Labels

Synopsis: Labels of model objects, such as dimensions, levels or attributes are localized.

2.2. Schemas and Models 35

Cubes Documentation, Release 1.1

Note: Way how model is localized is not yet decided, the current implementation might be changed.

We have a reporting site that uses two languages: English and Slovak. We want all labels to be available in both
of the languages. Also we have a product name that has to be localized.

First we define the model and specify that the default locale of the model is English (for this case). Note the locale
property of the model, the label attributes and the locales of product.name attribute:

{
"locale": "en",
"cubes": [

{
"name": "sales",
"label": "Product Sales",
"dimensions": ["product"],
"measures": [

{"name": "amount", "label": "Amount"}
]

}
],
"dimensions": [

{
"name": "product",
"label": "Product",
"attributes": [

{
"name": "code",
"label": "Code"

},
{
"name": "name",
"label": "Product",
"locales": ["en", "sk"]

},
{
"name": "price",
"label": "Unit Price"

}
]

}

36 Chapter 2. Data Modeling

Cubes Documentation, Release 1.1

]
}

Next we create a separate translation dictionary for the other locale, in our case it is Slovak or sk. If we are
translating only labels, no descriptions or any other information, we can use the simplified form:

{
"locale": "sk",
"dimensions":
{

"product”:
{

"levels":
{

"product" : "Produkt"
},
"attributes" :
{

"code": "Kód produktu",
"name": "Produkt",
"price": "Jednotková cena"

}
}

},
"cubes":
{

"sales":
{

"measures":
{

"amount": "Suma"
}

}
}

}

Full localization with detailed dictionaries looks like this:

{
"locale": "sk",
"dimensions":
{

"product”:
{

"levels":
{

"product" : { "label" : "Produkt"}
},
"attributes" :
{

"code": {"label": "Kód produktu"},
"name": {"label": "Produkt"},
"price": {"label": "Jednotková cena"}

}
}

},
"cubes":
{

"sales":
{

"measures":
{

2.2. Schemas and Models 37

Cubes Documentation, Release 1.1

"amount": {"label": "Suma"}
}

}
}

}

To create a model with translations:

translations = {"sk": "model-sk.json"}
model = create_model("model.json", translations)

The model created this way will be in the default locale. To get localized version of the master model:

localized_model = model.localize("sk")

Note: The cubes.Workspace.browser() method creates a browser with appropriate model
localization, no explicit request for localization is needed.

Localization

Having origin in multi-lingual Europe one of the main features of the Cubes framework is ability to provide
localizable results. There are three levels of localization in each analytical application:

1. Application level - such as buttons or menus

2. Metadata level - such as table header labels

3. Data level - table contents, such as names of categories or procurement types

Fig. 2.5: Localization levels.

The application level is out of scope of this framework and is covered in internationalization (i18n) libraries, such
as gettext. What is covered in Cubes is metadata and data level.

Localization in cubes is very simple:

1. Create master model definition and specify locale the model is in

2. Specify attributes that are localized (see Explicit Mapping)

3. Create model translations for each required language

4. Make cubes function or a tool create translated versions the master model

To create localized report, just specify locale to the browser and create reports as if the model was not localized.
See Localized Reporting.

38 Chapter 2. Data Modeling

Cubes Documentation, Release 1.1

Metadata Localization

The metadata are used to display report labels or provide attribute descriptions. Localizable metadata are mostly
label and description metadata attributes, such as dimension label or attribute description.

Say we have three locales: Slovak, English, Hungarian with Slovak being the main language. The master model
is described using Slovak language and we have to provide two model translation specifications: one for English
and another for Hungarian.

The model translation file has the same structure as model definition file, but everything except localizable meta-
data attributes is ignored. That is, only label and description keys are considered in most cases. You
can not change structure of mode in translation file. If structure does not match you will get warning or error,
depending on structure change severity.

There is one major difference between master model file and model translations: all attribute lists, such as cube
measures, cube details or dimension level attributes are dictionaries, not arrays. Keys are attribute names, values
are metadata translations. Therefore in master model file you will have:

attributes = [
{ "name": "name", "label": "Name" },
{ "name": "cat", "label": "Category" }

]

in translation file you will have:

attributes = {
"name": {"label": "Meno"},
"cat": {"label": "Kategoria"}

}

If a translation of a metadata attribute is missing, then the one in master model description is used.

In our case we have following files:

procurements.json
procurements_en.json
procurements_hu.json

Fig. 2.6: Localization master model and translation files.

To add a model tranlsation:

workspace.add_translation("en", "procurements_en.json")

In the slicer.ini

[locale en]
default = procurements_en.json

2.3. Localization 39

Cubes Documentation, Release 1.1

[locale hu]
default = procurements_hu.json

To get translated version of a cube:

cube = workspace.cube("contracts", locale="en")

Localization is assigned to a model namespace.

Data Localization

If you have attributes that needs to be localized, specify the locales (languages) in the attribute definition in Explicit
Mapping.

Note: Data localization is implemented only for Relational/SQL backend.

Localized Reporting

Main point of localized reporting is: Create query once, reuse for any language. Provide translated model and
desired locale to the aggregation browser and you are set. The browser takes care of appropriate value selection.

Aggregating, drilling, getting list of facts - all methods return localized data based on locale provided to the
browser. If you want to get multiple languages at the same time, you have to create one browser for each language
you are reporting.

40 Chapter 2. Data Modeling

CHAPTER 3

Aggregation, Slicing and Dicing

Slicing and Dicing

Note: Examples are in Python and in Slicer HTTP requests.

Browser

The aggregation, slicing, dicing, browsing of the multi-dimensional data is being done by an AggregationBrowser.

from cubes import Workspace

workspace = Workspace("slicer.ini")
browser = workspace.browser()

Cell and Cuts

Cell defines a point of interest – portion of the cube to be aggregated or browsed.

There are three types of cells: point – defines a single point in a dimension at a particular level; range – defines
all points of an ordered dimension (such as date) within the range and set – collection of points:

Points are defined as dimension paths – list of dimension level keys. For example a date path for 24th of December
2010 would be: [2010, 12, 24]. For December 2010, regardless of day: [2010, 12] and for the whole

41

Cubes Documentation, Release 1.1

year: it would be a single item list [2010]. Similar for other dimensions: ["sk", "Bratislava"] for city
Bratislava in Slovakia (code sk).

In Python the cuts for “sales in Slovakia between June 2010 and June 2012” are defined as:

cuts = [
PointCut("geography", ["sk"]),
PointCut("date", [2010, 6], [2012, 6])

]

Same cuts for Slicer: cut=geography:sk|date:2010,6-2012,6.

If a different hierarchy than default is desired – “from the second quartal of 2010 to the second quartal of 2012”:

cuts = [
PointCut("date", [2010, 2], [2012, 2], hierarchy="yqmd")

]

Slicer: cut=date@yqmd:2010,2-2012,2.

Ranges and sets might have unequal depths: from [2010] to [2012,12,24] means “from the beginning of
the year 2010 to December 24th 2012”.

cuts = [
PointCut("date", [2010], [2012, 12, 24])

]

Slicer: cut=date:2010-2012,12,24.

Ranges might be open, such as “everything until Dec 24 2012”:

cuts = [
PointCut("date", None, [2012, 12, 24])

]

Slicer: cut=date:-2012,12,24.

Aggregate

browser = workspace.browser("sales")
result = browser.aggregate()

print result.summary

Slicer: /cube/sales/aggregate

Aggregate of a cell:

42 Chapter 3. Aggregation, Slicing and Dicing

Cubes Documentation, Release 1.1

cuts = [
PointCut("geography", ["sk"])
PointCut("date", [2010, 6], [2012, 6]),

]
cell = Cell(cube, cuts)
result = browser.aggregate(cell)

Slicer: /cube/sales/aggregate?cut=geography:sk|date:2010,6-2012,6

It is possible to select only specific aggregates to be aggregated:

result = browser.aggregate(cell, aggregates=["amount"])

Slicer: /cube/sales/aggregate?aggregates=amount

Drilldown

Drill-down – get more details, group the aggregation by dimension members.

For example “sales by month in 2010”:

cut = PointCut("date", [2010])
cell = Cell(cube, [cut])
result = browser.aggregate(cell, drilldown=["date"])

for row in result:
print "%s: %s" % (row["date.year"], row["amount_sum"])

Slicer: /cube/sales/aggregate?cut=date:2010&drilldown=date

Implicit

If not stated otherwise, the cubes drills-down to the next level of the drilled dimension. For example, if there is no
cell constraint and the drilldown is [”date”], that means to use the first level of dimension date, usually year. If
there is already a cut by year: PointCut(“date”, [2010]) then the next level is by month.

The “next level” is determined as the next level after the deepest level used in a cut. Consider hierarchies for date:
year, month and day, for geography: region, country, city. The implicit drilldown will be as follows:

Drilldown Cut Result levels
date – date:year
date date point [2010] date:month
date date point [2010, 4, 1] error
country, date date range [2010, 1] - [2010, 4] date:day, geo:region

If the cut is at its deepest level, then it is not possible to drill-down deeper which results in an error.

Explicit

If the implicit behavior is not satisfying, then the drill-down levels might be specified explicitly. In this case, the
cut is not considered for the drilldown level.

You might want to specify drill-down levels explicitly for example if a cut range spans between multiple months
and you don’t want to have the next level to be day, but month. Another use is whe you want to use another
hierarchy for drill-don than the default hierarchy.

3.1. Slicing and Dicing 43

Cubes Documentation, Release 1.1

Drilldown Python Server
by year ("date", None, "year") drilldown=date:year
by month and city ("date", None, "month"), ("geo",

None, "city")
drilldown=date:month,
geo:city

by month but with
quarter included

("date", "yqmd", "month") drilldown=date@yqmd:month

Pagination

Results can be paginated by specifying page and page_size arguments:

result = browser.aggregate(cell, drilldown, page=0, page_size=10)

Server: /cube/sales/aggregate?cell=...&drilldown=...&page=0&pagesize=10

Split

Provisional:

• aggregate(cell, drilldown, split)

Facts

To get list of facts within a cell use cubes.AggregationBrowser.facts():

facts = browser.facts(cell)

Server: /cube/sales/facts?cell=...

You can also paginate the result as in the aggregation.

Note that not all backends might support fact listing. Please refer to the backend’s documentation for more
information.

Fact

A single fact can be fetched using cubes.AggregationBrowser.fact() as in fact(123) or with the server
as /cube/sales/fact/123.

Note that not all backends might support fact listing. Please refer to the backend’s documentation for more
information.

Members

Getting dimension members might be useful for example for populating drill-downs or for providing an informa-
tion to the user what he can use for slicing and dicing. In python there is cubes.AggregationBrowser.
members().

For example to get all countries present in a cell:

members = browser.members(cell, "country")

Same query with the server would be: /cube/sales/dimension/country?cut=...

It is also possible to specify hierarchy and level depth for the dimension members.

44 Chapter 3. Aggregation, Slicing and Dicing

Cubes Documentation, Release 1.1

Cell Details

When we are browsing a cube, the cell provides current browsing context. For aggregations and selections to
happen, only keys and some other internal attributes are necessary. Those can not be presented to the user though.
For example we have geography path (country, region) as ['sk', 'ba'], however we want to display to the
user Slovakia for the country and Bratislava for the region. We need to fetch those values from the data store. Cell
details is basically a human readable description of the current cell.

For applications where it is possible to store state between aggregation calls, we can use values from previous
aggregations or value listings. Problem is with web applications - sometimes it is not desirable or possible to store
whole browsing context with all details. This is exact the situation where fetching cell details explicitly might
come handy.

The cell details are provided by method cubes.AggregationBrowser.cell_details() which has
Slicer HTTP equivalent /cell or {"query":"detail", ...} in /report request (see the server docu-
mentation for more information).

For point cuts, the detail is a list of dictionaries for each level. For example our previously mentioned path
['sk', 'ba'] would have details described as:

[
{

"geography.country_code": "sk",
"geography.country_name": "Slovakia",
"geography.something_more": "..."
"_key": "sk",
"_label": "Slovakia"

},
{

"geography.region_code": "ba",
"geography.region_name": "Bratislava",
"geography.something_even_more": "...",
"_key": "ba",
"_label": "Bratislava"

}
]

You might have noticed the two redundant keys: _key and _label - those contain values of a level key attribute
and level label attribute respectively. It is there to simplify the use of the details in presentation layer, such as
templates. Take for example doing only one-dimensional browsing and compare presentation of “breadcrumbs”:

labels = [detail["_label"] for detail in cut_details]

Which is equivalent to:

levels = dimension.hierarchy().levels()
labels = []
for i, detail in enumerate(cut_details):

labels.append(detail[levels[i].label_attribute.ref()])

Note that this might change a bit: either full detail will be returned or just key and label, depending on an option
argument (not yet decided).

Supported Methods

Not all browsers might provide full functionality. For example a browser, such as Google Analytics, might provide
aggregations, but might not provide fact details.

To learn what features are provided by the browser for particular cube use the cubes.
AggregationBrowser.features() method which returns a dictionary with more detailed description of
what can be done with the cube.

3.1. Slicing and Dicing 45

Cubes Documentation, Release 1.1

Data Formatters

Data and metadata from aggregation result can be transformed to one of multiple forms using formatters:

formatter = cubes.create_formatter("text_table")

result = browser.aggregate(cell, drilldown="date")

print formatter.format(result, "date")

Available formatters:

• text_table – text output for result of drilling down through one dimension

• simple_data_table – returns a dictionary with header and rows

• simple_html_table – returns a HTML table representation of result table cells

• cross_table – cross table structure with attributes rows – row headings, columns – column headings and data
with rows of cells

• html_cross_table – HTML version of the cross_table formatter

See also:

Formatters Reference Formatter reference

46 Chapter 3. Aggregation, Slicing and Dicing

CHAPTER 4

Analytical Workspace

Analytical Workspace

Analytical workspace is ... TODO: describe.

The analyital workspace manages cubes, shared (public) dimensions, data stores, model providers and model
metadata. Provides aggregation browsers and maintains database connections.

Typical cubes session takes place in a workspace. Workspace is configured either through a slicer.ini file or
programatically. Using the file:

from cubes import Workspace

workspace = Workspace(config="slicer.ini")

For more information about the configuration file options see Configuration

The manual workspace creation:

from cubes import Workspace

workspace = Workspace()
workspace.register_default_store("sql", url="postgresql://localhost/data")
workspace.import_model("model.json")

Stores

Cube data are stored somewhere or might be provided by a service. We call this data source a data store. A
workspace might use multiple stores to get content of the cubes.

Built-in stores are:

• sql – relational database store (ROLAP) using star or snowflake schema

• slicer – connection to another Cubes server

• mixpanel – retrieves data from Mixpanel and makes it look like multidimensional cubes

Supported SQL dialects (by SQLAlchemy) are: Drizzle, Firebird, Informix, Microsoft SQL Server, MySQL,
Oracle, PostgreSQL, SQLite, Sybase

47

http://en.wikipedia.org/wiki/ROLAP
https://mixpanel.com/docs/

Cubes Documentation, Release 1.1

Fig. 4.1: Analytical Workspace

48 Chapter 4. Analytical Workspace

Cubes Documentation, Release 1.1

See Configuration for more information how to configure the stores.

Model Providers

Model provider creates models of cubes, dimensions and other analytical objects. The models can be created from
a metadata, database or an external source, such as API.

Built-in model providers are:

• static (also aliased as default) – creates model objects from JSON data (files)

• mixpanel – describes cubes as Mixpanel events and dimensions as Mixpanel properties

To specify that the model is provided from other source than the metadata use the provider keyword in the
model description:

{
"provider": "mixpanel",
"store": "mixpanel"

}

The store:

[store]
type: mixpanel
api_key: MY_MIXPANEL_API_KEY
api_secret: MY_MIXPANEL_API_SECRET

Authorization and Authentication

Cubes provides simple but extensible mechanism for authorization through an Authorizer and for authentication
through an Authenticator.

Authentication in cubes: determining and confirirming the user’s identity, for example using a user name and
password, some secret key or using an external service.

Authorization: providing (or denying) access to cubes based on user’s identity.

Authorization

The authorization principle in cubes is based on user’s rights to a cube and restriction within a cube. If user has a
“right to a cube” he can access the cube, the cube will be visible to him.

Restriction within a cube is cell based: users might have access only to a certain cell within a cube. For example
a shop manager might have access only to sales cube and dimension point equal to his own shop.

Authorization is configured at the workspace level. In slicer.ini it is specified as:

[workspace]
authorization: simple

[authorization]
rights_file: access_rights.json

There is only one build-in authorizer called simple.

4.2. Authorization and Authentication 49

Cubes Documentation, Release 1.1

Fig. 4.2: Overview of authorization and authentication process in Slicer

50 Chapter 4. Analytical Workspace

Cubes Documentation, Release 1.1

Simple Authorization

Simple authorization based on JSON files: rights and roles. The rights file contains a dictionary with keys as user
identities (user names, API keys, ...) and values as right descriptions.

The user right is described as:

• roles – list of of user’s role – user inherits the restrictions from the role

• allowed_cubes – list of cubes that the user can access (and no other cubes)

• denied_cubes – list of cubes that the user can not access (he can access the rest of cubes)

• cube_restrictions – a dictionary where keys are cube names and values are lists of cuts

The roles file has the same structure as the rights file, instead of users it defines inheritable roles. The roles can
inherit properties from other roles.

Example of roles file:

{
"retail": {

"allowed_cubes": ["sales"]
}

}

Rights file:

{
"martin": {

"roles": ["retail"],
}

}

The rights file of the simple authorization method might contain a special guest role which will be used when no
other identity is found. See the configuration documentation for more information.

Authentication

Authentication is handled at the server level.

Built-in authentication methods:

• none – no authentication

• pass_parameter – permissive authentication that just passes an URL parameter to the authorizer. De-
fault parameter name is api_key

• http_basic_proxy – permissive authentication using HTTP Basic method. Assumes that the slicer is
behind a proxy and that the password was already verified. Passes the user name to the authorizer.

Configuration

Cubes workspace configuration is stored in a .ini file with sections:

• [server] - server related configuration, such as host, port

• [workspace] – Cubes workspace configuration

• [model] - model and cube configuration

• [models] - list of models to be loaded (deprecated)

• [naming] - naming conventions

4.3. Configuration 51

Cubes Documentation, Release 1.1

• [store] – default datastore configuration

• [store NAME] – configuration for store with name NAME

• [locale NAME] - model translations. See Localization for more information.

• [info] - optional section for user presentable info about your project

Note: The configuration has changed with version 1.0. Since Cubes supports multiple data stores, their type
(backend) is specified in the store configuration as type property, for example type=sql.

Quick Start

Simple configuration might look like this:

[workspace]
model = model.json

[store]
type = sql
url = postgresql://localhost/database

Server

json_record_limit

Number of rows to limit when generating JSON output with iterable objects, such as facts. Default is 1000. It is
recommended to use alternate response format, such as CSV, to get more records.

modules

Space separated list of modules to be loaded. This is only used if run by the slicer command.

prettyprint

If set to true, JSON is serialized with indentation of 4 spaces. Set to true for demonstration purposes, omit or
comment out option for production use.

host

Host or IP address where the server binds, defaults to localhost.

port

Port on which the server listens, defaults to 5000.

reload

Suitable for development only. Set to yes to enable Werkzeug reloader.

allow_cors_origin

Cross-origin resource sharing header. Other related headers are added as well, if this option is present.

52 Chapter 4. Analytical Workspace

http://werkzeug.pocoo.org/

Cubes Documentation, Release 1.1

authentication

Authentication method, see Authentication and Authorization below for more information.

pid_file

Path to a file where PID of the running server will be written. If not provided, no PID file is created.

Workspace

This section covers the Workspace configuration, such as file locations, logging, namespaces and localization.

Authorization

authorization

Authorization method to be used on the workspace side. If omitted, no authorization is required. For details see
Authentication and Authorization below.

Localization configuration

timezone

Name of the default time zone, for example Europe/Berlin. Used in date and time operations, such as named
relative time.

first_weekday

First day of the week in english weekday name. Can also be specified as number, where 0 is Monday and 6 is
Sunday.

File Locations

root_directory

Workspace root path: all paths, such as models_directory or info_file are considered relative to the
root_directory it they are not specified as absolute.

models_directory

Path to a directory containing models. If this is set to non-empty value, then all model paths specified in
[models] are prefixed with this path.

stores_file

Path to a file (with .ini config syntax) containing store descriptions – every section is a store with same name as
the section.

4.3. Configuration 53

Cubes Documentation, Release 1.1

info_file

Path to a file containing user info metadata. See more in Info.

Logging configuration

log

Path to log file.

log_level

Level of log details, from least to most: error, warn, info, debug.

Namespaces

If not specified otherwise, all cubes share the same default namespace. Their names within namespace should be
unique.

Model

path

Path to model .json file. See Logical Model and Metadata for more on model definition.

Models

Warning: This section is deprecated in favor of section [model].

Section [models] contains list of models. The property names are model identifiers within the configuration
(see [translations] for example) and the values are paths to model files.

Example:

[models]
main = model.json
mixpanel = mixpanel.json

If models_directory is specified in Workspace then the relative model paths are combined with the mod-
els_directory. Example:

[workspace]
models_directory = /dwh/cubes/models

[models]
main = model.json
events = events.json

The models are loaded from /dwh/cubes/models/model.json and /dwh/cubes/models/events.
json.

Note: If the root_directory is set, then the models_directory is relative to the root_directory. For
example if the workspace root is /var/lib/cubes and models_directory is models then the search

54 Chapter 4. Analytical Workspace

Cubes Documentation, Release 1.1

path for models will be /var/lib/cubes/models. If the models_directory is absolute, for example
/cubes/models then the absolute path will be used regardless of the workspace root directory settings.

Data stores

There might be one or more store configured. The section [store] of the cubes.ini file describes the default
store. Multiple stores are configured in a separate stores.ini file referenced by the stores_file configuration
option in [workspace] section.

Data store properties

type

Defines the data store backend module used, eg. sql. Required.

For list of available types see backends/index.

model

Model related to the datastore.

namespace

Namespace where the store’s cubes will be registered.

model_provider

Model provider type for the datastore. For more on model providers, see chapter Model Provider and External
Models.

Example data store configurations

Example SQL store:

[store]
type = sql
url = postgresql://localhost/data
schema = cubes

For more information and configuration on SQL store options see SQL Backend.

Example mixpanel store:

[store]
type = mixpanel
model = mixpanel.json
api_key = 123456abcd
api_secret = 12345abcd

Multiple Slicer stores:

4.3. Configuration 55

Cubes Documentation, Release 1.1

[store slicer1]
type = slicer
url = http://some.host:5000

[store slicer2]
type = slicer
url = http://other.host:5000

The cubes will be named slicer1.* and slicer2.*. To use specific namespace, different from the store name:

[store slicer3]
type = slicer
namespace = external
url = http://some.host:5000

Cubes will be named external.*

To specify default namespace:

[store slicer4]
type = slicer
namespace = default.
url = http://some.host:5000

Cubes will be named without namespace prefix.

Naming

Todo

Write the naming section.

[naming]
dimension_prefix = dim_
fact_prefix = ft_

See respective backend documentation for more information about naming conventions in the [naming] section.

Authentication and Authorization

Cubes provides mechanisms for authentication at the server side and authorization at the workspace side.

Authorization

To configure authorization, you need to enable authorization in workspace section.

[workspace]
authorization = simple

[authorization]
rights_file = /path/to/access_rights.json

authorization

This option goes in the [workspace] section.

56 Chapter 4. Analytical Workspace

Cubes Documentation, Release 1.1

Valid options are

• none – no authorization

• simple – uses a JSON file with per-user access rights

Simple authorization

The simple authorization has following configuration options:

rights_file

Path to the JSON configuration file with access rights.

roles_file

Path to the JSON configuration file with roles.

identity_dimension

Name of a flat dimension that will be used for cell restriction. Key of that dimension should match the identity.

order

Access control. Valid is allow_deny or deny_allow (default).

guest

Name of a guest role. If specified, then this role will be used for all unknown (not specified in the file) roles.

Authentication

Example authentication via parameter passing:

[server]
authentication = pass_parameter

[authentication]
additional authentication parameters
parameter = token

This configures server to expect a GET parameter token which will be passed on to authorization.

authentication

Built-in server authentication methods:

none

No authentication.

http_basic_proxy

HTTP basic authentication will pass the username to the authorizer. This assumes the server is behind
a proxy and that the proxy authenticated the user.

4.3. Configuration 57

Cubes Documentation, Release 1.1

pass_parameter

Authentication without verification, just a way of passing an URL parameter to the authorizer. Pa-
rameter name can be specified via parameter option, default api_key.

For more on how this works, see Authorization and Authentication.

Note: When you have authorization method specified and is based on an users’s indentity, then you have to
specify the authentication method in the server. Otherwise the authorizer will not receive any identity and might
refuse any access.

Localization sections

Model localizations are specified in the configuration with [locale XX] where XX is the two letter ISO 639-1
locale code. Option names are namespace names and option keys are paths to translation files. For example:

[locale sk]
default = translation_sk.json

[locale hu]
default = translation_hu.json

Info

This section contains user supplied and front-end presentable information such as description or license. This can
be included in main .ini configuration or as a separate JSON file.

The info JSON file might contain:

• label – server’s name or label

• description – description of the served data

• copyright – copyright of the data, if any

• license – data license

• maintainer – name of the data maintainer, might be in format Name Surname <namesur-
name@domain.org>

• contributors - list of contributors

• keywords – list of keywords that describe the data

• related – list of related or “friendly” Slicer servers with other open data – a dictionary with keys label
and url.

• visualizers – list of links to prepared visualisations of the server’s data – a dictionary with keys label
and url.

Server Query Logging

Sections, prefixed with query_log configure query logging. All sections with this prefix (including section named
as the prefix) are collected and chained into a list of logging handlers. Required option is type. You might have
multiple handlers at the same time.

Configuration options are:

58 Chapter 4. Analytical Workspace

http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

Cubes Documentation, Release 1.1

type

Type of query log. Required.

Valid options are:

default

Log using Cubes logger via Python logging module.

csv_file

Log into a CSV file. Specify the file name via path option.

json

Log into file as quasi-JSON file - each log record is valid JSON and records are separated by newlines.
Specify the file name via path option.

sql

Log into a SQL table. SQL request logger options are:

• url – database URL

• table – database table

• dimensions_table – table with dimension use (optional)

If tables do not exist, they are created automatically.

Example query log configuration

This configuration will create three query loggers, all at once. query_log_one will emit to Python logging and
will show in console if log_level is set to info or more verbose. query_log_two will log queries into CSV file
/var/log/cubes/queries.csv. query_log_three will insert query log into table cubes_query_log in a PostgreSQL
database named cubes_log located on a remote host named log_host.

[query_log_one]
type = default

[query_log_two]
type = csv
path = /var/log/cubes/queries.csv

[query_log_three]
type = sql
url = postgresql://log_host/cubes_log
table = cubes_query_log

Examples

Simple configuration:

[workspace]
model = model.json

[store]
type = sql
url = postgresql://localhost/cubes

Multiple models, one store:

4.3. Configuration 59

Cubes Documentation, Release 1.1

[models]
finance = finance.cubesmodel
customer = customer.cubesmodel

[store]
type = sql
url = postgresql://localhost/cubes

Multiple stores:

[store finance]
type = sql
url = postgresql://localhost/finance
model = finance.cubesmodel

[store customer]
type = sql
url = postgresql://otherhost/customer
model = customer.cubesmodel

Example of a whole configuration file:

[workspace]
model = ~/models/contracts_model.json

[server]
log = /var/log/cubes.log
log_level = info

[store]
type = sql
url = postgresql://localhost/data
schema = cubes

SQL Backend

The SQL backend is using the SQLAlchemy which supports following SQL database dialects:

• Drizzle

• Firebird

• Informix

• Microsoft SQL Server

• MySQL

• Oracle

• PostgreSQL

• SQLite

• Sybase

Supported aggregate functions:

• sum

• count – equivalend to COUNT(1)

• count_nonempty – equivalent to COUNT(measure)

• count_distinct – equivalent to COUNT(DISTINCT measure)

60 Chapter 4. Analytical Workspace

http://www.sqlalchemy.org/download.html

Cubes Documentation, Release 1.1

• min

• max

• avg

• stddev

• variance

Store Configuration

Data store:

• url (required) – database URL in form: adapter://user:password@host:port/database,
for example: postgresql://stefan:secret@localhost:5432/datawarehouse. Empty
values can be ommited, as in postgresql://localhost/datawarehouse.

• schema (optional) – schema containing denormalized views for relational DB cubes

Database Connection

(advanced topic)

To fine-tune the SQLAlchemy database connection some of the create_engine() parameters can be specified as
sqlalchemy_PARAMETER:

• sqlalchemy_case_sensitive

• sqlalchemy_convert_unicode

• sqlalchemy_pool_size

• sqlalchemy_pool_recycle

• sqlalchemy_pool_timeout

• sqlalchemy_... ...

Please refer to the create_engine documentation for more information.

Naming

The following configuration settings might be used in the naming conventions configuration:

• dimension_prefix (optional) – used by snowflake mapper to find dimension tables when no explicit
mapping is specified

• dimension_suffix (optional) – used by snowflake mapper to find dimension tables when no explicit
mapping is specified

• dimension_schema – use this option when dimension tables are stored in different schema than the fact
tables

• fact_prefix (optional) – used by the snowflake mapper to find fact table for a cube, when no explicit
fact table name is specified

• fact_suffix (optional) – used by the snowflake mapper to find fact table for a cube, when no explicit
fact table name is specified

• use_denormalization (optional) – browser will use dernormalized view instead of snowflake

• denormalized_view_prefix (optional, advanced) – if denormalization is used, then this prefix is
added for cube name to find corresponding cube view

• denormalized_view_schema (optional, advanced) – schema wehere denormalized views are located
(use this if the views are in different schema than fact tables, otherwise default schema is going to be used)

4.4. SQL Backend 61

http://docs.sqlalchemy.org/en/rel_0_8/core/engines.html?highlight=engine#sqlalchemy.create_engine

Cubes Documentation, Release 1.1

Model Requirements

Cube has to have key property set to the fact table key column to be able to provide list of facts. Default key is
id.

Mappings

One of the important parts of proper OLAP on top of the relational database is the mapping of logical attributes to
their physical counterparts. In SQL database the physical attribute is stored in a column, which belongs to a table,
which might be part of a database schema.

For example, take a reference to an attribute name in a dimension product. What is the column of what table in
which schema that contains the value of this dimension attribute?

For data browsing, the Cubes framework has to know where those logical (reported) attributes are physically
stored. It needs to know which tables are related to the cube and how they are joined together so we get whole
view of a fact.

The process is done in two steps:

1. joining relevant star/snowflake tables

2. mapping logical attribute to table + column

There are two ways how the mapping is being done: implicit and explicit. The simplest, straightforward and most
customizable is the explicit way, where the actual column reference is provided in a mapping dictionary of the
cube description.

62 Chapter 4. Analytical Workspace

Cubes Documentation, Release 1.1

Implicit Mapping

With implicit mapping one can match a database schema with logical model and does not have to specify additional
mapping metadata. Expected structure is star schema with one table per (denormalized) dimension.

Facts

Cubes looks for fact table with the same name as cube name. You might specify prefix for every fact table with
fact_table_prefix. Example:

• Cube is named contracts, framework looks for a table named contracts.

• Cubes are named contracts, invoices and fact table prefix is fact_ then framework looks for tables named
fact_contracts and fact_invoices respectively.

Dimensions

In short: a dimension attribute customer.name maps to table customer and column name by default. A dimension
without details and with just a single level such as is_hungry maps to the is_hungry column of the fact table.

By default, dimension tables are expected to have same name as dimensions and dimension table columns are
expected to have same name as dimension attributes:

It is quite common practice that dimension tables have a prefix such as dim_ or dm_. Such prefix can be specified
with dimension_prefix option.

The rules are:

• fact table should have same name as represented cube: fact table name = fact table prefix + fact table name

• dimension table should have same name as the represented dimension, for example: product (singular):
dimension table name = dimension prefix + dimension name

• column name should have same name as dimension attribute: name, code, description

• references without dimension name in them are expected to be in the fact table, for example: amount,
discount (see note below for simple flat dimensions)

• if attribute is localized, then there should be one column per localization and should have locale suffix:
description_en, description_sk, description_fr (see below for more information)

4.4. SQL Backend 63

Cubes Documentation, Release 1.1

Flat dimension without details

What about dimensions that have only one attribute, like one would not have a full date but just a year? In this
case it is kept in the fact table without need of separate dimension table. The attribute is treated in by the same
rule as measure and is referenced by simple year. This is applied to all dimensions that have only one attribute
(representing key as well). This dimension is referred to as flat and without details.

Note: The simplification of the flat references can be disabled by setting
simplify_dimension_references to False in the mapper. In that case you will have to have
separate table for the dimension attribute and you will have to reference the attribute by full name. This might be
useful when you know that your dimension will be more detailed.

Database Schemas

For databases that support schemas, such as PostgreSQL, option schema can be used to specify default database
schema where all tables are going to be looked for.

In case you have dimensions stored in separate schema than fact table, you can specify that in
dimension_schema. All dimension tables are going to be searched in that schema.

Explicit Mapping

If the schema does not match expectations of cubes, it is possible to explicitly specify how logical attributes are
going to be mapped to their physical tables and columns. Mapping dictionary is a dictionary of logical attributes
as keys and physical attributes (columns, fields) as values. The logical attributes references look like:

• dimensions_name.attribute_name, for example: geography.country_name or category.code

• fact_attribute_name, for example: amount or discount

Following mapping maps attribute name of dimension product to the column product_name of table dm_products.

"mappings": {
"product.name": "dm_products.product_name"

}

Note: Note that in the mappings the table names should be spelled as they are in the database even the table
prefix is specified.

If it is in different schema or any part of the reference contains a dot:

"mappings": {
"product.name": {

"schema": "sales",
"table": "dm_products",
"column": "product_name"

}
}

Both, explicit and implicit mappings have ability to specify default database schema (if you are using Oracle,
PostgreSQL or any other DB which supports schemas).

The mapping process process is like this:

64 Chapter 4. Analytical Workspace

Cubes Documentation, Release 1.1

Date Data Type

Date datatype column can be turned into a date dimension by extracting date parts in the mapping. To do so, for
each date attribute specify a column name and part to be extracted with value for extract key.

"mappings": {
"date.year": {"column":"date", "extract":"year"},
"date.month": {"column":"date", "extract":"month"},
"date.day": {"column":"date", "extract":"day"}

}

According to SQLAlchemy, you can extract in most of the databases: month, day, year, second, hour,
doy (day of the year), minute, quarter, dow (day of the week), week, epoch, milliseconds,
microseconds, timezone_hour, timezone_minute. Please refer to your database engine documen-
tation for more information.

Note: It is still recommended to have a date dimension table.

Localization

From physical point of view, the data localization is very trivial and requires language denormalization - that
means that each language has to have its own column for each attribute.

Localizable attributes are those attributes that have locales specified in their definition. To map logical at-
tributes which are localizable, use locale suffix for each locale. For example attribute name in dimension category
has two locales: Slovak (sk) and English (en). Or for example product category can be in English, Slovak or
German. It is specified in the model like this:

attributes = [
{

"name" = "category",
"locales" = ["en", "sk", "de"]

4.4. SQL Backend 65

Cubes Documentation, Release 1.1

}
]

During the mapping process, localized logical reference is created first:

In short: if attribute is localizable and locale is requested, then locale suffix is added. If no such localization exists
then default locale is used. Nothing happens to non-localizable attributes.

For such attribute, three columns should exist in the physical model. There are two ways how the columns should
be named. They should have attribute name with locale suffix such as category_sk and category_en
(_underscore_ because it is more common in table column names), if implicit mapping is used. You can name the
columns as you like, but you have to provide explicit mapping in the mapping dictionary. The key for the localized
logical attribute should have .locale suffix, such as product.category.sk for Slovak version of category
attribute of dimension product. Here the _dot_ is used because dots separate logical reference parts.

Note: Current implementation of Cubes framework requires a star or snowflake schema that can be joined into
fully denormalized normalized form just by simple one-key based joins. Therefore all localized attributes have to
be stored in their own columns. In other words, you have to denormalize the localized data before using them in
Cubes.

Read more about Localization.

Mapping Process Summary

Following diagram describes how the mapping of logical to physical attributes is done in the star SQL browser
(see cubes.backends.sql.StarBrowser):

The “red path” shows the most common scenario where defaults are used.

Joins

The SQL backend supports a star:

and a snowflake database schema:

If you are using either of the two schemas (star or snowflake) in relational database, Cubes requires information
on how to join the tables. Tables are joined by matching single-column – surrogate keys. The framework needs
the join information to be able to transform following snowflake:

to appear as a denormalized table with all cube attributes:

66 Chapter 4. Analytical Workspace

Cubes Documentation, Release 1.1

Fig. 4.3: logical to physical attribute mapping

4.4. SQL Backend 67

Cubes Documentation, Release 1.1

Note: The SQL backend performs only joins that are relevant to the given query. If no attributes from a table are
used, then the table is not joined.

Join Description

Joins are defined as an ordered list (order is important) for every cube separately. The join description consists of
reference to the master table and a table with details. Fact table is example of master table, dimension is example
of a detail table (in a star schema).

The join specification is very simple, you define column reference for both: master and detail. The table reference
is in the form table.‘column‘:

"joins" = [
{

"master": "fact_sales.product_key",
"detail": "dim_product.key"

}
]

As in mappings, if you have specific needs for explicitly mentioning database schema or any other reason where
table.column reference is not enough, you might write:

"joins" = [
{

"master": "fact_sales.product_id",
"detail": {

"schema": "sales",
"table": "dim_products",

68 Chapter 4. Analytical Workspace

Cubes Documentation, Release 1.1

"column": "id"
}

]

To specify a compound join key, the column value of a join specified as a dictionary can be an array denoting
multiple keys. The above join would be specified as:

{
"master": {

"table": "fact_table",
"column": ["dimension_id", "partition"]

},
"detail": {

"table": "dimension",
"column": ["id", "partition"]

}
}

This will generate the following join:

FROM fact_table
INNER JOIN fact_table ON (

fact_table.dimension_id = dimension_table.id
AND fact_table.partition = dimension.partition

)

Join Order

Order of joins has to be from the master tables towards the details.

Aliases

What if you need to join same table twice or more times? For example, you have list of organizations and you
want to use it as both: supplier and service consumer.

It can be done by specifying alias in the joins:

"joins" = [
{

"master": "contracts.supplier_id",
"detail": "organisations.id",
"alias": "suppliers"

},
{

"master": "contracts.consumer_id",
"detail": "organisations.id",
"alias": "consumers"

4.4. SQL Backend 69

Cubes Documentation, Release 1.1

}
]

Note that with aliases, in the mappings you refer to the table by alias specified in the joins, not by real table name.
So after aliasing tables with previous join specification, the mapping should look like:

"mappings": {
"supplier.name": "suppliers.org_name",
"consumer.name": "consumers.org_name"

}

For example, we have a fact table named fact_contracts and dimension table with categories named
dm_categories. To join them we define following join specification:

"joins" = [
{

"master": "fact_contracts.category_id",
"detail": "dm_categories.id"

}
]

Join Methods and Outer Joins

(advanced topic)

Cubes supports three join methods match, detail and master.

match (default) – the keys from both master and detail tables have to match – INNER JOIN

master – the master might contain more keys than the detail, for example the fact table (as a master) might contain
unknown or new dimension entries not in the dimension table yet. This is also known as LEFT OUTER JOIN.

detail – every member of the detail table will be always present. For example every date from a date dimension
table. Alskoknown as RIGHT OUTER JOIN.

To join a date dimension table so that every date will be present in the output reports, regardless whether there are
any facts or not for given date dimension member:

"joins" = [
{

"master": "fact_contracts.contract_date_id",
"detail": "dim_date.id",

70 Chapter 4. Analytical Workspace

Cubes Documentation, Release 1.1

"method": "detail"
}

]

The detail Method and its Limitations

(advanced topic)

When at least one table is joined using the outer detail method during aggregation, the statement is composed
from two nested statements or two join zones: master fact and outer detail.

Fig. 4.4: Aggregate statement composition

The query builder analyses the schema and assigns a relationship of a table towards the fact. If a table is joined
as detail or is behind a detail join it is considered to have a detail relationship towards the fact. Otherwise it has
master/match relationship.

When this composed setting is used, then:

• aggregate functions are wrapped using COALESCE() to always return non-NULL values

• count aggregates are changed to count non-empty facts instead of all rows

Note: There should be no cut (path) that has some attributes in tables joined as master and others in a table joined
as detail. Every cut (all the cut’s attributes) should fall into one of the two table zones: either the master or the
outer detail. There might be cuts from different join zones, though.

Take this into account when designing the dimension hierarchies.

4.4. SQL Backend 71

Cubes Documentation, Release 1.1

Named Join Templates

If multiple cubes share the same kinds of joins, for example with a dimension table, it is possible to define such
joins at the model level. They will be considered as templates:

"joins": [
{ "name": "date", "detail": "dim_date.id" },
{ "name": "company", "detail": "dim_company.id" }

]

Then use the join in a cube:

"cubes": [
{

"name": "events",
"joins": [

{ "name": "date", "master": "event_date_id" },
{ "name": "company", "master": "company_id" }

]
}

]

Any property defined in the cube join will replace the model join template. You can also use the same named join
multiple times in a cube, just give it different alias:

"cubes": [
{

"name": "contracts",
"joins": [

{
"name": "date",
"master": "contract_start_date_id",
"alias": "dim_contract_start"

},
{

"name": "date",
"master": "contract_end_date_id",
"alias": "dim_contract_end"

}
]

}
]

Slicer Server

It is possible to plug-in cubes from other slicer servers using the Slicer Server backend.

Note: If the server has a JSON record limit set, then the backend will receive only limited number of facts.

Store Configuration and Model

Type is slicer

• url – Slicer URL

• authentication – authentication method of the source server (supported only none and
pass_parameter)

72 Chapter 4. Analytical Workspace

Cubes Documentation, Release 1.1

Fig. 4.5: Slicer backend

• auth_identity – authentication identity (or API key) for pass_parameter authentication.

Example:

[store]
type: slicer
url: http://slicer.databrewery.org/webshop-example

For more than one slicer define one datastore per source Slicer server.

Model

Slicer backend generates the model on-the-fly from the source server. You have to specify that the provider is
slicer:

{
"provider": "slicer"

}

For more than one slicer, create one file per source Slicer server and specify the data store:

{
"provider": "slicer",
"store": "slicer_2"

}

Example

Create a model.json:

4.5. Slicer Server 73

Cubes Documentation, Release 1.1

{
"provider": "slicer"

}

Create a slicer.ini:

[workspace]
model: slicer_model.json

[store]
type: slicer
url: http://slicer.databrewery.org/webshop-example

[server]
prettyprint: true

Run the server:

slicer serve slicer.ini

Get a list of cubes:

curl "http://localhost:5000/cubes"

74 Chapter 4. Analytical Workspace

CHAPTER 5

Slicer Server and Tool

OLAP Server

Cubes framework provides easy to install web service WSGI server with API that covers most of the Cubes logical
model metadata and aggregation browsing functionality.

See also:

Configuration, Server Deployment

Server Requests

Version

Request: GET /version

Return a server version.

{
"version": "1.0"

}

Info

Request: GET /info

Return an information about the server and server’s data.

Content related keys:

• label – server’s name or label

• description – description of the served data

• copyright – copyright of the data, if any

• license – data license

• maintainer – name of the data maintainer, might be in format Name Surname
<namesurname@domain.org>

75

Cubes Documentation, Release 1.1

• contributors - list of contributors

• keywords – list of keywords that describe the data

• related – list of related or “friendly” Slicer servers with other open data – a dictionary with keys label
and url.

• visualizers – list of links to prepared visualisations of the server’s data – a dictionary with keys label
and url.

Server related keys:

• authentication – authentication method, might be none, pass_parameter,
http_basic_proxy or other. See Authorization and Authentication for more information

• json_record_limit - maximum number of records yielded for JSON responses

• cubes_version – Cubes framework version

Example:

{
"description": "Some Open Data",
"license": "Public Domain",
"keywords": ["budget", "financial"],
"authentication": "none",
"json_record_limit": 1000,
"cubes_version": "0.11.2"

}

Model

List of Cubes

Request: GET /cubes

Get list of basic information about served cubes. The cube description dictionaries contain keys: name, label,
description and category.

[
{

"name": "contracts",
"label": "Contracts",
"description": "...",
"category": "..."

}
]

Cube Model

Request: GET /cube/<name>/model

Get model of a cube name. Returned structure is a dictionary with keys:

• name – cube name – used as server-wide cube identifier

• label – human readable name of the cube – to be displayed to the users (localized)

• description – optional textual cube description (localized)

• dimensions – list of dimension description dictionaries (see below)

• aggregates – list of measures aggregates (mostly computed values) that can be computed. Each
item is a dictionary.

76 Chapter 5. Slicer Server and Tool

Cubes Documentation, Release 1.1

• measures – list of measure attributes (properties of facts). Each item is a dictionary. Example of a
measure is: amount, price.

• details – list of attributes that contain fact details. Those attributes are provided only when getting a fact
or a list of facts.

• info – a dictionary with additional metadata that can be used in the front-end. The contents of this
dictionary is defined by the model creator and interpretation of values is left to the consumer.

• features (advanced) – a dictionary with features of the browser, such as available actions for the cube
(“is fact listing possible?”)

Aggregate is the key numerical property of the cube from reporting perspective. It is described as a dictionary
with keys:

• name – aggregate identifier, such as: amount_sum, price_avg, total, record_count

• label – human readable label to be displayed (localized)

• measure – measure the aggregate is derived from, if it exists or it is known. Might be empty.

• function - name of an aggregate function applied to the measure, if known. For example: sum, min, max.

• window_size – number of elements within a window for window functions such as moving average

• info – additional custom information (unspecified)

Aggregate names are used in the aggregates parameter of the /aggregate request.

Measure dictionary contains:

• name – measure identifier

• label – human readable name to be displayed (localized)

• aggregates – list of aggregate functions that are provided for this measure

• window_size – number of elements within a window for window functions such as moving average

• info – additional custom information (unspecified)

Note: Compared to previous versions of Cubes, the clients do not have to construct aggregate names (as it used
to be amount``+``_sum). Clients just get the aggrergate name property and use it right away.

See more information about measures and aggregates in the /aggregate request description.

Example cube:

{
"name": "contracts",
"info": {},
"label": "Contracts",
"aggregates": [

{
"name": "amount_sum",
"label": "Amount sum",
"info": {},
"function": "sum"

},
{

"name": "record_count",
"label": "Record count",
"info": {},
"function": "count"

}
],

"measures": [

5.1. OLAP Server 77

Cubes Documentation, Release 1.1

{
"name": "amount",
"label": "Amount",
"info": {},
"aggregates": ["sum"]

}
],

"details": [...],

"dimensions": [...]
}

The dimension description dictionary:

• name – dimension identifier

• label – human readable dimension name (localized)

• is_flat – True if the dimension has only one level, otherwise False

• has_details – True if the dimension has more than one attribute

• default_hierarchy_name - name of default dimension hierarchy

• levels – list of level descriptions

• hierarchies – list of dimension hierarchies

• info – additional custom information (unspecified)

• cardinality – dimension cardinality

• role – dimension role (special treatment, for example time)

• category – dimension category

The level description:

• name – level identifier (within dimension context)

• label – human readable level name (localized)

• attributes – list of level’s attributes

• key – name of level’s key attribute (mostly the first attribute)

• label_attribute – name of an attribute that contains label for the level’s members (mostly the second
attribute, if present)

• order_attribute – name of an attribute that the level should be ordered by (optional)

• order – order direction asc, desc or none.

• cardinality – symbolic approximation of the number of level’s members

• role – level role (special treatment)

• info – additional custom information (unspecified)

Cardinality values and their meaning:

• tiny – few values, each value can have it’s representation on the screen, recommended: up to 5.

• low – can be used in a list UI element, recommended 5 to 50 (if sorted)

• medium – UI element is a search/text field, recommended for more than 50 elements

• high – backends might refuse to yield results without explicit pagination or cut through this level.

78 Chapter 5. Slicer Server and Tool

Cubes Documentation, Release 1.1

Note: Use attribute["ref"] to access aggreegation result records. Each level (dimension) attribute de-
scription contains two properties: name and ref. name is identifier within the dimension context. The key reference
ref is used for retrieving aggregation or browing results.

It is not recommended to create any dependency by parsing or constructing the ref property at the client’s side.

Aggregation and Browsing

The core data and analytical functionality is accessed through the following requests:

• /cube/<name>/aggregate – aggregate measures, provide summary, generate drill-down, slice&dice,
...

• /cube/<name>/members/<dim> – list dimension members

• /cube/<name>/facts – list facts within a cell

• /cube/<name>/fact – return a single fact

• /cube/<name>/cell – describe the cell

If the model contains only one cube or default cube name is specified in the configuration, then the /cube/
<name> part might be omitted and you can write only requests like /aggregate.

Cells and Cuts

The cell - part of the cube we are aggregating or we are interested in - is specified by cuts. The cut in URL are
given as single parameter cut which has following format:

Examples:

date:2004
date:2004,1
date:2004,1|class:5
date:2004,1,1|category:5,10,12|class:5

To specify a range where keys are sortable:

date:2004-2005
date:2004,1-2005,5

Open range:

date:2004,1,1-
date:-2005,5,10

Set cuts:

date:2005;2007

Dimension name is followed by colon :, each dimension cut is separated by |, and path for dimension levels is
separated by a comma ,. Set cuts are separated by semicolons ;.

To specify other than default hierarchy use format dimension@hierarchy, the path then should contain values for
specified hierarchy levels:

date@ywd:2004,25

Following image contains examples of cuts in URLs and how they change by browsing cube aggregates:

5.1. OLAP Server 79

Cubes Documentation, Release 1.1

Fig. 5.1: Example of how cuts in URL work and how they should be used in application view templates.

80 Chapter 5. Slicer Server and Tool

Cubes Documentation, Release 1.1

Special Characters

To pass reserved characters as a dimension member path value escape it with the backslash \ character:

• category:10\-24 is a point cut for category with value 10-24, not a range cut

• city:Nové\ Mesto\ nad\ Váhom is a city Nové Mesto nad Váhom

Calendar and Relative Time

If a dimension is a date or time dimension (the dimension role is time) the members can be specified by a name
referring to a relative time. For example:

• date:yesterday

• date:90daysago-today – get cell for last 90 days

• expiration_date:lastmonth-next2months – all facts with expiration date within last month
(whole) and next 2 months (whole)

• date:yearago – all facts since the same day of the year last year

The keywords and patterns are:

• today, yesterday and tomorrow

• ...ago and ...forward as in 3weeksago (current day minus 3 weeks) and 2monthsforward
(current day plus 2 months) – relative offset with fine granularity

• last... and next... as in last3months (beginning of the third month before current month) and
nextyear (end of next year) – relative offset of specific (more coarse) granularity.

Aggregate

Request: GET /cube/<cube>/aggregate

Return aggregation result as JSON. The result will contain keys: summary and drilldown. The summary contains
one row and represents aggregation of whole cell specified in the cut. The drilldown contains rows for each value
of drilled-down dimension.

If no arguments are given, then whole cube is aggregated.

Parameters:

• cut - specification of cell, for example: cut=date:2004,1|category:2|entity:12345

• drilldown - dimension to be drilled down. For example drilldown=datewill give rows for each value of
next level of dimension date. You can explicitly specify level to drill down in form: dimension:level,
such as: drilldown=date:month. To specify a hierarchy use dimension@hierarchy as in
drilldown=date@ywd for implicit level or drilldown=date@ywd:week to explicitly specify
level.

• aggregates – list of aggregates to be computed, separated by |, for example:
aggregates=amount_sum|discount_avg|count

• measures – list of measures for which their respecive aggregates will be computed (see below). Separated
by |, for example: aggregates=proce|discount

• page - page number for paginated results

• pagesize - size of a page for paginated results

• order - list of attributes to be ordered by

• split – split cell, same syntax as the cut, defines virtual binary (flag) dimension that inticates whether a cell
belongs to the split cut (true) or not (false). The dimension attribute is called __within_split__. Consult the
backend you are using for more information, whether this feature is supported or not.

5.1. OLAP Server 81

Cubes Documentation, Release 1.1

Note: You can specify either aggregates or measures. aggregates is a concrete list of computed values. mea-
sures yields their respective aggregates. For example: measures=amount might yield amount_sum and
amount_avg if defined in the model.

Use of aggregates is preferred, as it is more explicit and the result is well defined.

Response:

A dictionary with keys:

• summary - dictionary of fields/values for summary aggregation

• cells - list of drilled-down cells with aggregated results

• total_cell_count - number of total cells in drilldown (after limit, before pagination). This value
might not be present if it is disabled for computation on the server side.

• aggregates – list of aggregate names that were considered in the aggragation query

• cell - list of dictionaries describing the cell cuts

• levels – a dictionary where keys are dimension names and values is a list of levels the dimension was
drilled-down to

Example for request /aggregate?drilldown=date&cut=item:a:

{
"summary": {

"count": 32,
"amount_sum": 558430

}
"cells": [

{
"count": 16,
"amount_sum": 275420,
"date.year": 2009

},
{

"count": 16,
"amount_sum": 283010,
"date.year": 2010

}
],
"aggregates": [

"amount_sum",
"count"

],
"total_cell_count": 2,
"cell": [

{
"path": ["a"],
"type": "point",
"dimension": "item",
"invert": false,
"level_depth": 1

}
],
"levels": { "date": ["year"] }

}

If pagination is used, then drilldown will not contain more than pagesize cells.

Note that not all backengs might implement total_cell_count or providing this information can be config-
urable therefore might be disabled (for example for performance reasons).

82 Chapter 5. Slicer Server and Tool

Cubes Documentation, Release 1.1

Facts

Request: GET /cube/<cube>/facts

Return all facts within a cell.

Parameters:

• cut - see /aggregate

• page, pagesize - paginate results

• order - order results

• format - result format: json (default; see note below), csv or json_lines.

• fields - comma separated list of fact fields, by default all fields are returned

• header – specify what kind of headers should be present in the csv output: names – raw field names
(default), labels – human readable labels or none

The JSON response is a list of dictionaries where keys are attribute references (ref property of an attribute).

To use JSON formatted repsonse but don’t have the record limit json_lines format can be used. The result is
one fact record in JSON format per line – JSON dictionaries separated by newline n character.

Note: Number of facts in JSON is limited to configuration value of json_record_limit, which is 1000 by
default. To get more records, either use pages with size less than record limit or use alternate result format, such
as csv.

Single Fact

Request: GET /cube/<cube>/fact/<id>

Get single fact with specified id. For example: /fact/1024.

The response is a dictionary where keys are attribute references (ref property of an attribute).

Dimension members

Request: GET /cube/<cube>/members/<dimension>

Get dimension members used in cube.

Parameters:

• cut - see /aggregate

• depth - specify depth (number of levels) to retrieve. If not specified, then all levels are returned. Use
this or level.

• level - deepest level to be retrieved – use this or depth.

• hierarchy – name of hierarchy to be considered, if not specified, then dimension’s default hierarchy is
used

• page, pagesize - paginate results

• order - order results

Response: dictionary with keys dimension – dimension name, depth – level depth and data – list of records.

Example for /cube/facts/members/item?depth=1:

5.1. OLAP Server 83

Cubes Documentation, Release 1.1

{
"dimension": "item"
"depth": 1,
"hierarchy": "default",
"data": [

{
"item.category": "a",
"item.category_label": "Assets"

},
{

"item.category": "e",
"item.category_label": "Equity"

},
{

"item.category": "l",
"item.category_label": "Liabilities"

}
],

}

Cell

Get details for a cell.

Request: GET /cube/<cube>/cell

Parameters:

• cut - see /aggregate

Response: a dictionary representation of a cell (see cubes.Cell.as_dict()) with keys cube and cuts.
cube is cube name and cuts is a list of dictionary representations of cuts.

Each cut is represented as:

{
// Cut type is one of: "point", "range" or "set"
"type": cut_type,

"dimension": cut_dimension_name,
"level_depth": maximal_depth_of_the_cut,

// Cut type specific keys.

// Point cut:
"path": [...],
"details": [...]

// Range cut:
"from": [...],
"to": [...],
"details": { "from": [...], "to": [...] }

// Set cut:
"paths": [[...], [...], ...],
"details": [[...], [...], ...]

}

Each element of the details path contains dimension attributes for the corresponding level. In addition in
contains two more keys: _key and _labelwhich (redundantly) contain values of key attribute and label attribute
respectively.

Example for /cell?cut=item:a in the hello_world example:

84 Chapter 5. Slicer Server and Tool

Cubes Documentation, Release 1.1

{
"cube": "irbd_balance",
"cuts": [

{
"type": "point",
"dimension": "item",
"level_depth": 1
"path": ["a"],
"details": [

{
"item.category": "a",
"item.category_label": "Assets",
"_key": "a",
"_label": "Assets"

}
],

}
]

}

Report

Request: GET /cube/<cube>/report

Process multiple request within one API call. The data should be a JSON containing report specification where
keys are names of queries and values are dictionaries describing the queries.

report expects Content-type header to be set to application/json.

See Report for more information.

Search

Warning: Experimental feature.

Note: Requires a search backend to be installed.

Request: GET /cube/<cube>/search/dimension/<dimension>/<query>

Search values of dimensions for query. If dimension is _all then all dimensions are searched. Returns search
results as list of dictionaries with attributes:

Search result

• dimension - dimension name

• level - level name

• depth - level depth

• level_key - value of key attribute for level

• attribute - dimension attribute name where searched value was found

• value - value of dimension attribute that matches search query

• path - dimension hierarchy path to the found value

• level_label - label for dimension level (value of label_attribute for level)

Parameters that can be used in any request:

5.1. OLAP Server 85

Cubes Documentation, Release 1.1

• prettyprint - if set to true, space indentation is added to the JSON output

Reports

Report queries are done either by specifying a report name in the request URL or using HTTP GET request where
posted data are JSON with report specification.

Keys:

• queries - dictionary of named queries

Query specification should contain at least one key: query - which is query type: aggregate, cell_details,
values (for dimension values), facts or fact (for multiple or single fact respectively). The rest of keys are
query dependent. For more information see AggregationBrowser documentation.

Note: Note that you have to set the content type to application/json.

Result is a dictionary where keys are the query names specified in report specification and values are result values
from each query call.

Example report JSON file with two queries:

{
"queries": {

"summary": {
"query": "aggregate"

},
"by_year": {

"query": "aggregate",
"drilldown": ["date"],
"rollup": "date"

}
}

}

Request:

curl -H "Content-Type: application/json" --data-binary "@report.json" \
"http://localhost:5000/cube/contracts/report?prettyprint=true&cut=date:2004"

Reply:

{
"by_year": {

"total_cell_count": 6,
"drilldown": [

{
"record_count": 4390,
"requested_amount_sum": 2394804837.56,
"received_amount_sum": 399136450.0,
"date.year": "2004"

},
...
{

"record_count": 265,
"requested_amount_sum": 17963333.75,
"received_amount_sum": 6901530.0,
"date.year": "2010"

}
],
"summary": {

86 Chapter 5. Slicer Server and Tool

Cubes Documentation, Release 1.1

"record_count": 33038,
"requested_amount_sum": 2412768171.31,
"received_amount_sum": 2166280591.0

}
},
"summary": {

"total_cell_count": null,
"drilldown": {},
"summary": {

"date.year": "2004",
"requested_amount_sum": 2394804837.56,
"received_amount_sum": 399136450.0,
"record_count": 4390

}
}

}

Explicit specification of a cell (the cuts in the URL parameters are going to be ignored):

{
"cell": [

{
"dimension": "date",
"type": "range",
"from": [2010,9],
"to": [2011,9]

}
],
"queries": {

"report": {
"query": "aggregate",
"drilldown": {"date":"year"}

}
}

}

Roll-up

Report queries might contain rollup specification which will result in “rolling-up” one or more dimensions to
desired level. This functionality is provided for cases when you would like to report at higher level of aggregation
than the cell you provided is in. It works in similar way as drill down in /aggregate but in the opposite
direction (it is like cd .. in a UNIX shell).

Example: You are reporting for year 2010, but you want to have a bar chart with all years. You specify rollup:

...
"rollup": "date",
...

Roll-up can be:

• a string - single dimension to be rolled up one level

• an array - list of dimension names to be rolled-up one level

• a dictionary where keys are dimension names and values are levels to be rolled up-to

Local Server

To run your local server, prepare server Configuration and run the server using the Slicer tool (see slicer - Com-
mand Line Tool):

5.1. OLAP Server 87

Cubes Documentation, Release 1.1

slicer serve slicer.ini

Server requests

Example server request to get aggregate for whole cube:

$ curl http://localhost:5000/cube/procurements/aggregate?cut=date:2004

Reply:

{
"drilldown": {},
"summary": {

"received_amount_sum": 399136450.0,
"requested_amount_sum": 2394804837.56,
"record_count": 4390

}
}

Server Deployment

Apache mod_wsgi deployment

Deploying Cubes OLAP Web service server (for analytical API) can be done in four very simple steps:

1. Create slicer server Configuration file

2. Create WSGI script

3. Prepare apache site configuration

4. Reload apache configuration

Note: The model paths have to be full paths to the model, not relative paths to the configuration file.

Place the file in the same directory as the following WSGI script (for convenience).

Create a WSGI script /var/www/wsgi/olap/procurements.wsgi:

import os.path
from cubes.server import create_server

CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))

Set the configuration file name (and possibly whole path) here
CONFIG_PATH = os.path.join(CURRENT_DIR, "slicer.ini")

application = create_server(CONFIG_PATH)

Apache site configuration (for example in /etc/apache2/sites-enabled/):

<VirtualHost *:80>
ServerName olap.democracyfarm.org

WSGIScriptAlias /vvo /var/www/wsgi/olap/procurements.wsgi

<Directory /var/www/wsgi/olap>
WSGIProcessGroup olap

88 Chapter 5. Slicer Server and Tool

Cubes Documentation, Release 1.1

WSGIApplicationGroup %{GLOBAL}
Order deny,allow
Allow from all

</Directory>

ErrorLog /var/log/apache2/olap.democracyfarm.org.error.log
CustomLog /var/log/apache2/olap.democracyfarm.org.log combined

</VirtualHost>

Reload apache configuration:

sudo /etc/init.d/apache2 reload

UWSGI

Configuration file uwsgi.ini:

[uwsgi]
http = 127.0.0.1:5000
module = cubes.server.app
callable = application

Run uwsgi uwsgi.ini.

You can set environment variables:

• SLICER_CONFIG – full path to the slicer configuration file

• SLICER_DEBUG – set to true boolean value if you want to enable Flask server debugging

Heroku and UWSGI

To deploy the slicer in Heroku, prepare a directory with following files:

• slicer.ini – main slicer configuration file

• uwsgi.ini – UWSGI configuration

• Procfile

The Procfile:

web: uwsgi uwsgi.ini

The uwsgi.ini:

[uwsgi]
http-socket = :$(PORT)
master = true
processes = 4
die-on-term = true
memory-report = true
module = cubes.server.app

The requirements.txt:

Flask
SQLAlchemy
-e git+git://github.com/DataBrewery/cubes.git@master#egg=cubes
jsonschema
python-dateutil

5.2. Server Deployment 89

Cubes Documentation, Release 1.1

expressions
grako
uwsgi

Add any packages that you might need for your Slicer server installation.

slicer - Command Line Tool

Cubes comes with a command line tool that can:

• run OLAP server

• build and compute cubes

• validate and translate models

Usage:

slicer command [command_options]

or:

slicer command sub_command [sub_command_options]

Commands are:

Command Description
list List available cubes in current workspace
serve Start OLAP server
model validate Validates logical model for OLAP cubes
model convert Convert between model formats
test Test the configuration and model against backends
sql aggregate Create aggregated table
sql denormalize Create denormalized table

serve

Run Cubes OLAP HTTP server.

Example server configuration file slicer.ini:

[server]
host: localhost
port: 5000
reload: yes
log_level: info

[workspace]
url: sqlite:///tutorial.sqlite
view_prefix: vft_

[model]
path: models/model_04.json

To run local server:

slicer serve slicer.ini

In the [server] section, space separated list of modules to be imported can be specified under option modules:

90 Chapter 5. Slicer Server and Tool

Cubes Documentation, Release 1.1

[server]
modules=cutom_backend
...

Note: Use –debug option if you would like to see more detailed error messages in the browser (generated by
Flask).

For more information about OLAP HTTP server see OLAP Server

model convert

Usage:

slicer model convert --format bundle model.json model.cubesmodel
slicer model convert model.cubesmodel > model.json

Optional arguments:

--format model format: json or bundle
--force replace the target if exists

model validate

Usage:

slicer model validate /path/to/model/directory
slicer model validate model.json
slicer model validate http://somesite.com/model.json

Optional arguments:

-d, --defaults show defaults
-w, --no-warnings disable warnings
-t TRANSLATION, --translation TRANSLATION

model translation file

For more information see Model Validation in Logical Model and Metadata

Example output:

loading model wdmmg_model.json

cubes: 1

wdmmg
dimensions: 5

date
pog
region
cofog
from

found 3 issues
validation results:
warning: No hierarchies in dimension 'date', flat level 'year' will be used
warning: Level 'year' in dimension 'date' has no key attribute specified
warning: Level 'from' in dimension 'from' has no key attribute specified
0 errors, 3 warnings

5.3. slicer - Command Line Tool 91

Cubes Documentation, Release 1.1

The tool output contains recommendation whether the model can be used:

• model can be used - if there are no errors, no warnings and no defaults used, mostly when the model is
explicitly described in every detail

• model can be used, make sure that defaults reflect reality - there are no errors, no warnings, but the model
might be not complete and default assumptions are applied

• not recommended to use the model, some issues might emerge - there are just warnings, no validation errors.
Some queries or any other operations might produce invalid or unexpected output

• model can not be used - model contain errors and it is unusable

test

Every cube in the model is tested through the backend whether it can be accessed and whether the mappings reflect
reality.

Usage:

slicer test [-h] [-E EXCLUDE_STORES] [config] [cubes]

Positional arguments:

config server configuration .ini file
cubes list of cubes to be tested

Optional arguments:

--aggregate Test aggregate of whole cube
-E, --exclude-store TEXT
--store TEXT
--help Show this message and exit.

sql denormalize

Usage:

slicer sql denormalize [-h] [-f] [-m] [-i] [-s SCHEMA] [--config config]
[CUBE] [TARGET]

positional arguments:

CUBE cube to be denormalized
TARGET target table name

optional arguments:

--force replace existing views
-m, --materialize create materialized view (table)
--index / --no-index create index for key attributes
-s, --schema TEXT target view schema (overrides default fact schema
--help Show this message and exit.
--store TEXT Name of the store to use other than default. Must be SQL.
--config TEXT Name of slicer.ini configuration file

If no cube is specified then all cubes are denormalized according to the naming conventions in the configuration
file.

92 Chapter 5. Slicer Server and Tool

Cubes Documentation, Release 1.1

Examples

If you plan to use denormalized views, you have to specify it in the configuration in the [workspace] section:

[workspace]
denormalized_view_prefix = mft_
denormalized_view_schema = denorm_views

This switch is used by the browser:
use_denormalized = yes

The denormalization will create tables like denorm_views.mft_contracts for a cube named
contracts. The browser will use the view if option use_denormalization is set to a true value.

Denormalize all cubes in the model:

slicer sql denormalize

Denormalize only one cube:

slicer sql denormalize contracts

Create materialized denormalized view with indexes:

slicer denormalize --materialize --index slicer.ini

Replace existing denormalized view of a cube:

slicer denormalize --force -c contracts slicer.ini

Schema

Schema where denormalized view is created is schema specified in the configuration file. Schema is shared with
fact tables and views. If you want to have views in separate schema, specify denormalized_schema option
in the configuration.

If for any specific reason you would like to denormalize into a completely different schema than specified in the
configuration, you can specify it with the --schema option.

View name

By default, a view name is the same as corresponding cube name. If there is denormalized_prefix option
in the configuration, then the prefix is prepended to the cube name. Or it is possible to override the option with
command line argument --prefix.

Note: The tool will not allow to create view if it’s name is the same as fact table name and is in the same schema.
It is not even possible to --force it. A view prefix or different schema has to be specified.

sql aggregate

Create pre-aggregated table from cube(s). If no cube is specified, then all cubes are aggregated. Target table can
be specified only for one cube, for multiple cubes naming convention is used.

Usage:

slicer sql aggregate [OPTIONS] [CUBE] [TARGET]

5.3. slicer - Command Line Tool 93

Cubes Documentation, Release 1.1

positional arguments:

CUBE cube to be denormalized
TARGET target table name

optional arguments:

--force replace existing views
--index / --no-index create index for key attributes
-s, --schema TEXT target view schema (overrides default fact schema
-d, --dimension TEXT dimension to be used for aggregation
--help Show this message and exit.
--store TEXT Name of the store to use other than default. Must be SQL.
--config TEXT Name of slicer.ini configuration file

If no cube is specified then all cubes are denormalized according to the naming conventions in the configuration
file.

94 Chapter 5. Slicer Server and Tool

CHAPTER 6

Recipes

Recipes

How-to guides with code snippets for various use-cases.

Integration With Flask Application

Objective: Add Cubes Slicer to your application to provide raw analytical data.

Cubes Slicer Server can be integrated with your application very easily. The Slicer is provided as a flask Blueprint
– a module that can be plugged-in.

The following code will add all Slicer’s end-points to your application:

from flask import Flask
from cubes.server import slicer

app = Flask(__name__)
app.register_blueprint(slicer, config="slicer.ini")

To have a separate sub-path for Slicer add url_prefix:

app.register_blueprint(slicer, url_prefix="/slicer", config="slicer.ini")

See also:

Flask – Modular Applications with Blueprints

HTTP WSGI OLAP Server Reference

Publishing Open Data with Cubes

Cubes and Slicer were built with Open Data or rather Open Analytical Data in mind.

Read more about Open Data:

• Open Data (Wikipedia)

• Defining Open Data (OKFN)

95

http://flask.pocoo.org/docs/blueprints/
http://en.wikipedia.org/wiki/Open_data
http://blog.okfn.org/2013/10/03/defining-open-data/

Cubes Documentation, Release 1.1

• What is Open Data (Open Data Handbook)

With Cubes you can have a server that provides raw detailed data (denormalized facts) and grouped and aggregated
data (aggregates). It is possible to serve multiple datasets which might share properties (dimensions).

Serving Open Data

Just create a public Slicer server. To provide more metadata add a info.json file with the following contents:

• label – server’s name or label

• description – description of the served data

• copyright – copyright of the data, if any

• license – data license, such as Creative Commons, Public Domain or other

• maintainer – name of the data maintainer, might be in format Name Surname
<namesurname@domain.org>

• contributors - list of contributors (if any)

• keywords – list of keywords that describe the data

• related – list of related or “friendly” Slicer servers with other open data

• visualizations – list of links to prepared visualisations of the server’s data

Create a info.json file:

{
"description": "Some Open Data",
"license": "Public Domain",
"keywords": ["budget", "financial"],

}

Include info option in the slicer configuration:

[workspace]
info: info.json

Related Servers

For better open data discoverability you might add links to other servers:

Fig. 6.1: Related slicers.

{
"related": [

{
"label": "Slicer - Germany",
"url": "http://slicer.somewhere.de",

},

96 Chapter 6. Recipes

http://opendatahandbook.org/en/what-is-open-data/
http://creativecommons.org
http://opendatacommons.org/licenses/

Cubes Documentation, Release 1.1

{
"label": "Slicer - Slovakia",
"url": "http://slicer.somewhere.sk",

}
]

}

Drill-down Tree

Goal: Create a tree by aggregating every level of a dimension.

Level: Advanced.

Drill-down

Drill-down is an action that will provide more details about data. Drilling down through a dimension hierarchy
will expand next level of the dimension. It can be compared to browsing through your directory structure.

We create a function that will recursively traverse a dimension hierarchy and will print-out aggregations (count of
records in this example) at the actual browsed location.

Attributes

• cell - cube cell to drill-down

• dimension - dimension to be traversed through all levels

• path - current path of the dimension

Path is list of dimension points (keys) at each level. It is like file-system path.

def drill_down(cell, dimension, path=[]):

Get dimension’s default hierarchy. Cubes supports multiple hierarchies, for example for date you might have
year-month-day or year-quarter-month-day. Most dimensions will have one hierarchy, thought.

hierarchy = dimension.hierarchy()

Base path is path to the most detailed element, to the leaf of a tree, to the fact. Can we go deeper in the hierarchy?

if hierarchy.path_is_base(path):
return

Get the next level in the hierarchy. levels_for_path returns list of levels according to provided path. When
drilldown is set to True then one more level is returned.

levels = hierarchy.levels_for_path(path,drilldown=True)
current_level = levels[-1]

We need to know name of the level key attribute which contains a path component. If the model does not explicitly
specify key attribute for the level, then first attribute will be used:

level_key = dimension.attribute_reference(current_level.key)

For prettier display, we get name of attribute which contains label to be displayed for the current level. If there is
no label attribute, then key attribute is used.

level_label = dimension.attribute_reference(current_level.label_attribute)

6.1. Recipes 97

Cubes Documentation, Release 1.1

We do the aggregation of the cell...

Note: Shell analogy: Think of ls $CELL command in commandline, where $CELL is a directory name. In this
function we can think of $CELL to be same as current working directory (pwd)

result = browser.aggregate(cell, drilldown=[dimension])

for record in result.drilldown:
print "%s%s: %d" % (indent, record[level_label], record["record_count"])
...

And now the drill-down magic. First, construct new path by key attribute value appended to the current path:

drill_path = path[:] + [record[level_key]]

Then get a new cell slice for current path:

drill_down_cell = cell.slice(dimension, drill_path)

And do recursive drill-down:

drill_down(drill_down_cell, dimension, drill_path)

The whole recursive drill down function looks like this:

Whole working example can be found in the tutorial sources.

Get the full cube (or any part of the cube you like):

cell = browser.full_cube()

And do the drill-down through the item dimension:

drill_down(cell, cube.dimension("item"))

The output should look like this:

a: 32
da: 8

Borrowings: 2
Client operations: 2
Investments: 2
Other: 2

dfb: 4
Currencies subject to restriction: 2
Unrestricted currencies: 2

i: 2
Trading: 2

lo: 2
Net loans outstanding: 2

nn: 2
Nonnegotiable, nonintrest-bearing demand obligations on account of

→˓subscribed capital: 2
oa: 6

Assets under retirement benefit plans: 2
Miscellaneous: 2
Premises and equipment (net): 2

Note that because we have changed our source data, we see level codes instead of level names. We will fix that
later. Now focus on the drill-down.

See that nice hierarchy tree?

98 Chapter 6. Recipes

Cubes Documentation, Release 1.1

Fig. 6.2: Recursive drill-down explained

6.1. Recipes 99

Cubes Documentation, Release 1.1

Now if you slice the cell through year 2010 and do the exact same drill-down:

cell = cell.slice("year", [2010])
drill_down(cell, cube.dimension("item"))

you will get similar tree, but only for year 2010 (obviously).

Level Labels and Details

Codes and ids are good for machines and programmers, they are short, might follow some scheme, easy to handle
in scripts. Report users have no much use of them, as they look cryptic and have no meaning for the first sight.

Our source data contains two columns for category and for subcategory: column with code and column with label
for user interfaces. Both columns belong to the same dimension and to the same level. The key column is used by
the analytical system to refer to the dimension point and the label is just decoration.

Levels can have any number of detail attributes. The detail attributes have no analytical meaning and are just
ignored during aggregations. If you want to do analysis based on an attribute, make it a separate dimension
instead.

So now we fix our model by specifying detail attributes for the levels:

Fig. 6.3: Attribute details.

The model description is:

"levels": [
{

"name":"category",
"label":"Category",
"label_attribute": "category_label",
"attributes": ["category", "category_label"]

},
{

"name":"subcategory",
"label":"Sub-category",
"label_attribute": "subcategory_label",
"attributes": ["subcategory", "subcategory_label"]

},
{

"name":"line_item",
"label":"Line Item",
"attributes": ["line_item"]

}
]

}

100 Chapter 6. Recipes

Cubes Documentation, Release 1.1

Note the label_attribute keys. They specify which attribute contains label to be displayed. Key attribute is by-
default the first attribute in the list. If one wants to use some other attribute it can be specified in key_attribute.

Because we added two new attributes, we have to add mappings for them:

"mappings": { "item.line_item": "line_item",
"item.subcategory": "subcategory",
"item.subcategory_label": "subcategory_label",
"item.category": "category",
"item.category_label": "category_label"
}

Now the result will be with labels instead of codes:

Assets: 32
Derivative Assets: 8

Borrowings: 2
Client operations: 2
Investments: 2
Other: 2

Due from Banks: 4
Currencies subject to restriction: 2
Unrestricted currencies: 2

Investments: 2
Trading: 2

Loans Outstanding: 2
Net loans outstanding: 2

Nonnegotiable: 2
Nonnegotiable, nonintrest-bearing demand obligations on account of

→˓subscribed capital: 2
Other Assets: 6

Assets under retirement benefit plans: 2
Miscellaneous: 2
Premises and equipment (net): 2

Hierarchies, levels and drilling-down

Goals:

• how to create a hierarchical dimension

• how to do drill-down through a hierarchy

• detailed level description

Level: basic.

We are going to use very similar data as in the previous examples. Difference is in two added columns: category
code and sub-category code. They are simple letter codes for the categories and subcategories. Download this
example file.

Hierarchy

Some dimensions can have multiple levels forming a hierarchy. For example dates have year, month,
day; geography has country, region, city; product might have category, subcategory and the product.

In our example we have the item dimension with three levels of hierarchy: category, subcategory and line item:

The levels are defined in the model:

"levels": [
{

"name":"category",

6.1. Recipes 101

Cubes Documentation, Release 1.1

Fig. 6.4: Item dimension hierarchy.

"label":"Category",
"attributes": ["category"]

},
{

"name":"subcategory",
"label":"Sub-category",
"attributes": ["subcategory"]

},
{

"name":"line_item",
"label":"Line Item",
"attributes": ["line_item"]

}
]

You can see a slight difference between this model description and the previous one: we didn’t just specify level
names and didn’t let cubes to fill-in the defaults. Here we used explicit description of each level. name is level
identifier, label is human-readable label of the level that can be used in end-user applications and attributes is list
of attributes that belong to the level. The first attribute, if not specified otherwise, is the key attribute of the level.

Other level description attributes are key and label_attribute‘. The key specifies attribute name which contains key
for the level. Key is an id number, code or anything that uniquely identifies the dimension level. label_attribute is
name of an attribute that contains human-readable value that can be displayed in user-interface elements such as
tables or charts.

Preparation

Again, in short we need:

• data in a database

• logical model (see model file) prepared with appropriate mappings

• denormalized view for aggregated browsing (optional)

Implicit hierarchy

Try to remove the last level line_item from the model file and see what happens. Code still works, but displays
only two levels. What does that mean? If metadata - logical model - is used properly in an application, then

102 Chapter 6. Recipes

Cubes Documentation, Release 1.1

application can handle most of the model changes without any application modifications. That is, if you add new
level or remove a level, there is no need to change your reporting application.

Summary

• hierarchies can have multiple levels

• a hierarchy level is identifier by a key attribute

• a hierarchy level can have multiple detail attributes and there is one special detail attribute: label attribute
used for display in user interfaces

Multiple Hierarchies

Dimension can have multiple hierarchies defined. To use specific hierarchy for drilling down:

result = browser.aggregate(cell, drilldown = [("date", "dmy", None)])

The drilldown argument takes list of three element tuples in form: (dimension, hierarchy, level). The hierarchy
and level are optional. If level is None, as in our example, then next level is used. If hierarchy is None then
default hierarchy is used.

To sepcify hierarchy in cell cuts just pass hierarchy argument during cut construction. For example to specify cut
through week 15 in year 2010:

cut = cubes.PointCut("date", [2010, 15], hierarchy="ywd")

Note: If drilling down a hierarchy and asking cubes for next implicit level the cuts should be using same hierarchy
as drilldown. Otherwise exception is raised. For example: if cutting through year-month-day and asking for next
level after year in year-week-day hierarchy, exception is raised.

6.1. Recipes 103

Cubes Documentation, Release 1.1

104 Chapter 6. Recipes

CHAPTER 7

Extension Development

Plugin Reference

Cubes has a plug-in based architecture. The objects that can be provided through external plug-ins are: authenti-
cators, authorizers, browsers, formatters, model_providers and stores.

Plugins are classes providing an interface respective for the plug-in class. They are advertised throgh setup.py
as follows:

setup(
name = "my_package",

... regular module setup here

Cubes Plugin Advertisment
#
entry_points={

'cubes.stores': [
'my = my_package.MyStore',

],
'cubes.authorizers': [

'my = my_package.MyAuthorizer',
]

}
)

For more information see Python Packaging User Guide

Backends

Two objects play major role in Cubes backends:

• aggregation browser – responsible for aggregations, fact listing, dimension member listing

• store – represents a database connection, shared by multiple browsers

See also:

Plugin Reference

105

https://packaging.python.org/en/latest/distributing/#entry-points

Cubes Documentation, Release 1.1

Store

Data for cubes are provided by a data store – every cube has one. Stores have to be subclasses of Store for cubes
to be able to find them.

Fig. 7.1: Backend data store.

Required methods:

• __init__(**options) – initialize the store with options. Even if you use named arguments, you have to
include the **options.

• close() – release all resources associated with the store, close database connections

• default_browser_name – a class variable with browser name that will be created for a cube, if not specified
otherwise

A Store class:

from cubes import Store

class MyStore(Store):
default_browser_name = "my"

def __init__(self, **options):
super(MyStore, self).__init__(**options)
configure the store here ...

Note: The custom store has to be a subclass of Store so Cubes can find it. The name will be derived from the
class name: MyStore will become my, AnotherSQLStore will become another_sql. To explicitly specify a store
name, set the __extension_name__ class variable.

Configuration

The store is configured from a slicer.ini file. The store instance receives all options from it’s configuration file
section as arguments to the __init__() method.

106 Chapter 7. Extension Development

Cubes Documentation, Release 1.1

It is highly recommended that the store provides a class variable named __options__ which is a list of parameter
description dictionaries. The list is used for properly configuring the store from end-user tools, such as Slicer. It
also provides information about how to convert options into appropriate data types. Example:

class MyStore(Store):
default_browser_name = "my"

__options__ = [
{

"name": "collection",
"type": "string",
"description": "Name of data collection"

},
{

"name": "unfold",
"type": "bool",
"description": "Unfold nested structures"

}
}

def __init__(self, collection=None, unfold=Flase, **options):
super(MyStore, self).__init__(**options)

self.collection = collection
self.unfold = unfold

An example configuration for this store would look like:

[store]
type: my
collection: data
unfold: true

Aggregation Browser

Browser retrieves data from a store and works in a context of a cube and locale.

Fig. 7.2: Backend data store.

Methods to be implemented:

• __init__(cube, store, locale) – initialize the browser for cube stored in a store and use model and data locale.

7.2. Backends 107

Cubes Documentation, Release 1.1

• features() – return a dictionary with browser’s features

• aggregate(), facts(), fact(), members() – all basic browser actions that take a cell as first argument. See
AggregationBrowser for more information.

For example:

class SnowflakeBrowser(AggregationBrowser):

def __init__(self, cube, store, locale=None, **options):
super(SnowflakeBrowser, self).__init__(cube, store, locale)
browser initialization...

Name of the example store will be snowflake. To explicitly set the browser name set the __extension_name__
class property:

class SnowflakeBrowser(AggregationBrowser):
__extension_name__ = "sql"

In this case, the browser will be known by the name sql.

Note: The current AggregationBrowser API towards the extension development is provisional and will verylikely
change. The change will mostly involve removal of requirements for preparation of arguments and return value.

Aggregate

Implement the provide_aggregate() method with the following arguments:

• cell – cube cell to be aggregated, alwas a cubes.Cell instance

• aggregates – list of aggregates to be considered

• drilldown – cubes.Drilldown instance (already prepared)

• split (optional browser feature) – virtual cell-based dimension to split the aggregation cell into two: within
the split cell or outside of the split cell. Can be either None or a cubes.Cell instance

• page, page_size – page number and size of the page for paginated results

• order – order specification: list of two-item tuples (attribute, order)

def provide_aggregate(self, cell, aggregates, drilldown, split, order,
page, page_size, **options):

#
... do the aggregation here ...
#

result = AggregationResult(cell=cell, aggregates=aggregates)

Set the result cells iterator (required)
result.cells = ...
result.labels = ...

Optional:
result.total_cell_count = ...
result.summary = ...

return result

Note: Don’t override the aggregate() method – it takes care of proper argument conversions and set-up.

108 Chapter 7. Extension Development

Cubes Documentation, Release 1.1

See also:

cubes.AggregationResult, cubes.Drilldown, cubes.Cell

Facts

def facts(self, cell=None, fields=None, order=None, page=None,
page_size=None):

cell = cell or Cell(self.cube)
attributes = self.cube.get_attributes(fields)
order = self.prepare_order(order, is_aggregate=False)

#
... fetch the facts here ...
#
facts = ... an iterable ...
#

result = Facts(facts, attributes)

return result

Browser and Cube Features

The browser features for all or a particuliar cube (if there are differences) are returned by the cubes.
AggregationBrowser.features() method. The method is expected to return at least one key in the
dictionary: actions with list of browser actions that the browser supports.

Browser actions are: aggregate, fact, facts, members and cell.

Optional but recommended is setting the list of aggregate_functions – functions for measures computed in
the browser’s engine. The other is post_aggregate_functions – list of fucntions used as post-aggregation
outside of the browser.

Configuration

The browser is configured by merging:

• model’s options property

• cube’s options property

• store’s configuration options (from slicer.ini)

The browser instance receives the options as parameters to the __init__() method.

Model Providers

Model providers create cubes.Cube and cubes.Dimension objects from a metadata or an external descrip-
tion.

To implement a custom model provider subclass the cubes.ModelProvider class. It is required that the
__init__ method calls the super’s __init__ with the metadata argument.

Required methods to be implemented:

• list_cubes() – return a list of cubes that the provider provides. Return value should be a dictionary with
keys: name, label, description and info.

7.3. Model Providers 109

Cubes Documentation, Release 1.1

Fig. 7.3: Context of Model Providers.

• cube(name) – return a cubes.Cube object

• dimension(name, dimensions) – return a cubes.Dimension object. dimensions is a dictionary of pub-
lic dimensions that can be used as templates. If a template is missing the method should raise Tem-
plateRequired(template) error.

Optional:

• requires_store() – return True in this method if the provider requires a data store (database connection, API
credentials, ...).

See also:

Model Reference, Model Providers Reference, cubes.ModelProvider, cubes.
StaticModelProvider, cubes.create_cube(), cubes.create_dimension()

Cube

To provide a cube implement cube(name) method. The method should raise NoSuchCubeError when a cube is
not provided by the provider.

To set cube’s dimension you can either set dimension’s name in linked_dimensions or directly a Dimension object
in dimensions. The rule is:

• linked_dimensions – shared dimensions, might be defined in external model, might be even own dimension
that is considered public

• dimensions – private dimensions, dimensions with public name conflicts

Note: It is recommended to use the linked_dimensions name list. The dimensions is considered an advanced
feature.

Example of a provider which provides just a simple cube with date dimension and a measure amount and two
aggregates amount_sum and record_count. Knows three cubes: activations, churn and sales:

110 Chapter 7. Extension Development

Cubes Documentation, Release 1.1

from cubes import ModelProvider, create_cube

class SimpleModelProvider(ModelProvider):
def __init__(self, metadata=None):

super(DatabaseModelProvider, self).__init__(metadata)

self.known_cubes = ["activations", "churn", "sales"]

def list_cubes(self):

cubes = []
for name in self.known_cubes:

info = {"name": name}
cubes.append(info)

return cubes

def cube(self, name):
if not name in self.known_cubes:

raise NoSuchCubeError("Unknown cube '%s'" % name, name)

metadata = {
"name": name,
"linked_dimensions": ["date"],
"measures": ["amount"],
"aggregats": [

{"name": "amount_sum", "measure": "amount", "function": "sum"},
{"name": "record_count", "function": "count"}

]
}

return create_cube(metadata)

The above provider assumes that some other object providers the date dimension.

Store

Some providers might require a database connection or an API credentials that might be shared by the data store
containing the actual cube data. In this case the model provider should implement method requires_store() and
return True. The provider’s initialize_from_store() will be called back at some point before first cube is retrieved.
The provider will have store instance variable available with cubes.Store object instance.

Example:

from cubes import ModelProvider, create_cube
from sqlalchemy import sql
import json

class DatabaseModelProvider(ModelProvider):
def requires_store(self):

return True

def initialize_from_store(self):
self.table = self.store.table("cubes_metadata")
self.engine = self.store.engine

def cube(self, name):
self.engine.execute(select)

Let's assume that we have a SQLalchemy table with a JSON string
with cube metadata and columns: name, metadata

7.3. Model Providers 111

Cubes Documentation, Release 1.1

condition = self.table.c.name == name

statement = sql.expression.select(self.table.c.metadata,
from_obj=self.table,
where=condition)

result = list(self.engine.execute(statement))

if not result:
raise NoSuchCubeError("Unknown cube '%s'" % name, name)

cube = json.loads(result[0])

return create_cube(cube)

See also:

Plugin Reference

Authenticators and Authorizers

See also:

Plugin Reference

Authorizer

Authorizers gives or denies access to cubes and restricts access to a portion of a cube.

Custom authorizers should be subclasses of cubes.Authorizer (to be findable) and should have the following
methods:

• authorize(identity, cubes) – return list of cube names (from the cubes) that the identity is allowed to acces.
Might return an empty list if no cubes are allowed.

• restricted_cell(identity, cube, cell) – return a cell derived from cell with restrictions for identity

Custom authorizer example: an authorizer that uses some HTTP service that accepts list of cubes in the cubes=
paramter and returns a comma separated list of authorized cubes.

class CustomAuthorizer(Authorizer):
def __init__(self, url=None, user_dimension=None, **options):

super(DatabaseAuthorizer, self).__init__(self, **options)

self.url = url
self.user_dimension = user_dimension or "user"

def authorize(self, cubes):
params = {

"cubes": ",".join(cubes)
}

response = Request(url, params=params)

return response.data.split(",")

Note: The custom authorizer has to be a subclass of Authorizer so Cubes can find it. The name will be derived
from the class name: CustomAuthorizer will become custom, DatabaseACLAuthorizer will become database_acl.

112 Chapter 7. Extension Development

Cubes Documentation, Release 1.1

To explicitly specify an authorizer name, set the __extension_name__ class variable.

The cell restrictions are handled by restricted_cell() method which receives the identity, cube object (not just a
name) and optionaly the cell to be restricted.

class CustomAuthorizer(Authorizer):
def __init__(self, url=None, table=None, **options):

... initialization goes here ...

def authorize(self, cubes):
... authorization goes here
return cubes

def restricted_cell(self, identity, cube, cell):

If the cube has no dimension "user", we can't restrict
and we assume that the cube can be seen by anyone

try:
cube.dimension(self.user_dimension)

except NoSuchDimensionError:
return cell

Find the user ID based on identity
user_id = self.find_user(identity)

Assume a flat "user" dimension for every cube
cut = PointCut(self.user_dimension, [user_id])
restriction = Cell(cube, [cut])

if cell:
return cell & restriction

else:
return restriction

Configuration

The authorizer is configured from the [authorization] section in the slicer.ini file. The authorizer instance
receives all options from the section as arguments to the __init__() method.

To use the above authorizer, add the following to the slicer.ini:

[workspace]
authorization: custom

[authorization]
url: http://localhost/authorization_service
user_dimension: user

Authenticator

Authentication takes place at the server level right before a request is processed.

Custom authenticator has to be a subclass of slicer.server.Authenticator and has to have at least
authenticate(request) method defined. Another optional method is logout(request, identity).

Example authenticator which authenticates against a database table with two columns: user and password with a
clear-text password (don’t do that).

7.4. Authenticators and Authorizers 113

Cubes Documentation, Release 1.1

from cubes.server import Authenticator, NotAuthenticated
from sqlalchemy import create_engine, MetaData, Table

class DatabaseAuthenticator(Authenticator):
def __init__(self, url=None, table=None, **options):

self.engine = create_engine(url)
metadata = MetaData(bind=engine)
self.users = Table(table, metadata, autoload=True)

def authenticate(self, request):
user = request.values.get("user")
password = request.values.get("password")

select = self.users.select(self.users.c.password)
select = select.where(self.users.c.user == user)

row = self.engine.execute(select).fetchone()

if row["password"] == password:
return user

else:
raise NotAuthenticated

The authenticate(request) method should return the identity that will be later passed to the authorizer (it does not
have to be the same value as a user name). The identity might even be None which might be interpreted by some
authorizers guest or not-logged-in visitor. The method should raise NotAuthenticated when the credetials don’t
match.

114 Chapter 7. Extension Development

CHAPTER 8

Developer’s Reference

Workspace Reference

Workspace manages all cubes, their data stores and model providers.

Model Reference

Model - Cubes meta-data objects and functionality for working with them. Logical Model and Metadata

Note: All model objects: Cube, Dimension, Hierarchy, Level and attribute objects should be considered im-
mutable once created. Any changes to the object attributes might result in unexpected behavior.

See also:

Model Providers Reference Model providers – objects for constructing model objects from other kinds of
sources, even during run-time.

Model Utility Functions

Model components

Cube

Dimension, Hierarchy and Level

Attributes, Measures and Aggregates

exception ModelError
Exception raised when there is an error with model and its structure, mostly during model construction.

exception ModelIncosistencyError
Raised when there is incosistency in model structure, mostly when model was created programatically in a
wrong way by mismatching classes or misonfiguration.

115

Cubes Documentation, Release 1.1

exception NoSuchDimensionError
Raised when a dimension is requested that does not exist in the model.

exception NoSuchAttributeError
Raised when an unknown attribute, measure or detail requested.

Model Providers Reference

See also:

Model Reference

Model Providers

Model Metadata

Aggregation Browser Reference

Abstraction for aggregated browsing (concrete implementation is provided by one of the backends in package
backend or a custom backend).

Fig. 8.1: Browser package classes.

Aggregate browsing

Result

The result of aggregated browsing is returned as object:

116 Chapter 8. Developer’s Reference

Cubes Documentation, Release 1.1

Facts

Slicing and Dicing

Cuts

Drilldown

String conversions

In applications where slicing and dicing can be specified in form of a string, such as arguments of HTTP requests
of an web application, there are couple helper methods that do the string-to-object conversion:

Mapper

Formatters Reference

Formatters

See also:

Data Formatters Formatters documentation.

Aggregation Browsing Backends

Built-in backends for browsing aggregates of various data sources.

Other backends can be found at https://github.com/DataBrewery.

SQL

SQL backend uses SQLAlchemy for generating queries. It supports all databases that the SQLAlchemy supports
such as:

• Drizzle

• Firebird

• Informix

• Microsoft SQL Server

• MySQL

• Oracle

• PostgreSQL

• SQLite

• Sybase

8.5. Formatters Reference 117

https://github.com/DataBrewery

Cubes Documentation, Release 1.1

Browser

Slicer

HTTP WSGI OLAP Server Reference

Light-weight HTTP WSGI server based on the Flask framework. For more information about using the server see
OLAP Server.

cubes.server.slicer
Flask Blueprint instance.

See Integration With Flask Application for a use example.

cubes.server.workspace
Flask Local object referring to current application’s workspace.

Authentication and Authorization

See also:

Authorization and Authentication

Authentication

Authorization

Utility functions

118 Chapter 8. Developer’s Reference

http://flask.pocoo.org/

CHAPTER 9

Release Notes

Cubes Release Notes

Cubes 2.0 release notes

Moved to Python 3.6.

• SQL Alchemy is now required dependency, as the focus is now SQL query generator.

Overview

Major change is full move to Python 3.6 and dropping compatibility with lesser versions of Python.

Naming Conventions

The naming conventions were moved from the [server] section of the config file and moved to a separate
[naming] section.

Migration from 1.x to 2.0

Model Changes:

• All joins in the model must be specified as dictionaries, not as tuples

Configuration Changes:

• Naming conventions (dimension prefix, fact prefix, etc.) should be moved from the [server] to the
[naming] section

• There must be no unknown configuration settings in the .ini file that are not recognized by the library. (Note:
If you think the option should be accepted, please file an issue in the Cubes issue tracker)

Cubes 1.1 release notes

These release notes cover the new features and changes (some of them backward incompatible).

119

Cubes Documentation, Release 1.1

Overview

This release brings major refactoring and complexity reduction of the SQL backend. Other notable changes:

• implementation of arithmetic expressions

• removal of all backends but SQL and Slicer into a separate packages

• removal of all non-essential modules as extensions in separate packages

New Features

Model

• changed all create_* methods into a model object class initializers from_metadata such as
Cube.from_metadtata() or Dimension.from_metadata()

Cube:

• Cube.base_attributes() - returns all attributes that don’t have expressions and are very likely rep-
resented by a physical column

• Cube.attribute_dependencies() - returns a dictionary saying which attribute directly depends
on which other attributes

• Cube.collect_dependencies() - dictionary of all, deep dependencies (whole attribute dependency
tree is expanded)

Attributes

Expressions

Attributes can now carry an arithmetic expression. Attributes used in the expressions must be other logical at-
tributes. Only base attributes (those without expressions) require to have physical column mappings.

Example:

{“name”: “price_with_vat”, “expression”: “price * 1.2”}
{“name”: “price_with_discount”, “expression”: “price * (1 - discount / 100)”}

The expressions currently support basic arithmetics and few SQL functions. The expression language and opera-
tors are inspired (and will very likely follow) the Postgres SQL dialect, but is not going to be 100% compatible.
Language will be extended gently, with regard to other backends or SQL dialects. (Note that the expression
language is meant to be shared with other, non-Cubes tools).

Plugins

New plugin system. Packages can now advertise in their setup.py plugins:

..code-block:: python

entry_points={

‘cubes.stores’: [‘my = my_package.MyStore’,

], ‘cubes.authorizers’: [

‘my = my_package.MyAuthorizer’,

]

}

Extensible obects: authenticators, authorizers, browsers, formatters, model_providers and stores.

120 Chapter 9. Release Notes

Cubes Documentation, Release 1.1

Major Changes

Modules and Packages

The modules were restructured. The backend package was removed, it’s content was separated into external
packages. sql became a top-level package, yet maintaining it’s optional status. It should stay in the Cubes package
as it is the most used backend.

browser was split into two separate packages browser and cells.

New external packages:

• cubes-ga

• cubes-mongo

• cubes-mixpanel

• important: No longer generate implicit aggregates by default. Override in model

Model

• Cube.all_attributes was changed to return actually all attributes of the Cube instead of just attributes
for a fact table (non-aggregates). There are now three methods: Cubes.all_attributes(),
Cubes.all_fact_attributes and Cubes.all_aggregation_attributes.

Model Attributes:

• string representation of attributes now returns attribute reference instead of attribute name

• ref is now a property of all attributes (originally it was a function ref(locale, simplify))

• attribute reference is now opinionated without ability to have alternative way: all dimensions are simplified
if they are flat and have no details, otherwise attribute reference is dimension.attribute

• removed public_dimensions()

Other

• removed store_name in Store

• added Drilldown.natural_order

SQL

Now a top-level package as it will receive more attention in the near future. Simplified, made code more under-
standable and maintainable.

• new SQL schema object holding information about the star/snowflake schema

• topological sort of joins - joins are now ordered automagically, no longer cryptic exceptions about to-fact
relationships

• new QueryContext – replaces QueryBuilder

• support for SQL Alchemy selectables as star/snowflake schema tables

• removed simple vs. composed aggregation statement (which was required due to unpredictability of low-
level mapping expressions), now every statement is just “simple” statement

Other:

• find_dimension() and link_cube() are now global functions. Cube linking has been moved into the provider.

• added naming convention dicitonary to the SQL mapper

9.1. Cubes Release Notes 121

Cubes Documentation, Release 1.1

• added SQLSchemaInspector

• SQLStore accepts metadata object

• added compound keys (multiple columns) in joins

Fix:

• if fact table schema is explicitly specified, use it in the joins as default schema

Slicer

The slicer command has been rewritten using Click. There are new commands and refreshed commands:

• ext-info – list extensions and give more details about particuliar extension

• materialize and aggregate – brought back under new sql command group

• list – list cubes

The configuration slicer.ini is now as default and does not have to be explicitly provided if not necessary.

Removed

• Dropped support for experimental “nonadditive” measures (temporarily)

• Dropped support for experimental periods-to-date (requires specification)

• Dropped support of experimental expr mapping (permanently)

Cubes 1.0 release notes

These release notes cover the new features and changes (some of them backward incompatible).

Overview

The biggest new feature in cubes is the “pluggable” model. You are no longer limited to one one model, one
type of data store (database) and one set of cubes. The new Workspace is now framework-level controller object
that manages models (model sources), cubes and datastores. To the future more features will be added to the
workspace.

New Workspace related objects:

• model provider – creates model objects from a model source (might be a foreign API/service or custom
database)

• store – provides access and connection to cube’s data

For more information see the Workspace documentation.

Other notable new features in Cubes 1.0 are:

• Rewritten Slicer server in Flask as a reusable Blueprint.

• New server API.

• support for outer joins in the SQL backend.

• Distinction between measures and aggregates

• Extensible authorization and authentication

• Visualizer

122 Chapter 9. Release Notes

http://flask.pocoo.org
http://flask.pocoo.org/docs/blueprints/

Cubes Documentation, Release 1.1

Fig. 9.1: Analytical Workspace Overview

Python Versions

Cubes 1.0 supports Python >= 2.7 for Python 2 series and Python >= 3.4.1 for Python 3 series.

Analytical Workspace

The old backend architecture was limiting. It allowed only one store to be used, the model had to be known before
the server started, it was not possible to get the model from a remote source.

For more details about the new workspace see the Analytical Workspace documentation.

Configuration

The slicer.ini configuration has changed to reflect new features.

The section [workspace] now contains global configuration of a cubes workspace session. The database
connection has moved into [store] (or similar, if there are more).

The database connection is specified either in the [store] section or in a separate stores.ini file where one
section is one store, section name is store name (as referenced from cube models).

If there is only one model, it can be specified either in the [workspace] section as model. Multiple models
are specified in the [models] section.

To sum it up:

• [server] backend is now [store] type for every store

• [server] log and log_level has moved to [workspace]

• [model] is now either model option of [workspace] or list of multiple models in the [models]
section

The old configuration:

[server]
host: localhost
port: 5000

9.1. Cubes Release Notes 123

Cubes Documentation, Release 1.1

reload: yes
log_level: info

[workspace]
url: postgres://localhost/mydata"

[model]
path: grants_model.json

Is now:

[workspace]
log_level: info
model: grants_model.json

[server]
host: localhost
port: 5000
reload: yes

[store]
type: sql
url: postgres://localhost/mydata

Check your configuration files.

See also:

Configuration

Server

Slicer server is now a Flask application and a reusable Blueprint. It is possible to include the Slicer in your
application at an end-point of your choice.

For more information, see the recipe.

Other server changes:

• do not expose internal exceptions, only user exceptions

• added simple authentication methods: HTTP Basic (behind a proxy) and parameter-based identity. Both are
permissive and serve just for passing an identity to the authorizer.

HTTP Server API

Server end-points have changed.

New end-points:

• /version

• /info

• /cubes

• /cube/<cube>/model

• /cube/<cube>/aggregate

• /cube/<cube>/facts

• /cube/<cube>/fact

• /cube/<cube>/members/<dimension>

124 Chapter 9. Release Notes

http://flask.pocoo.org
http://flask.pocoo.org/docs/blueprints/

Cubes Documentation, Release 1.1

• /cube/<cube>/cell

• /cube/<cube>/report

Removed end-points:

• /model – without replacement doe to the new concepts of workspace. Alternative is to get list of basic
cube info using /cubes.

• /model/cubes – without replacement, use /cubes

• /model/cube/<cube> – use /cube/<cube>/model instead

• /model/dimension/* – without replacement due to the new concepts of workspace

• all top-level browser actions such as /aggregate – now the cube name has to be explicit

Parameter changes:

• /aggregate uses aggregates=, does not accept measure= any more

• /aggregate now accepts format= to generate CSV output

• new parameter headers= for CSV output: with headers as attribute names, headers as attribute labels
(human readable) or no headers at all

• it is now possible to specify multiple drilldowns, separated by | in one drilldown= parameter

• cuts for date dimension accepts named relative time references such as cut=date:90daysago-today.
See the server documentation for more information.

• dimension path elements can contain special characters if they are escaped by a backslash \ such as
cut=city:Nové\ Mesto

Many actions now accept format= parameter, which can be json, csv or json_lines (new-line separated
JSON).

Response changes:

• /cubes (replacement for /model) returns a list of basic cubes info: name, label, description and category.
It does not return full cube description with dimensions.

• /cube/<cube>/model has new keys: aggregates and features

See also:

OLAP Server

Outer Joins

Support for thee types of joins was added to the SQL backend: match (inner), master (left outer) and detail (right
outer).

The outer joins allows for example to use whole date dimension table and have “empty cells” for dates where
there are no facts.

When an right outer join (detail method) is present, then aggregate values are coalesced to zero (based on the
function either the values or the result is coalesced). For example: AVG coalesces values: AVG(COALESCE(c,
0)), SUM coalesces result: COALESCE(SUM(c), 0).

See also:

SQL Backend – Outer Joins Documentation

Statutils

Module with statistical aggregate functions such as simple moving average or weighted moving average.

Provided functions:

9.1. Cubes Release Notes 125

Cubes Documentation, Release 1.1

• wma – weighted moving average

• sma – simple moving average

• sms – simple moving sum

• smstd – simple moving st. deviation

• smrsd – simple moving relative st. deviation

• smvar – simple moving variance

The function are applied on the already computed aggregation results. Backends migh handle the function inter-
nally if they can.

Window functions respect window_size property of aggregates.

Browser

• cuts now have an invert flag (might not be supported by all backends)

• aggregate() has new argument split which is a cell that defines artificial flag-like dimension with two values:
0 – aggergated cell is outside of the split cell, 1 – aggregated cell is within the split cell

Both invert and split features are still provisional, their interface might change.

Slicer

• added slicer model convert to convert between json and directory bundle

Model

Model and modeling related changes are:

• new concept of model providers (see details below)

• measure aggregates (see details below)

• cardinality of dimensions and dimension levels

• dimension and level roles

• attribute missing values

• format property of a measure and aggregate

• namespaces

Note: cubes, dimensions, levels and hierarchies can no longer be dictionaries, they should be lists
of dictionaries and the dictionaries should have a name property set. This was depreciated long ago.

Model Providers

The models of cubes are now being created by the model providers. Model provider is an object that creates Cubes
and Dimension instances from it’s source. Built-in model provider is cubes.StaticModelProvider which
creates cubes objects from JSON files and dictionaries.

See also:

Model Providers, Model Providers Reference

126 Chapter 9. Release Notes

Cubes Documentation, Release 1.1

Namespaces

Cubes from stores can be wrapped in a model namespace. By-default, the namespace is the same as the name
of the store. The cubes are referenced as NAMESPACE.CUBE such as foreign.sales. For backward compatibility
reasons and for simplicity there are two cube lookup methods: recursive and global.

Measures and Aggregates

Cubes now distinguishes between measures and aggregates. measure represents a numerical fact property, aggre-
gate represents aggregated value (applied aggregate function on a property, or provided natively by the backend).

This new approach of aggregates makes development of backends and clients much easier. There is no need to
construct and guess aggregate measures or splitting the names from the functions. Backends receive concrete
objects with sufficient information to perform the aggregation (either by a function or fetch already computed
value).

Functionality additions and changes:

• New model objects: cubes.Attribute (for dimension or detail), cubes.Measure and cubes.
MeasureAggregate.

• New model creation/helper functions: cubes.create_measure_aggregate(), cubes.
create_measure()

• cubes.create_cube() is back

• cubes.Cube.aggregates_for_measure() – return all aggregates referring the measure

• cubes.Cube.get_aggregates() – get a list of aggregates according to names

• cubes.Measure.default_aggregates() – create a list of default aggregates for the measure

• calculators_for_aggregates() in statutils – returns post-aggregation calculators

• Added a cube metadata flag to control creation of default aggregates: implicit_aggregates. Default is True

• Cube initialization has no creation of defaults – it should belong to the model provider or create_cube()
function

• If there is no function specified, we consider the aggregate to be specified in the mappings

record_count

Implicit aggregate record_count is no longer provided for every cube. It has to be explicitly defined as an aggre-
gate:

"aggregates": [
{

"name": "item_count",
"label": "Total Items",
"function": "count"

}
]

It can be named and labelled in any way.

If cube has no aggregates, then new default aggregate named fact_count is created.

See also:

Measures and Aggregates Documentation, Logical Model and Metadata

9.1. Cubes Release Notes 127

Cubes Documentation, Release 1.1

Dimension Links

Linking of dimensions to cubes can be fine-tuned by specifying multiple properties of the dimension in the cube’s
context:

• hierarchies – cube’s dimension can have only certain hierarchies from the original dimension

• detault_hierarchy_name – it is possible to specify different default hierarchy

• nonadditive – override the dimensions’ non-additive property

• cardinality – use if dimension might have different cardinality in the new context

• alias – reuse dimensions in a cube but give them different names

Backends

• Backends should now implement provide_aggregate() method instead of aggregate() – the later takes care
of argument conversion and preparation. See Backends for more information.

SQL Backend

• New module functions with new AggregationFunction objects

• Added get_aggregate_function() and available_aggregate_functions()

• Renamed star module to browser

• Updated the code to use the new aggregates instead of old measures. Affected parts of the code are now
cleaner and more understandable

• Moved calculated_aggregations_for_measure to library-level statutils module as calculators_for_aggregates

• function dictionary is no longer used

New Backends

• Mixpanel: ../backends/mixpanel

• Slicer: Slicer Server

• Mongo: ../backends/mongo

• Google Analytics: ../backends/google_analytics

See also:

How to Write a Backend Extension

Visualizer

There is a cubes visualizer included in the Cubes that can connect to any cubes slicer server over HTTP. It is purely
HTML/JavaScript application.

Other Minor Changes

• Cell.contains_level(dim, level, hierarhy) – returns True when the cell contains level level of dimension
dim

• renamed AggregationBrowser.values() to cubes.AggregationBrowser.members()

• AggregationResult.measures changed to AggregationResult.aggregates (see AggregationResult)

128 Chapter 9. Release Notes

Cubes Documentation, Release 1.1

• browser’s __init__ signature has changed to include the store

• changed the exception hierarchy. Now has two branches: UserError and InternalError – the
UserError can be returned to the client, the InternalError should remain privade on the server
side.

• to_dict() of model objects returns an ordered dictionary for nicer JSON output

• New class cubes.Facts that should be returned by cubes.AggregationBrowser.facts()

• cubes.cuts_from_string() has two new arguments member_converters and
role_member_converters

• New class cubes.Drilldown to get more information about the drilldown

Migration to 1.0

Checklists for migrating a Cubes project from pre-1.0 to 1.0:

The slicer.ini

1. Rename [workspace] to [store]

2. Create new empty [workspace]

3. Move [server] backend to [store] type

4. Move [server] log, log_level to the new [workspace]

5. Rename [model] path to [models] main and remove all non-model references (such as locales).

The minimal configuration looks like:

[store]
type: sql
url: sqlite:///data.sqlite

[models]
main: model.json

See configuration changes for an example and configuration documentation for more information.

The Model

There are not many model changes, mostly measures and aggregates related.

1. Make sure that dimensions, cubes, levels and hierarchies are not dictionaries but lists of dic-
tionaries with name property.

2. Create the explicit record_count aggregate, if you are using it. Note that you can name and label the
aggregate as you like.

"aggregates": [
{

"name": "record_count",
"label": "Total Items",
"function": "count"

}
]

3. In measures rename aggregations to aggregates or even better: create explicit, full aggregate
definitions.

See Aggregates for more information.

9.1. Cubes Release Notes 129

Cubes Documentation, Release 1.1

Slicer Front-end

The biggest change in the front-ends is the removal of the /model end-point without equivalend replacement.
Use /cubes to get list of provided cubes. The cube definition contains whole dimension descriptions.

1. Change from /model to /cubes

2. Change from /model/cube/<name> to /cube/<name>/model

3. Cube has to be explicit in every request, therefore /aggregate does not work any more, use /cube/
<name>/aggregate

4. Change aggregate parameter measure to aggregates

Refer to the OLAP Server documentation for the new response structures. There were minor changes, mostly
additions.

Additional and Optional Considerations for Migration

• if your model is too big, split it into multiple models and add them to the [models] section. Note that the
dimensions can be shared between models.

• put all your models into a separate directory and use the [workspace] models_path property. The
paths in [models] are relative to the models_path

• if you have muliple stores, create a separate stores.ini file where the section names are store names.
Set the [workspace] stores to the stores.ini path if it is different than default.

• Add "role"="time" to a date dimension – you might benefit from new date-related additions and special
dimension handling in the available front-ends

• Review joins and set appropriate join method if desired, for example detail for a date dimension.

• Add cardinality metadata to dimension levels if appropriate.

• Look at the cube’s model features property to learn what the front-end can expect from the backend for
that cube

• Look at the /info response

v1.0.1 Changes

• [feature] Added SimpleAuthorizer.expand_roles

• [feature] create indexes for aggregated table

• [change] make workspace optional

• [change] Allow user to supply an external workspace to the slicer

• [change] modified create_cube_aggregate

• [fix] correct physical attribute schema handling in SQL backend - fact details were getting dimension schema

• [fix] increase debug level in hello_world example

• [fix] more descriptive error messages in browser/backend

• [fix] Use store instead of datastore (remaining places)

• various documentation fixes

• various example fixes

Contributors:

• Dmitriy Trochshenko

• Friedrich Lindenberg

130 Chapter 9. Release Notes

Cubes Documentation, Release 1.1

• Lucas Taylor

• Michal Skop

• Gasper Zejn

• jerry dumblauskas

Cubes 0.6 to 0.10.2 Release Notes

0.10.2

Summary:

• many improvements in handling multiple hierarchies

• more support of multiple hierarchies in the slicer server either as parameter or with syntax
dimension@hierarchy:

– dimension values: GET /dimension/date?hierarchy=dqmy

– cut: get first quarter of 2012 ?cut=date@dqmy:2012,1

– drill-down on hierarchy with week on implicit (next) level: ?drilldown=date@ywd

– drill-down on hierarchy with week with exlpicitly specified week level: ?
drilldown=date@ywd:week

• order and order attribute can now be specified for a Level

• optional safe column aliases (see docs for more info) for databases that have non-standard requirements for
column labels even when quoted

Thanks:

• Jose Juan Montes (@jjmontesl)

• Andrew Zeneski

• Reinier Reisy Quevedo Batista (@rquevedo)

New Features

• added order to Level object - can be asc, desc or None for unspecified order (will be ignored)

• added order_attribute to Level object - specifies attribute to be used for ordering according to order. If not
specified, then first attribute is going to be used.

• added hierarchy argument to AggregationResult.table_rows()

• str(cube) returns cube name, useful in functions that can accept both cube name and cube object

• added cross table formatter and its HTML variant

• GET /dimension accepts hierarchy parameter

• added create_workspace_from_config() to simplify workspace creation directly from slicer.ini file (this
method might be slightly changed in the future)

• to_dict() method of model objects now has a flag create_label which provides label attribute derived from
the object’s name, if label is missing

• #95: Allow charset to be specified in Content-Type header

SQL:

• added option to SQL workspace/browser safe_labels to use safe column labels for databases that do
not support characters like . in column names even when quoted (advanced feature, does not work with
denormalization)

9.1. Cubes Release Notes 131

Cubes Documentation, Release 1.1

• browser accepts include_cell_count and include_summary arguments to optionally disable/enable inclusion
of respective results in the aggregation result object

• added implicit ordering by levels to aggregate and dimension values methods (for list of facts it is not yet
decided how this should work)

• #97: partially implemented sort_key, available in aggregate() and values() methods

Server:

• added comma separator for order= parameter

• reflected multiple search backend support in slicer server

Other:

• added vim syntax highlighting goodie

Changes

• AggregationResult.cross_table is depreciated, use cross table formatter instead

• load_model() loads and applies translations

• slicer server uses new localization methods (removed localization code from slicer)

• workspace context provides proper list of locales and new key ‘translations’

• added base class Workspace which backends should subclass; backends should use
workspace.localized_model(locale)

• create_model() accepts list of translations

Fixes

• browser.set_locale() now correctly changes browser’s locale

• #97: Dimension values call cartesians when cutting by a different dimension

• #99: Dimension “template” does not copy hierarchies

0.10.1

Quick Summary:

• multiple hierarchies:

– Python: cut = PointCut("date", [2010,15], hierarchy='ywd')

– Server: GET /aggregate?cut=date@ywd:2010,15

– Server drilldown: GET /aggregate?drilldown=date@ywd:week

• added experimental result formatters (API might change)

• added experimental pre-aggregations

New Features

• added support for multiple hierarchies

• added dimension_schema option to star browser – use this when you have all dimensions grouped in a
separate schema than fact table

• added HierarchyError - used for example when drilling down deeper than possible within that hierarchy

132 Chapter 9. Release Notes

Cubes Documentation, Release 1.1

• added result formatters: simple_html_table, simple_data_table, text_table

• added create_formatter(formatter_type, options ...)

• AggregationResult.levels is a new dictionary containing levels that the result was drilled down to. Keys are
dimension names, values are levels.

• AggregationResult.table_rows() output has a new variable is_base to denote whether the row is base or
not in regard to table_rows dimension.

• added create_server(config_path) to simplify wsgi script

• added aggregates: avg, stddev and variance (works only in databases that support those aggregations, such
as PostgreSQL)

• added preliminary implemenation of pre-aggregation to sql worskspace:

– create_conformed_rollup()

– create_conformed_rollups()

– create_cube_aggregate()

Server:

• multiple drilldowns can be specified in single argument: drilldown=date,product

• there can be multiple cut arguments that will be appended into single cell

• added requests: GET /cubes and GET /cube/NAME/dimensions

Changes

• Important: Changed string representation of a set cut: now using semicolon ‘;’ as a separator instead of a
plus symbol ‘+’

• aggregation browser subclasses should now fill result’s levels variable with
coalesced_drilldown() output for requested drill-down levels.

• Moved coalesce_drilldown() from star browser to cubes.browser module to be reusable by other browsers.
Method might be renamed in the future.

• if there is only one level (default) in a dimension, it will have same label as the owning dimension

• hierarchy definition errors now raise ModelError instead of generic exception

Fixes

• order of joins is preserved

• fixed ordering bug

• fixed bug in generating conditions from range cuts

• AggregationResult.table_rows now works when there is no point cut

• get correct reference in table_rows – now works when simple denormalized table is used

• raise model exception when a table is missing due to missing join

• search in slicer updated for latest changes

• fixed bug that prevented using cells with attributes in aliased joined tables

9.1. Cubes Release Notes 133

Cubes Documentation, Release 1.1

0.10

Quick Summary

• Dimension defition can have a “template”. For example:

{
"name": "contract_date",
"template": "date"

}

• added table_rows() and cross_table()

• added simple_model(cube_name, dimension_names, measures)

Incompatibilities: use create_model() instead of Model(**dict), if you were using just
load_model(), you are fine.

New Features

• To address issue #8 create_model(dict) was added as replacement for Model(dict). Model() from now
on will expect correctly constructed model objects. create_model() will be able to handle various
simplifications and defaults during the construction process.

• added info attribute to all model objects. It can be used to store custom, application or front-end specific
information

• preliminary implementation of cross_table() (interface might be changed)

• AggregationResult.table_rows() - new method that iterates through drill-down rows and returns
a tuple with key, label, path, and rest of the fields.

• dimension in model description can specify another template dimension – all properties from the template
will be inherited in the new dimension. All dimension properties specified in the new dimension completely
override the template specification

• added point_cut_for_dimension

• added simple_model(cube_name, dimensions, measures) – creates a single-cube model with flat dimensions
from a list of dimension names and measures from a list of measure names. For example:

model = simple_model("contracts", ["year","contractor", "type"], ["amount"])

Slicer Server:

• /cell – return cell details (replaces /details)

Changes

• creation of a model from dictionary through Model(dict) is depreciated, use create_model(dict) instead. All
initialization code will be moved there. Depreciation warnings were added. Old functionality retained for
the time being. (important)

• Replaced Attribute.full_name() with Attribute.ref()

• Removed Dimension.attribute_reference() as same can be achieved with dim(attr).ref()

• AggregationResult.drilldown renamed to AggregationResults.cells

Planned Changes:

• str(Attribute) will return ref() instead of attribute name as it is more useful

134 Chapter 9. Release Notes

Cubes Documentation, Release 1.1

Fixes

• order of dimensions is now preserved in the Model

0.9.1

Summary: Range cuts, denormalize with slicer tool, cells in /report query

New Features

• cut_from_string(): added parsing of range and set cuts from string; introduced requirement for key format:
Keys should now have format “alphanumeric character or underscore” if they are going to be converted to
strings (for example when using slicer HTTP server)

• cut_from_dict(): create a cut (of appropriate class) from a dictionary description

• Dimension.attribute(name): get attribute instance from name

• added exceptions: CubesError, ModelInconsistencyError, NoSuchDimensionError, NoSuchAttributeError,
ArgumentError, MappingError, WorkspaceError and BrowserError

StarBrowser:

• implemented RangeCut conditions

Slicer Server:

• /report JSON now accepts cell with full cell description as dictionary, overrides URL parameters

Slicer tool:

• denormalize option for (bulk) denormalization of cubes (see the the slicer documentation for more
information)

Changes

• all /report JSON requests should now have queries wrapped in the key queries. This was originally
intended way of use, but was not correctly implemented. A descriptive error message is returned from the
server if the key queries is not present. Despite being rather a bug-fix, it is listed here as it requires your
attention for possible change of your code.

• warn when no backend is specified during slicer context creation

Fixes

• Better handling of missing optional packages, also fixes #57 (now works without slqalchemy and without
werkzeug as expected)

• see change above about /report and queries

• push more errors as JSON responses to the requestor, instead of just failing with an exception

Version 0.9

Important Changes

Summary of most important changes that might affect your code:

Slicer: Change all your slicer.ini configuration files to have [workspace] section instead of old [db] or
[backend]. Depreciation warning is issued, will work if not changed.

9.1. Cubes Release Notes 135

Cubes Documentation, Release 1.1

Model: Change dimensions in model to be an array instead of a dictionary. Same with cubes. Old style:
"dimensions" = { "date" = ... } new style: "dimensions" = [{ "name": "date", .
.. }]. Will work if not changed, just be prepared.

Python: Use Dimension.hierarchy() instead of Dimension.default_hierarchy.

New Features

• slicer_context() - new method that holds all relevant information from configuration. can be reused when
creating tools that work in connected database environment

• added Hierarchy.all_attributes() and .key_attributes()

• Cell.rollup_dim() - rolls up single dimension to a specified level. this might later replace the Cell.rollup()
method

• Cell.drilldown() - drills down the cell

• create_workspace() - new top-level method for creating a workspace by name of a backend and a config-
uration dictionary. Easier to create browsers (from possible browser pool) programmatically. The browser
name might be full module name path or relative to the cubes.backends, for example sql.browser for
default SQL denormalized browser.

• get_backend() - get backend by name

• AggregationBrowser.cell_details(): New method returning values of attributes representing the cell. Pre-
liminary implementation, return value might change.

• AggregationBrowser.cut_details(): New method returning values of attributes representing a single cut.
Preliminary implementation, return value might change.

• Dimension.validate() now checks whether there are duplicate attributes

• Cube.validate() now checks whether there are duplicate measures or details

SQL backend:

• new StarBrowser implemented:

– StarBrowser supports snowflakes or denormalization (optional)

– for snowflake browsing no write permission is required (does not have to be denormalized)

• new DenormalizedMapper for mapping logical model to denormalized view

• new SnowflakeMapper for mapping logical model to a snowflake schema

• ddl_for_model() - get schema DDL as string for model

• join finder and attribute mapper are now just Mapper - class responsible for finding appropriate joins and
doing logical-to-physical mappings

• coalesce_attribute() - new method for coalescing multiple ways of describing a physical attribute (just
attribute or table+schema+attribute)

• dimension argument was removed from all methods working with attributes (the dimension is now required
attribute property)

• added create_denormalized_view() with options: materialize, create_index, keys_only

Slicer:

• slicer ddl - generate schema DDL from model

• slicer test - test configuration and model against database and report list of issues, if any

• Backend options are now in [workspace], removed configurability of custom backend section. Warning are
issued when old section names [db] and [backend] are used

• server responds to /details which is a result of AggregationBrowser.cell_details()

136 Chapter 9. Release Notes

Cubes Documentation, Release 1.1

Examples:

• added simple Flask based web example - dimension aggregation browser

Changes

• in Model: dimension and cube dictionary specification during model initialization is depreciated, list should
be used (with explicitly mentioned attribute “name”) – important

• important: Now all attribute references in the model (dimension attributes, measures, ...) are required to
be instances of Attribute() and the attribute knows it’s dimension

• removed hierarchy argument from Dimension.all_attributes() and Dimension.key_attributes()

• renamed builder to denormalizer

• Dimension.default_hierarchy is now depreciated in favor of Dimension.hierarchy() which now accepts no
arguments or argument None - returning default hierarchy in those two cases

• metadata are now reused for each browser within one workspace - speed improvement.

Fixes

• Slicer version should be same version as Cubes: Original intention was to have separate server, therefore it
had its own versioning. Now there is no reason for separate version, moreover it can introduce confusion.

• Proper use of database schema in the Mapper

Version 0.8

New Features

• Started writing StarBrowser - another SQL aggregation browser with different approach (see code/docs)

Slicer Server:

• added configuration option modules under [server] to load additional modules

• added ability to specify backend module

• backend configuration is in [backend] by default, for SQL it stays in [db]

• added server config option for default prettyprint value (useful for demontration purposes)

Documentation:

• Changed license to MIT + small addition. Please refer to the LICENSE file.

• Updated documentation - added missing parts, made reference more readable, moved class and function
reference docs from descriptive part to reference (API) part.

• added backend documentation

• Added “Hello World!” example

Changed Features

• removed default SQL backend from the server

• moved worskpace creation into the backend module

9.1. Cubes Release Notes 137

Cubes Documentation, Release 1.1

Fixes

• Fixed create_view to handle not materialized properly (thanks to deytao)

• Slicer tool header now contains #!/usr/bin/env python

Version 0.7.1

Added tutorials in tutorials/ with models in tutorials/models/ and data in tutorials/data/:

• Tutorial 1:

– how to build a model programatically

– how to create a model with flat dimensions

– how to aggregate whole cube

– how to drill-down and aggregate through a dimension

• Tutorial 2:

– how to create and use a model file

– mappings

• Tutorial 3:

– how hierarhies work

– drill-down through a hierarchy

• Tutorial 4 (not blogged about it yet):

– how to launch slicer server

New Features

• New method: Dimension.attribute_reference: returns full reference to an attribute

• str(cut) will now return constructed string representation of a cut as it can be used by Slicer

Slicer server:

• added /locales to slicer

• added locales key in /model request

• added Access-Control-Allow-Origin for JS/jQuery

Changes

• Allow dimensions in cube to be a list, not only a dictionary (internally it is ordered dictionary)

• Allow cubes in model to be a list, not only a dictionary (internally it is ordered dictionary)

Slicer server:

• slicer does not require default cube to be specified: if no cube is in the request then try default from config
or get first from model

138 Chapter 9. Release Notes

Cubes Documentation, Release 1.1

Fixes

• Slicer not serves right localization regardless of what localization was used first after server was launched
(changed model localization copy to be deepcopy (as it should be))

• Fixes some remnants that used old Cell.foo based browsing to Browser.foo(cell, ...) only browsing

• fixed model localization issues; once localized, original locale was not available

• Do not try to add locale if not specified. Fixes #11: https://github.com/Stiivi/cubes/issues/11

Version 0.7

WARNING: Minor backward API incompatibility - Cuboid renamed to Cell.

Changes

• Class ‘Cuboid’ was renamed to more correct ‘Cell’. ‘Cuboid’ is a part of cube with subset of dimensions.

• all APIs with ‘cuboid’ in their name/arguments were renamed to use ‘cell’ instead

• Changed initialization of model classes: Model, Cube, Dimension, Hierarchy, Level to be more “pythony”:
instead of using initialization dictionary, each attribute is listed as parameter, rest is handled from variable
list of key word arguments

• Improved handling of flat and detail-less dimensions (dimensions represented just by one attribute which is
also a key)

Model Initialization Defaults:

• If no levels are specified during initialization, then dimension name is considered flat, with single attribute.

• If no hierarchy is specified and levels are specified, then default hierarchy will be created from order of
levels

• If no levels are specified, then one level is created, with name default and dimension will be considered
flat

Note: This initialization defaults might be moved into a separate utility function/class that will populate incomplete
model

New features

Slicer server:

• changed to handle multiple cubes within model: you have to specify a cube for /aggregate, /facts,... in form:
/cube/<cube_name>/<browser_action>

• reflect change in configuration: removed view, added view_prefix and view_suffix, the cube view
name will be constructed by concatenating view prefix + cube name + view suffix

• in aggregate drill-down: explicit dimension can be specified with drilldown=dimension:level,
such as: date:month

This change is considered final and therefore we can mark it is as API version 1.

Version 0.6

New features

Cubes:

9.1. Cubes Release Notes 139

https://github.com/Stiivi/cubes/issues/11

Cubes Documentation, Release 1.1

• added ‘details’ to cube - attributes that might contain fact details which are not relevant to aggregation, but
might be interesting when displaying facts

• added ordering of facts in aggregation browser

• SQL denormalizer can now add indexes to key columns, if requested

• one detail table can be used more than once in SQL denomralizer (such as an organisation for both - receiver
and donor), added key ``alias`` to ``joins`` in model description

Slicer server:

• added log a and log_level configuration options (under [server])

• added format= parameter to /facts, accepts json and csv

• added fields= parameter to /facts - comma separated list of returned fields in CSV

• share single sqlalchemy engine within server thread

• limit number of facts returned in JSON (configurable by json_record_limit in [server] section)

Experimental: (might change or be removed, use with caution)

• added cubes searching frontend for separate cubes_search experimenal Sphinx backend (see https://
bitbucket.org/Stiivi/cubes-search)

Fixes

• fixed localization bug in fact(s) - now uses proper attribute name without locale suffix

• fixed passing of pagination and ordering parameters from server to aggregation browser when requesting
facts

• fixed bug when using multiple conditions in SQL aggregator

• make host/port optional separately

Contact and Getting Help

Join the chat at Gitter.

If you have questions, problems or suggestions, you can send a message to Google group or write to the author
(Stefan Urbanek).

Report bugs in github issues tracking

There is an IRC channel #databrewery on server irc.freenode.net.

140 Chapter 9. Release Notes

https://bitbucket.org/Stiivi/cubes-search
https://bitbucket.org/Stiivi/cubes-search
https://gitter.im/DataBrewery/cubes
http://groups.google.com/group/cubes-discuss
mailto:stefan.urbanek@gmail.com
https://github.com/DataBrewery/cubes/issues

CHAPTER 10

License

Cubes is licensed under MIT license with small addition:

Copyright (c) 2011-2014 Stefan Urbanek, see AUTHORS for more details

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Simply said, that if you use it as part of software as a service (SaaS) you have to provide the copyright notice in
an about, legal info, credits or some similar kind of page or info box.

Indices and tables

• genindex

• modindex

• search

141

Cubes Documentation, Release 1.1

142 Chapter 10. License

Python Module Index

s
server, 118

143

Cubes Documentation, Release 1.1

144 Python Module Index

Index

C
cubes.server.slicer (in module server), 118
cubes.server.workspace (in module server), 118

M
ModelError, 115
ModelIncosistencyError, 115

N
NoSuchAttributeError, 116
NoSuchDimensionError, 115

S
server (module), 118

145

	Getting Started
	Introduction
	Installation
	Related Projects
	Tutorial
	Credits

	Data Modeling
	Logical Model and Metadata
	Schemas and Models
	Localization

	Aggregation, Slicing and Dicing
	Slicing and Dicing
	Data Formatters

	Analytical Workspace
	Analytical Workspace
	Authorization and Authentication
	Configuration
	SQL Backend
	Slicer Server

	Slicer Server and Tool
	OLAP Server
	Server Deployment
	slicer - Command Line Tool

	Recipes
	Recipes

	Extension Development
	Plugin Reference
	Backends
	Model Providers
	Authenticators and Authorizers

	Developer's Reference
	Workspace Reference
	Model Reference
	Model Providers Reference
	Aggregation Browser Reference
	Formatters Reference
	Aggregation Browsing Backends
	HTTP WSGI OLAP Server Reference
	Authentication and Authorization
	Utility functions

	Release Notes
	Cubes Release Notes
	Contact and Getting Help

	License
	Indices and tables

	Python Module Index

