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Welcome

Yay, documentation!


How to edit this page


Easy Mode


	Click the “Edit on GitHub button at the top of any page”

	Edit the page

	Click ‘Preview changes’ before committing to make sure you haven’t made a mistake with markdown syntax.

	Add a change message and commit when you have finished your changes

	In a few minutes, readthedocs will be updated






Leet Mode

Installation

$ git clone https://github.com/CUAir/Autopilot
$ cd Autopilot
$ virtualenv venv
$ source venv/bin/activate
$ pip install -r requirements.txt
$ cd docs
$ make html





Use


	To create a page, make a new file called foobar.rst.

	Add your page to the table of contents in the file index.rst under the api and groundstation pages.

	Edit your page using sphinx markup.

	To see what your page looks like, compile it with make html

	When you are happy with what the page looks like commit your changes with git (git add --all; git commit -m "change message"; git push).

	The online documentation will update sometime in the next few minutes.



To learn more about how to use sphinx, see the following guides

http://www.sphinx-doc.org/en/stable/tutorial.html

http://www.sphinx-doc.org/en/stable/rest.html#rst-primer






Support

If you are having issues, please slack Troy.




License

The project may or may not have a license.
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Autopilot API endpoints
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	Autopilot API endpoints
	Status [/status]
	Attitude [/status/attitude]

	Battery [/status/battery]

	Armed [/status/armed]

	Mav Info [/status/mav_info]

	Mav Warning [/status/mav_warning]

	Mav Error [/status/mav_error]

	Safe [/status/safe]

	Link [/status/link]

	GPS [/status/gps]

	Mode [/status/mode]

	Airspeed [/status/airspeed]

	Wind [/status/wind]

	Climb [/status/climb]

	Signal [/status/signal]

	Flight Time [/status/flight_time]

	GPS Status [/status/gps_status]

	Throttle [/status/throttle]

	Waypoint Count [/status/wp_count]

	Current Waypoint [/status/current_wp]

	Progress [/status/progress]





	Calibration [/cali]
	Accelerometer Calibration [/cali/accel]

	Gyroscope Calibration [/cali/gyro]

	RC Calibration [/cali/rc]





	Extras
	Cache Map [/cachemaps]

	Get Locations [/getlocations]

	Arming [/arm]

	Set Flight Mode [/set_mode]

	Get Flight Mode [/flight_mode]

	Reboot [/reboot]





	SDA [/sda]

	Geofences [/geofence]

	Waypoints [/wp]

	Interop [/interop]
	Server Control [ground/api/v3/interop]

	Obstacles [/ground/api/v3/interop/obstacles]

	Hz [/ground/api/v3/interop/hz]

	Server Active [/ground/api/v3/interop/active]

	Status [/ground/api/v3/interop/status]













The API for communicating between the autopilot and the ground station.


Status [/status]

Get the status of the plane: A large json containing each piece of data as a name/value pair. A call can also be made to /status/... to receive an
individual bit of data (below):

Response 200 (application/json)
      {
        "throttle": 0.0,
        "battery": {
          "time": 0.0,
          "batterypct": 0.0,
          "batteryvoltage": 0.0,
          "batterycurrent": 0.0
        },
        "signal": {
          "time": 0.0,
          "signal_strength": 0
        },
        "safe": true,
        "airspeed": {
          "time": 0.0,
          "airvx": 0.0,
          "airvy": 0.0,
          "airvz": 0.0,
          "speed": 0.0,
          "climb": 0.0,
          "throttle": 0.0
        },
        "wp_count": 0,
        "mav_warning": "",
        "current_wp": 0,
        "attitude": {
          "time": 0.0,
          "roll": 0.0,
          "pitch": 0.0,
          "yaw": 0.0,
          "rollspeed": 0.0,
          "pitchspeed": 0.0,
          "yawspeed": 0.0
        },
        "mav_info": "EKF2 IMU1 is using GPS",
        "link": {
          "plane_link": true,
          "links": null,
          "gps_link": true
        },
        "mode": "MANUAL",
        "mav_error": "",
        "gps_status": {
          "time": 0.0,
          "satellite_number": 0
        },
        "armed": true,
        "wind": {
          "time": 0.0,
          "windvx": 0.0,
          "windvy": 0.0,
          "windvz": 0.0
        },
        "gps": {
          "time": 0.0,
          "rel_alt": 0.0,
          "asl_alt": 0.0,
          "lat": 0.0,
          "lon": 0.0,
          "heading": 0.0,
          "groundvx": 0.0,
          "groundvy": 0.0,
          "groundvz": 0.0
        }
      }






Attitude [/status/attitude]

Returns the plane’s attitude, containing:


	Pitch [float]

	Yaw [float]

	Roll [float]

	Pitchspeed [float]

	Yawspeed [float]

	Rollspeed [float]



+ Response 200 (application/json)
      {
        "time": 0.0,
        "roll": 0.0,
        "pitch": 0.0,
        "yaw": 0.0,
        "rollspeed": 0.0,
        "pitchspeed": 0.0,
        "yawspeed": 0.0
      }








Battery [/status/battery]

Returns the current state of the plane’s battery, containing:


	batterypct [float]

	batteryvoltage [float]

	batterycurrent [float]



+ Response 200 (application/json)
       {
         "time": 0.0,
         "batterypct": 0.0,
         "batteryvoltage": 0.0,
         "batterycurrent": 0.0
       }








Armed [/status/armed]

Returns whether or not the plane is armed

+ Response 200 (text/html)
       true








Mav Info [/status/mav_info]

Returns the most recent MAV info string

+ Response 200 (text/html)
       "EKF2 IMU1 is using GPS"








Mav Warning [/status/mav_warning]

Returns the most recent MAV warning string

+ Response 200 (text/html)
       ""








Mav Error [/status/mav_error]

Returns the most recent MAV error string

+ Response 200 (text/html)
       "Calibration FAILED"








Safe [/status/safe]

Returns whether or not the plane is safe

+ Response 200 (text/html)
       true








Link [/status/link]

Returns the status of links, containing:


	gps_link [boolean]

	plane_link [boolean]

	links [list]



+ Response 200 (application/json)
       {
         "plane_link": true,
         "links": [
           {
             "packet_loss": 0.0,
             "alive": true,
             "device_name": "WiFi",
             "num": 0,
             "device": "tcp:127.0.0.1:5760",
             "num_lost": 0,
             "link_delay": 0.0
           }
         ],
         "gps_link": true
       }








GPS [/status/gps]

Returns various values from the plane’s onboard GPS, containing:


	rel_alt [float]

	asl_alt [float]

	lat [float]

	lon [float]

	heading [float]

	groundvx [float]

	groundvy [float]

	groundvz [float]



+ Response 200 (application/json)
      {
        "time": 0.0,
        "rel_alt": 0.0,
        "asl_alt": 0.0,
        "lat": 0.0,
        "lon": 0.0,
        "heading": 0.0,
        "groundvx": 0.0,
        "groundvy": 0.0,
        "groundvz": 0.0
      }








Mode [/status/mode]

Returns the current flying mode of the plane as a string, e.g. “AUTO”, “MANUAL”, “FLY_BY_WIRE_A”


	str



Response 200 (text/html)
       "MANUAL"








Airspeed [/status/airspeed]

Returns vectors vx, vy, vz representing the airspeed velocity of the airplane as floats


	speed [float]

	climb [float]

	throttle [float]

	airvx [float]

	airvy [float]

	airvz [float]



+ Response 200 (application/json)
       {
         "time": 0.0,
         "airvx": 0.0,
         "airvy": 0.0,
         "airvz": 0.0,
         "speed": 0.0,
         "climb": 0.0,
         "throttle": 0.0
       }








Wind [/status/wind]

Returns vectors vx, vy, vz representing the wind velocity vector as floats


	windvx [float]

	windvy [float]

	windvz [float]



Response 200 (application/json)
       {
         "time": 0.0,
         "windvx": 0.0,
         "windvy": 0.0,
         "windvz": 0.0
       }








Climb [/status/climb]

Returns current climb angle

Response 200 (text/html)
       0.0








Signal [/status/signal]

Returns the time and the signal strength as an integer of the transmitter connection. 0: 0%, 100: 100%, 255: invalid/unknown. See _RC_CHANNELS* packet [http://mavlink.org/messages/common#RC_CHANNELS_SCALED] rssi field.


	signal_strength



+ Response 200 (application/json)
       {
         "time": 0.0,
         "signal_strength": 0
       }








Flight Time [/status/flight_time]

Returns the information about the flight time conntaing:


	time_start [float]|[null]

	if_flying [boolean]



+ Response 200 (application/json)
       {
         "time": 0.0,
         "time_start": null,
         "is_flying": true
       }








GPS Status [/status/gps_status]

Returns the gps connection represented by an integer number of satellites visible


	satellite_number [int]



+ Response 200 (application/json)
       {
         "time": 0.0,
         "satellite_number": 0
       }








Throttle [/status/throttle]

An integer from 0 to 100 representing the current throttle level of the plane

Response 200 (text/html)
       0.0








Waypoint Count [/status/wp_count]

Returns an integer representing the current number of waypoints

+ Response 200 (text/html)
       0








Current Waypoint [/status/current_wp]

Returns an integer representing the current waypoint

+ Response 200 (text/html)
       0








Progress [/status/progress]

Gives information about the current mission progress


	covered [int] (number of meters flown)

	percentage [float] (percent of flight path coompleted)

	remaining [int] (meters left to fly)

	time_to_landing [int] (approximate seconds left in flight)



+ Response 200 (application/json)
       {
         "covered": 0,
         "percentage": 0.0,
         "remaining": 0,
         "time_to_landing": 0
       }










Calibration [/cali]


Accelerometer Calibration [/cali/accel]


	POST



Starts the accelerometer calibration process:

Response 200 (text/html)
     "Started accelerometer calibration."






	PUT



Continues calibration process (mostly for accelerometer):

Response 200 (text/html)
     "Continuing."








Gyroscope Calibration [/cali/gyro]


	POST



Starts the gyroscope calibration process:

Response 200 (text/html)
     "True"








RC Calibration [/cali/rc]


	POST



Starts the RC calibration process:

Response 200 (text/html)
     "True"






	DELETE



Stops the RC calibration process:

Response 200 (text/html)
     "True"










Extras


Cache Map [/cachemaps]


	POST



Tells the backend to cache a map location:

Headers
   Content-Type: application/json

Requests
   name: <string>       [The location name]
   lat: <float>         [The location's latitude]
   lon: <float>         [The location's longitude]

Response 200 (application/json)
     {
         'topLat': 1,
         'bottomLat': 0,
         'leftLon': 0,
         'rightLon': 1,
         'centerLat': 0.5,
         'centerLon': 0.5
     }








Get Locations [/getlocations]


	GET



Retrieves the list of cached map locations:

Headers
   Content-Type: application/json

Response 200 (application/json)
   {
     "Cornell_Campus": {
       "leftLon": -76.4950662435,
       "imageURL": "img/satellites/Cornell_Campus_Satellite.png",
       "bottomLat": 42.4384214463,
       "topLat": 42.4586880256,
       "rightLon": -76.4676004232
     },
     "Game_Farm": {
       "leftLon": -76.4650662435,
       "imageURL": "img/satellites/Game_Farm_Satellite.png",
       "bottomLat": 42.4333928552,
       "topLat": 42.4536610611,
       "rightLon": -76.4376004232
     }
   }








Arming [/arm]


	POST



Arms the plane:

Headers
   Content-Type: application/json
   token: <secret token>
   confirm: confirm

Response 200 (text/html)
  "True"






	DELETE



Disarms the plane:

Headers
   Content-Type: application/json
   token: <secret token>
   confirm: confirm

Response 200 (text/html)
  "True"








Set Flight Mode [/set_mode]


	POST



Sets the plane mode:

Headers
    Content-Type: application/json
    token: <secret token>

Requests
    mode: <string>    [The name of the mode to switch into]

Response 200 (text/html)
    "Accepted Mode Change."








Get Flight Mode [/flight_mode]


	GET



Gets the plane mode:

Response 200 (text/html)
    "MANUAL"








Reboot [/reboot]


	POST



Causes the plane to reboot



	Headers

	Content-Type: application/json
token: <secret token>
confirm: confirm

	Response 200 (text/html)

	“True”











SDA [/sda]


	GET



Returns whether SDA is enabled:

Response 200 (text/html)
  true






	POST



Activates SDA:

Headers
    Content-Type: application/json
    token: <secret token>

Response 200 (application/json)
  true






	DELETE



Deactivates SDA:

Headers
    Content-Type: application/json
    token: <secret token>

Response 200 (application/json)
  True








Geofences [/geofence]


	GET



Returns the geofence points:

Response 200 (application/json)
  [{
    "lat": 0.0 [degrees]
    "lon": 0.0 [degrees]
  }, {
    "lat": 0.0,
    "lon": 0.0
  }]






	POST



Sets the geofence points:

Headers
    Content-Type: application/json
    token: <secret token>
 Requests
  list of:
    lat: <float>         [The fence point's latitude]
    lon: <float>         [The fence point's longitude]

Response 200
  "Added Fence"








Waypoints [/wp]


	GET



Returns a list of waypoints, each containing, altitude, longitude, latitude, current waypoint, waypoint type or MAV_CMD [http://mavlink.org/messages/common] , waypoint index:

Response 200 (application/json)
     [
       {
         "command": 0,
         "current": 0,
         "param1": 0.0,
         "param2": 0.0,
         "param3": 0.0,
         "param4": 0.0,
         "lat": 0.0,
         "lon": 0.0,
         "alt": 0.0,
         "index": 0,
         "min_dist": 0.0
       }
     ]






	GET with arguments [GET /wp/{?wpnum}]



The response field, “type” in GET is the same as the “command” field in POST and PUT.
The associated waypoint types and numbers are listed under POST.

Parameters: wpnum  - the index of the waypoint you wish to recieve:

Response 200 (application/json)
      {
        "command": 0,
        "current": 0,
        "param1": 0.0,
        "param2": 0.0,
        "param3": 0.0,
        "param4": 0.0,
        "lat": 0.0,
        "lon": 0.0,
        "alt": 0.0,
        "index": 0,
        "min_dist": 0.0
      }






	
	DELETE

	Delete a specific waypoint.

Parameters: wpnum  - The waypoints index









Response 200 (text/html)
     "True"






	POST



Headers
   Content-Type: application/json
   token: <secret token>

Requests
   lat: <float>         [The waypoint's latitude]
   lon: <float>         [The waypoint's longitude]
   alt: <float>         [The waypoint's altitude]
   index: <int>         [The waypoints index]
   command: <int>       [The waypoints type or `MAV_CMD <http://mavlink.org/messages/common>`]

Response 200 (text/html)
   "True"






	PUT


PUT has the same parameters as POST but will update the values of the waypoint at the specified index.








Headers
   Content-Type: application/json
   token: <secret token>

Requests
   lat: <float>         [The waypoint's latitude]
   lon: <float>         [The waypoint's longitude]
   alt: <float>         [The waypoint's altitude]
   index: <int>         [The waypoints index]
   command: <int>       [The waypoints type or `MAV_CMD <http://mavlink.org/messages/common>`]

Response 200 (text/html)
   "True"








Interop [/interop]


Server Control [ground/api/v3/interop]


	POST

Sending a POST request to this endpoint starts the interop backend. To do this, it creates a new instance of the backend object, then starts the backend on a separate thread and sets the server to active. It will fail if the server is either already started, or if it has been less that a half second since the server was either started or stopped last. Requires a valid JSON containing the server data (username, password, and url fields). Requires a valid auth token to access.

Response 200







	DELETE

Sending a DELETE request to this endpoint will stop the interop backend. It simply sets the Data.server_active global variable to false. This is the loop condition on the backend, so the server will stop as soon as it completes its current loop. This will fail if the server is either already stopped or if it has been less that a half second since the server was either started or stopped last. Requires a valid auth token to access

Response 200







	GET

Returns a JSON string containing all available server info


	“Obstacles” : Data structure containg obstacles ({“moving_obstacles”:[],”stationary_obstacles”:[]})

	“server_working” : Does the server believe it is functioning correctly (boolean)

	“hz” : Rolling frequency of interop telemetry posts (integer)

	“active” : Is the server active (boolean)

	“wp_distances” : Closest point of approach to each waypoint (integer list)

	“active_mission” : JSON of active mission as described by the interop documentation [http://auvsi-suas-competition-interoperability-system.readthedocs.io/en/latest/specification.html#missions].



Response 200 (application/json)
    {
      "hz": 0.0,
      "active_mission": {
        "emergent_last_known_pos": {
          "latitude": 0.0,
          "longitude": 0.0
        },
        "fly_zones": [
          {
            "boundary_pts": [
              {
                "latitude": 0.0,
                "order": 0,
                "longitude": 0.0
              },
              {
                "latitude": 0.0,
                "order": 0,
                "longitude": 0.0
              },
              {
                "latitude": 0.0,
                "order": 0,
                "longitude": 0.0
              }
            ],
            "altitude_msl_max": 0.0,
            "altitude_msl_min": 0.0
          }
        ],
        "mission_waypoints": [
          {
            "latitude": 0.0,
            "altitude_msl": 0.0,
            "order": 0,
            "longitude": 0.0
          },

        ],
        "off_axis_odlc_pos": {
          "latitude": 0.0,
          "longitude": 0.0
        },
        "search_grid_points": [
          {
            "latitude": 0.0,
            "altitude_msl": 0.0,
            "order": 0,
            "longitude": 0.0
          }
        ],
        "active": true,
        "id": 0,
        "home_pos": {
          "latitude": 0.0,
          "longitude": 0.0
        },
        "air_drop_pos": {
          "latitude": 0.0,
          "longitude": 0.0
        }
      },
      "obstacles": {
        "moving_obstacles": [
          {
            "latitude": 0.0,
            "sphere_radius": 0.0,
            "altitude_msl": 0.0,
            "longitude": 0.0,
            "time": 0.0
          }
        ],
        "stationary_obstacles": [
          {
            "latitude": 0.0,
            "cylinder_height": 0.0,
            "cylinder_radius": 0.0,
            "longitude": 0.0
          }
        ]
      },
      "mission_waypoints": [
        {
          "latitude": 0.0,
          "altitude_msl": 0.0,
          "order": 0,
          "longitude": 0.0
        },
      ],
      "server_working": true,
      "mission_wp_dists": [
        0.0,
      ],
      "active": true
    }












Obstacles [/ground/api/v3/interop/obstacles]

Returns a JSON object string that contains a list of both moving and stationary objects. Checks to see if the server is active, and, if so, retrieves data from the MAVProxy.modules.server.data module, jsonifies it and returns it.

Response 200 (application/json)
      {
        "moving_obstacles": [
          {
            "latitude": 0.0,
            "sphere_radius": 0.0,
            "altitude_msl": 0.0,
            "longitude": 0.0,
            "time": 0.0
          }
        ],
        "stationary_obstacles": [
          {
            "latitude": 0.0,
            "cylinder_height": 0.0,
            "cylinder_radius": 0.0,
            "longitude": 0.0
          }
        ]
      }








Hz [/ground/api/v3/interop/hz]

Returns a string containing the rolling average of the frequency that the interop server has been posting telemetry data

Response 200
      0.0








Server Active [/ground/api/v3/interop/active]

Returns a boolean string telling whether the interop server is currently active or not

Response 200
        true








Status [/ground/api/v3/interop/status]

Returns a boolean string telling whether the interop server believes it is working as intended right now. Automatically true if the server is not active

Response 200
        true
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This section describes the use and design of the autopilot ground station


Overview

We use a terminal-based ground station software called MAVProxy [http://dronecode.github.io/MAVProxy/html/index.html] that receives data from and sends data to the plane via a radio and antenna connected to a computer via USB and the plane. MAVProxy receives telemetry data and other data from the plane, and is able to control the plane by setting up a mission, changing parameters, arming and disarming the plane, and more. We’ve customized it to do a few mission-specific things like interoperability, SDA, and more.

Probably the biggest custom feature is the browser-based front end to MAVProxy for easy and intuitive control of the plane. MAVProxy now provides a REST API that the front end queries to receive data and control the plane. This front end provides a GUI to perform the majority of tasks that MAVProxy can do, and see the data from the plane in a user-friendly layout.




Installation for Development

git clone https://github.com/CUAir/MAVProxy.git
cd MAVProxy
git submodule update --init --recursive
vagrant up         # cool
vagrant halt       # old version of guest additions
vagrant up         # fine
vagrant provision  # should be good now
vagrant provision  # sorry
vagrant ssh
cd MAVProxy
./run.sh           # hey it worked!








Installation for Test Flight


	git clone https://github.com/CUAir/MAVProxy.git

	On Linux:





	sh setup.sh

	pip install python-dev pymavlink tornado requests_futures requests flask sympy







	On Mac:





	cd MAVProxy/MAVProxy

	virtualenv venv

	source venv/bin/active (try venv/bin/activate if that doesn’t work)

	pip install pyserial matplotlib Pillow numpy pyparsing python-dev pymavlink tornado requests_futures requests flask sympy

	Install OpenCV [http://jjyap.wordpress.com/2014/05/24/installing-opencv-2-4-9-on-mac-osx-with-python-support/]






To edit the front-end:


	Install Node/NPM: https://nodejs.org/en/download/

	cd MAVProxy

	npm install -g gulp

	cd MAVProxy/modules/server/static/gcs2

	npm install

	gulp






Setup with plane

Linux:


	Run the command

cd MAVProxy/MAVProxy







	Next, run

python mavproxy.py --master=/dev/ttyUSB<X> --baudrate=57600










	Run ls /dev/ to see what X should be - also could by TTYACM<X>

	If you can’t find anything, open mission planner and it should show the appropriate path in the upper right

	If using MAVProxy through wired micro-USB rather than wireless, baudrate should be 115200



Mac:


	Run the command

cd MAVProxy/MAVProxy







	Next, run

python mavproxy.py --master=/dev/tty.usb<tab complete> --baudrate=57600










	Run ls /dev/ if tab completion doesn’t work

	If you can’t find anything, open mission planner and it should show the appropriate path in the upper right

	If using MAVProxy through wired micro-USB rather than wireless, baudrate should be 115200






Setup with SITL

The Software in the Loop is a simulation of ArduPilot with FlightGear. This can be used as a virtual environment to test changes without needing a physical plane.

Use:


	Connect to RedRover or EduRoam



	There is a VPN to connect from elsewhere, but it’s usually too slow to make work. Ask if you want to set it up, but at that point you may want to just install the SITL on your personal computer (Linux instructions [http://ardupilot.org/dev/docs/setting-up-sitl-on-linux.html], Windows Instructions [http://ardupilot.org/dev/docs/sitl-native-on-windows.html])








	ssh into the computer running the SITL. The IP address may be out of date - see Troy for an updated version

ssh -Y cuair@10.145.14.217







	Run

cd /Users/cuair/src







	Run ‘vagrant up’ to confirm that the virtualbox running the autopilot is active

vagrant up







	It’s likely that flightgear is already running on the server. If these next steps fail, then open a separate terminal window and run the following commands to start it

cd ardupilot/Tools/autotest
sh sim_fg_host.sh







	ssh into the virtual machine running the autopilot

vagrant ssh







	Finally, start the SITL

sim_FG.sh







	You should see two X11 windows pop up on your computer. This may take up to a few minutes to happen.



	To run the ground station, in a separate terminal window from the MAVProxy/MAVProxy directory, start MAVProxy

python mavproxy.py --master=tcp:10.145.14.217:5555












Autopilot Server on the NUC

The autopilot server on the NUC provides an API for distributed to access autopilot data.

------  --(telem2 fdti)--> AutoPilot NUC server ----------> distributed
Plane |
------  <----(RFD900)----> AutoPilot Ground Server <------> AutoPilot Ground Station





To install, connect to the NUC and connect the NUC to the Internet. Then,

git clone https://github.com/CUAir/MAVProxy
git checkut airapi
cd MAVProxy/MAVProxy
virtualenv venv
source venv/bin/activate
pip install -r requirements.txt





To start the server, run

cd MAVProxy/MAVProxy
source venv/bin/activate
python mavproxy.py --master=/dev/ttyUSB0





NOTE: The serial port is not bound to ttyUSB0. Sometimes you will have to try ttyUSB1 or ttyUSB2




WiFi Ground Station Link

The OBC can also be configured to forward its packets to the ground station on the ground. This allows WiFi to act as a redundant (and superior) link just as the radios do. When the WiFi link is established, packets can be sent and received often much faster than with the radios alone, and of course this acts as a secondary link in case either one fails.

MAVProxy will consider the link passed on the command line as the “master” link, but both will send and receive packets at the same time. You will be alerted if either link goes down. Type “link” into the MAVProxy terminal to view the current links and there status (number of packets sent, packet loss %, etc)

To use, start up the ground station on the NUC with the following command:

python mavproxy.py --master=/dev/ttyUSB0 --out=udp:GROUND_STATION_IP:14551

Where GROUND_STATION_IP is the IP of the computer that will be running MAVProxy from the ground.

Then start MAVProxy normally on the ground, and run the command:

link add 0.0.0.0:14551

This will connect to the NUC if it’s available.




How the front-end works


Setup

To use:


Once MAVProxy is running, go to http://localhost:8001/static/gcs2/index.html

The judge’s view can be found at http://localhost:8001/static/judges/index.html







Usage instructions

The home screen has all of the flight information and flight controls used in normal operation of the ground station. The map displays the waypoints shown below it and the map can be changed in the settings tab. Additionally, the settings tab contains settings for the interop server, authentication information, geofences andthe reboot control (which requires double-confirmation). The parameters tab contains all of the parameter information. Grey parameters indicate that those parameters haven’t been received yet. The calibration tab allows accelerometer, gyroscope and pressure (airspeed) calibration. Finally, the Flight Notes tab can be used to store information. The Flight notes store your notes locally to your browser using localStorage (basically cookies) so they will not transfer between computers.
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The stack

Our stack consists of python (MAVProxy & Flask) on the backend with React, Immutable, Redux, Sass, gulp and Jade being used on the front-end. Additionally, our backend can technically serve information over a rest API as well as over websockets, however websockets tended to be pretty buggy so we decided to switch back to only using the REST API.




React

The front-end (gcs2) is built in React, a javascript library from Facebook that makes the front-end faster by diff-ing the current DOM with the new state to reduce the number of DOM operations (which are very expensive) and rendering changes to the front-end in real-time. See the documentation for the React here [https://facebook.github.io/react/docs/getting-started.html].




Immutabe

The front-end (gcs2) is built in Immutable, a javascript library from Facebook that has persistent data collections for Javascript which increase efficiency and simplicity. Immutable data encourages pure functions (data-in, data-out) and lends itself to much simpler application development and enabling techniques from functional programming such as lazy evaluation.  See the documentation for the React here [https://facebook.github.io/immutable-js/docs/#/].




Redux

To power our react and Immutable system, we used vanilla _`Redux <https://redux.js.org/>`_ which is powered through a system called actions-store-reducers that makes all changes 1-way interactions (rather than Angular’s 2-way bindings). We broke the application down into essentially 8 sections: Calibration, Geofences, Interoperability, Parameters, SDA, Settings, Plane Status, and Waypoints. Each section has its own action creator and reducer. For an example of how to use immutable with Redux, _`this <https://redux.js.org/basics/example-todo-list>`_ example is simple and extremely useful. You should either read it through in its entirety or try to make it/mess with it to get familiar. Once you understand the general code structure, it shouldn’t be hard to get the hang over making a simple app. One of the benefits of Redux over other javascript frameworks like Angular is that since everything is 1-way, the stack traces are very clear, which assists in debugging.  One of the biggest advantages of using the Redux framework over the Flux architecture like we previously had was that it got rid of the boilerplate code/scaffolding. It cuts down on the action responding time, and preserves all the benefits of Flux without introducing dispatchers and store registrations, which has made redux much more efficient. Redux uses one single store, which in a sense, is like one source of truth that has an immutable state. Redux has a completely different approach to state management – it embraces the idea that there is a global state and that inevitably if you wanted to make changes, it should just happen there in a very specific way (how you handle what components have access to what state is up to you). Redux really changes how the state tree is managed and give the stores different responsibilities, and changes how state information is mapped down to the components. We may improve upon this by cleaning up some circular calls and with more understanding of Immutable.js .
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Leaflet.js

To handle our maps, we use Leaflet.js, a leading mobile-compatible open source mapping library. All of the map functions get handled in MapUtils.js and handles waypoints, obstacles, plane-tracking, geofences and locations. The plane has an icon and there is a marker icon for each waypoint. Additionally obstacles and geofences are treated as shapes and locations are set in settings.




Parameters

To generate the parameters list, we have a python/bash script that pulls the parameters from the ardupilot website (in the documentation folder), parses them from xml, removes extraneous characters, converts them to json, and copies them to a javascript file (ParamDocumentation.js) so the object can be loaded in as json.




Bootstrap

Additionally, for our visual library we used Twitter’s Bootstrap [http://getbootstrap.com/] because it is ubiquitous on the internet, it has an enormous community, and it is has a very appealing UI.




Testing

The ground station has 2 primary tests: front-end tests and backend tests. The front-end uses selenium tests which get run by going to MAVProxy/MAVProxy/modules/server/static/gcs2/test and running python test.py (run setup.sh the first time before running test.py) which runs front-end selenium tests. The backend tests are run by going to MAVProxy/MAVProxy/modules/server and running python tests.py which uses the requests module to test the REST API. We plan on adding these tests to our CI server next semsester once we get CI set up.




Communications

Our front-end system uses a simple polling system (in ReceiveApi.js). We originally used socket.io with websockets, but it was way too slow (may be a result of synchronous socket emits, not entirely sure). Basically we just take advantage of the REST API implemented in flask on the back-end. We use post/delete/put requests to send information to the server. All non-GET requests are protected with a token/password and all highly vulnerable actions (i.e. reboot) are protected with an extra layer of checks and a second confirm element in the request.






Interoperability


Setup

See the Judge’s server interoperability documentation here. [http://auvsi-suas-competition-interoperability-system.readthedocs.io/en/latest/] All of those setup instructions must be followed before the following instructions will work.




Interoperability Use


General Test Flight Use


	Make sure to bring a computer with the interop server installed on it. If possible, have a template mission ready to got



	cd interop then run sudo ./server/run.sh



	The server will run on localhost:8000








	To load the template mission:



	sudo docker exec -it interop-server bash

	python manage.py flush (This will flush the database - do not do this if you want to keep the current database - see below for storing a dump)

	python manage.py loaddata template_mission.json

	(Type exit to leave the docker bash shell)








	Now the mission must be set up on the interop server to match the mission in Ardupilot



	Go to localhost:8000/admin/

	Click “Mission configs”

	Click the first mission

	In “Mission Waypoints”, hit the + button at the side to add a new waypoint

	Enter the proper order (1 indexed), then hit the spyglass then ‘add aerial position’

	Enter the proper altitude IN FEET

	Hit the spyglass, then ‘add gps position’

	Enter the proper latitude and longitude

	Continue starting from set e. until all waypoints are entered








	Save the mission config



	Go to localhost:8000 and hit “Mission 1”. You should see a picture of your setup, where blue spheres are the waypoints and the rest is not relevant to navigation. Confirm that the blue spheres look like what your waypoint setup should be (If you don’t see the picture, try Firefox instead of Chrome)



	Enter the correct username, password, and url (include the http: and the port (usually 8000) in the settings tab of gcs2



	This will usually be ‘cuairsim’ and ‘aeolus’ for the username/password, and “http://<some ip>:8000” for the url








	Hit “Toggle interop”.  Look at the Mission 1 again, and confirm that a yellow box appears, meaning that the interop server is receiving data



	Hit “Toggle interop” again to turn off data sending until you’re ready to fly



	When you’re ready to fly, FIRST hit ‘toggle interop’ on the front end to start sending data to the interop server



	Then, go to localhost:8000/admin/, then click “Takeoff or landing events”



	Hit “add a takeoff or landing event”, then select the appropriate user and “Uas in air”. Hit save.


	As of now the server is checking for data and recording data. Make sure the plane has data link as much as possible after this, or the avg telemetry HZ will be low





	Fly!



	Create a LANDING event for the appropriate user (same thing, but leave “Uas in air” unchecked)



	Hit “Toggle interop” to stop sending data to the interop server



	Go to the mission page and mouse over “System”. Right click “Evaluate Teams (csv)” and save it as a file. Open that file in Excel or an equivalent to view the flight data (Don’t try to view it as plaintext, it’s doable but annoying)



	To create a database dump, open the bash shell as if you were about to load a mission config (see beginning), but instead use python manage.py dumpdata > mydatadump.json








MAVProxy/Ground Station use


	Enter the correct username, password, and url (include the http: and the port (usually 8000) in the settings tab of gcs2

	Hit “Toggle Interop” to activate server





	You should see “interop server started” printed on the MAVProxy console and get a green success status message on the ground station







	To stop, hit “Toggle Interop” again





	You should see “interop server stopped” printed on the MAVProxy console and get a green success status message on the ground station









Judge’s Server use


See the Judge’s server interoperability documentation here. [http://auvsi-suas-competition-interoperability-system.readthedocs.io/en/latest/]







Interoperability Design


System Design

The backend is designed with 3 main components - the API, which provides a REST API for the front end to control and query the backend, the backend itself, which sends information to and retrieves information from the judge’s server, and the test suite, which tests the functionality of the backend.

[image: _images/interop_flowchart.png]

API

Location: modules/server/views/interop_api.py

The program creates a flask server to serve data to the front end and other subteams. It retrieves data related to interoperability from the MAVProxy.modules.server.data file. It also contains an endpoint to start and stop the backend.

When multiple endpoints are listed, both are valid - the second is the newest is is preferred. Other endpoints not listed here in code are deprecated.

Endpoints



	
	Server Control /ground/api/v3/interop

	
	POST

Sending a POST request to this endpoint starts the interop backend. To do this, it creates a new instance of the backend object, then starts the backend on a separate thread and sets the server to active. It will fail if the server is either already started, or if it has been less that a half second since the server was either started or stopped last. Requires a valid JSON containing the server data (username, password, and url fields). Requires a valid auth token to



	DELETE

Sending a DELETE request to this endpoint will stop the interop backend. It simply sets the Data.server_active global variable to false. This is the loop condition on the backend, so the server will stop as soon as it completes its current loop. This will fail if the server is either already stopped or if it has been less that a half second since the server was either started or stopped last. Requires a valid auth token to access



	GET

Returns a JSON string containing the obstacle data and server info











	Obstacles /ground/api/v3/interop/obstacles

Returns a JSON object string that contains a list of both moving and stationary objects. Checks to see if the server is active, and, if so, retrieves data from the MAVProxy.modules.server.data module, jsonifies it and returns it











MAVProxy Backend

Location: modules/server/interop.py

This program is the script that does the work of  sending telemetry data to the judge’s interoperability server and retrieving data about the server and obstacles to store for other MAVProxy modules.


	Global Variables

	
	TRIES_BEFORE_FAILURE

The number of consecutive telemetry failures the system will accept before warning the user the telemetry is down. System will automatically warn the user every time a single telemetry request fails regardless, but will not display as down until reaching this cap



	RUN_TESTS

Uncomment this to run test cases. This will cause the url to be overwritten with the url used to run test cases



	FEET_TO_METERS_FACTOR

The factor to multiply a value in feet by to get a value in meters









Methods



	__init__(self)

Establishes a connection with the interop server and starts a session by logging in with the specified credentials. The server returns cookies after login, which are stored in the self.session variable and will be used every time a request is sent by this object



	start(self)

Spawns two threads that send telemetry data and retrieve server and obstacle data. After spawning, it checks every second to see if the server has stopped, and if so, prints that to the console then exits.



	get(self)

Will never be called on the main thread, this method is called as its own thread by the start method. It calculates the period (time between requests), then loops on the server_active condition. It sleeps until it is time to send a new request, sends that request, then stores the response in Data.pdata.



	post(self)

Will never be called on the main thread, this method is called as its own thread by the start method. It calculates the period (time between requests), giving it a fudge factor of 10% as it does to ensure that the average telemetry send rate stays well above the required number. It then sleeps until it is time to send a bit of data. When it is time, it grabs the necessary data from the Data.pdata object, then sends the http request to the interop server on a separate thread. This is done asynchronously so we do not have to wait for a response and can continue at the proper speed even if the server is running slowly.



	send_telemetry(self, telemetry_data)

Sends the telemetry data as an http request to the judge’s server. Afterwards, it checks the status of the request and increments the failures if necessary.



	initialize_history(self, obstacles)

Initializes the recorded history of obstacle data for use by SDA.



	meters_to_feet(meters)

Converts a float from a value in meters to a value in feet



	feet_to_meters(feet)

Converts a float from a value in feet to a value in meters













Competition rules

Below are the rules that govern interoperability for the competition. The interoperability system is made to comply with these rules.

5.3.1. As a flight‐mission demonstration requirement, teams shall upload the UAS autopilot telemetry (TM) data (position, altitude, and related attributes) to support scoring using the interoperability system


5.3.1.3. If the team’s system cannot provide TM data to the judges using the interoperability system they will not be allowed to fly ‐ just like if they had not displays to show the judges’ the air vehicles position.


5.3.2. The UAS shall upload this TM data at a target rate of 10Hz from the first takeoff until the last landing.  If the average rate of upload across all flight periods is below 8 Hz, the team will receive no points for the mission demonstration.  The difference between 10 Hz and 8 Hz is intended to allow for short and temporary data link outages.

5.3.3. Data dropouts, which impact the ability for the judges to use the telemetry data to judge mission components, will be counted against the team.  For example, if data dropout makes it unclear whether waypoints were captured within 50ft and in order, it will be assumed the team did not do so. If the data dropout occurs near a flight zone boundary, it will be assumed the team spent the entire time out of bounds.  If the data dropout occurs near obstacles, it will be assumed those obstacles were hit.  For data dropout evaluation, it will be assumed the UAS traveled at the maximum allowed competition airspeed (100 KIAS).

5.3.4. The UAS may upload the position whenever the interoperability network is available, and is not restricted to airborne flight periods.  Teams should also upload position whenever the UAS occupies the runway.

5.3.5. Data uploaded shall be genuine autopilot flight telemetry data which is not interpolated, extrapolated, duplicated, simulated, or otherwise edited by team’s code/operators before being passed to the interoperability system.  The data must be generated by the autopilot at 10Hz, or greater, and thus the UAS will need sensors and data links which can support sufficient data rates.

7.9.6. Display Obstacles.  There are virtual obstacles for the Sense, Detect, and Avoid (SDA) task.  The positions and sizes of the obstacles are provided by the interoperability server.  This information shall be downloaded and displayed at the same UAS autopilot operator interface (e.g. the same laptop), used in the Ground Control Station.  These obstacles shall be displayed in a view that also shows the UAS position, the mission boundaries, the task positions, and the UAS’ waypoints.   This view does not need to be the autopilot interface (e.g. the desktop application)








Sense, Detect, and Avoid (SDA)


Overview and Usage (New Mangual-Assisted SDA)

The new version of SDA hinges around features which enable the user to manually re-route paths on an SDA-ground station. This was chosen as opposed to previous automatic methods due to the necissity for predictability of path rerouting to avoid interference with mission-critical systems such as airdrop and vision. The SDA operator is able to avoid obstacles with the help of both plane-path predicions and obstacle path predictions, which will be discussed in greater detail in the following sections. These preditions come in the form of a slider, which can be enabled from the settings tab. Note: this slider requires the user be in “SDA-operator mode” as well. The user can hit the “reset” button on the main ground station tab to trigger the computation of both obstacle and plane predictions at the same time. These predictions apear as a purple plane, and pink obstacles, with blue splines tracing out the paths the coresponding objects should follow. Once the play-button by the slider is pressed, the obstacles and plane will step-forward along their paths roughly in real time. The user can also manually move the slider to determine where obstacles or the plane will be in the future. Most of the relevant files can be found in MAVProxy/modules/mavproxy_plane_prediction and MAVProxy/modules/mavproxy_obstacle_prediction.




Obstacle Prediction Implementation

To predict obstacle positions interpolating splines are used in conjunction with a period-finding algorithm. In other words, a python library is used to calculate spline curves to interpolate all of the historical obstacle data (or a subset of the data composed of only a certain amount of the most recent points). This spline then will approximate the entire period of an obstacle’s motion given enough data points. The period of the obstacle’s motion is calculate by comparing the first data point to all other datapoints and determining which point is closest. This method is not flawless, but works well in practice. Once an interpolating spline has been generated, and the period has been calculated it is simply a matter of modding the time that the obstacles position is to be computed at by the period. This method does have some short-term weaknesses before the entire period is in the history, and relies on periodicity of obstacle motion.




Plane Prediction implementation

Plane prediction relies on the use of the Bezier Curves present in project atlas. If project atlas is not being used, plane prediction is simply done with interpolating lines. In either case, splines (or lines) are generated between all pairs of waypoints, and the planes position is calculated by interpolating along these splines (or lines) and assuming constant speed. Due to its use of splines, the method should work better when the plane is flying in spline-controller mode, but seems to provide relatively accurate predictions over a relatively long time period (on the order of minutes) for both controllers. This method does not fully emulate the navigation algorithm, as simulating L1 controll is both challenging and prohibitively computationally expensive.




Overview (Old Automatic Versions)

SDA is an auxilary task for the competition wherein the interoperabilty server sends data to the groundstation about obstacles that the plane must avoid. Obstacles come in two varieties: moving and stationary. Moving obstacles are spheres that travel along a predetermined path by the judges. This path is not known to the competiting teams and the only information that is given is the GPS coordinates of where it’s center currently is, it’s radius and it’s altitude. All other information must be calcuated by the team. Stationary obstacles are cylinders of a given radius. Similarly the only information sent to the team are it’s GPS coordinates, the height of the cylinder (obstacles extend from the ground to this height) and it’s radius.




SDA Use

SDA can be activated through the ground station. It requires that the interoperability server is active and is sending obstacle data. When toggled on, it will place and adjust auxilary waypoints to redirect the flight path away from obstacles. Obstacles are represented on the ground station as moving blue circles and stationary orange circles for moving and stationary obstacles respectively. In the event that SDA is unneed or it creates a potentially hazardous waypoint (e.g. miles away from the flight zone, outside of the geofense, too close to the plane and causes it to act irrationally), simply toggle off SDA through the groundstation button and it will delete all SDA waypoints. The groundstation keeps track of which waypoints are SDA waypoints as opposed to user entered ones.




How SDA Works


SDA Engine

things and stuff




SDA RRT

To compute Optimal paths that avoid obstacles we use what is know as an Rapidly Exploring Random Tree [http://db.acfr.usyd.edu.au/content.php/237.html?publicationid=980] (RRT). RRTs are used as opposed to other pathfinding algorhythms, such as A*, because they work on continuous spaces, as opposed to discrete graphs. The RRTs sacrfice optimatality for speed of computation, an important factor when avoiding moving obstacles due to the potential necessity to re-compute the path multiple times. In particular, we use a greedy, biased ERRT. A biased RRT is one which, when selecting a random point, has a probability (known as the goal probablity) of selecting the goal as its random point to extend towards. By biasing the RRT we can cause the RRT to tend towards exploring in the direction of the goal point, while still allowing it explore a large space. A greedy RRT is one which repeatedly extends in the direction of the random point it has selected until either an obstacle is reached or the biasing causes the goal point to be selected as the new point to extend towards. ERRTs [http://ieeexplore.ieee.org/document/4209317/?reload=true] are an optimazation of RRTs for environments where the RRT could potentially need to be recomputed many times (such as environments with moving obstacles that can move to invalidate previous paths). ERRTs do this by caching nodes from the previous RRT path and having some probabilty of selecting one of the nodes from the previous RRT instead of the random point to extend towards. This biasing towards previously used nodes can drastically increase the speed of re-computing RRTs, as it avoids the necessity to completely recompute the RRT when a moving obstacle invalidates its current path. We then prune the optimal path using a greedy algorithm (presented in the paper above on RRTs) as opposed to Dijkstras algorithm [https://en.wikipedia.org/wiki/Dijkstra’s_algorithm] due to its significantly faster computational speed.




SDA Path






Bezier Curve Smoothing

Although RRTs can build paths rapidly, ours team’s current implementation does not account for non-holonomic contraints of the plane. That is to say, the RRT can create a path that the plane will be unable to fly due to the turning radius of the plane. To account for this, we use G2 continuous cubic bezier curves to smooth sets of three waypoints [http://db.acfr.usyd.edu.au/content.php/237.html?publicationid=980]. G2 continuity [http://www.pukspeed.com/2015/07/continuity-types-of-continuity-g0-g1-g2-continuity.html] is a property of functions that helps to ensure that the curves created are possible for the plane to fly. This approach to path smoothing enables us to compute the RRT without taking in to account the turning radius of the plane, and then smooth and alter the optimal path to ensure fliability. The smoothing algorithm is simplest if performed on a set of three waypoints in two-dimenstional space oriented such that the first waypoint is at the origin and the second waypoint lies on the x-axis. This is accomplished using a series of matrix transformations.




Conversion from Splines to Waypoints

Our current autopilot is unable to fly spline waypoints so an algorhithm is required to convert the bezier curves produced by the path smoothing algorithm into a fliable set of waypoints. To accomplish this our team uses a modification of the Segmented least Squares Algorithm [https://people.cs.umass.edu/~sheldon/teaching/mhc/cs312/2013sp/Slides/Slides15%20-%20Segmented%20Least%20Squares.pdf] (a dynamic programming algoiythm [https://en.wikipedia.org/wiki/Dynamic_programming] that allows for linear regression using multiple lines). To use the modification of the segmented least squares algorythm we first break the bezier curves (produced in the smoothing algorithm) into a series of points. We then run the segmented least squares algorithm on this set of points, but instead of using simple linear regressions to determine the minimum error line that can be placed between a pair of points, we combine two metrics of error. First, we account for the angular error of the line placed between the pair of points by calculating the angle between the derivative of the bezier curve at the second point, and the chord connecting the two points. This angular error fucntion aims to prevent waypoints from being placed in such a way that the plane is unable to fly the set of waypoints due to turning constraints. The second error function accounts for linear error, and attempts to ensure that the plane flies as close as possible to the bezier curve. The linear error is defined as the maximum distance from the bezier curve between the points, and the chord connecting the points. This is aproximated using a form of binary search on the set of points sampled from the bezier curve. The search terminates when the point on the bezier curve of maximum distance to the chord is found. by weighting the two above errors with constants and adjusting the constant that accounts for the cost of adding more lines, we can tune out algorythm to fit curves well in practice.


Current Issues

The current implemenation of SDA which uses curve smoothing to attempt to account for non-holonomic constraints of the plane runs into some serious issues implicit to the approach itself. To begin with, the act of converting from a series of points, to a series of bezier curves, back into a series of points necissarily produces a degree of uncertainy as to the nature of the final path. At each of these steps the path is necissarily altered in a way that is not necissarily easy to predict. This produces a degree of uncertainty that is not easy to quantify, and therefore somewhat dangerous. The largest issue with the current implemenation of SDA though, has to do with the turning radius of the plane. Although path smoothing can help to reduce the sharpness of the turns the plane will make, it can not ensure fliability in all scenerios. We believe these constraints are better imposed in the RRT itself, a topic that will be discusses in the following section.




Future Directions

For reasons enumerated in the above section, out team believes it is best to impose curvature constraints within the RRT’s extension algorhithm itself. This can be accomplished by constructing, and applying, what is known as a Motion Primitive Set [http://ieeexplore.ieee.org/document/6842270/]. This set is a series of curves that are known to be fliable by the plane with respect to its minimum turning radius. Rather than simply extending the RRT towards the random point selected, the future implemenation will the extend along the curve in the motion primitive set with endpoint closest to the random point. The motion primitive set should only augment the extension algorhithm of our current RRT implemenation, and we plan to continue using a greedy, biased ERRT (detailed under the RRT section). This should also remove the need for path smoothing and spline to waypoint conversion.






SDA Version 1

To complete this task, the team developed a reactive algorithm to anticipate flight path and predict obstacle locations. The algorithm creates a 3D geometric model with flight paths and moving obstacles as point entities on linear trajectories to the next waypoint in the flight plan and stationary obstacles as lines with lengths equal to their height. Our algorithm identified potential obstacle collisions by calculating minimum distance between the linear entities using the linear closest point of approach [http://geomalgorithms.com/a07-_distance.html] (CPA) for moving obstacles and the closest point of two 3D line segments [http://math.harvard.edu/~ytzeng/worksheet/distance.pdf] for stationary obstacles. CPA assumes constant velocity vector \(\mathbf{u}\) for the obstacle and constant velocity vector \(\mathbf{v}\) for the plane and is defined as \(d(t_{CPA}) = |\mathbf{w}_0 + t_{CPA}(\mathbf{u-v})|\) where :math`mathbf{w}_0` is the distance vector between the initial positions of the plane and obstacle. Time of CPA, \(t_{CPA}\), is calculated as follows.


\[t_{CPA} = \frac{-\mathbf{w}_0 \mathbf{\cdot (u-v)}}{|\mathbf{u-v})|^2}\]

[image: _images/sda_moving.png]
To detect collisions with stationary obstacles, the ground station models the plane’s flight trajectory to the designated waypoint as a line segment \(\mathbf{r}(t) = P_0 + t\mathbf{v}\) and the center of the stationary obstacle as a line segment \(\mathbf{q}(s) = Q_0 + s\mathbf{u}\) where \(P_0\) is the initial position of the plane, \(s\) and \(t\) are length variables, \(\mathbf{u}\) and \(\mathbf{v}\) are direction vectors and \(Q_0\) is the zero altitude location of the obstacle. The distance equation is derived as follows.


\[d(\mathbf{r, q}) = \frac{|(\mathbf{Q_0 - P_0}) \mathbf{\cdot (u \times v)}|}{|\mathbf{u \times v})|}\]

Distances less than the obstacle’s radius for either equation are considered collisions.

[image: _images/sda_stationary.png]
Once collisions are detected, a line (A) between the flight trajectory and the projection of that line onto the center of the obstacle is calculated. The algorithm iteratively calculates linear trajectories between the plane and points on A as potential waypoints, each further from the center of the obstacle than the last, until the projection of the obstacle center onto the potential trajectory is greater than the obstacle’s radius with a 10 meter buffer to ensure a collision-free flight path. Once an optimal waypoint is found to avoid collision with the obstacle on the original flight path, the potential waypoint is then run through a number of safety checks before being sent to the plane. The ground station first cycles through all the obstacles and checks that the waypoint is not being placed within any other obstacles. In the case that the waypoint is placed within an obstacle, the line A is recalculated such that the potential waypoints are being moved to the other side of the obstacle. We then check to see that the waypoint is not placed outside of the geofence. If that does occur, we recalculate in the same way, trying to avoid the obstacle by diverting the trajectory in the opposite direction. Once the potential waypoint has passed all safety checks, it is then sent to the ground control station as an auxiliary waypoint. This process runs every time the ground station receives new obstacle data from the interoperability server to adjust the flight path as the velocities of the plane and obstacles change. When the recalculated path changes, the ground station deletes the old auxiliary waypoint and replaces it with the new one.




Other Details


Implementation

SDA is mostly contained to /modules/mavproxy_sda.py but it also uses the /modules/sda_geometry.py module for geometry and unit conversions between longitude/latitude and an x-y-z coordinate system using meters. Mavproxy runs SDA everytime the mavlink_package() method returns a ‘GLOBAL_POSITION_INT’ package and therefore runs every time new GPS location data from the plane is available.




Future Directions for SDA


Note

This section is only being written to help plan for reimplementing SDA during the 2016/2017 year. No critical information for the function or editing of SDA is below.



SDA currently has a relatively naive implementation seeing that planes don’t fly on linear trajectories and the mathematical model we are using does not take into account flight dynamics in any way e.g. SDA does not know how quickly the plane can turn. We are looking to solve that problem in the future by reimplementing SDA using 4D splines. While it will provide many benefits, this implementation will greatly increase the complexity of the problem in the following ways:


	Correctly implementing 4D splines as part of the mathematical model will require quite a bit of research into the best types to use and how to properly model the plane’s movement along those spline paths taking into account velocity and acceleration. While this is very doable it will be an undertaking. Additionally, writing code for 4D splines is just going to be more difficult that standard lines.

	Finding the CPA of a 4D spline and a line is much more difficult now that there is no constant time algorithm for calculating such a point. Thus, it becomes an optimization problem. We would have to create a 3D weight function and then perform gradient descent to find optimal waypoint placement.



While these present significat challenges, this new implementation would make flying with SDA a much safer experience for the plane and will hopefully make it more accurate at avoiding obstacles.
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This section documents any CUAir specific uses of or changes to Ardupilot


Project Atlas

For documentation, see https://docs.google.com/document/d/1yiXgehSbKX3eEdflroVd67lgQAZRXYEeqocb-Km1RCM/edit?usp=sharing




Tuning


Rolling Takeoff

Before attempting to set parameters, determine landing gear style and stall speed of the aircraft. For information on specific takeoff and landing parameters, see http://ardupilot.org/plane/docs/flight-features.html For complete parameter list, see http://ardupilot.org/plane/docs/parameters.html

If plane is a taildragger (like Bixler):

TKOFF_TDRAG_ELEV,       100
TKOFF_TDRAG_SPD1,       <just below TKOFF_ROTATE_SPD>
TKOFF_ROTATE_SPD,       <110-130% of stall speed>
TKOFF_THR_SLEW,         <minimum of 20>
TKOFF_FLAP_PCNT,        0
TECS_PITCH_MAX,         20
GROUND_STEER_ALT,       5





If plane has tricylce landing gear:

TKOFF_TDRAG_ELEV,       0
TKOFF_TDRAG_SPD1,       0
TKOFF_ROTATE_SPD,       <110-130% of stall speed>
TKOFF_THR_SLEW,         <minimum of 20>
TKOFF_FLAP_PCNT,        50
TECS_PITCH_MAX,         22
GROUND_STEER_ALT,       5





To tune ground steering, test in mode FBWA.




Landing

If plane is a taildragger (like Bixler):

LAND_FLARE_ALT,         0
LAND_FLARE_SEC,         1.2
LAND_PITCH_CD,          <slightly above natural pitch of aircraft - 500 for Bix>
TECS_LAND_ARSPD,        <above stall speed - 8 for Bix>
TECS_LAND_SPDWGT,       1





If plane has tricylce landing gear:

LAND_FLARE_ALT,         0
LAND_FLARE_SEC,         2
LAND_PITCH_CD,          500
TECS_LAND_ARSPD,        <above stall speed>
TECS_LAND_SPDWGT,       1





To ensure a smooth descent, LAND_PF_ARSPD (a pre-flare descent parameter) must be set to a higher value than TECS_LAND_ARSPD.
Additional note: the parameter settings as they appear here were determined to be appropriate for a general airframe in these two landing gear types. If setting parameters for non-standard airframe, further consideration is required.






Failsafe

The competition rules specify the following rules for failsafe:



	After 30 seconds: Return to Launch

	After 3 minutes: Terminate flight






These events are required to occur upon loss of the primary communications link, which for CUAir 2015-16 is the transmitter. The first requirement is accomplished through the standard failsafe, the second is accomplished through the advanced failsafe.


Standard Failsafe

The competition rules require that the plane executes an RTL after 30 seconds of lost primary communications link. For CUAir 2015-16, this is the transmitter. The included parameters include an additional failsafe that cause the plane to CIRCLE after 2 seconds of lost transmitter signal ONLY if it was in a manual control mode when the transmitter loss ocurred, then RTL in 30 seconds.


Throttle Failsafe Setup

The standard failsafe uses the throttle input channel of the transmitter to determine if it has lost transmitter signal. If the receiver loses connection to the transmitter, it will begin outputting the lowest throttle stick value. To make throttle failsafe work, we need to ensure that what the receiver thinks that the lowest throttle stick value is is lower than the actual low throttle stick on the transmitter. This way, if the transmitter fails the receiver will output a value lower than it ever would if the transmitter was on, and Ardupilot will take that as a signal to initiate the failsafe.

Read this document [http://ardupilot.org/plane/docs/apms-failsafe-function.html] for more information and generic setup instructions.

Setup instructions:


	Set the low point of the throttle on the transmitter (Should be Channel 3, but check on Mission Planner’s Radio Calibration page) to extend below -100%



	If this is not possible, set it to its lowest possible value








	Bind the transmitter with the receiver



	For the ezUHF receiver, follow the instructions in the “binding” section here [http://www.immersionrc.com/downloads/manuals/EzUHFManual_EN_v1.0.pdf]








	Set the low point of the throttle back to its original value. If you ever need to bind the transmitter again for any reason, you will need to repeat the setup process



	If it was not possible to set the throttle beyond -100%, then at this step set it to a higher value such as -90%. If this is necessary, DO NOT turn on the plane’s throttle until you finish these instructions completely, or the throttle will activate while the stick is down








	Do the radio calibration in mission planner to tell Ardupilot what the new range of the throttle is. Once this is done, record the low point of the throttle stick while the transmitter is on. Afterwards, turn the transmitter off and ensure that that value drops.



	If it does not drop, it is possible that the failsafe levels of the receiver need to be set. Set the transmitter back to the low point, then while the receiver is on and the throttle is down, hold the button on the back of the transmitter. Then repeat from step 3








	Set the THR_FS_VALUE to a value between the throttle down point and the transmitter off point you recorded in step 4. A value somewhere in the middle is good - not too close to either endpoint to account for some variation.



	Set THR_FAILSAFE to 1 to enable the failsafe



	Ensure the other parameters are set as below








Standard Failsafe Configuration

For the standard failsafe to function as described, complete the above setup instructions then set the parameters as shown below.:

THR_FS_VALUE,           <SEE ABOVE - in range 925-1100>
THR_FAILSAFE,           1
FS_SHORT_ACTN,          0
FS_SHORT_TIMEOUT,       2
FS_LONG_ACTN,           1
FS_LONG_TIMEOUT,        30
FS_BATT_VOLTAGE,        0
FS_BATT_MAH,            0
FS_GCS_ENABL,           0










Advanced Failsafe


Disabling the failsafe

To disable the failsafe, set AFS_ENABLE to 0. This MUST before done within 3 minutes of transmitter communications loss.

AERODYNAMIC TERMINATION IS UNRECOVERABLE - ONCE TERMINATION BEGINS 3 MINUTES AFTER TRANSMITTER LOSS, IT CANNOT BE ABORTED.




Advanced Failsafe Configuration

*Important:* If these parameters are set as above, the plane will terminate after 3 minutes of lost transmitter signal. Make absolutely sure you know what you are doing when use this failsafe system. Aerodynamic termination WILL result in a crash and is UNRECOVERABLE once activated.

This is the failsafe system that causes flight termination after 3 minutes of transmitter loss. This system works through the throttle failsafe as shown above, so the throttle failsafe needs to be set up correctly for this to work. The AFS parameters should be set as follows to comply with competition rules:

AFS_WP_COMMS,           0
AFS_WP_GPS_LOSS,        0
AFS_TERM_ACTION,        42
AFS_AMSL_ERR_GPS,       100
AFS_QNH_PRESSURE,       0
AFS_ENABLE,             1
AFS_MAX_GPS_LOSS,       0
AFS_MAX_COM_LOSS,       0
AFS_GEOFENCE,           0
AFS_RC,                 1
AFS_RC_MAN_ONLY,        0
AFS_DUAL_LOSS,          0
AFS_RC_FAIL_TIME,       180





The AFS_TERM_ACTION parameter is the final safeguard between terminating the plane and doing nothing when the flight termination condition is met. It should never be 42 unless you are absolutely sure you want the plane to terminate when the transmitter link has been lost for 3 minutes. For test flights, it should always be at 0 - the only time it should be 42 is during competition.

See the AFS documentation [http://ardupilot.org/plane/docs/advanced-failsafe-configuration.html] and the AFS parameter list [http://ardupilot.org/plane/docs/parameters.html#afs-parameters] for more information.
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Additional information, including BOM and Design paper, can be found at the catapult github repository: https://github.com/CUAir/catapult


Overview

The catapult cart is the direct interface between the catapult and the aircraft. Its design is critical for successful takeoff.

The cart is composed mainly of aluminum sheet metal which has been water-jet cut to shape. The geometry of the cart adds strength in the needed locations while keeping mass to a minimum. Two identical side plates serve as the primary mounting surfaces for the cart’s various interfaces as well as large stopping bloacks that contact the frame damper springs and distribute the loads present during deceleraion. Four shafts contain a total of eight wheels that ride along the corners of the frame. An additional piece known as the pin tension member spans the top two shafts. A carabiner connects this member to the cable at the front of the cart. At the back of the pin tension member is a hole that interfaces with the safety pin.

The cart frame experiences its highest loading upon impact with the spring stoppers. It must decelerate from 15 m/s to rest in about 5.7 cm. This is a deceleration of approximately 200 G. Since all of the force of the deceleration is applied to the stopping blocks, they have to sustain an average force of approximately 1000 N (225 lb) each. Thus, ensuring that the cart’s connections fully constrain the aircraft from undesired motion is a high priority in all present and future design changes.




Icarus / Eos Interface

[image: _images/eos_cart.png]
The original design of the cart was created for Eos. Its interface comprises of four arms fit to the top two shafts in the cart. The front two arms are connected to a ratcheting mechanism that constrain them in place until the cart reaches the end of its track, restraining the plane in place as the throttle is applied. At the end of the track, the ratchet is released and the arms pivot about the cart shafts. During launch, they exert a force on the plane at their tips. The moment created by the force of the plane is balanced with the use of four rubber bumpers mounted to the cart walls. Upon impacting the damping springs, the arms rock forward and bounce off the bumpers, allowing them to gently come to rest.

In its final iteration, the cart was 1.0 kg and 12.5” in length.

The interface between the arms and the plane was designed to lock into the plane during acceleration and slide away during detachment. All four arm tips fit into small holes cut into the bottom of the plane. Icarus was designed with a Kevlar fuselage embedded with high-strength garolite plates laser-cut to conform with the arms of the cart. During acceleration, the plane has a tendency to pitch up since the horizontal forces are being applied below the center of mass. To prevent this pitching response, the front two arms feature small hooks that grip the fuselage skin. The back arms only require small nubs that interface with the fuselage holes since the pitching tendency acts to push them further into the holes. Upon detachment, the arms pivot out of the holes and the plane continues in straight-line motion.




Odysseus Interface v1.0

[image: _images/odysseus_cart.png]
The interface designed for Odysseus required significant modification to the existing Eos cart design. While existing mechanisms like the fitted launch arms and the pin tension member were retained, new mechanisms such as the cradle were introduced to the cart in this iteration.

Foremost, the cart’s side plates and the pin tension member were extended to 18.5” in length. Additional changes made to the weight reduction design for three holes, the back two 0.375” in diameter and the front 0.19” in diameter, on the top side of each side plate. These holes were included to attach the cradle as well as facilitate future interface designs as needed.

The cradle provides a surface that is stable enough to constrain the aircraft during acceleration while smooth enough to allow for clear removal from the cart. It is comprised of two side plates, three ribs, and a polycarbonate cover. Each rib pieces into the side plates and is held in place by the side plate’s connection to the three mounting holes on the cart itself. These plates are bolted through 4 18-8 machine screws in each of the back two holes and a 8-32 machine screw in each front hole. The polycarbonate cover is attached to the upper surface of the finished cradle assembly via wet cement or gorilla glue.




Odysseus Interface v1.1

[image: _images/odysseus_cart_2.PNG]
As of May 2016, significant modifications have been made to the Odysseus interface and base cart. The thickness of the base cart’s side plating, the pin member, and the front cart arms have been increased from 3/16” to 1/4”. After observations of parallel plate motion in field testing, six perpendicular rods have been incorporated into the cart into to restrict parallel plate motion. The upper three of the rods have replaced the the machine screws which piece the cradle to the base cart. The stopper pieces for the front cart arms and the launch arm’s springs have been merged into one piece called the stopper. Testing of these cart modifications has yet to be conducted.




Bixler Interface

[image: _images/bixler-rough.JPG]
The interface developed for the Bixler 3 test plane consists of two sloped extended shafts that piece into a channel cut in the bottom of the Bixler’s fuselage. Initial development consisted of two wooden tabs cut to ~2” and sloped on their upper edge. These tabs are connected by means of an single 8-32 machine screw, locknut, and a mirrored washer arrangement threaded through the centered pin member of the cart.

This assembly is functional in securing the Bixler to the catapult throughout launch; however, several improvements are needed for further use. Issues that have arisen in testing thus far include: failure to constrain lateral motion, excessive tearing of the Bixler’s fuselage, and complete mechanical failure. Foremost, 3D printing of the functional assembly into a single or two interlocking parts has been explored and should be fabricated for future use. Conceptual CAD schematics for a new Bixler interface are pictured below and are available on the Mechanical Subteam’s Cornell Box.

[image: _images/primary_bixler_interface.png]



Control System

The following describes the catapult control system. The microprocessor used for control of the catapult is the Adafruit Pro Trinket 5V/16MHz. The latest version of the control code can be found at https://github.com/CUAir/catapult/blob/master/catapult.ino


How to Flash the Arduino

Dependencies:
Arduino Liquid Crystal Library
http://playground.arduino.cc/Main/LiquidCrystal


	Prepare your IDE to be compatible with the Adafruit trinket. Follow these instructions: https://learn.adafruit.com/adafruit-arduino-ide-setup/overview

	Clone the git repository and make any necessary edits using the Arduino IDE.

	Plug in FTDI cable to the pins on the front of the control box and to a USB port on your computer.

	Under the Tools menu, set the Board to the Pro Trinket 5V/16MHz (FTDI) and set the Programmer to USBtinyISP

	Check that the IDE recognizes the Arduino COM port by the presence of a check next to the COM port in the Tools>Serial Port menu.

	Compile the code by pressing the check-mark icon in the top left corner

	Upload the code to the Arduino by pressing the arrow icon in the top left corner






Description

The control code is structured as a state machine - to allow for distinct states like pressurizing and primed and especially for added safety. Please refer to the source code for a detailed descriptions of each state. See operation section for operation instructions.

The catapult control software has several functions. It controls the behavior of the compressor and the launch valve, it shows diagnostic information to the operator, and it enacts several safety measures to prevent accidents. Battery voltage and current/target pressure are displayed to the user. User input determines what value to pressurize to, when to pressurize, and when to launch.

The raw values of the pressure and battery voltage readings are mapped by constants that were measured by hand. The battery voltage mapping is a direct scale factor of 0.012289, in the code it is the constant ‘battVoltageFactor’. The pressure mapping is more complex. The value displayed to the user is the direct reading from the transducer, but an altered value is used to determine when to stop compressing because there are fluctuations in pressure readings while the compressor is on. These fluctuations are larger at higher pressures, so a jitter value is determined based on a scaling down of the target pressure. The compressor stops when the pressure reading minus the jitter value is equal to the target pressure. This was thoroughly tested and shows excellent results. The jitter value is a linear mapping of the range 0-150 (target pressure) to 3-10. If altering the code, under no circumstances should the upper pressure threshold (read from the potentiometer) be raised above 150. Refer to source code for further comments.

[image: _images/catapult_control_fsm.png]

	init - Initialize: default state, displays warning to user and initializes sensors

	dSP - Pressure Set Display: Displays the text template to for pressure to the screen and then sets state to SP

	SP - Set Pressure: Displays potentiometer data to the screen and saves value to pressure variable. On press of the pressurize button, sets state to dPress.

	dPress - Pressurize Display: Displays template for pressure and battery diagnostics

	Press - Pressurize: Turns on pump, displays current pressure, goal pressure, and battery voltage. When current pressure = goal pressure, sets state to Primed.

	Primed - Primed: Turns off pump, displays pressure and battery stats and turns on launch LED. On pressurize button push, returns to dPress. On launch switch, sets state to Fire.

	Fire - Launch Catapult:  Opens servo, waits launch duration, closes servo. (fires catapult). Turns off launch switch LED and sets state to dSP






Software safety mechanisms


	Device will never pressurize to values above 150 psi.

	Software makes sure that the launch valve is closed before comprpession begins.

	System cannot launch without primed LED (on the launch switch) being on.

	Debouncing disregards false launch and pressurize readings.

	Screen shows warning messages upon initialization.

	Battery voltage displays ‘CRITICAL’ when voltage is below 11.45V

	State machine design ensures that launch CANNOT occur if not in the primed state.








Operation Instructions


Setup


	Catapult should typically be set up to launch into the wind. Catapult box must be set up next to the catapult and must open towards it, plan accordingly and place the box in the correct location.

	Remove two main parts of the catapult (large metal extrusions). Unsecrew the thumbscrews from the back portion and unwrap the cord from the front portion. Unfold the legs of the front piece and insert the respective pins.

	Slide the catapult cart onto the back piece in the correct orientation.

	Insert the back piece into the front piece and screw the thumb screws in. Make sure they are screwed in tight and have someone double check that this is the case.

	Connect carabiner to catapult cart. Insert safety pin into the back of the catapult

	Connect the longest tube from the pressure tank to the front of the catapult. Connect compressor tube to the catapult box.

	Unspool ethernet cord, connect one end to catapult box and the other end to the control box, lay box far away, behind and to the side of the catapult.

	Connect compressor power cable and connect 12V battery cable to catapult box.






Operation


	Turn the system on by turning the key to the on position.

	Read warning displayed on control box.

	Make sure that the safety pin is in place before proceeding.

	Turn pressure dial until the screen displays the desired target pressure.

	Announce that you are pressurizing the catapult and press the pressurize button.

	Once the compressor is finished pressurizing, the LED on the launch switch will turn on. This means that the catapult is primed and ready to fire. Do not lift the switch cap unless you are prepared to fire.

	Have someone else pull out safety pin.

	When everyone is ready, lift switch cap and toggle the launch switch to fire.

	Once the plane has launched, send two or three people to remove the catapult from the runway.

	To launch again return to step 3, otherwise turn the key to the off position and pack up the device.
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Overview

The autopilot sub-team has developed numerous resources and strategies to be most efficient and productive at test flights. This page details these methods and consolidates links to essential resources.




Preparation for a Test Flight

Please read the ArduPlane Documentation [http://ardupilot.org/plane/docs/introduction.html]  to familiarize yourself with tuning methodologies.

Here [https://pixhawk.org/users/status_leds] you can also find a description of the meaning of different Pixhawk status LEDs.




Before the Test Flight

Charging batteries [https://docs.google.com/a/cornell.edu/document/d/1BB32SqGUB9Od7vRuGxLZDtUl3IxABGeZSRhjDGb9uEE/edit?usp=sharing] – Batteries need to be changed before every flight. This documentation describes how to do so safety.

Packing Checklist [https://docs.google.com/a/cornell.edu/document/d/1ayoTEOM1kUWVMDSlj4T_z2wIWLmFvlScaIrMWGEYeLU/edit?usp=sharing] – Before leaving for a test flight, test accordingly in the lab and ensure these items are packed.




At the Test Flight

Roles – Assigning more limited roles at test flights ensures team members can work concurrently.

Preflight Todo Checklist [https://docs.google.com/a/cornell.edu/document/d/1ayoTEOM1kUWVMDSlj4T_z2wIWLmFvlScaIrMWGEYeLU/edit?usp=sharing] – Follow these steps carefully to avoid common issues with flight

Tuning guide [https://docs.google.com/a/cornell.edu/document/d/1GEGPoO7C8SVG3ce17zwZWjsApVifKiyOvoxnIkX4Or4/edit?usp=sharing] – This manual details the steps needed to tunning ArduPlane. Print the manual and follow along accordingly.

Flight Cards [https://docs.google.com/a/cornell.edu/presentation/d/1QKiTktPquDpCYcg-_-agLuD5t6N1zBHpDIT-jldJb_s/edit?usp=sharing] – Fill out one of these at each test flight.


Code to run at test flights


	APM Planner [http://ardupilot.com/downloads/#apm_planner_20_9_raquo] – as a backup APM should be installed on all computers

	MAVProxy [http://cuairautopilot.readthedocs.io/en/latest/groundstation.html#ground-station] – Installation and instructions for using the ground station can be found here.

	Interoperability [http://cuairautopilot.readthedocs.io/en/latest/groundstation.html#interoperability] – Setup can use of the interoperability server can be found here



–`Autopilot server <>`_ – Setup and use of autopilot server for the NUC can be found here.






Hex Flying Procedure Without GCS

Pre-flight checks:


	Make sure all the props are placed in the correct directions! There are little red arrows on each motor for the direction that it should spin.

	Check that all the motors do indeed spin in that direction. If they spin the other way, swap the red and black plugs from the ESC.

	Double and triple check that all props are screwed down tightly.



Now you can begin flight procedure:


	Turn on Taranis, make sure you are on the model “hex”

	Plug in 6s battery.

	Wait until main light is flashing a single color (preferably green - maybe blue - not yellow).

	Press and hold safety switch until the ESCs beep and the light on the safety switch becomes solid green. The motors may twitch a bit. Atlas is now live.

	MAKE SURE EVERYONE IS FAR AWAY FROM THE HEX.

	Arm Atlas: On the transmitter, hold the left stick down and right until Pixhawk light becomes a solid color and props start spinning slowly. It is now armed.

	Fly. Optionally set mode to ‘land’ on ground station for auto landing if GCS is connected.

	To disarm the hex: hold left stick down and left until props stop spinning and main pixhawk light starts flashing.

	Press and hold the safety switch until the ESCs beep and the safety switch begins flashing green.

	Unplug the battery.
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Overview

This page documents remaining autopilot configuration procedures that do not relate to ardupilot software.




Setting up RFD900s

We use RFD900+ [http://store.rfdesign.com.au/rfd-900p-modem/] radio modems. Please read the data sheet [http://files.rfdesign.com.au/Files/documents/RFD900%20DataSheet.pdf] before attempting to change the modem settings.


	Firmware can be installed on RFD900s with windows using the RFD900 configuration tool. This can be found here [http://files.rfdesign.com.au/docs/].



	Settings should match below guide. Make sure to use the same netid on both nodes of a piar and use different netids on different pairs. If you have different settings than shown, you may need update your firmware

Baudrate 115200
Airspeed 250
NetID  xx
Tx Power 27
NodeID 1             # GROUND/BASE NODE SHOULD HAVE THESE REVERSED
Node Destination 0   # GROUND/BASE NODE SHOULD HAVE THESE REVERSED

Min Freq 902000
Max Freq 928000
Number of Channels 50
Duty Cycle 100
Node Count 2

ECC (unchecked)
Mavlink (checked)
Sync any (unchecked)
Op Resent (checked)
RTCSTS (unchecked)







	You can check that two RFD900s are paired and communicating with screen. In terminal, run the command

screen /dev/tty.usb<DEVICE_NAME> <BAUDRATE>









For example

screen /deb/tty.usbmodem1 115200








Using 3DR radios on Mac OS

Sorry, this is kind of a pain.


	Confirm you are not using the Apple FDTI driver

cd /System/Library/Extensions/IOUSBFamily.kext/Contents/PlugIns
ls AppleUSBFTDI.kext









If the kext is in this folder, disable it with the following command

sudo mv AppleUSBFTDI.kext AppleUSBFTDI.disabled






	Download the latest FTDI driver from http://www.ftdichip.com/Drivers/VCP.htm I used x64 (64-bit) for OSX 10.9+.



	Find the name of the device in “System Information” -> USB -> USB Device tree. Mine was named “CP2102 USB to UART Bridge Controller”



	Plug in the the radio and Run system_profiler -detailLevel full and grep for the name found in step 3. You will need to locate the information for “idVendor”, “idProduct”, “bcdDevice”.  My radio had the following info:

"idProduct" = 0xea60
"bcdDevice" = 0x100
"idVendor" = 0x10c4







	Open /System/Library/Extensions/FTDIUSBSerialDriver.kext/Contents/Info.plist and add a new key/dictionary under IOKitPersonalities and make sure above 3 values(idVendor, idProduct, bcdDevice) are there and correct. You can do this with apple’s plist editor or by opening the file and directly editing the XML. All values must be decimals (the values found in step 4 are in hex). I added the following to my XML:

<key>CP2102 USB to UART Bridge Controller</key>
<dict>
<key>CFBundleIdentifier</key>
<string>com.FTDI.driver.FTDIUSBSerialDriver</string>
<key>IOClass</key>
<string>FTDIUSBSerialDriver</string>
<key>IOProviderClass</key>
<string>IOUSBInterface</string>
<key>bConfigurationValue</key>
<integer>1</integer>
<key>bInterfaceNumber</key>
<integer>0</integer>
<key>bcdDevice</key>
<integer>256</integer>
<key>idProduct</key>
<integer>60000</integer>
<key>idVendor</key>
<integer>4292</integer>
</dict>







	Our driver will no longer match the system’s signature so we will need disable System Integrity Protection to load the driver. To do so, first restart into recover mode by restarting your the computer and holding CMD+R as soon as you hear the boot noise until the apple logo appears on the screen. Then run the command csrutil disable in the terminal.



	Restart your computer and load the new FTDI driver with the commands

sudo kextunload /System/Library/Extensions/FTDIUSBSerialDriver.kext/
sudo kextload /System/Library/Extensions/FTDIUSBSerialDriver.kext/







	You should now see the FTDI device with ls /dev/ |grep usbserial





**Note: Permenatly disabling csrutil and can leave your computer vulnearble to some nasty hacks. When you are done using the radios, rename csr by restarting into recovery mode and entering the command csrutil enable




Binding Transmitter and Receiver

We use an EzUHF 4 Channel Receiver [http://www.immersionrc.com/fpv-products/ezuhf-4ch-receiver/] and an EzUHF Transmitter JR Module [http://www.immersionrc.com/fpv-products/ezuhf-jr-module/] on a Taranis Transmitter. Refer to their respective documentation if there is any confusion about the following binding procedure.


	Download ImmersionRC update config tool software [http://www.immersionrc.com/?download=4894]



	Connect the transmitter to the computer with the config software.



	On the software, set the transmitter to extreme hopping



	Connect the receiver to the computer with the config software



	On the receiver, set the frequency band to match the transmitter frequency band



	On the servo mapping tab set PPM slot and servo output as follows

PPM1 CH2
PPM2 CH3
PPM3 CH1
PPM4 CH4
PPM5 CH5
PPM6 CH6
PPM7 CH7
PPM8 CH8

CH1 PPM Muxed
CH2 -
CH3 -
CH4 -







	Put the transmitter into bind mode by turning it off and then holding the bind button on the module on the back as it turns on. It should start beeping slowly.



	Put the receiver into bind mode with the bind tab in the software.



	The software should tell you that you have successfully bound the receiver!








Wiring guide









	Output pin
	Mode
	Surface
	Inverted Transmitter


	8
	19
	Left Elevator
	Yes


	9
	21
	Rudder
	


	11
	2
	Left Flap
	


	5
	4
	Left Aileron
	Yes


	10
	2
	Right Flap
	


	12
	4
	Right Aileron
	Yes


	3
	na
	Throttle
	


	7
	19
	Right Elevator
	Yes








Hexacopter Setup

Atlas is a portable, lightweight test system to allow subteams to test without needing to do a full test flight. It is able to carry several pounds of payloads that can be mounted as necessary and is significantly easier to fly than a fixed wing aircraft.

The base onboard electronics include:


	1x Pixhawk [https://3dr.com/wp-content/uploads/2014/03/pixhawk-manual-rev7.pdf] autopilot with gps module running ArduCopter [http://ardupilot.org/copter/]

	6x 30A ESCs [https://hobbyking.com/en_us/turnigy-multistar-30a-slim-v2-esc-with-blheli-opto-2-6s.html]

	1x RFD900 [http://cuairautopilot.readthedocs.io/en/latest/autopilot_configuration.html#id3] – setup is identical to the plane radios.



ArduCopter setup is very similar to ArduPlane setup and is completely documented here [http://ardupilot.org/copter/docs/initial-setup.html]. The key difference is ESC calibration [http://ardupilot.org/copter/docs/esc-calibration.html] which must be re-done after major system changes like receiver replacement or motor replacement.

Atlas flight instructions can be found here [https://docs.google.com/a/cornell.edu/document/d/1p07ljg8zF4MjSbM2MOx6P8YeXyO3xy7GhyED3VAolZA/edit?usp=sharing].




Telemetry to autopilot wire pin out

Pictured here [https://docs.google.com/document/d/1nrJgtlMFt2SE-kGHK6LXyUs01eNOvt2AmsUWc_H6BdU/edit]








	RFD side (Left when flat side up)
	
	Autopilot side left


	1
	white
	6


	2
	black
	1


	3
	black
	5


	4
	red
	2


	5
	black
	3


	6
	black
	4


	right
	white
	right
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The equivalent to the database and API endpoints for MAVProxy intended for use
by the distibuted team to replay testflights


How to Set Up


Dumping the Database after the Testflight

Once the flight is complete from MAVProxy dump the database into a file named mysqldump.txt

sudo mysqldump --result-file=mydump.sql -paeolus mavproxy








Loading the Dump File into the Playback Database

once the file is copied into the playback folder this will reload the data into this database

sudo mysql -paeolus mavproxy < mydump.sql





*if you get the can’t connect to mySQL server through socket ... erorr try

mysqld





*if this is the first time you are running the database on your computer or you get the no database error try

./setup_db.sh








Launching the Flask App

export FLASK_APP=playbackStatus.py
python playbackStatus.py










API endpoints


Status [/status]

Get the status of the plane: A large json containing each piece of data as a name/value pair. A call can also be made to /status/... to receive an
individual bit of data (below):

+ Response 200 (application/json)
      {
          "attitude" : {
              "pitch" : 0.0,
              "yaw" : 0.0,
              "roll" : 0.0,
              "pitchspeed" : 0.0,
              "yawspeed" : 0.0,
              "rollspeed" : 0.0
              },

          "airspeed" : {
              "vx" : 0.0,
              "vy" : 0.0,
              "vz" : 0.0
          },

          "climb": 0.0,

          "flight_time" : {
              "time" : 0.0,
              "time_start" : 0.0,
              "is_flying" : "False"
          },

          "gps" : {
              "rel_alt" : 0.0,
              "asl_alt" : 0.0,
              "lat" : 0.0,
              "lon" : 0.0,
              "heading" : 0.0,
              "vx" : 0.0,
              "vy" : 0.0,
              "vz" : 0.0
          },

          "throttle": 0,

          "wind" : {
              "vx" : 0.0,
              "vy" : 0.0,
              "vz" : 0.0
          }


      }








Attitude [/status/attitude]

Returns the plane’s attitude, containing:


	Pitch [float]

	Yaw [float]

	Roll [float]

	Pitchspeed [float]

	Yawspeed [float]

	Rollspeed [float]



+ Response 200 (application/json)
{
   "pitch" : 0.0,
   "yaw" : 0.0,
   "roll" : 0.0,
   "pitchspeed" : 0.0,
   "yawspeed" : 0.0,
   "rollspeed" : 0.0,
 }








Airspeed [/status/airspeed]

Returns vectors vx, vy, vz representing the airspeed velocity of the airplane as floats

+ Response 200 (application/json)
       {
           "vx" : 0.0,
           "vy" : 0.0,
           "vz" : 0.0
       }








Climb [/status/climb]

Returns a float value representing the climb of the plane

+ Response 200 (application/json)
       {
           0.0
       }








Flight Time [/status/flight_time]

Returns the information about the flight time conntaing:


	time_start [float]

	if_flying [boolean]



+ Response 200 (application/json)
       {
           "time" : 0.0,
           "time_start" : 0.0,
           "is_flying" : "False"
       }








GPS [/status/gps]

Returns various values from the plane’s onboard GPS, containing:


	rel_alt [float]

	asl_alt [float]

	lat [float]

	lon [float]

	heading [float]

	vx [float]

	vy [float]

	vz [float]



+ Response 200 (application/json)
      {
          "rel_alt" : 0.0,
          "asl_alt" : 0.0,
          "lat" : 0.0,
          "lon" : 0.0,
          "heading" : 0.0,
          "vx" : 0.0,
          "vy" : 0.0,
          "vz" : 0.0,
      }








Throttle [/status/throttle]

An integer from 0 to 100 representing the current throttle level of the plane

+ Response 200 (application/json)
       {
           0
       }








Wind [/status/wind]

Returns vectors vx, vy, vz representing the wind velocity vector as floats

+ Response 200 (application/json)
       {
           "vx" : 0.0,
           "vy" : 0.0,
           "vz" : 0.0
       }
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