
CSVelte Documentation
Release v0.2

Luke Visinoni

Oct 06, 2016

Contents

1 User Documentation 3
1.1 User’s Guide . 3
1.2 API Documentation . 27
1.3 Tutorials . 28

i

ii

CSVelte Documentation, Release v0.2

CSVelte is a simple yet flexible CSV and tabular data library for PHP5.6+. It was originally written as a pseudo-port
of Python’s CSV module in early 2008 and was called PCU (PHP CSV Utilities). Unfortunately my time was very
limited and after only version 0.3, PCU went dormant. Fast forward to eight years later and I come across my own
library in an unrelated Google search. Surprisingly, PCU had gained and then lost, a somewhat respectable user base.
So I revived the project, rewrote it from the ground up using solid object-oriented design principles, keeping only the
most basic concepts, and renamed it CSVelte (pronounced just like the word svelte).

Note: Why the name CSVelte?

The library was originally called PHP CSV Utilities, which I never particularly liked. So when I revived the project, I
decided that if I was going to release a new version, I wanted a new name. I wanted the name to reflect the library’s
goal of being simple and elegant and still have CSV (comma-separated values) in the name. The word “svelte” means
“slender and elegant”. So I just added a “C” to the beginning of it and a slender and elegant CSV library was born!

Contents 1

https://docs.python.org/2/library/csv.html
https://www.google.com/webhp#q=svelte+definition
https://code.google.com/archive/p/php-csv-utils/

CSVelte Documentation, Release v0.2

2 Contents

CHAPTER 1

User Documentation

CSVelte’s user documentation is organized into three main sections, as outlined below. If you’re new to CSVelte, I
recommend that you begin here: Getting Started.

1.1 User’s Guide

The user’s guide is broken down into a series of chapters that walk you through CSVelte’s features and concepts.
Think of it like an instruction manual. It should be read more or less sequentially, as each chapter tends to build
on knowledge from previous chapters. Throughout the user’s guide you wlll find references and links to the API
Documentation, which we’ll get to next.

1.1.1 User’s Guide

The user’s guide is broken down into a series of chapters that walk you through CSVelte’s features and concepts.
Think of it like an instruction manual. It should be read more or less sequentially, as each chapter tends to build
on knowledge from previous chapters. Throughout the user’s guide you wlll find references and links to the API
Documentation, which we’ll get to next.

Important: From this point forward, for the sake of brevity, I will be leaving the CSVelte namespace prefix out
when I mention a CSVelte class by name. For instance, rather than saying CSVelte\IO\Stream, I will just say
IO\Stream.

Getting Started

If this is your first time using CSVelte, you’ve come to the right place. This “getting started” guide will introduce you
to the library, as well as to the CSV format. It will then walk you through its installation and introduce you to its most
basic concepts.

Introduction

CSVelte is a modern, object-oriented CSV library for PHP5.6+. Its goal is to take the typically tedious, error-prone
task of processing and manipulating CSV data, and make it as simple and easy as possible.

3

CSVelte Documentation, Release v0.2

A little history

CSVelte’s story actually begins all the way back in 2008. I had just begun to feel confident as a PHP developer and
wanted to start my own open source PHP library. I didn’t want to bite off more than I could chew, so I chose something
I felt would be relatively easy. Something I’ve been working with since the first time I wrote a line of code. I did
a quick Google search and found that there really weren’t any proper object-oriented CSV libraries for PHP (at that
time), so I set to work writing PHP CSV Utilities (or PCU). Over the next six months or so, I pumped out version 0.1,
then 0.2, and then at 0.3 things just stalled. I lost interest. Found other things to do. And PCU faded into obscurity.

Fast forward to eight years later and I’m in a similar position as I was in 2008. It’s been a little while since I contributed
anything open source. Not to mention I currently have an actual need for a CSV library, so I stripped PCU down to its
core concepts, rewrote it from the ground up, and renamed it CSVelte (pronounced exactly like the word, svelte 1).

Note: Why the name CSVelte?

The library was originally called PHP CSV Utilities, which I never particularly liked. So when I revived the project, I
decided that if I was going to release a new version, I wanted a new name. I wanted the name to reflect the library’s
goal of being simple and elegant and still have CSV in the name. The word “svelte” means “slender and elegant”. So
I just added a “C” to the beginning of it and a slender and elegant CSV library was born!

Library scope

So far, the scope of this library has been limited to the basic reading and writing of CSV-formatted data. It also has
some format-detection features and a few other goodies. In the not-too-distant future however, I intend to widen that
scope considerably to encompass the aggregation, manipulation, and import/exportation of tabular data in general.

There has been a lot of work done in the last several years by various standardization bodies, organizations, and
interested individuals, to improve the wild-west nature of the CSV format. Of particular note is the W3C‘s CSV
on the Web Working Group 2 and the work they’ve put into what they’re calling “CSVW”, a series of specs and
recommendations aimed at improving interoperability between CSV and other tabular data related formats on the web.
It is my intention to implement much, if not all of their recommendations by the time CSVelte reaches v1.0.

What is CSV?

It’s highly unlikely that you would even be here reading about this library if you weren’t already familiar with CSV
in some capacity. But what defines CSV as a format? Who invented it? What body governs its standardization?
Where can one find a detailed specification that defines the format down to its most mundane detail? Unfortunately,
I can’t provide you with a satisfying answer to any of those questions. CSV is a very old format. It has been defined
and redefined endlessly by any number of organizations and software products over the course of its over forty-year
lifespan.

Note: There is an RFC (RFC 4180) that documents one very specific flavor of CSV, but few would dare call it the
definitive CSV standard.

1 (of a person) slender and elegant – Google.com definition for “svelte“
2 The CSV on the Web Working Group is a W3C chartered group of individuals and organizations working towards improving CSV interoper-

ability on the web

4 Chapter 1. User Documentation

https://code.google.com/archive/p/php-csv-utils/
https://www.google.com/webhp#q=svelte+definition
https://code.google.com/archive/p/php-csv-utils/
http://w3c.org/
https://www.w3.org/2013/csvw/wiki/Main_Page
https://www.w3.org/2013/csvw/wiki/Main_Page
http://www.w3.org/TR/tabular-data-primer/
https://tools.ietf.org/html/rfc4180.html
https://www.google.com/webhp#q=svelte+definition
https://www.w3.org/2013/csvw/wiki/Main_Page
http://w3c.org/

CSVelte Documentation, Release v0.2

CSV as a format

Although CSV is an extremely widely-used format for importing/exporting data, its lack of a unified standard means
CSV data out in the wild can vary substantially in its style and format. Exacerbating the problem, CSV (in all its
flavors) lacks a standardized method for dictating metadata such as column type, character encoding, locale informa-
tion such as language and date/time/currency formatting, etc. One can’t even rely on a comma being the delimiter
character within a CSV file and the name of the format is comma-separated values! This can make life very difficult
for developers attempting to reliably output and/or consume CSV-formatted data.

CSV in General

For all the reasons I just mentioned, it isn’t possible for me to define the CSV format in any specific way. I can only
define its general properties. Basically, CSV is a human-readable data interchange format that represents tabular data.
That is to say, it represents rows of fields where rows are separated by some form of line terminator character sequence
(typically \n, \r or \r\n) and rows are separated by a character called the delimiter (generally this is a comma, but
tabs, pipes and semi-colons are often used as well). The number of fields should be the same on every row, although
this cannot be relied upon. The data may optionally contain a header row, dictating column header names, which
should not be processed as a row of data, but rather as labels for each column within that data. Fields may contain the
delimiter character and/or line breaks, but if they do, they should be enclosed by quotes. If a quoted field itself contains
quotes, it is the general rule that it should be escaped by doubling it up. That is, replacing it with two consecutive
quote characters.

Beyond that very general description, CSV files can vary substantially. Whitespace before or after a field is typically
ignored, although there is no rule stating that it must (and in fact, RFC 4180 specifies that it must not). Blank lines are
also typically ignored. Sometimes it’s acceptable to use a backslash rather than an additional double quote to escape
quote characters. Also, quote characters are generally not allowed unless they are escaped and the field containing
them is itself enclosed by quotes. Sometimes CSV files contain more than one header row. Sometimes they contain
row titles as well as column titles. All of these little quirks are what make the CSV pseudo-format such a pleasure
to work with (see sarcasm 1). This is why I wrote CSVelt–to handle as much of this inconsistency and silliness as
possible so that you don’t have to.

Tip: For a much more reliable and well-informed history, as well as a more detailed and articulate description of the
CSV psuedo-format and a wide selection of examples, I refer you to the Wikipedia entry for comma-separated values.

An example

Although I’m certain that you’ve seen CSV data before, I’ll go ahead and show you an example to demonstrate, at the
very least, the terminology mentioned above.

Table 1.1: Contacts

id lastname firstname misc email
1 Visinoni Luke A.K.A. “The CSV Master” luke.visinoni@gmail.com
2 Jones Davey Loves the sea djones@locker.io
3 Kelly Marge Marge, Margery, or Margo margeincharge@mekelly.info
4 Smith John john.smith@yahoo.com
5 Doe Jane Been missing a while janeydoeyes@example.com

The contacts table above may be represented in CSV format as follows. It’s delimited by the comma character, lines
are terminated by the (usually invisible, but included here for clarity) line feed character, quoted by the double-quote

1 the use of irony to mock or to convey contempt – Google.com definition for “sarcasm”

1.1. User’s Guide 5

https://tools.ietf.org/html/rfc4180.html
https://en.wikipedia.org/wiki/Comma-separated_values
mailto:luke.visinoni@gmail.com
mailto:djones@locker.io
mailto:margeincharge@mekelly.info
mailto:john.smith@yahoo.com
mailto:janeydoeyes@example.com

CSVelte Documentation, Release v0.2

character, and its quotes are escaped by doubling them up (two consecutive quote characters). It’s perfectly acceptable
to leave a field blank, as you can see for the “misc” field for “John Smith”. Notice though, that a comma was included
even though the field was blank. Also of note, fields are only quoted when they contain either the delimiter (comma), a
line terminator character (\n in this case), or a quote character. This is probably the most common behavior, although
technically, any field may be quoted without adversely affecting any potential consuming script/program.

id,lastname,firstname,misc,email
1,Visinoni,Luke,"A.K.A. ""The CSV Master""",luke.visinoni@gmail.com\n
2,Jones,Davey,Loves the sea,djones@locker.io\n
3,Kelly,Marge,"Marge, Margery, or Margo",margeincharge@mekelly.info\n
4,Smith,John,,john.smith@yahoo.com\n
5,Doe,Jane,Been missing a while,janeydoeyes@example.com\n

It isn’t difficult to imagine how the preceeding CSV data could produce the table above. This is because, despite
CSV’s failings as a standard, it is meant to be human-readable as well as machine-readable. And it succeeds, for the
most part, on both counts. Which is why it has stood the test of time and has been around for over forty years.

Will this be on the test?

Fortunately for you, CSVelte will abtract away a lot of these details and you won’t have to deal with them. At least not
directly. As long as you understand the basic characteristics that define CSV as a format (rows contain fields, fields
contain data separated by a delimiter, etc.), you can pretty much forget the rest. In the vast majority of cases, CSVelte
will provide sane defaults and/or automatically detect a CSV dataset’s formatting parameters for you anyway. But
we’ll get to that later.

Installation

I recommend that you install CSVelte using Composer, PHP’s de facto package manager. If you aren’t using Composer,
I highly recommend that you check it out. It makes dependency management ridiculously easy and it’s used by
virtually every modern PHP library and framework in use today. There are other ways to install the library (which I
will outline below), but Composer is by far the cleanest and easiest. Not to mention, the most well-tested.

Requirements

As of v0.2, CSVelte requires PHP5.6+. It was originally my goal to support PHP5.3 and up, but I ran into some
unforeseen issues with development dependencies (namely, PHPUnit) and in my haste to just release some code,
I went ahead and upped the minimum version to PHP5.6+. This will almost certainly be lowered before I release
CSVelte v1.0. PHP7 is also supported, but at least for now, it isn’t nearly as well tested as PHP5.

Note: CSVelte does not currently require any PHP extensions, but internationalization and localization, as well as
character transcoding are features that are on the /roadmap. These features (and probably others as well) will most
likely require one or more of the mbstring, iconv, intl and possibly other extension(s) to be installed. So I can’t promise
the library won’t require certain PHP extensions in the future.

6 Chapter 1. User Documentation

https://www.getcomposer.org/
http://phpunit.de/
http://php.net/manual/en/book.mbstring.php
http://php.net/manual/en/book.iconv.php
http://php.net/manual/en/book.intl.php

CSVelte Documentation, Release v0.2

Installation

With Composer

If you’ve never used Composer, you’ll want to head over to getcomposer.org and follow the installation instructions
on their download page first. Once Composer has been successfully installed, you may use the following command
to install CSVelte within your Composer package/project. First cd into your project directory and then issue this
command.

$ php composer.phar require nozavroni/csvelte @dev-master

Important: CSVelte is currently under heavy development. Once it reaches a stable version, it will be simply a
matter of php composer.phar require nozavroni/csvelte, but for the time being you will need the
@dev-master flag or Composer will complain and refuse to install (or you can lower your minimum-stability
setting, which will have the same effect for all your project’s dependencies).

Direct Download

Danger: Unless you know what you’re doing and/or you have a good reason not to, it’s highly recommended that
you install CSVelte using Composer. It’s virtually impossible for me to ensure you have the correct dependency(s)
if you install manually, so in that case you’re on your own.

To install CSVelte manually, first download the latest version of CSVelte (currently v0.2) from GitHub. After ex-
tracting the contents of the zip or tarball, simply include the src/autoload.php file, which will add the src
directory to PHP’s include path 1 and register CSVelte’s autoload function 2 for you (obviously you’ll need to change
/path/to/csvelte to wherever the src directory is on your system). That’s it. Happy coding.

<?php
require_once "/path/to/csvelte/src/autoload.php";

Important: As of version v0.2, CSVelte’s only external dependency is Carbon 3. If you aren’t using Composer to
install CSVelte, you’ll need to go to Carbon’s website and follow its installation instructions to install it manually or
you will encounter errors.

First Steps with CSVelte

At this point, you should have CSVelte installed and ready to start working with some data! Before we begin though,
it may be a good idea to get some terminology out of the way, just so that we’re speaking the same language.

1 See include_path ini setting on php.net
2 See spl_autoload_register function on php.net
3 Carbon is a very lightweight, flexible date/time library built on top of PHP’s native DateTime class(es). You can find instructions on its home

page to install it manually if you aren’t using Composer to manage dependencies.

1.1. User’s Guide 7

https://www.getcomposer.org/
https://www.getcomposer.org/
https://getcomposer.org/download/
https://www.getcomposer.org/
https://getcomposer.org/doc/04-schema.md#minimum-stability
https://getcomposer.org/doc/04-schema.md#minimum-stability
https://www.getcomposer.org/
https://github.com/deni-zen/csvelte/releases
https://github.com/
http://carbon.nesbot.com/
https://www.getcomposer.org/
http://carbon.nesbot.com/#nocomposer
http://php.net/manual/en/ini.core.php#ini.include-path
http://www.php.net/
http://php.net/manual/en/function.spl-autoload-register.php
http://www.php.net/
http://carbon.nesbot.com/
http://php.net/manual/en/book.datetime.php
http://carbon.nesbot.com/#nocomposer
https://www.getcomposer.org/

CSVelte Documentation, Release v0.2

First, a few terms

Dataset Because CSVelte can read CSV data from a variety of different sources, it’s not technically
correct to reference CSV “files” specifically when talking about CSV data. For this reason, this
documentation uses the term CSV “dataset” rather than CSV “file” to refer to the contents of any
given CSV resource.

Flavor As I’ve mentioned already, CSV is not the most well-defined format there is. In fact, it’s likely
one of the worst. There is virtually no end to the different ways in which you might expect a CSV
dataset to be formatted. In order to bring some order to the chaos, CSVelte defines several attributes
that together make up a CSV “Flavor”. Attributes such as delimiter, quote character, line terminator,
etc. If you and I can agree on a common “flavor” of CSV, we can at least be sure our CSV files are
formatted consistently and are therefor compatible.

Taster Another unfortunate side-effect of CSV coming in so many flavors is that you can never really
be sure which flavor you’re going to get. Making matters worse, the CSV format doesn’t natively
support meta data of any kind (well, with the possible exception of an optional header row). The
only way you can ever 100% reliably determine the flavor of a dataset is to open the file and look at
its content yourself. That’s what a taster does. It’s simply an object that, given a dataset, will analyze
(taste) a sample of it, and return a flavor object, each of its attributes set to the taster’s educated best
guess.

Stream Rather than attempt to write classes for each potential source or destination for CSV data,
CSVelte instead relies on the power and flexibility of PHP’s native streams functionality. A stream,
according to php.net, “is a resource object which exhibits streamable behavior. That is, it can be
read from or written to in a linear fashion”. CSVelte provides a class called IO\Stream which
provides an object-oriented interface to this functionality.

Getting down to business

For the sake of simply writing some code using CSVelte, let’s take some common CSV-related use cases and see how
CSVelte fares against them.

Producing a two-dimensional array from a CSV dataset

During the initial research phase of writing this library, I did a Google search for “php csv” and a large portion of
the results were various PHP message boards with users asking for an easy way to read a CSV file and produce a
two-dimensional array containing its data. This is as good a place as any to start.

Let’s assume our CSV file is located on the local file system at /var/www/data/products.csv. Our first step
is going to be to create an IO\Stream object capable of reading our CSV file.

$stream = new IO\Stream('/var/www/data/products.csv');
// you can now ensure the stream object is readable by doing...
$stream->isReadable(); // should return true

At this point, we need to instantiate a Reader object to read/parse CSV data from the stream object we just created.
We already know that our CSV file is formatted using a comma as its delimiter, a line feed as its line terminator, and
it has a header row. Let’s create a flavor object with those attributes.

$flavor = new Flavor([
'delimiter' => ',',
'lineTerminator' => "\n",
'header' => true

]);

8 Chapter 1. User Documentation

http://php.net/manual/en/book.stream.php
http://www.php.net/

CSVelte Documentation, Release v0.2

Now, using our stream and flavor objects, we can finally instantiate the reader and call Reader::toArray() to get
our two-dimensional array. Let’s put it all together.

<?php
// create a stream object to read from our local file...
$stream = new IO\Stream('/var/www/data/products.csv');
if (!$stream->isReadable()) {

die('Cannot read CSV file.');
}

// now create a flavor object using our known flavor attributes...
$flavor = new Flavor([

'delimiter' => ',',
'lineTerminator' => "\n",
'header' => true

]);

// now we can go ahead and instantiate our reader
$reader = new Reader($stream, $flavor);
// and we have our two-dimensional array!
$array = $reader->toArray();

Note: Why do we need a Reader object if we already have IO\Stream? Doesn’t the IO\Stream object read
data from its underlying stream?

Yes it does. But the IO\Stream class is designed to be stupid (at least as it relates to CSV data). It only knows how
to read bytes from a stream resource. Once the data’s been read, its job is done. The Reader object takes over at
that point, taking plain text data being read to it by IO\Stream and applying semantic meaning to it. These are two
entirely different kinds of “reading”.

What if I don’t know the CSV flavor?

The previous example looks simple enough, but what if we didn’t know anything about our CSV data? What if we
didn’t know ahead of time what the delimiter and line terminator characters are? No big deal! Simply instantiate your
reader the exact same way, only this time, omit the flavor parameter. In the absense of an explicit flavor, the reader
will use its internal Taster class to automatically determine these attributes for us (in other words, it will “taste” the
CSV data and tell us its “flavor”).

$stream = new IO\Stream('/var/www/data/products.csv');
$reader = new Reader($stream);
$array = $reader->toArray();

In the vast majority of cases, the reader will be able to deduce the CSV flavor on its own and this will work just fine.
However, if a flavor cannot be determined, an Exception\TasterException will be thrown. You can use this
to recover from such an error.

try {
$stream = new IO\Stream('/var/www/data/products.csv');
$reader = new Reader($stream);
$array = $reader->toArray();

} catch (Exception\TasterException $e) {
// this is an extreme action, in your own script you would handle this
// a bit more gracefully, depending on the situation...

1.1. User’s Guide 9

CSVelte Documentation, Release v0.2

die("Flavor could not be determined");
}

Producing CSV data from a two-dimensional array

Well, I can’t in good conscience show you how to convert a CSV file to a PHP array and then not show you how to
convert it back! Fortunately it’s pretty trivial. Let’s assume we have a two-dimensional array containing the following
data:

1 Muhammed MacIntyre 3 35 Nunavut Storage & Organization
2 Barry French 293 68.02 Nunavut Appliances
3 Barry French 293 2.99 Nunavut Binders and Binder Accessories
4 Clay Rozendal 483 3.99 Nunavut Telephones and Communication
5 Carlos Soltero 515 5.94 Nunavut Appliances
6 Carlos Soltero 515 4.95 Nunavut Office Furnishings
7 Carl Jackson 613 7.72 Nunavut Binders and Binder Accessories
8 Carl Jackson 613 6.22 Nunavut Storage & Organization
9 Monica Federle 643 35 Nunavut Storage & Organization
10 Dorothy Badders 678 8.33 Nunavut Paper

Again, our first task is going to be creating an IO\Stream object. Only this time, we’ll want to prepare it for writing
by passing it the correct access mode string as its second constructor parameter. We want to create a new file on the
local file system at /var/www/data/inventory.csv so we’ll want to use “w” to open our stream in write mode
1.

$stream = new IO\Stream('/var/www/data/inventory.csv', 'w');

Just as with our input stream and its IO\Stream::isReadable() method, we can call
IO\Stream::isWritable() to make sure that our stream is indeed, writable.

$stream = new IO\Stream('/var/www/data/inventory.csv', 'w');
// you can now ensure the stream object is writable by doing...
$stream->isWritable(); // should return true

Now that we have an output stream object to write our data for us, we can instantiate our Writer object. If you have
a specific flavor object, you can pass that to the writer as well. Otherwise it will use a default (the default is the flavor
outlined by RFC 4180 2). Let’s put it all together.

<?php
// we'll assume this variable contains our CSV data...
$csv_array = some_func_that_returns_csv();

// create stream in write mode...
$stream = new IO\Stream('/var/www/data/inventory.csv', 'w');
if (!$stream->isWritable()) {

die('Cannot write to CSV file');
}

// change the flavor a little...
$flavor = new Flavor([

'delimiter' => "\t",

1 File access mode strings are a short (typically 1-3 characters) string containing very concise instructions about how a file or stream should be
opened. See fopen file modes for a more detailed explanation.

2 RFC 4180 was written in 2005 by Yakov Shafranovich in an attempt to formalize Microsoft Excel’s particular flavor of CSV as the official
CSV standard

10 Chapter 1. User Documentation

https://tools.ietf.org/html/rfc4180.html
http://php.net/manual/en/function.fopen.php
https://tools.ietf.org/html/rfc4180.html

CSVelte Documentation, Release v0.2

'lineTerminator' => "\n",
'quoteStyle' => Flavor::QUOTE_ALL

]);

// create a writer...
$writer = new Writer($stream, $flavor);
// now write our array and we're done!
$writer->writeRows($csv_array);

There’s more than one way to skin a cat

The two examples provided thus far offer solutions to arguably the two most common use cases involving CSV (for
PHP anyway). So you may be asking yourself, “Shouldn’t there be quicker, easier ways to do this?”. And you’d
be right. CSVelte provides shorter, simpler solutions to both these use cases. So why did I show you these verbose
solutions rather than the simple ones? Because it’s important that you see the entire interface (in all its power and
flexibility) before I show you the facades and factory methods that abstract away all that flexibility for brevity and ease
of use.

Hint: There are methods on the CSVelte class that can provide solutions to both these use cases using a single line
of code. I refer you to CSVelte’s Facade methods to find out more.

CSV Streams

Rather than provide you with a whole arsenal of input and output classes for every conceivable source or destination
for CSV data, CSVelte takes advantage of the power and flexibility of PHP’s native streams functionality, allowing
you to instantiate an IO\Stream object using any valid stream URI, open stream resource, SplFileObject, PHP
string, or any object that implements a __toString() method.

What is a stream?

Streams were introduced with PHP 4.3.0 as a way of generalizing file, network, data compression, and
other operations which share a common set of functions and uses. In its simplest definition, a stream is a
resource object which exhibits streamable behavior. That is, it can be read from or written to in a linear
fashion, and may be able to fseek() to an arbitrary locations within the stream.

—php.net definition of streams 1

Streams provide a unified interface for reading and writing to just about any conceivable source, whether they be
local files, HTTP resources, stdin/stdout, the options are virtually endless. CSVelte takes advantage of this amazing
flexibility and power by means of its IO\Stream class, which simply wraps PHP’s native streams functions. Later
on you will learn how to create CSV reader and writer objects, both of which delegate I/O functionality entirely to
IO\Stream.

Warning: Be careful not to confuse PHP streams with IO\Stream. These are two separate things. IO\Stream
is a class defined by the CSVelte library, while PHP streams are a native feature of the PHP language itself.
IO\Stream was written as an object-oriented API to PHP’s native streams.

1 Succinct definition of PHP streams pulled from PHP’s documentation at php.net.

1.1. User’s Guide 11

http://www.php.net/
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://www.php.net/

CSVelte Documentation, Release v0.2

The IO\Stream class

IO\Stream is a very simple, yet flexible class that allows you to manipulate data from just about any conceivable
source, so long as it’s supported by PHP’s native stream system (although it is possible to write your own custom
stream wrappers, that is a topic for another day). The class supports read, write, and seek operations so long as the
underlying stream it represents supports these operations. For example, you can perform read operations on an HTTP
stream, but you cannot perform write operations on it. The HTTP protocol simply doesn’t allow write operations (if it
did, the entire internet would descend into a cesspool containing nothing but ads for male enhancement drugs, every
nook and cranny completely defaced with drawings of “peepees” and “weewees”, not to mention lolcats).

Because you can never really know until runtime whether a particular stream is readable, writable, and/or seek-
able, IO\Stream provides methods that will tell you. You can call isReadable(), isWritable(), or
isSeekable() to determine whether those operations are supported on your stream object.

<?php
$stream = new Stream('http://www.example.com/data.csv');
echo $stream->isReadable(); // outputs "true"
echo $stream->isWritable(); // outputs "false"
echo $stream->isSeekable(); // outputs "true"

Note: Unless you intend to extend the IO\Stream class, you honestly don’t really need to know all that much about
how it works. At least in regards to its API. All you really need to know is that it provides a common interface for
Reader, Writer and a few other classes to work with and that those classes delegate all actual I/O functionality to
this one class.

Create a stream using an URI

PHP natively offers a multitude of possible stream wrappers 2. You can stream data using the local file system, FTP,
SSL, HTTP, and cURL, just to name a few. Each stream wrapper works a little differently, so you’ll need to consult
PHP’s streams documentation if you intend to use a stream wrapper not covered here (which means virtually all of
them).

Local filesystem

The (arguably) most common stream wrapper is “file”, which allows the streaming of local files. To instantiate an
IO\Stream object using a local file, simply pass a valid file name (including its path) in the constructor (file name
may optionally be preceeded with file://). You may also optionally pass a file access mode string 3 as a second
parameter to tell IO\Stream how you intend to use the stream (see fopen file modes on php.net). IO\Stream
respects the rules specified by each of PHP’s available access mode characters, so its behavior should be familiar if
you’ve ever worked with PHP’s fopen function.

<?php
// create a new local file stream object, and prepare it
// for binary-safe reading (plus writing)
$stream = new IO\Stream('file:///var/www/data.csv', 'r+b');
// or...
// create a new local file stream object, placing the file pointer at the

2 PHP defines stream wrappers as “additional code which tells the stream how to handle specific protocols/encodings”. See PHP streams
documentation for a more complete description.

3 File access mode strings are a short (typically 1-3 characters) string containing very concise instructions about how a file or stream should be
opened. See fopen file modes for a more detailed explanation.

12 Chapter 1. User Documentation

http://php.net/manual/en/book.stream.php
http://php.net/manual/en/function.fopen.php
http://www.php.net/
http://php.net/manual/en/intro.stream.php
http://php.net/manual/en/intro.stream.php
http://php.net/manual/en/function.fopen.php

CSVelte Documentation, Release v0.2

// end of the file and preparing to append the file
$stream = new IO\Stream('./data.csv', 'a');

HTTP

Streaming CSV data over HTTP is made trivial with IO\Stream. Simply pass in the fully qualified URI to the CSV
file and you’re all set!

<?php
$stream = new IO\Stream('http://www.example.com/data/products.csv');

PHP

The PHP stream wrapper provides access to various miscellaneous I/O streams such as standard input and standard
output 4. You could use this stream wrapper from within a PHP CLI script to stream CSV data directly from the user.

<?php
$stream = new IO\Stream('php://stdin');

For more detailed documentation regarding PHP’s available stream wrappers and their respective options and param-
eters, I refer you to the PHP streams documentation at php.net.

Create a stream with additional stream context

Each of PHP’s native stream wrappers (HTTP, file, FTP, etc.) has a list of optional stream context options and pa-
rameters that can be set to change a stream’s context. For instance, the http stream wrapper allows you to specify
such things as request method, headers, timeout, etc. IO\Stream allows you to pass in these parameters as the third
argument to its constructor.

To demonstrate how this works, let’s assume we have a script called download_data.php on a website called
example.com. To make the script work, you must send it an HTTP POST request containing query, type, and format
attributes. Our query is “active” and our type is “users”. The format we want is, obviously, CSV. So, let’s take a look
at how we might use IO\Stream to stream the resulting CSV data.

<?php
$stream = new IO\Stream('http://www.example.com/download_data.php', 'r', [

'http' => [
'method' => 'POST',
'header' => 'Content-type: application/x-www-form-urlencoded',
'content' => 'type=users&query=active&format=csv'

]
]);

This example is pretty straight-forward, but the point is made. Context parameters can make our IO\Stream objects
extremely flexible and powerful if used correctly. Unfortunately, beyond this brief introduction, stream context param-
eters are outside the scope of this documentation. If you’d like to learn more about them, please check out the PHP
documentation regarding stream context options and parameters.

4 Standard input and standard output are preconnected I/O channels, input typically being a data stream going into a program from the user and
output being the stream where a program writes its output. See standard streams Wikipedia page for more on stdin/stdout.

1.1. User’s Guide 13

http://php.net/manual/en/intro.stream.php
http://www.php.net/
http://php.net/manual/en/context.php
https://en.wikipedia.org/wiki/Standard_streams

CSVelte Documentation, Release v0.2

Using an open SplFileObject to create a stream

Although CSVelte cannot work with the SplFileObject class directly, it can convert it to a valid IO\Stream
object, which it understands perfectly.

<?php
$file = new \SplFileObject('./files/data.csv', 'r+b');
$stream = IO\Stream::streamize($file);

Warning: The SplFileObject class does not have any way to access its underlying stream resource, so
although IO\Stream::streamize() can accept an SplFileObject, it’s pretty limited in that it will
always open the file in r+b (binary-safe read + write) mode, regardless of what mode was used to open the
SplFileObject. As a result, the internal file pointer will be moved to the beginning of the stream.

Create a stream from a standard PHP string

Often times you may end up with a PHP string containing CSV data. In this case, there is a convenient method to
convert that PHP string to an IO\Stream object so that it may be read by the Reader class. Yup, you guessed it,
IO\Stream::streamize()!

<?php
$csv_string = some_func_that_returns_csv_string();
$stream = IO\Stream::streamize($csv_string);

This also works for any object that has a __toString() magic method 5.

Create a stream from an existing stream resource

If you already have a stream resource that you’ve opened using fopen, you can pass that resource directly to the
IO\Stream constructor to create an IO\Stream object.

<?php
$stream_resource = @fopen('http://www.example.com/data/example.csv', 'r');
if (false === $stream_resource) {

die("Could not read from stream URI.");
}
$stream = new IO\Stream($stream_resource);

Flavors of CSV

How does CSVelte address the extremely loose nature of CSV as a format? It allows the developer define “flavors” of
CSV, or in other words, classes or objects representing a particular set of CSV formatting attributes. Flavors can either
be defined at runtime by instantiating a Flavor class, passing an associative array of CSV formatting attributes to its
constructor, or they can be defined at compile time, by extending the Flavor class and setting its attributes internally.
CSVelte ships with Flavor classes representing several of the most commonly-used CSV flavors, but we’ll get to
that in a minute. First let’s go over the various attributes that, together, define a CSV flavor.

5 See magic methods on php.net for more on __toString()

14 Chapter 1. User Documentation

http://php.net/manual/en/language.oop5.magic.php
http://www.php.net/

CSVelte Documentation, Release v0.2

Flavor Attributes

header Specifies whether to treat the first row of the dataset as a header row. If true, the first row will
be ignored by the Reader class when iterating over a dataset. Defaults to null

delimiter Specifies a single character to be used as the field separator. Defaults to ,. Other common
values are \t, and |.

lineTerminator Specifies a character or sequence of characters used to terminate each row. Defaults to
\r\n. Other common values are \n and \r.

quoteChar Specifies a single character to be used for quoting fields. Defaults to ". Other common values
are ' and `.

doubleQuote Specifies how to handle quote characters that fall within a quoted string. If set to true,
two consecutive quoteChar characters will be treated as one. Defaults to true.

escapeChar Specifies a single character to be used for escaping the delimiter character within an un-
quoted field or a quote within a quoted field. Defaults to null as it is mutually exclusive to
doubleQuote.

quoteStyle Specifies the types of fields that should be enclosed with quoteChar. Value must be one of
the following class constants. Defaults to Flavor::QUOTE_MINIMAL.

QUOTE_NONE No fields should be quoted, regardless of data type or contents.

QUOTE_MINIMAL Only fields containing quoteChar, lineTerminator or
delimiter should be quoted.

QUOTE_NONNUMERIC Only fields containing non-numeric data should be quoted.

QUOTE_ALL All fields should be quoted, regardless of data type or contents.

Defining a flavor at runtime

<?php
// instantiate a new flavor object, defining its attributes on-the-fly
$flavor = new Flavor([

'delimiter' => ",",
'quoteChar' => '"',
'doubleQuote' => true,
'quoteStyle' => Flavor::QUOTE_MINIMAL,
'lineTerminator' => "\n",

]);

Tip: To avoid any possibility of producing CSV data written half with commas and half with tabs (or other such
nonsense), the CSVelte\Flavor class’s attributes are immutable. Once it’s been instantiated, its attributes cannot
be altered. If you find yourself needing to alter a flavor object, just make a copy of it instead, specifying which
attributes you’d like changed in the copy.

<?php
$flavor = new Flavor([

'delimiter' => ",",
'quoteChar' =>'"',
'doubleQuote' => true,
'lineTerminator' => "\r\n"

]);
// cannot do this!! CSVelte will throw an exception

1.1. User’s Guide 15

http://phpcsv.com/csvelte/apidocs/class-CSVelte.Flavor.html#_copy

CSVelte Documentation, Release v0.2

$flavor->quoteStyle = Flavor::QUOTE_NONNUMERIC;

// do this instead...
$newflavor = $flavor->copy([

'quoteStyle' => Flavor::QUOTE_NONNUMERIC
]);

Common Flavors

Although the range of CSV flavors out in the wild is virtually limitless, there are definitely certain combinations of
these attributes that are most common. The first of them I’ll mention, and the only one with an RFC (RFC 4180),
is the flavor that Microsoft Excel uses when exporting spreadsheets as CSV data. This is the flavor you’ll get when
you instantiate a Flavor object with no arguments. In addition to the default Flavor class, CSVelte provides four
concrete classes representing common flavors of CSV.

Flavor\Excel This is just basically an alias for Flavor. It’s included simply for clarity and consis-
tency.

Flavor\ExcelTab Exactly the same as Excel, except with tabs rather than commas as the delimiter.

Flavor\Unix A common flavor of CSV used by non-Microsoft software. Uses Unix-style line endings
(LF), uses backslash as the escapeChar, and quotes all non-numeric fields.

Flavor\UnixTab Exactly the same as Unix, except with tabs rather than commas as the delimiter.

These class work exactly the same way that Flavor does, except that they are preset to a different set of attributes.
And just as you can override attributes using the default flavor class, so you can with these.

<?php
$excelPipe = new Flavor\Excel([

'delimiter' => '|'
]);
$excelPipeQuoteAll = $excelPipe->copy([

'quoteStyle' => Flavor::QUOTE_ALL
]);

Defining your own common flavors

If there is a particular flavor of CSV you find yourself using all the time, try extending Flavor. Any attributes you
don’t override in your class will remain their default value.

<?php
// my custom flavor uses semi-colons rather than commas to delimit fields
// it also uses old mac-style line endings, doubles up quote characters to escape
→˓them,
// and quotes all fields no matter what!
class MyCustomFlavor extends Flavor
{

public $delimiter = ';';
public $lineTerminator = "\r";
public $escapeChar = null;
public $doubleQuote = true;
public $quoteStyle = self::QUOTE_ALL;

}

16 Chapter 1. User Documentation

https://tools.ietf.org/html/rfc4180.html

CSVelte Documentation, Release v0.2

But what do I do with it?

As I’ve explained, the Flavor class allows you to define a particular set of formatting attributes for CSV. But what
then? Knowing a particular set of formatting attributes for CSV does you no good without some data to apply it to.
This is where the reader and writer classes come in. And I promise, we will get to them very soon.

Auto-detecting CSV Flavor

If you know in advance what Flavors of CSV you’re working with, the Flavor class is going to work great for you.
But what if you don’t? Does the CSV format have some way of telling the developer what flavor of CSV it’s written
in? Unfortunately, it doesn’t. But CSVelte does. Any time you read CSV data using the Reader class, it will attempt
to determine the flavor of its provided dataset automatically. The upshot being that in the overwhelming majority of
cases, you can point a Reader object at some CSV data and it will just work.

How does it work?

It’s actually magic. I figured out how to do magic.

Hint: Is it really magic?

Yes.

Using flavor auto-detection

Using the auto-detect feature is so easy, you won’t even know you’re using it. Any time you instantiate a Reader
object without explicitly providing a flavor object, the library will analyze a sample of the data you’re trying to read
and build a flavor object for you, behind the scenes.

<?php
// flavor will be quietly inferred from a sample of "products.csv"
$reader = new Reader(new IO\Stream("./files/products.csv"));

Note: There will be a more detailed explanation of this when we get to the section on Reading CSV Data. But for
now, all you need to know is that CSVelte will always try to figure out the CSV flavor on its own unless you explicitly
provide one.

Analyzing CSV data manually

Behind the scenes, CSVelte’s auto-detect feature ultimately boils down to a single method of the Taster class. To
manually run the CSV analyzer (flavor taster), you must instantiate a Taster object, passing it a readable stream
object.

<?php
// create an input stream object that points to a CSV file
$csv = new IO\Stream('./data/products.csv');

// now, using that stream object, instantiate your taster
$taster = new Taster($csv);

1.1. User’s Guide 17

CSVelte Documentation, Release v0.2

// finally, you can "lick" the CSV data to discern its particular "flavor"
$flavor = $taster->lick();

This will work for the overwhelming majority of datasets, but if your data is too uniform or your sample too small,
the taster object will issue an exception. The exception’s message will contain a short explanation of why the taster
failed to produce a flavor object, along with an error code. This allows your script to recover from such a failure and
rather than display some arcane error page, perhaps prompt your end-user to provide this information or failing that,
just proceeding with a sane default. Let’s see what that might look like.

<?php
// this time we wrap our tasting code in a try/catch
// block for more graceful error recovery
try {

$csv = new IO\Stream('./data/products.csv');
$taster = new Taster($csv);
$flavor = $taster->lick();

} catch (Exception\TasterException $e) {
// log exception or something...
my_exception_log_function($e);
// flavor could not be determined, so lets use a sane default...
$flavor = new CSVelte\Flavor([

'lineTerminator' => PHP_EOL
]);

}
// proceed with data processing...
$reader = new CSVelte\Reader($csv, $flavor);

Reading CSV Data

Instantiating a Reader object

Before we can instantiate a Reader object, we must first instantiate a readable IO\Stream object. Let’s assume
we want to read a local CSV file located at /var/www/inventory.csv, and formatted according to the default
flavor.

// first instantiate a readable stream object...
$stream = new IO\Stream("/var/www/inventory.csv");
// then pass it to the reader
$reader = new Reader($stream);

We could also have used CSVelte’s reader factory method to do the same thing.

$reader = CSVelte::reader("/var/www/inventory.csv");

Tip: Any class that implements the Contract\Readable interface can be read by the Reader object. This
means you can write your own custom “readable” class if you’re so inclined. You aren’t in any way restricted to just
the stream class provided by CSVelte.

18 Chapter 1. User Documentation

CSVelte Documentation, Release v0.2

Specifying CSV Flavor

If you know in advance what flavor of CSV you’re working with, you can pass a Flavor object, or an associative
array of flavor attributes as the second parameter to the reader’s constructor 1.

// create readable stream
$in = new IO\Stream("./data/purchases.csv");

// explicitly pass a flavor object to the reader
$reader = new Reader($in, new Flavor([

'delimiter' => '|',
'lineTerminator' => "\n",
'quoteStyle' => self::QUOTE_ALL,
'escapeChar' => '//',
'doubleQuote' => false,
'header' => true

]));

// or...

// pass an associative array of flavor attributes
// the reader will convert it to a flavor object internally
$reader = new Reader($in, [

'delimiter' => '|',
'lineTerminator' => "\n",
'quoteStyle' => self::QUOTE_ALL,
'escapeChar' => '//',
'doubleQuote' => false,
'header' => true

]);

Taking the Pepsi challenge

Omitting the flavor parameter when instantiating a reader object tells CSVelte you want it to automatically detect the
CSV flavor. It will use the Taster class to analyze a sample of your CSV dataset and provide its best guess as to
what its flavor is. This applies whether you instantiate the reader manually or you use the factory method. All this
happens behind the scenes and is completely transparent unless something goes wrong, in which case you can expect
an Exception\TasterException.

Iterating using foreach

Reader implements PHP’s built-in Iterator interface 2, allowing the use of foreach to loop over each row in the
dataset. At each iteration, the key will refer to the current line number, while the value will contain a Table\Row
object.

<?php
foreach (CSVelte::reader('./data/inventory.csv') as $line_no => $row) {

do_something_with($row, $line_no);
}

1 Any function or method that accepts a Flavor object will also accept an associative array of flavor attributes. The two are often interchange-
able.

2 see Iterator interface at http://php.net/manual/en/class.iterator.php

1.1. User’s Guide 19

http://php.net/manual/en/class.iterator.php

CSVelte Documentation, Release v0.2

Filtering/skipping certain rows

Although you could loop over every row in a CSV file, and place if/elseif/else branches directly inside the body of
your foreach loop, like the following:

<?php
$reader = new Reader(new IO\Stream('./data/products.csv'));
foreach ($reader as $line_no => $row) {

if (isset($row[2]) && strlen($row[2]) > 10) {
continue;

}
if (isset($row[5]) && (int) $row[5] <= 1000) {

continue;
}
if (empty($row[8])) {

continue;
} elseif (isset($row[8]) && $row[8] == 'false') {

continue;
}
// now we can do something with $row
do_something_with($row);

}

This approach feels cluttered. A much cleaner, and clearer way to do this would be to filter out these rows using
anonymous functions as filters. The reader object can accept any number of Callables 3 to filter out these rows
instead. Let’s see how this might look.

<?php
$reader = CSVelte::reader('./data/products.csv');
$reader->addFilter(function($row) {

return ($row[2] < 10);
})->addFilter(function($row) {

return ($row[5] > 1000);
})->addFilter(function($row) {

return (!empty($row[8]) && $row[8] != 'false');
});
// now we can simply loop over our filtered reader and our unwanted rows
// will be filtered out for us automatically
foreach ($reader->filter() as $line_no => $row) {

do_something_with($row);
}

Warning: As I’ve mentioned several times, CSVelte is still in its infancy. Its API and many other things about
it are not yet stable. Several features can’t even be called complete yet. Reader filtering is one such incomplete
feature. There is currently no way to remove or alter filters once they’ve been added to the reader. If you need
to change the filters you’ve added to the reader in any way, you will need to completely reinstantiate the reader
from scratch. In the future there will be ways to remove filters after they’ve been added. In fact the reader filter
feature(s) will likely change quite a bit before CSVelte reaches stability at version 1.0 so use them (and CSVelte in
general) at your own risk until then.

3 see Callable type-hinting at http://php.net/manual/en/language.types.callable.php

20 Chapter 1. User Documentation

http://php.net/manual/en/language.types.callable.php

CSVelte Documentation, Release v0.2

Working with rows

When looping through CSV data using Reader and foreach, you will have access to a Table\Row object at each
iteration. You can use this object to access the row’s fields in various ways as well as to loop through its fields using
foreach just as you did with the reader object.

<?php
$reader = new Reader(new IO\Stream('./data/products.csv'));
foreach ($reader as $line_no => $row) {

foreach ($row as $col_no => $field) {
// now do something with $field

}
}

Row indexing

By default, rows will be indexed numerically, starting at zero. This means that in order to work with a particular
column’s value within a row, you will need to know what its numeric index will be. Let’s assume we’re working with
the following data:

Table 1.2: ./data/great-albums.csv

0 1 2 3
Lateralus Tool 2001 Volcano Entertainment
Wish You Were Here Pink Floyd 1975 Columbia
The Fragile Nine Inch Nails 1999 Interscope
Mezzanine Massive Attack 1998 Virgin
Panopticon ISIS 2004 Ipecac

The table above will represent our CSV data. The first row represents the index number for each column. So, let’s
take a look at how we might interact with such a dataset using Reader and Table\Row.

<?php
$reader = new Reader(new IO\Stream('./data/great-albums.csv'));
foreach ($reader as $line_no => $row) {

// for the first row, this will print:
// "One of my favorite albums is Lateralus by Tool."
printf("One of my favorite albums is %s by %s.\n", $row[0], $row[1]);

}

Indexing with the column headers

If your CSV data contains a header row, you can use column header values as your row indexes (rather than the
numerical indexing shown above). Let’s use the same dataset from before, only this time we’ll add a header row.

Table 1.3: ./data/great-albums.csv

Album Artist Release Year Label
Lateralus Tool 2001 Volcano Entertainment
Wish You Were Here Pink Floyd 1975 Columbia
The Fragile Nine Inch Nails 1999 Interscope
Mezzanine Massive Attack 1998 Virgin
Panopticon ISIS 2004 Ipecac

1.1. User’s Guide 21

CSVelte Documentation, Release v0.2

In order to be able to use column header values rather than numeric indexes, you must first ensure that your Flavor
object has its header attribute set to true. This will tell the reader that the first row in the dataset should be considered
the header row, rather than treated as data.

<?php
$flavor = new Flavor([

'header' => true
]);
$reader = new Reader(new IO\Stream('./data/great-albums.csv'), $flavor);
foreach ($reader as $line_no => $row) {

// now we can use column headers rather than numeric indexes
$album = $row['Album'];
$artist = $row['Artist'];
// or, if you like, you can still use the numerical indexes as well
$year = $row[2];
$label = $row[3];

}

Attention: You must remember to use the exact spelling and capitalization that the header row uses. “Album” is
not the same as “album”. If you use the latter, it will trigger an exception. You don’t want that. In the future, I will
likely relax this to allow any capitalization but for now, you must remember to use the header value exactly as it
appears in the data.

Writing CSV Data

The Writer class

The Writer class is the main workhorse for writing CSV data to any number of output sources. Instantiating
a writer is very similar to instantiating a Reader object. You simply instantiate any class that implements the
Contracts\Writable interface 1 and use that to instantiate a writer object.

Let’s assume we want to write a CSV file called ./data/products.csv. We would need to instantiate a
IO\Stream object pointing to that file, making sure to supply the “w” access mode to open the file in write mode
(you could also use the “a” mode if you want to append a stream rather than write a new one 2). Let’s see how that
looks:

// we use "w" access mode string to open stream in write mode
$out = new IO\Stream('./data/products.csv', 'w');
$writer = new Writer($out);

You could do the same thing using CSVelte’s writer factory method.

$writer = CSVelte::writer('./data/products.csv');

Setting the flavor

If you want to use a specific flavor of CSV (rather than the standard Flavor class), you can do so by passing a
Flavor object (or an associative array of flavor attributes) as the second parameter to the writer’s constructor and the
writer will write CSV according to your specified flavor. See Flavors of CSV for more on flavors and formatting.

1 CSVelte only ships with one class that implements the Contract\Writable interface, and that is IO\Stream – see CSV Streams for
more about that class

2 See the fopen file modes section on php.net for more possible stream/file access modes.

22 Chapter 1. User Documentation

http://php.net/manual/en/function.fopen.php
http://www.php.net/

CSVelte Documentation, Release v0.2

$out = new IO\Stream('./data/products.csv', 'w');
$flavor = new Flavor(['delimiter' => "\t"]);
$writer = new Writer($out, $flavor);

As I mentioned before, it is also acceptable to pass an associative array to the writer class rather than an Flavor
object to override the default flavor’s attributes. Here, we will override the standard delimiter, which is a comma, and
use a tab character instead.

$out = new IO\Stream('./data/products.csv', 'w');
$writer = new Writer($out, ['delimiter' => "\t"]);

We can shave off even more keystrokes by using CSVelte’s writer factory method to generate our writer for us. As
long as you don’t need some custom stream output or something, this is the quickest and easiest way and it works just
fine. Again, you can pass either a Flavor object or an associative array of flavor attributes as the second parameter.

$writer = CSVelte::writer('./data/products.csv', new Flavor\ExcelTab);

// or...

$writer = CSVelte::writer('./data/products.csv', ['delimiter' => "\t"]);

Writing a single row

Once you’ve instantiated a Writer object, you can use the Writer::writeRow() method to write CSV line-by-
line. You simply pass it an array or traversable (just be sure it contains the correct number of fields in the correct order
3).

<?php
$out = new IO\Stream('./data/products.csv', 'w');
$writer = new Writer($out);
// you can pass an array...
$writer->writeRow(['one', 2, 'three', 'fore']);
// or any traversable object, so long as it contains the correct number of fields...
$writer->writeRow(new ArrayIterator(['five', 'sicks', '7 "ate" 9', 10]));

Depending on the Flavor object you use, this should output something along the lines of:

one,2,three,fore
five,sicks,"7 ""ate"" 9",10

Writing multiple rows

If you have a two-dimensional array or any other traversable tabular data 4, you can pass it to the
Writer::writeRows() method to write multiple rows at once.

<?php
$out = new IO\Stream('./data/albums.csv', 'w');
$writer = new Writer($out);
$writer->writeRows([

3 Every row in a CSV dataset should contain the same number of fields in the same order. For full description of CSV format, see “What is
CSV?“

4 Tabular data, in this context, refers to any traversable two-dimensional data structure. Each set of traversables must contain the same number
of fields, in the same order or an exception will be thrown

1.1. User’s Guide 23

http://php.net/manual/en/class.traversable.php

CSVelte Documentation, Release v0.2

['Lateralus', 'Tool', 2001, 'Volcano Entertainment'],
['Wish You Were Here', 'Pink Floyd', 1975, 'Columbia'],
['The Fragile', 'Nine Inch Nails', 1999, 'Interscope']

]);

Depending on your Flavor attributes, this should output something along the lines of:

Lateralus,Tool,2001,Volcano Entertainment
Wish You Were Here,Pink Floyd,1975,Columbia
The Fragile,Nine Inch Nails,1999,Interscope

Setting the header row

CSV files allow an optional header row to designate labels for each column within the data. If present, it should always
be the first row in the data. You can go about writing your header row one of two ways. You can do it implicitly, by
simply making sure the first row you write is your header row, like so:

$out = new IO\Stream('./data/albums.csv', 'w');
$writer = new Writer($out);
$writer->writeRows([

['Album', 'Artist', 'Year', 'Label'],
['Lateralus', 'Tool', 2001, 'Volcano Entertainment'],
['Wish You Were Here', 'Pink Floyd', 1975, 'Columbia'],
['The Fragile', 'Nine Inch Nails', 1999, 'Interscope']

]);

But if you prefer to be explicit, like I do, you may use the Writer::setHeaderRow() method. Just be sure to
call it before writing any other rows to your output.

$out = new IO\Stream('./data/albums.csv');
$writer = new Writer($out);
$writer->setHeaderRow(['Album', 'Artist', 'Year', 'Label']);
$writer->writeRows([

['Lateralus', 'Tool', 2001, 'Volcano Entertainment'],
['Wish You Were Here', 'Pink Floyd', 1975, 'Columbia'],
['The Fragile', 'Nine Inch Nails', 1999, 'Interscope']

]);

This does the exact same thing as the first approach did, only it’s more explicit and more clear to any programmer who
comes along later, what you are trying to do.

Danger: You must be careful not to call Writer::setHeaderRow() after data has already been written to
the output source. That is to say, after any calls to Writer::writeRow() or Writer::writeRows(). This
will trigger an Exception\WriterException.

Using reader and writer together

The reader and writer classes are very useful by themselves, but when you combine them, you can really start to see
the power and usability of CSVelte. Let’s take a look at a few ways you can use Reader and Writer together to
accomplish common tasks.

24 Chapter 1. User Documentation

CSVelte Documentation, Release v0.2

Reformatting by changing flavor

As I mentioned before, Writer::writeRows() accepts either an array of arrays or any tabular data structure.
Instances of the Reader class, by design, fall within the second category. This means that you can instantiate a
reader object and pass it to Writer::writeRows() as a means to either filter out certain rows, change its flavor
(formatting), or both. Let’s take a look at a few examples.

<?php
// create our reader object, allowing it to automatically determine CSV flavor
$reader = CSVelte::reader("./data/albums.csv");

// now create a writer object, passing it an explicit flavor we want to reformat to
$writer = CSVelte::writer("./data/albums.tsv", new Flavor\ExcelTab());

// now you can simply pass the reader object to writeRows to get a tab-delimited file
$writer->writeRows($reader);

Filtering out unwanted rows

As demonstrated in Reading CSV Data, you can use the Reader::addFilter() method to attach any number of
anonymous functions to your reader to filter out unwanted rows. You can then iterate your filtered reader using the
Reader::filter() method. Again, because Writer::writeRows() can accept any traversable tabular data
structure, you can pass the return value of Reader::filter() to Writer::writeRows() to write a new CSV
file, less your unwanted rows.

// create our reader object
$reader = CSVelte::reader("./data/albums.csv");
// this will filter out all but 90's albums
$reader->addFilter(function($row) {

return ($row['Year'] >= 1990 && $row['Year'] < 2000);
});

// now create a writer object, pointing to a new "90s-albums.csv" file
$writer = CSVelte::writer("./data/90s-albums.csv");

// now you can simply pass the reader object to writeRows to get a CSV
// file with only 90's albums from the original CSV file
$writer->writeRows($reader->filter());

Facades and Factories

My goal with CSVelte is to provide a simple, yet powerful and flexible object-oriented interface for CSV data pro-
cessing and manipulation. Sometimes though, in order to provide the level of flexibility I desire, simplicity and ease
of use suffer. But, being the hard-headed fella that I am, rather than give up any of that power or flexibility, I provide
you with facades and factory methods which instead abstract away that flexibility in favor of ease of use.

Note: If you’re wondering why I showed you these last, it’s because I wanted you to learn how to instantiate readers
and writers manually before resorting to factory/facade methods exclusively. Using these methods eliminates the
possibility for you to use a custom IO\Stream object, effectively eliminating a huge chunk of functionality just to
save a few keystrokes. Don’t get me wrong, there’s nothing wrong with shortcuts, just don’t overdo it.

1.1. User’s Guide 25

CSVelte Documentation, Release v0.2

Factory methods

CSVelte provides, via the CSVelte class, several methods for quickly and easily generating common objects. Let’s
take a look at them.

static reader($uri[, $flavor = null])
Parameters

• $uri (string) – A fully-qualified stream URI or the path to a local file.

• $flavor (array|Flavor) – An explicit flavor object or an array of flavor attributes to
pass to the reader.

Returns Reader object for specified stream URI or file

Throws Exception\IOException

Reader factory method. Provides a shortcut for creating a Reader object.

<?php
foreach (CSVelte::reader("./data/inventory.csv") as $line_no => $row)
→˓{

do_something_with($row);
}

static writer($uri[, $flavor = null])
Parameters

• $uri (string) – A fully-qualified stream URI or the path to a local file.

• $flavor (array|Flavor) – An explicit flavor object or an array of flavor attributes to
pass to the reader.

Returns

Writer object for specified stream URI or file

Writer factory method. Provides a shortcut for creating a Writer object.

<?php
$data = some_func_that_returns_tabular_data();
CSVelte::writer("./data/reports.csv", [

'delimiter' => "\t",
'lineTerminator' => "\n"

])->writeRows($data);

Facade methods

The CSVelte class also provides the following facade methods 1.

static export($uri[, $data[, $flavor = null]])
Parameters

• $uri (string) – A fully-qualified stream URI or the path to a local file.

• $data (mixed) – Anything that can be passed to Writer::writeRows()

1 A facade, in programming, is the abstraction of a complex and/or verbose interface into a more concise, simpler one. See “facade design
pattern”.

26 Chapter 1. User Documentation

https://www.google.com/webhp#q=facade+design+pattern
https://www.google.com/webhp#q=facade+design+pattern

CSVelte Documentation, Release v0.2

• $flavor (array|Flavor) – An explicit flavor object or an array of flavor attributes to
pass to the reader.

Returns

The number of rows written to the output stream.

Writer facade method. Provides a shortcut for exporting tabular data to a stream or local file.

<?php
$data = some_func_that_returns_tabular_data();
CSVelte::export("./data/reports.csv", $data, [

'delimiter' => "\t",
'lineTerminator' => "\n"

]);

Hint: Although there isn’t currently a CSVelte::import() method (to produce a two-dimensional array from a
CSV dataset), you may combine the CSVelte::reader() and CSVelte::toArray()methods to approximate
this functionality.

CSVelte::reader("./data/products.csv")->toArray();

Tip: It’s a trade-off, like almost any design decision in programming. And it’s one you’ll have to make when you go
to write your own code using CSVelte. The question you need to ask yourself is, “Do I need power and flexibility, or
do I just need to get shit done?”

1.2 API Documentation

The API documentation is an exhaustive listing of every class, method, property, exception, and function defined by
CSVelte as well as definitions for each of them. This portion of the documentation is generated automatically by
a piece of software called ApiGen. It’s definitely the most comprehensive of the three documentation sections, but
not the easiest to read. It is recommended that you read the User’s Guide to learn and the API Documentation as a
reference.

1.2.1 API Documentation

The API documentation is an exhaustive listing of every class, method, property, exception, and function defined by
CSVelte as well as definitions for each of them. This portion of the documentation is generated automatically by
a piece of software called ApiGen. It’s definitely the most comprehensive of the three documentation sections, but
not the easiest to read. It is recommended that you read the User’s Guide to learn and the API Documentation as a
reference.

Note: As I mentioned, the API documentation is automatically generated by a piece of software called ApiGen.
For this reason, it’s currently hosted seperately from the rest of the documentation sections. I’m working on getting
everything hosted together and you can expect that to happen before the v1.0 release.

You can find CSVelte’s external API documentation at http://phpcsv.com/csvelte/apidocs/latest

1.2. API Documentation 27

http://www.apigen.org
http://www.apigen.org
http://www.apigen.org
http://phpcsv.com/csvelte/apidocs/latest

CSVelte Documentation, Release v0.2

1.3 Tutorials

While the user’s guide and API docs focus on explaining and defining CSVelte’s features and classes (respectively),
the tutorials focus on its actual use. Each tutorial addresses a specific use case, providing a somewhat opinionated
solution and walking you through it step by step. Each tutorial can be downloaded in its entirety, including working
source code and instructions.

1.3.1 Tutorials

Caution: I’m sorry! I haven’t had time to write any tutorials yet. I’m only one man and I only have so much time.
Tutorials will be added as I find the time to write them. Thank you for your patience!

While the user’s guide and API docs focus on explaining and defining CSVelte’s features and classes (respectively),
the tutorials focus on its actual use. Each tutorial addresses a specific use case, providing a somewhat opinionated
solution and walking you through it step by step. Each tutorial can be downloaded in its entirety, including working
source code and instructions.

Import/Export to Database

28 Chapter 1. User Documentation

Index

Symbols
() (method), 26

R
RFC

RFC 4180, 4, 5, 10, 16

29

	User Documentation
	User's Guide
	API Documentation
	Tutorials

