

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.




          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Csound-expression guide

[image: _images/Join%20Chat.svg]Join the chat at https://gitter.im/anton-k/csound-expression [https://gitter.im/anton-k/csound-expression?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

Welcome to the simplest textual synthesizer.

> dac $ osc 440





Csound-expression is a Haskell framework for computer music.
With the help of the library we can create our instruments on the fly.
A couple of lines in the interpreter is enough to get the cool sound going
out of your speakers. It can be used for simple daily sound-file processing
or for a full-blown live performances. It’s available on Hackage [http://hackage.haskell.org/package/csound-expression].

Let’s look at how we can create computer music with Haskell.




	Introduction [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Intro]


	Basic types [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/BasicTypesTutorial]


	Signals everywhere [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SignalTfm]


	Rendering Csound files [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/ProducingTheOutputTutorial]


	Basics of sound synthesis [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SynthTutorial]


	User interaction [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/UserInteractionTutorial]


	Scores [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/ScoresTutorial]


	Events [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/EventsTutorial]


	Real-world instruments show case [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Patches]


	FX family [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/FxFamily]


	SoundFonts [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SoundFontsTutorial]


	Custom temperament. Microtonal music [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Tuning]


	Samples [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SamplesTutorial]


	Signal segments [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SignalSegmentsTutorial]


	Widgets for live performances [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/LiveWidgetsTutorial]


	Padsynth algorithm [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Padsynth]


	Granular synthesis [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/GranularSynthesisTutorial]


	Arguments modulation [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/ModArg]


	Spectrums [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Spectrums]


	Arrays [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Arrays]


	Csound API. Using generated code with another languages [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/CsoundAPI]


	Creating plugins with Cabbage [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/CabbageTutorial]


	Imperative instruments [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/ImperativeInstruments]






Appendix:


	Introduction to Csound for Haskellers [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/appendix/CsoundInstro]


	Overview of the library [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/appendix/Overview]






WARNING: the library works best within ghci. The real-time sound rendering
function dac spawns a child process in the background which may continue
to execute after you stop the main process that runs the programm.
It’s not so in vim but it happens in the Sublime Editor and when you
invoke runhaskell. So the best is to write you program in the separate
file and then load it in the ghci and invoke the function main
(which runs the sound rendering with the function dac).




News

The new version 5.3 is out. Support for modern Haskell and Csound, sync with global BPM

Let’s look at the new features.


	The project was updated to compile with new GHC 8.4.x.
Also it was tested on previous compilers down to 7.8.
So the CE should compile across 7.8 to 8.4 GHC compilers.


	The library was updated to support latest Csound stable release 6.10.
There are many new DSP algorithms available with this update.
Among them there are many great filters like emulation of Korg 35 analog filter,
or emulation of Roland TB-303 resonant filter, zero-delay feedback filters.
You can find them at the module Csound.Air.Filter.


	Also documentation, examples and tutorial were updated for
recent changes.


	This release features new effects useful for guitars.
Like emulation of Roland Space echo (function tapeEcho or magnus)
and ambient guitar effect (ambiEnv, ambiGuitar).
The Space echo simulates behaviour of magnetic tape delay.
Ambient guitar detects strike attacks in the audio signal and
smoothes them down, so that they sound like pads.


	New addition is built in BPM synchronization. User can set global BPM
with function setBpm. Then it’s possible to use functions that
synchronize Hzs (function syn) and seconds (function takt) to
global BPM. It’s useful to align delay times and LFO rates with
global BPM. Also module csound-sampler was updated to respond
to changes in global BPM.


	There are some additions to improve usability of the library
like adding new instances for rendering to Csound files.
Like rendering functions with arbitrary number of inputs and outputs
and rendering of functions augmented with UIs.


	New useful functions: brown for brownian noise, resizeGui
for scaling GUIs window size.




The 5.2 is out. Virtual pedalboards, arrays, new OSC, full support for mono synthesizers, patch skins, all GEN-routines are implemented

New features:


	Complete support for monophonic synthesizers:


	The argument of mono synth was updated.

Previously it was a pair of amplitude and frequency signals.
But this representation doesn’t captures the notion of note retrigger.
We can not create the mono-synt with sharp attacks.

Now this is fixed. We can use adsr140 or adsrMonoSynt functions to create
mono synths with fixed attacks



	monoSco  - for playing scores with mono-synths


	monoSched - for playing event streams with mono synt


	atSco and atSched now work for mono synth too






	The patch can change the skin. The Patch type has changed. Know it supports the change in common parameters.
Right now the ccommon parameters include only Low-pass filter type. But this can be extended in future releases.

The idea is that we can parametrize the patch with some common arguments so that use can tweak them
without revriting the algorithm.

The low-pass filter is a vital tool that defines the character of the synthesizer.
With recent addition of several modern filter emulators (like Korg (korg_lp), or acid filter diode)
it’s good to be able to quickly switch the filters. We can do it for patches with function

setFilter :: ResonFilter -> Patch a -> Patch a







	Family of standard effects was added (see module Csound.Air.Fx.FxBox and the guide [https://github.com/spell-music/csound-expression/blob/master/tutorial/chapters/FxFamily]).
The effects are kindly provided by Iain McCurdy (recoded from his original implementation in Csound).

The effects have catchy names and are defined on wide variety of types. Let’s briefly discuss the naming conventions:


	adele - analog delay


	pongy - ping pong delay


	tort  - distortion


	flan  - flanger


	fowler - Envelope follower


	phasy  - phaser


	crusher - bit-crusher


	chory  - stereo chorus


	tremy  - tremolo


	pany   - panning


	revsy  - reverse playback




Also there are set of presets that imply the notion of add a bit of effect or add a lot of effect.
They are suffixed with number from 1 to 5. Like flan1 or tort3. Also if the effect support the
tone knob (center frequency of LP filter) ter are suffixes b for bright color and m for muted color.
For example tort2m or adele2b.

The effects are just functions from signals to signals:

dac $ hall 0.2 $ adele2 0.5 0.25 $ flan2 $ tort1m $ asigs







	UI widgets for standard effects.

Alongside with effects there are functions to create widgets (UI-controls). They have the same naming convention
only the prefix ui is added. For example: uiTort, uiAdele or uiHall. Also there are predefined presets like uiFlan2 or uiPhasy3.
With presets we put the box in the initial state corresponding to the given preset. But lately we can change it with UI-controls.

With this feature paired with functions fxHor, fxVer and fxGrid we can easily design our virtual pedalboards.

It can be used like this:

> let pedals = fxGrid 2 [uiFlan1, uiTort1, uiAdele2m 0.5 0.3, uiHall 0.25]

> dac $ fxApply pedals $ (sawSeq [1, 0.5, 0.25] 2) * sqr 220







	Complete list of GEN routines. This release adds GEN:

  * 25 bpExps --  Construct functions from segments of exponential curves in breakpoint fashion.,

  * 27 bpLins --  Construct functions from segments of straight lines in breakpoint fashion.

  * wave waveletTab -- Generates a compactly supported wavelet function.

  * farey fareyTab -- Fills a table with the Farey Sequence Fn of the integer n.

  * sone soneTab -- Generate a table with values of the sone function.

  * exp expTab -- rescaleExpTab Generate a table with values on the exp function.

  * tanh tanhTab -- rescaleTanhTab Generate a table with values on the tanh function.

  * 52 readMultichannel -- Creates an interleaved multichannel table from the specified source tables, in the format expected by the ftconv opcode.

  * 41 randDist -- Generates a random list of numerical pairs.

  * 42 rangeDist Generates a random distribution of discrete ranges of values.

  * 40 tabDist -- Generates a random distribution using a distribution histogram.

  * 43 readPvocex -- Loads a PVOCEX file containing a PV analysis.

  * 28 readTrajectoryFile -- Reads a text file which contains a time-tagged trajectory.

  * 24 readNumTab --  Reads numeric values from another allocated function-table and rescales them.

  * 21 dist, uniDist, linDist, triDist, expDist, biexpDist, gaussDist, cauchyDist, pcauchyDist, betaDist, weibullDist, poissonDist -- Generates tables of different random distributions.

  * 18 tabseg -- Writes composite waveforms made up of pre-existing waveforms.

  * 31 mixOnTab -- Mixes any waveform specified in an existing table.

  * 32 mixTabs -- Mixes any waveform, resampled with either FFT or linear interpolation.

  * 30 tabHarmonics -- Generates harmonic partials by analyzing an existing table.





See the Csound docs [http://www.csounds.com/manualOLPC/ScoreGenRef.html] for details of what table they produce.
Also the signatures for windows creating tabs was updated. It became more specific.



	Global arguments defined with Macros. We can create a Csound .csd file in our program
and after that we can run it on anything which has Csound installed. It’s desirable to be able
to tweak some parameters after rendering or to have some global config arguments.
In Csound we can do it with macroses. We can use macros name in the code adn then we can change the value of the
macros with command line flag --omacro:Name=Value.

From now on it’s possible to do it with Haskell too. There are functions:

readMacrosDouble  :: String -> Double -> D
readMacrosInt     :: String -> Int -> D
readMacrosString  :: String -> String -> Str





The first argument is a macro name and the second one is the default value
which is used if no value is set in the flags.



	The useful function to trigger an table based envelope. It comes in two flavors. One is driven with event stream
and another with just a signal. It’s on when signal is non zero.

trigTab :: Tab -> Sig -> Sig -> Sig
trigTab tab duration triggerSignal

type Tick = Evt Unit

trigTabEvt :: Tab -> Sig -> Tick -> Sig
trigTabEvt tab duration triggerSignal







	New functions for UI widgets.


	We can change the relative size of the window. If the widget is too large or too small
we can rescale it with functions:

type ScaleFactor = (Double, Double)

resizeGui :: ScaleFactor -> Gui -> Gui

resizeSource :: ScaleFactor -> Source a -> Source a





They change the default minimal sizes for all widgets that are contained within the given widget.



	Grid layout. We are familiar with functions ver and hor. With them we can place the widgets vertically or horizontally.
But now it’s also possible to place the widgets on the grid:

grid :: Int -> [Gui] -> Gui





The first argument specifies the number of elements in each row.

There are handy grid functions for combining source-widgets:

gridLifts :: Int -> ([a] -> b) -> [Source a] -> Source b





It applies a list based function to a list of value producer widgets and places all widgets on the grid.
The first argument is the same as with grid.



	UI default sizes are a bit smaller now.






	It compiles on GHC-7.8 again


	New function whileRef for imperative while loops.

whileRef :: Tuple st => st -> (st -> SE BoolSig) -> (st -> SE st) -> SE ()
whileRef initState condition body





It’s used in this way. It stores the initial state in the reference (local variable)
and the it starts to implement the body while the predicate returns true. Notice that
the body is also updates the state.



	New functions for OSC that make it easy to read OSC messages that are interpreted like signals.
For example we have an OSC-routine for volume control. When message happens we update the value.
It would be good to be able to just read the signal:

listenOscVal :: (Tuple a, OscVal a) => OscRef -> String -> a -> SE a
listenOscVal oscRef address initValue





There are two useful aliases for this function. They read signals and pairs of signals:

listenOscSig  :: OscRef -> String -> Sig  -> SE Sig
listenOscSig2 :: OscRef -> String -> Sig2 -> SE Sig2







	Adds loopers that preserve attacks when rescaling by tempo.
They are based on temposcal Csound algorithm.
The previous loopers were based on the mincer algorithm. It uses FFT under the hood which can smooth out the sharp attacks.
It’s undesirable for percussive loops. The temposcal adds the feature of preserving attacks.

See the functions:

-- | reads stereo files with scaling
scaleWav ::  Fidelity -> TempoSig -> PitchSig -> String -> Sig2

-- | reads mono files with scaling
scaleWav1 :: Fidelity -> TempoSig -> PitchSig -> String -> Sig





Also there are presets for scaling the drums or harmonic instruments (they set the appropriate fidelity):

scaleDrum, scaleHarm :: TempoSig -> PitchSig -> String -> Sig2





The fidelity is the degree of the size of FFT window. The formula for window size: 2 ** (fidelity + 11).

Also the corresponding functions are added for csound-sampler.

wavScale :: Fidelity -> TempoSig -> PitchSig -> String -> Sam
wavScale1 :: Fidelity -> TempoSig -> PitchSig -> String -> Sam

drumScale, harmScale :: TempoSig -> PitchSig -> String -> Sam







	The type signatures for echo and pingPong where simplified. Now they don’t use side effects
and look like pure functions:

echo :: MaxDelayTime -> Feedback -> Sig -> Sig
pingPong :: DelayTime -> Feedback -> Balance -> Sig2 -> Sig2







	Type signatures for functions randSkip and freqOf where generalized. Now they use signals for probabilities
instead of constant numbers. So we can change the probability of skip of the event during performance.


	New monophonic instruments are added in csound-catalog: fmBass1, fmBass2, dafunkLead and one polyphonic celloSynt.
Those instrument serve a good example for building monophonic synthesizers with sharp attacks.




Experimental features:


	Arrays, with all opcodes and functional traversals. See the guide for details details [https://github.com/spell-music/csound-expression/blob/master/tutorial/chapters/BasicTypesTutorial.md#arrays-arr].


	Imperative style instruments.

With imperative style instruments we can create and invoke the instruments in Csound way.
we can create an instrument and get it’s unique identifier. Than we can schedule a note by that identifier.

We can create an instrument that produces a sound with function:

newOutInstr :: (Arg a, Sigs b) => (a -> SE b) -> SE (InstrRef a, b)





It takes in a body of the instrument and gives back an instrument reference and
a signal where the output is going to be written. Then we can invoke the notes just
like we do it in the Csound with function scheduleEvent:

scheduleEvent :: Arg a => InstrRef a -> D -> D -> a -> SE ()
scheduleEvent instrRed delayStartTime duration arguments





It takes in instrument reference, start time from the time of invocation, duration (all in seconds) and miscellaneous arguments.
Notice that the instrument reference is parametrized by the type of arguments. This way we can not feed the wrong messages to the instrument.

Also we can create procedures that produce no output but do something useful:

newInstr :: Arg a => (a -> SE ()) -> SE (InstrRef a)











The 5.1 is out! Let’s warm up our hearts with new bright ideas in this Cold winter! New features:

csound-expression


	New data type for Patches! This change is incompatible but it brings better support for playing patches live!
The polyphonic and monophonic patches are united with single data-type so we can play them with the same functions.
Also now we can create layered patches to play several patches at the same time and also we can split the keyboard
on sections to play different patches on different sections. It’s useful feature available in many modern synthesizers.
But here we can include any number of layers! and we can mix mono and poly instruments together!

See the guide on patches [https://github.com/spell-music/csound-expression/blob/master/tutorial/chapters/Patches] to read the details.



	Hard and soft sync. Lots of functions added for hard and soft sync. Check out the module Csound.Air.Wave.Sync.


	Morpheus is here. New cool granular synthesizer is included. It’s based on partikkel opcode.
The aim is to simplify the work-flow with partikkel opcode. The API is experimental right now and might change.
See the module Csound.Air.Granular.Morpheus for details.


	Rewrite for filters. Filters get new names that suppose the audio-quality of the filter. Also many filters were redesigned
to unify the parameters (order of arguments and ranges). Check out the module Csound.Air.Filter.


	Many great filters were added thanks to the work of Steven Yi. Now we can use


	zero-delay filters: zlp, zhp, zbp, zladder, zdf2, zdf4.


	diode ladder filter (famous acid sound of TB-303): diode, linDiode


	Korg 35 filters: korg_lp, linKorg_lp, korg_hp




New classical analog-like filters:


	Chebyshev type I and II low pass filters: lpCheb1, lpCheb2 (also there are high-pass versions)


	new butterworth filters: clp




Named filters with specific character suggested with a name: plastic, wobble, trumpy, harsh.



	Transforming the audio with impulse responses now is super easy. Check out the new functions monoIR, stereoIR
from the module Csound.Air.Fx. With those functions we can easily add complicated and beautiful reverbs
from natural environments or classical reverberation units. There are plenty IR resources you can find out on the WEB.
Also it adds the cool zconv function for zero convolution delay kindly provided by Victor Lazzarini.


	Cabbage support. Adds full support for building cabbage [http://cabbageaudio.com/] interfaces. Checkout the module Csound.Cabbage.
We can create vst-plugins with it!  Still needs help for testing. We can check out the tutorial on how to build cabbage interfaces
with csound-expression library: Cabbage guide [https://github.com/spell-music/csound-expression/blob/master/tutorial/chapters/CabbageTutorial].


	Useful aliases for classic reverbs with single dry-wet ratio as a parameter: room, chamber, hall, cave.
We can use it like this: dac $ hall 0.25 mySynt instead of dec $ mixAt 0.25 largeHall2 mySynt.


	Raw waveforms for analogue-like oscillators: rawSaw, rawTri, rawSqr non-band limited based
on table lookup. Can be useful for LFOs or more light-weight versions of oscillators than saw, tri or sqr.


	mul’ new scaling function. Scaling with side-effects. Can be useful to scale with random envelope.


	Adds table read and write opcodes. Adds opcodes tablewa, tablew, readTab, readTable, readTable3, readTablei.
See the module Csound.Tab for details.


	Convenient aliases for reading from audio-files to tables. New names wavLeft, wavRight, mp3Left, mp3Right to read
audio by channels. Also we can read both channels with functions wavs and mp3s.


	Support for up to 8 outputs. More instances for RenderCsd were added. Now we can play back up to 8 signals at the same time!


	Useful option to suppress the event printing on the screen. By default the Csound prints out every message on the screen (with time stamps and amplitudes).
Now we have useful function noTrace to suppress those messages. Just write dacBy noTrace $ mySigs to stop them.


	Adds More option setters for RT-audio engines. New option setters: setAlsa, setMme, setCoreAudio.
Also it fixes the name of the RT-engine for OSX.




csound-sampler


	Adds randomized patterns with which we can skip the beats in the fixed pattern by given probability: rndPat and rndPat'.




The 5.0 is out! New features:

csound-expression


	Microtonal tunings. We can use custom temperaments with insturments, patches, soundfonts and MIDI-instruments.
Check out the guide on tuning and microtonal music (see also module Csound.Tuning).
There are many predefined tunings (including ancient ones).
Now we can play the authentic Bach music with Haskell!
See Custom temperament. Microtonal music [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Tuning]
for details.


	Functions for Csound API. We can interface with generated code through many other languages.
We can generate the code with Haskell and the use it in other environments. we can build UI with Python or Clojure,
we can create an Android synthesizer. See the guide section on Csound API.
See Csound API. Using generated code with another languages [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/CsoundAPI]
for details.


	Padsynth algorithm (need Csound 6.05). There are functions that makes it easy to use wonderful PADsynth algorithm,
This algorithm is designed to make “alive” instruments, natural pads.
There are not only function that explore the algorithm but also new PAtches in the
package csound-catalog that are based on it! See the section in the guide on the PADsynth.
Lot’s of padsynth instruments are mode with morphing support. We can crossfade between 2 or even 4 timbres.
See Padsynth algorithm [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Padsynth]
for details.


	Argument modifiers make it very convinient to modulate the rguments (apply vibrato to frequency
or add some randomness to the parameter). See Arguments modulation [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/ModArg]
for details.


	The hard clipping was substituted with limiter. There should be no distortion when
amplitude goes higher than 0dbfs value.


	Adds Ping-pong delay implementation. See function pingPong at the module Csound.Air.Fx.


	Adds Rory Walsh’s brand new analog filters (need Csound 6.07). See functions alp1, alp2 and alp3 at the module Csound.Air.Filter.


	Bugfixes for mixAt function. Now it doesn’t duplicates the effectful-code.
Now mixAt is not a function that is based on class At. It becomes
a method in it’s own class called MixAt. That fixes the code duplication problem.




csound-catalog


	new instruments that are based on PADsynth algorithm. Check out Csound.Patch
at the section on PADsynth Sharc instruments. There are new deep spiritual vedic pads
(vibhu, rishi, agni, prakriti, rajas, avatara, bhumi).
See Padsynth algorithm [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Padsynth]
for details.




csound-sampler


	adds some useful instances for class At and MixAt.




The 4.9.0 is out! New features:

csound-expression


	Functions for creation of FM-synthesizers. We can create
the whole graph of FM-units (with feedback). Check out the module Csound.Air.Fm


	Support for Monosynth patches. See atMono in the module Csound.Air.Patch


	Easy to use Binaural panning. See the module Csound.Air.Pan


	Construction of patches for sound fonts (sfPatch, sfPatchHall).


	Table of tables. We can create a table that contains tables.


	Harmonic oscillators for subtractive synth: buz and gbuz


	Reverbs for patches. It’s very easy to add a reverb to your  patch
(withSmallHall patch, withLargeHall patch, etc)


	Some bug-fixes




csound-catalog


	Many mono-synth were added. You can use them with function atMono
in place of atMidi. The mono versions of patches have suffix m.


	SHARC instruments. SHARC db contains a FFT-samples for sustain notes.
It includes many orchestra instruments. There are many new patches that
use natural sounding timbres taken from the SHARC library.
Check out functions soloSharc, padSharc, dreamSharc.




csound-sampler


	Handy function withBpm allows to query current bpm with in the scope
of expression.


	Sampler mappers were generalized.


	Char trigering functions are synchronized with bpm.




The 4.8.3 is out! New features:

This is a very important release to me.
It tries to solve the problem present in the most open source music-production libraries.
It’s often the pack of beautiful sounds/timbres is missing. User is presented with
many audio primitives but no timbres are present to show the real power of the framework.
This release solves this problem. See the friend package csound-catalog on Hackage.
It defines 200+ beautiful instruments ready to be used.

The csound-expression defines a new type called Patch for description of an instrument
with  a chain of effects. It’s good place to start the journey to the world of music production.

There are new functions for synchronized reaction on events. The triggering of events
can be synchronized with given BPM.

There examples are fixed and should work.

The library is updated for GHC-7.10!

The 4.8.2 is out! New features:

This release improves oscillators in many ways.
Adds phase control to many standard oscillators.
There are functions to detune oscillator and create unisions of oscillators
(multioscillators or chorus effect).

Adds support for randomly generating events (with random frequency).

The 4.8 is out! New features:

A multitap looper is implemented (see Csound.Air.Looper). It’s  a powerful widget
with lots of controls. We can create unlimited number of taps.
And the length of the loops doesn’t have to be the same for all taps.
We can insert effects and even external controllers. And all this is packed
as a simple function that produces a widget and the output signal.
Three types of loopers are available one is for raw signal inputs,
another for midi instruments and the last one is for soundfonts.
You can see it in action at youtube [https://www.youtube.com/watch?v=cQQt9bu_x-A].

There are lots of new step sequencers available.
Pre 4.8 step sequencers could only produce signals
with equal time segments but new step sequencers can
play a tiny melodies. The API of temporal-media is
supported for step sequencers (see Csound.Air.Envelope).
There is a new type called Seq. It’s for step sequencers
that can play monophonic melodies.

There is a type class for humanization of envelopes.
It works for linseg and step sequencers. It adds some amount
of randomness to durations or values (see Csound.Air.Envelope HumanValue
and HumanTime).

A midi chooser ui-box was implemented (see Csound.Air.Live, hmidiChooser, uiMidi).
It makes it easy to choose a midi instrument among several alternatives. There are stand alone
widgets and widgets implemented as an effect-box.

The class Compose from temporal-media package was broken
to two classes: Harmony (with function hor)
and Melody (with function mel).

The 4.7 is out! New features:

The Scores are redesigned! The low level CsdEventList is substituted
with more advanced and flexible type Sco. The instruments are triggered not
with pairs or triplets (individual events) but with scores!

The lib now depends on common APIs for delaying and composing values.
There are common type classes for composition.

There is a simple API for composition of samples, notes and signal segments.
The mel plays units sequentially, The hor plays units at the same time.
The del delays the unit by given amount of time, The lim limits the unit in time.
the loop creates infinite loops. The loopBy creates finite loops.
The list of all functions can be found in the package temporal-media. See
the module Temporal.Class.

I need to update the guide for changes!

The 4.6 is out! New features:


	Granular delays and effects (see Csound.Air.Granular)


	It’s possible to create tables not only for reading but also for writing.
We can create sound buffers (see newTab and newGlobalTab in the module Csound.Tab).


	Hyper Vectorial Synthesis (HVS). Easy to use functions for HVS (see Csound.Air.Hvs)
With HVS we can control lots of parameters with a couple of sliders.
The HVS can reduce the size of control parameters by interpolating between snapshots of parameters.


	New spectral functions for spectral fusion: crossSpecFilter and crossSpecVocoder (see Csound.Air.Spec)


	New effect for playing input samples in segments (back and forth) trackerSplice
(original design by Rory Walsh). With it we can extract segments of live audio and
repeat them or play in reverse.




The 4.5 is out! New features:


	Easy to use granular synthesis (see Csound.Air.Granular)


	Support for opcode mincer. It’s possible to scale pitch and tempo
of audio files independently (see Csound.Air.Wav ram reading functions).




The 4.4 is out! New features:


	Signal segments.  With signal segments we can schedule audio signals
with event streams. We can limit audio signals with clicks of the buttons
or some other live events. We can retrigger samples, play them in sequence and
perform many more actions shich are tied to the event streams.


	Triggering samples with keyboard and midi-events (see Csound.Air.Sampler).








          

      

      

    

  

    
      
          
            
  
CE 5.3


More generic types for sending to speakers

More inputs and outputs for rendering to speakers (the type becomes more generic)



User defined options

User defined options. now user can create his own default settings.
In HOME directory start ghci and run:

> saveUserOptions options





The line creates a file .csound-expression-rc in the current directory.
When options are rendered this file is read for defaults.

For example by default sample rate is set to 44100.
This is a good value for real-time performance on modest computers.
But if you have a powerful computer or use Csound mostly to write
tracks at home and you are all for precision and accuracy rather then for
speed of performance. You can set your own sample rate like this:

> saveUserOptions (setRates 48000 10)





another example for Linux users.
By default Csound uses pulseaudio.  But if you want to use JACK by default
you can just execute in the ghci at your home directory:

> saveUserOptions (setJack "csound")





And now each time you invoke the csound rendering function
it’s going to be wrapped in the JACK audio-unit with name csound.
The same things can be set for midi interfaces or output message level.

If we run the saveUserOptions command at the home directory
the options become global for the whole system.

But we can also set default options on per project basis.
If the CE finds the file like this in your current directory
it uses the options from it instead of the options from the
user’s HOME directory.

Also we can use this trick to shadow the global settings if
we don’t want to use them for the current project.
Just  execute:

> saveUserOptions def





to fall back to the CE defaults.



Bug fixes:

Bug fix for sendOsc





          

      

      

    

  

    
      
          
            
  
csound-catalog

A gallery of csound instruments




          

      

      

    

  

    
      
          
            
  
Changelog for csound-controllers


Unreleased changes





          

      

      

    

  

    
      
          
            
  
csound-controllers




          

      

      

    

  

    
      
          
            
  
Release todo


	update docs for


	Patches


	FXs


	GENs










– Done


	synth character for Patches (change filters)  maybe it’s worth to add attack and decay?


	all GENs are implemented (except 15)


	FXs with presets and UIs






– future releases


	arpeggiator (note that we already have tabQueue opcodes, it can simplify the implementation)


	make granular oscillators (based on SHARC and partikkel)


	add filters with adjectives for character names


	casio oscillators


	nord drums


	freeverb


	What about moving to 48 KHz? (look out for the bug in sampler (for loading samples that have different sampling rate than the global settings))


	Global signals for patches


	Podolski oscillator


	try to emulate some instruments from commercial Virtual-analog synths






– next release (super hard problems)


	global tempo


	note arpegiator


	thinking on more modular approach (creation of streams of notes instead of callback functions)
arpeggiator as anote transformer


	thinking on delay + sampler bug


	thinking on moving from Hash nums to Andy Gil CSE or maybe there are better alternatives?


	redesign the state of the renderer







          

      

      

    

  

    
      
          
            
  

– hard to implement within the urrent model

GEN15 — Creates two tables of stored polynomial functions.



          

      

      

    

  

    
      
          
            
  listenOsc :: OscVal a => OscPort -> OscAddr -> Evt a

opcode OSC_port_addr, 0, kkS
…
endop

kval1 init 0
kval2 init 0
nextmsg:
kk OSClisten …..
if (kk == 0) goto ex
OSC_port_addr kval1, kval2ex:
endif



nport = 7700

names <- newStrArr size

runEvt (listenOsc nport) $ (OscInt channel, fileName) -> do
writeArr names channel fileName
updateChannelPlyback channel



          

      

      

    

  

    
      
          
            
  
Readmap


next release todo:

almost done


	newInstrLinked






+2 release todo

New type Gen for generative music. It will be easy to define
random generators for musical structures (or event streams)

atSco for mono-synt



+3 release todo

Global BPM, synced LFOs, EGs, Delays
Global bpm should be a signal (not a fixed constant)

implement arpeggiator



+4 release todo

Make synced performances. Is it possible to devise a model
where we can launch several csound-files in sync by BPM.
It can open the possibility imitation of the live coding. We can launch
several performances and stop some of them in favour of another ones.





          

      

      

    

  

    
      
          
            
  GHC for multiple versions (Ubuntu)

https://launchpad.net/~hvr/+archive/ubuntu/ghc

After installation
cabal install –with-ghc=/opt/ghc/7.8.1/bin/ghc



          

      

      

    

  

    
      
          
            
  The 5.2 is out. New features:


	Complete support for monophonic synthesizers:


	The argument of mono synth was updated.

Previously it was a pair of amplitude and frequency signals.
But this representation doesn’t captures the notion of note retrigger.
We can not create the mono-synt with sharp attacks.

Now this is fixed. We can use adsr140 or adsrMonoSynt functions to create
mono synths with fixed attacks



	monoSco  - for playing scores with mono-synths


	monoSched - for playing event streams with mono synt


	atSco and atSched now work for mono synth too






	The Patch type has changed. Know it supports the change in common parameters.
Right now the ccommon parameters include only Low-pass filter type. But this can be extended in future releases.

The idea is that we can parametrize the patch with some common arguments so that use can tweak them
without revriting the algorithm.

The low-pass filter is a vital tool that defines the character of the synthesizer.
With recent addition of several modern filter emulators (like Korg (korg_lp), or acid filter diode)
it’s good to be able to quickly switch the filters. We can do it for patches with function

setFilter :: ResonFilter -> Patch a -> Patch a







	Family of standard effects was added (see module Csound.Air.Fx.FxBox and the guide [https://github.com/spell-music/csound-expression/blob/master/tutorial/chapters/FxFamily]).
The effects are kindly provided by Iain McCurdy (recoded from his original implementation in Csound).

The effects have catchy names and are defined on wide variety of types. Let’s briefly discuss the naming conventions:


	adele - analog delay


	pongy - ping pong delay


	tort  - distortion


	flan  - flanger


	fowler - Envelope follower


	phasy  - phaser


	crusher - bit-crusher


	chory  - stereo chorus


	tremy  - tremolo


	pany   - panning


	revsy  - reverse playback




Also there are set of presets that imply the notion of add a bit of effect or add a lot of effect.
They are suffixed with number from 1 to 5. Like flan1 or tort3. Also if the effect support the
tone knob (center frequency of LP filter) ter are suffixes b for bright color and m for muted color.
For example tort2m or adele2b.

The effects are just functions from signals to signals:

dac $ hall 0.2 $ adele2 0.5 0.25 $ flan2 $ tort1m $ asigs







	UI widgets for standard effects.

Alongside with effects there are functions to create widgets (UI-controls). They have the same naming convention
only the prefix ui is added. For example: uiTort, uiAdele or uiHall. Also there are predefined presets like uiFlan2 or uiPhasy3.
With presets we put the box in the initial state corresponding to the given preset. But lately we can change it with UI-controls.

With this feature paired with functions fxHor, fxVer and fxGrid we can easily design our virtual pedalboards.

It can be used like this:

> let pedals = fxGrid 2 [uiFlan1, uiTort1, uiAdele2m 0.5 0.3, uiHall 0.25]

> dac $ fxApply pedals $ (sawSeq [1, 0.5, 0.25] 2) * sqr 220







	Complete list of GEN routines. This release adds GEN:

  * 25 bpExps --  Construct functions from segments of exponential curves in breakpoint fashion., 

  * 27 bpLins --  Construct functions from segments of straight lines in breakpoint fashion.

  * wave waveletTab -- Generates a compactly supported wavelet function.

  * farey fareyTab -- Fills a table with the Farey Sequence Fn of the integer n.

  * sone soneTab -- Generate a table with values of the sone function.

  * exp expTab -- rescaleExpTab Generate a table with values on the exp function.

  * tanh tanhTab -- rescaleTanhTab Generate a table with values on the tanh function.

  * 52 readMultichannel -- Creates an interleaved multichannel table from the specified source tables, in the format expected by the ftconv opcode.

  * 41 randDist -- Generates a random list of numerical pairs.

  * 42 rangeDist Generates a random distribution of discrete ranges of values.

  * 40 tabDist -- Generates a random distribution using a distribution histogram.

  * 43 readPvocex -- Loads a PVOCEX file containing a PV analysis.

  * 28 readTrajectoryFile -- Reads a text file which contains a time-tagged trajectory.

  * 24 readNumTab --  Reads numeric values from another allocated function-table and rescales them.

  * 21 dist, uniDist, linDist, triDist, expDist, biexpDist, gaussDist, cauchyDist, pcauchyDist, betaDist, weibullDist, poissonDist -- Generates tables of different random distributions.

  * 18 tabseg -- Writes composite waveforms made up of pre-existing waveforms. 

  * 31 mixOnTab -- Mixes any waveform specified in an existing table. 

  * 32 mixTabs -- Mixes any waveform, resampled with either FFT or linear interpolation. 

  * 30 tabHarmonics -- Generates harmonic partials by analyzing an existing table.





See the Csound docs [http://www.csounds.com/manualOLPC/ScoreGenRef.html] for details of what table they produce.
Also the signatures for windows creating tabs was updated. It became more specific.



	Global arguments defined with Macros. We can create a Csound .csd file in our program
and after that we can run it on anything which has Csound installed. It’s desirable to be able
to tweak some parameters after rendering or to have some global config arguments.
In Csound we can do it with macroses. We can use macros name in the code adn then we can change the value of the
macros with command line flag --omacro:Name=Value.

From now on it’s possible to do it with Haskell too. There are functions:

readMacrosDouble  :: String -> Double -> D
readMacrosInt     :: String -> Int -> D
readMacrosString  :: String -> String -> Str





The first argument is a macro name and the second one is the default value
which is used if no value is set in the flags.



	The useful function to trigger an table based envelope. It comes in two flavors. One is driven with event stream
and another with just a signal. It’s on when signal is non zero.

trigTab :: Tab -> Sig -> Sig -> Sig
trigTab tab duration triggerSignal 

type Tick = Evt Unit

trigTabEvt :: Tab -> Sig -> Tick -> Sig
trigTabEvt tab duration triggerSignal    







	New functions for UI widgets.


	We can change the relative size of the window. If the widget is too large or too small
we can rescale it with functions:

type ScaleFactor = (Double, Double)

resizeGui :: ScaleFactor -> Gui -> Gui

resizeSource :: ScaleFactor -> Source a -> Source a





They change the default minimal sizes for all widgets that are contained within the given widget.



	Grid layout. We are familiar with functions ver and hor. With them we can place the widgets vertically or horizontally.
But now it’s also possible to place the widgets on the grid:

grid :: Int -> [Gui] -> Gui





The first argument specifies the number of elements in each row.

There are handy grid functions for combining source-widgets:

gridLifts :: Int -> ([a] -> b) -> [Source a] -> Source b





It applies a list based function to a list of value producer widgets and places all widgets on the grid.
The first argument is the same as with grid.



	UI default sizes are a bit smaller now.






	It compiles on GHC-7.8 again


	New function whileRef for imperative while loops.

whileRef :: Tuple st => st -> (st -> SE BoolSig) -> (st -> SE st) -> SE ()
whileRef initState condition body





It’s used in this way. It stores the initial state in the reference (local variable)
and the it starts to implement the body while the predicate returns true. Notice that
the body is also updates the state.



	New functions for OSC that make it easy to read OSC messages that are interpreted like signals.
For example we have an OSC-routine for volume control. When message happens we update the value.
It would be good to be able to just read the signal:

listenOscVal :: (Tuple a, OscVal a) => OscRef -> String -> a -> SE a
listenOscVal oscRef address initValue





There are two useful aliases for this function. They read signals and pairs of signals:

listenOscSig  :: OscRef -> String -> Sig  -> SE Sig
listenOscSig2 :: OscRef -> String -> Sig2 -> SE Sig2







	Adds loopers that preserve attacks when rescaling by tempo. They are based on temposcal Csound algorithm.
The previous loopers were based on the mincer algorithm. It uses FFT under the hood which can smooth out the sharp attacks.
It’s undesirable for percussive loops. The temposcal adds the feature of preserving attacks.

See the functions:

-- | reads stereo files with scaling
scaleWav ::  Fidelity -> TempoSig -> PitchSig -> String -> Sig2

-- | reads mono files with scaling
scaleWav1 :: Fidelity -> TempoSig -> PitchSig -> String -> Sig





Also there are presets for scaling the drums or harmonic instruments (they set the appropriate fidelity):

scaleDrum, scaleHarm :: TempoSig -> PitchSig -> String -> Sig2





The fidelity is the degree of the size of FFT window. The formula for window size: 2 ** (fidelity + 11).

Also the corresponding functions are added for csound-sampler.

wavScale :: Fidelity -> TempoSig -> PitchSig -> String -> Sam
wavScale1 :: Fidelity -> TempoSig -> PitchSig -> String -> Sam

drumScale, harmScale :: TempoSig -> PitchSig -> String -> Sam







	The type signatures for echo and pingPong where simplified. Now they don’t use side effects
and look like pure functions:

echo :: MaxDelayTime -> Feedback -> Sig -> Sig
pingPong :: DelayTime -> Feedback -> Balance -> Sig2 -> Sig2







	Type signatures for functions randSkip and freqOf where generalized. Now they use signals for probabilities
instead of constant numbers. So we can change the probability of skip of the event during performance.


	New monophonic instruments are added in csound-catalog: fmBass1, fmBass2, dafunkLead and one polyphonic celloSynt.
Those instrument serve a good example for building monophonic synthesizers with sharp attacks.




Experimental features:


	Arrays, with all opcodes and functional traversals. See the guide for details details [https://github.com/spell-music/csound-expression/blob/master/tutorial/chapters/BasicTypesTutorial.md#arrays-arr].


	Imperative style instruments.

With imperative style instruments we can create and invoke the instruments in Csound way.
we can create an instrument and get it’s unique identifier. Than we can schedule a note by that identifier.

We can create an instrument that produces a sound with function:

newOutInstr :: (Arg a, Sigs b) => (a -> SE b) -> SE (InstrRef a, b)





It takes in a body of the instrument and gives back an instrument reference and
a signal where the output is going to be written. Then we can invoke the notes just
like we do it in the Csound with function scheduleEvent:

scheduleEvent :: Arg a => InstrRef a -> D -> D -> a -> SE ()
scheduleEvent instrRed delayStartTime duration arguments





It takes in instrument reference, start time from the time of invocation, duration (all in seconds) and miscellaneous arguments.
Notice that the instrument reference is parametrized by the type of arguments. This way we can not feed the wrong messages to the instrument.

Also we can create procedures that produce no output but do something useful:

newInstr :: Arg a => (a -> SE ()) -> SE (InstrRef a)











          

      

      

    

  

    
      
          
            
  
csound-expression-dynamic

dynamic core for csound-expression




          

      

      

    

  

    
      
          
            
  
csound-expression-typed

type system for csound-expression lib




          

      

      

    

  

    
      
          
            
  
csound-sampler

A csound-sampler is an easy to use sampler based on csound-expression library.

We can load and play audio files. We can play them back in loops,
in reverse, at random segments with different pitch, apply
any effects available in Csound. We can arrange them in sequences.
We can easily create patterns of audio snippets.


How to install

The library is available on Hackage. So we can install it with cabal-install:

> cabal update
> cabal install csound-sampler





Also we need to install the Csound [http://www.csounds.com] compiler. It’s software synth. It’s going
to be our audio engine. When it’s properly installed it should be possible to run the csound
at the command line. Open up your terminal and type in csound. On windows sometimes csound
complains on missing python27.dll. If it has happened with you download the dll from the web
and drop it in the folder C:\Windows\system32.

Let’s review the main functions of the library.



How to load files and sounds

Let me introduce you to Sam (Sam nods). He is the main guy in
the library. He can sing samples for you. All samples are in stereo.

We can listen to the audio file:

module Main where

import Csound.Base
import Csound.Sam

audio = wav "samples/song.wav"

bpm = 120 * 4

main = dac $ runSam bpm audio





Let’s load the module in the ghci and invoke the main function.

ghci Main
> main
... and the Sam sings ...





Press Ctrl+C to stop the program. Note that it’s the best way to work
with csound libs. We can create module with common functions and imports then
we load it in the ghci and we can start messing around with samples right in the
interpreter!

We load the lossless audio files with function wav.
If our audio file is mono we should use the function wav1.

The function wav creates a sample out of file name:

wav :: String -> Sam





To hear the sample we should run the Sam.

runSam :: D -> Sam -> SE (Sig, Sig)
runSam bpm sample = ...





The first argument of the runSam is the Beats Per Minute measure.
It’s the tempo of the sample playback.
When the sample is converted to stereo signal we can hear the result
with function dac. It’s a standard function form csound-expression library.



Playing loops

Ok, we can hear a sample. How can we loop it?
There is a function

loop :: Sam -> Sam





To make things more easy let’s create a couple of shortcuts:

module Main where

import Csound.Base
import Csound.Sam

run = dac . runSam (120 * 4)

song = wav "samples/song.wav"
beat = wav "samples/beat.wav"





Let’s save it as Main.hs. From nowon we are going to load the
module Main.hs in the interpreter. So let’s loop over beat:

ghci Main.hs
> run $ loop beat





Let’s add the voice on top of it:

> run $ loop beat + song





The Sam behaves just like a simple number. We can add samples or
take a mean of samples:

> run $ mean [loop beat, song]







Changing the volume of the sample

But the beat is too loud we can not hear the voice properly.
Let’s fix that:

> run $ mean [mul 0.5 $ loop beat, song]





The function mul comes with library csound-expression.
It happens that the Sam is the instance of SigSpace:
We can use the the function mapSig to apply any signal transforms to it:

mapSig :: (SigSapce a) => (Sig -> Sig) -> a -> a





The mul is just a multiplication by a signal.

mul :: (SigSpace a) => Sig -> a -> a
mul k = mapSig (* k)







Playing parts of the sample

What if we don’t want to hear the whole song but only
8 beats of it. We can use lim:

> run $ mean [mul 0.5 $ loop beat, lim 8 song]







Applying envelopes

We can hear only a part of the song. But now we can hear
a nasty clipping. The sound jumps at the and of the sample.

We can fix it with envelope:

> run $ mean [mul 0.5 $ loop beat, linEnv 1 1 $ lim 8 song]





The linEnv takes rise and decay times in BPM and applies
a trapezoid envelope to the sample.

There are many more envelopes to explore:

-- | Exponential trapezoid
expEnv :: D -> D -> Sam -> Sam
expEnv rise dec = ...

-- | Parabolic envelope
hatEnv :: Sam -> Sam

-- | Linear rise and decay envelopes
riseEnv, decEnv :: Sam -> Sam

-- | Exponential rise and decay envelopes
eriseEnv, edecEnv :: Sam -> Sam







Playing samples in reverse

It’s cool to reverse audio. The sound becomes mystic and SigurRos’y.
We can play audio files in reverse:

> let revSong = wavr "samples/song.wav"
run revSong





Notice the suffix r in the function wavr.



Playing one sample after another

Let’s play song in two modes. the first time forth
and then backwards:

> let songLoop = let env = (linEnv 1 1 . lim 8) in loop $ flow [env song, env revSong]
> let beatLoop = mul 0.5 $ loop beat
> run $ mean [beatLoop, songLoop]





Notice the function flow. It plays a list of samples in sequence.
If we want to put some silence between the song samples, we can use
the function rest. It creates a silent sample:

> flow [env song, rest 4, env revSong]







Delaying the samples

We want beat’s to enter the song first and then after 4 beats delay
comes the voice:

> run $ mean [beatLoop, del 4 songLoop]





We can use the function del.



Playing samples at random

What if we want to make our voice track more alive.
We can introduce randomness in the choice of the sample:

pick :: Sig -> [Sam] -> Sam
pick period sample = 





The function pick plays one sample from the list with the given period:

> pick 8 [env song, rest 8, env revSong]





That’s how we can play song back and forth with random playback modes.
There is a function

pickBy :: Sig -> [(D, Sam)] -> Sam





The pickBy plays samples with given frequencies of occurrence.
The sum of the frequencies should be equal to 1.



Playing patterns samples

We can play sample in the loop. But what’s about more complex patterns?
we can create them with function pat (short for pattern):

pat :: [D] -> Sam -> Sam





The first argument is the list of time length for sequence of loops.
It’s the drum-like pattern:

> pat [3, 3, 2] beat





It means play the sample beat in the loop. The loop spans for 8 beats and
it contains three segments. The length of each segments is given in the list.

The pat plays the whole sample. When samples overlap it mixes them together.
If we want to play just a parts of the sample we can use the function rep (short for repeat).
With it we can create complex drum patterns out of simple samples:

> rep [3, 3, 1, 2, 1] beat







Changing the tempo

We can speed up or slow down the sample playback with

str, wide :: D -> Sam -> Sam

str  speedUpRate  = ...
wide slowDownRate = ...





It doesn’t changes the rate of playback. It changes the BPM measure.
The looping or limiting functions will respond to the changes.



Changing the pitch and panning

We can change the pitch of the sample with function:

atPch :: D -> Sam -> Sam





It lowers (if negative) or heightens the pitch in semitones:

> let songLoop = atPch 2 $ loop song





We can change the pan with the function

atPan :: Sig -> Sam -> Sam





The first argument is the panning level. The zero is all left and the one is all right.
We can easily create the spinning pan:

> let songLoop = atPan (uosc 0.1) $ loop song







Playing segments of the audio file

What if we like just one specific spot in the audio file
and we want to loop only over it. we can read the segment
with function:

seg :: D -> D -> String -> Sam
seg startTime endTime fileName = sample





The times are measured in seconds. To play the segment in reverse
we can use the function segr. There are mono variants: seg1 and segr1.



Playing random segments of the audio file

We can create complex sound out of the simple one if we play
segments of it at random:

rndSeg :: D -> D -> D -> String -> Sam
rndSeg segLength startTime endTime fileName = sample





The first argument is the length of the segment.
If we want to read segments from the entire audio file
we can use the function:

rndWav :: D -> String -> Sam
rndWav segLength fileName = sample







Applying effects

The type Sam is a synonym for generic type:

type Sig2 = (Sig, Sig)

type Sam = Sampler Sig2





The Sampler is applicative and function. We can easily apply
an effect with fmap:

> dac $ fmap magicCave2 $ loop song





We applied a reverb (magicCave2 :: Sig2 -> Sig2). It’s taken from the
library csound-expression.

If our effect produces side effects we can use one of the lifting functions:

liftSam :: Sample (SE a) -> Sample a
bindSam :: (Sig2 -> SE Sig2) -> Sam -> Sam





If we want to now the current BPM we can use functions:

mapBpm :: (Bpm -> Sig2 -> Sig2) -> Sam -> Sam
bindBpm :: (Bpm -> Sig2 -> SE Sig2) -> Sam -> Sam







And many more

There are many other functions. We can find them all in the docs.
Happy sampling!





          

      

      

    

  

    
      
          
            
  
gen-opcodes

generates the opcodes for csound-expression lib

It contains three utilities:


	gen-opcodes - generates the package for csound opcodes in the current directory.


	gen-opcodes-prepare-docs - generats the docs.txt file, with descriptions of the opcodes.


	gen-opcodes-unparsed - shows all opcodes that are failed to parse.





How to generate the package with opcodes

The package is generated from the HTML-file that contains the list of all opcodes.
It’s in the resources/MiscQuickref.html. It’s downloaded from the official Csound
docs. In the docs it’s called Opcodes Overview.

With this file we can generate the description of the docs by launching
the utility gen-opcodes-prepare-docs. It generastes the file docs.txt
in the current directory. Then we need to place it in the resources
directory of the repo and rebuild the package.

After that we can launch the gen-opcodes and it will generate the package we need.

Note that if you are not a developer of the package the launch of gen-opcodes is enough.
We need to regenrate the docs only if we want to upgrade the opcodes for the new version.

To update the version of the generated package we need to edit the
corresponding .cabal file in the resources.





          

      

      

    

  

    
      
          
            
  
Csound-expression guide

Welcome to the simplest textual synthesizer.

> dac $ osc 440





Csound-expression is a Haskell framework for computer music.
With the help of the library we can create our instruments on the fly.
A couple of lines in the interpreter is enough to get the cool sound going
out of your speakers. It can be used for simple daily sound-file processing
or for a full-blown live performances. It’s available on Hackage [http://hackage.haskell.org/package/csound-expression].

Let’s look at how we can create computer music with Haskell.




	Introduction [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Intro]


	Basic types [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/BasicTypesTutorial]


	Signals everywhere [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SignalTfm]


	Rendering Csound files [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/ProducingTheOutputTutorial]


	Basics of sound synthesis [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SynthTutorial]


	User interaction [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/UserInteractionTutorial]


	Scores [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/ScoresTutorial]


	Events [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/EventsTutorial]


	Real-world instruments show case [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Patches]


	FX family [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/FxFamily]


	SoundFonts [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SoundFontsTutorial]


	Custom temperament. Microtonal music [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Tuning]


	Samples [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SamplesTutorial]


	Signal segments [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SignalSegmentsTutorial]


	Widgets for live performances [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/LiveWidgetsTutorial]


	Padsynth algorithm [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Padsynth]


	Granular synthesis [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/GranularSynthesisTutorial]


	Arguments modulation [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/ModArg]


	Spectrums [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Spectrums]


	Arrays [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Arrays]


	Csound API. Using generated code with another languages [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/CsoundAPI]


	Creating plugins with Cabbage [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/CabbageTutorial]


	Imperative instruments [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/ImperativeInstruments]






Appendix:


	Introduction to Csound for Haskellers [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/appendix/CsoundInstro]


	Overview of the library [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/appendix/Overview]






WARNING: the library works best within ghci. The real-time sound rendering
function dac spawns a child process in the background which may continue
to execute after you stop the main process that runs the programm.
It’s not so in vim but it happens in the Sublime Editor and when you
invoke runhaskell. So the best is to write you program in the separate
file and then load it in the ghci and invoke the function main
(which runs the sound rendering with the function dac).




          

      

      

    

  

    
      
          
            
  
Arrays (Arr)

We can create arrays of values. The data type of array is parametrized with index and value.
This typing scheme prevents us from reading or writing the wrong values to the arrays although
it doesn’t prevents us from out of bounds errors.

data Arr ix a





Notice that the data types for indexes and values can be tuples. It let’s us easily create multidimensional
array. If we want say 2D array we can use pairs as indexes.


Creation of arrays

Arrays can be global and local. Local arrays are accessible only within the body of single Csound
instrument where they are created. The scope translated to Haskell is somewhat obscure. The global arrays
are accessible at any point of the code.

We can create arrays with functions:

newLocalArr  :: Tuple a => [D] -> [a] -> SE (Arr ix a)
newGlobalArr :: Tuple a => [D] -> [a] -> SE (Arr ix a)





They accept the list of dimensions and list of initial values.
Also arrays can contain audio or control rate signals. The aforementioned functions create audio-rate signals.
If we want to create control rate signals we should use the functions:

newLocalCtrlArr :: Tuple a => [D] -> [a] -> SE (Arr ix a)
newGlobalCtrlArr :: Tuple a => [D] -> [a] -> SE (Arr ix a)







Read and write operations

To read and write the values from array we have two functions:

writeArr :: (Tuple ix, Tuple a) => Arr ix a -> ix -> a -> SE ()
readArr  :: (Tuple a, Tuple ix) => Arr ix a -> ix -> SE a





We can modify the value in the arry with function:

modifyArr :: (Tuple a, Tuple ix) => Arr ix a -> ix -> (a -> a) -> SE ()







Type synonyms for often used array data-types

To save some typing there are some aliases defined for most frequntly used array data types:

type Arr1  a = Arr Sig a
type DArr1 a = Arr D a

type Arr2  a = Arr (Sig, Sig) a
type DArr2 a = Arr (D, D) a

type Arr3  a = Arr (Sig, Sig, Sig) a
type DArr3 a = Arr (D, D, D) a





Arrays that are parametrized with constant index (like DArr1) can be manipulated only at a single moment.
We can only read and write constants to it.

If an array is parametrized with signal index (like Arr1) it can be manipulated continuously. We can read and write signals to it.

Also to help the type inference we can use the functions that do nothing with the values
(just pass them through) but they have strict data type so that type inference can derive the desired data type:

arr1  :: SE (Arr Sig a) -> SE (Arr Sig a)
darr1 :: SE (Arr D a) -> SE (Arr D a)

arr2  :: SE (Arr (Sig, Sig) a) -> SE (Arr (Sig, Sig) a)
darr2 :: SE (Arr (D, D) a) -> SE (Arr (D, D) a)

arr3  :: SE (Arr (Sig, Sig, Sig) a) -> SE (Arr (Sig, Sig, Sig) a)
darr3 :: SE (Arr (D, D, D) a) -> SE (Arr (D, D, D) a)







Csound opcodes

In Csound there are plenty of opcodes to work with arrays. Almost all of them are supported.
We can find out the complete list at the documentation for the module Csound.Types (see section for Arrays).
Many functions are dedicated to manipulate spectral data.


Copy vs Allocation

Some peculiarity of transition form Csound to Haskell way of thinking lies in array functions.
In the Csound almost all array functions can perform two different operations. They are overloaded.
If we write:

kOut[] array_operation kWin





It can do two distinct operations:


	It can create new array if the value kOut was not previously initialized


	It can copy the data of the result of operation to the array kOut if it was already allocated.




In Haskell we often find two operations coresponding to the single Csound operation.
Take for example the function fft. It performs fast Fourier transform.
In Haskell we have two operations:

type SpecArr = Arr Sig Sig

fftNew  :: SpecArr -> SE SpecArr
fftCopy :: SpecArr -> SpecArr -> SE ()





The function fftNew allocates new array. But fftCopy just copies the data to existing array.
Notice how the roles of the functions are signified with the signatures.



Functional traversals and folds

There are special functions that make traversal and folding very easy.


Traverse

We can traverse all elements in the array with function:

foreachArr :: (Tuple ix, Tuple a) => Arr ix a -> ((ix, a) -> SE ()) -> SE ()
foreachArr array proc





It takes an array and procedure that is defined on pairs of index and the value.
These procedure is applied to all elments in the array. Notice that it can be applied to
arrays of any sizes. All of them are going to be processed in the uniform way.

There are two useful special cases for 2D arrays:

forRowArr, forColumnArr :: Tuple a => Sig -> Arr Sig2 a -> ((Sig, a) -> SE ()) -> SE ()

forRowArr rowId array proc





They traverse only specific rows or columns. The index of the row (column)
is the first argument of the function.



Fold

We can fold the array with the function. The process of folding is a traversal with value accumulation.

foldArr :: (Tuple ix, Tuple a, Tuple b) =>
     ((ix, a) -> b -> SE b) -> b -> Arr ix a -> SE b





The foldArr function takes a procedure that updates the result of type b
based on the current index and value and the value of accumulator from the previous step.
Also it takes initial value for accumulator and array.

There are specific foldfunctions to fold on rows and columns of 2D matrix:

foldRowArr, foldColumnArr
  :: (Tuple a, Tuple b) =>
     ((Sig, a) -> b -> SE b) -> b -> Sig -> Arr Sig2 a -> SE b







Init vs control rate traversals

In Csound there is a distinction between initial pass of the instrument. When everything gets initialized
and control rate. When the audio goes on and we can control it. The aforementioned traversal functions
work at control rate. But it’s useful to be able to run them at init pass. To do it we have to use
special variants of them with suffix D. The D is a synonym for constant number in the library
that gets initialized and never changed at the control rate. So we have the functions:

foreachArrD     forRowArrD      forColumnArrD
foldArrD        foldRowArrD     foldColumnArrD








	<= Spectrums [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Spectrums]


	=> Csound API [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/CsoundAPI]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]




Csound API. Using generated code with another languages [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/CsoundAPI]







          

      

      

    

  

    
      
          
            
  
Basic types

Let’s look at the basic types of the library.


Signals (Sig)

We are going to make an audio signal. So the most frequently used type is a signal. It’s called Sig.
The signal is a stream of numbers that is updated at a certain rate.
Actually it’s a stream of small arrays of doubles. For every cycle the audio-engine
updates it. It can see only one frame at the given time.

Conceptually we can think that signal is a list of numbers.
A signal is an instance of type class Num, Fractional and Floating.
So we can treat signals like numbers. We can create them with numeric
constants, add them, multiply, subtract, divide, process with
trigonometric functions.

We assume that we are in ghci session and the module Csound.Base is loaded.

$ ghci
> import Csound.Base





So let’s create a couple of signals:

> x = 1 :: Sig
> y = 2 :: Sig
> z = (x + y) * 0.5





In the older versions of ghci we need to write let  in
the interpreter to delcalre a variable or function in modern
versions it can be omitted. So if it’s not working for you, just
include let keyword like this:

> let x = 1 :: Sig





Constants are pretty good but not that interesting as sounds.
The sound is time varying signal. It should vary between -1 and 1.
It’s assumed that 1 is a maximum volume. Everything beyond the 1
is clipped.

Let’s study the simple waveforms [http://public.wsu.edu/~jkrug/MUS364/audio/Waveforms.htm]:

osc, saw, tri, sqr :: Sig -> Sig





They produce sine, sawtooth, triangle and square waves.
The output is band limited (no aliasing beyond Nyquist [http://en.wikipedia.org/wiki/Nyquist_frequency]).
The waveform function takes in a frequency (and it’s also a signal) and produces
a signal that contains wave of certain shape that is repeated with given frequency (in Hz).

Let’s hear a sound of the triangle wave at the rated of 220 Hz:

> dac $ tri 220





We can press Ctrl+C to stop the sound from playing. If we know the
time in advance we can set it with the function setDur:

> dac $ setDur 2 $ tri 220





Right now the sound plays only for 2 seconds. The setDur function
should be used only once. Right before the sending output to the dac.
Please don’t use it many times for example to set duation of notes,
it’s only for setting total duration of the whole track.

We can vary the frequency with slowly moving oscillator:

> dac $ tri (220 + 100 * osc 0.5)





If we use the saw in place of tri we can get a more harsh
siren-like sound.

We can adjust the volume of the sound by multiplying it:

> dac $ mul 0.5 $ saw (220 + 100 * osc 0.5)





Here we used the special function mul. We could
just use the normal Haskell’s *. But mul is more
convenient. It can work not only for signals but for
tuples of signals (if we want a stereo playback)
or signals that contain side effects (wrapped in the monad SE).
So the mul is preferable.



Constant numbers (D)

Let’s study two another useful functions:

leg, xeg :: D -> D -> D -> D -> Sig





They are Linear and eXponential Envelope Generators.
They create ADSR-envelopes [http://en.wikipedia.org/wiki/Synthesizer#ADSR_envelope].

They take in a four arguments. They are:


	attack time: time for signal to reach the 1 (in seconds)


	decay time: time for signal to reach the sustain level (in seconds)


	sustain level: the value for sustain level (between 0 and 1)


	release time: how many seconds it takes to reach the zero after release.




We can notice the new type D in the signature. It’s for constant doubles.
We can think that it’s a normal value of type Double. It’s a Double that is
embedded in the Csound. From the point of implementation we don’t calculate
these doubles but use them to generate the Csound code.

Let’s create a signal that is gradually changes it’s pitch:

> dac $ saw (50 + 150 * leg 2 2 0.5 1)





Notice that signal doesn’t reaches the release phase. It’s not a mistake!
The release happens when we release a key on the midi keyboard.
We don’t use any midi here so the release never happens.

But we can try the virtual midi device:

> vdac $ midi $ onMsg $ \x -> saw (x + 150 * leg 2 2 0.5 1)





Right now don’t bother about the functions midi and onMsg.
We are going to take a closer look at then in the chapter User interaction.
That’s how we plug in the midi-devices.

The value of type D is just like a Haskell’s Double. We can do all the
Double’s operations on it. It’s useful to know how to convert doubles to D’s
and how to convert D’s to signals:

double :: Double -> D
int    :: Int    -> D
sig    :: D      -> Sig





There are more generic functions:

linseg, expseg :: [D] -> Sig





They can construct the piecewise linear or exponential functions.
The arguments are:

linseg [a, timeAB, b, timeBC, c, timeCD, d, ...]





They are alternating values and time stamps to progress
continuously from one value to another. Values for expseg
should be positive (above 0 and not 0).

There are two more generic functions for midi notes:

linsegr, expsegr :: [D] -> D -> D -> Sig





The two last arguments are the release time and the final value for release stage.
They are usefull for midi-instruments.

Another frequently used functions are

fadeIn  :: D -> Sig
fadeOut :: D -> Sig

fades   :: D -> D -> Sig
fades fadeInTime fadeOutTime = ...





They produce more simple envelopes. The fadeIn rises
in the given amount of seconds form 0 to 1. The fadeOut
does the opposite. It’s 1 from the start and then it
fades out to zero in given amount of seconds but only
after release. The fades combines both functions.



Strings (Str)

The friend of mine has made a wonderful track in Ableton.
I have a wav-file from her and want to beep-along with it.
I can use a diskin2 opcode for it:

diskin2 :: Tuple a => Str -> a
diskin2 fileName = ...





It takes in a name of the file and
produces a tuple of signals. We should specify how many outputs
are in the record by specifying precise the type of the tuple.
There are handy helpers for this:

ar1 :: Sig -> Sig
ar2 :: (Sig, Sig) -> (Sig, Sig)
ar3 :: (Sig, Sig, Sig) -> (Sig, Sig, Sig)
ar4 :: (Sig, Sig, Sig, Sig) -> (Sig, Sig, Sig, Sig)





Every function is an identity. It’s here only to help the type inference.
Let’s say we have a file Noise.wav. With a mono wav-file we can use:

> sample = ar1 $ diskin2 (text "Noise.wav")





The first argument of the diskin2 is not a Haskell’s String.
It’s a Csound’s string so it has a special name Str. It’s just
like D’s  for Double’s. We used a converter function to
lift the Haskell string to Csound one:

text :: String -> Str





The function text converts the Haskell strings to Csound ones.
The Str has instance of IsString so if we are using
the extension OverloadedStrings we don’t need to call the function text.

For a stereo wav file “Composite.wav” we use:

> :set -XOverloadedStrings
> sample = toMono $ ar2 $ diskin2 "Composite.wav"





We don’t care right now about the stereo so we have converted
everything to mono with function.

toMono :: (Sig, Sig) -> Sig





Ok, we are ready to play along with it:

> sample = toMono $ ar2 $ diskin2 (text "Composite.wav")
> meOnKeys = midi $ onMsg osc
> vdac $ mul 0.5 $ meOnKeys + pure sample





Notice how simple is the combining midi-devices output
with the regular signals. The function midi produces
a normal signal wrapped in SE-monad. We can use it anywhere.
We use standard function pure to wrap ordinary value to SE-type.
We do it so that types of values meOnKeys and sample match to each other
and we can sum them up.

There are useful shortcuts that let us use a normal Haskell strings:

readSnd :: String -> (Sig, Sig)
loopSnd :: String -> (Sig, Sig)
loopSndBy :: D -> String -> (Sig, Sig)
readWav :: Sig -> String -> (Sig, Sig)
loopWav :: Sig -> String -> (Sig, Sig)





The functions with read play the sound files only once.
The functions with loop repeat over the sample over and over.
With loopSndBy we can specify the time length of the loop period.
The readWav and loopWav can read the file with given speed.
The 1 is a normal speed. The -1 is playing in reverse.
Negative speed works only for loopWav.

So we can read our friends record like this:

sample = loopSnd "Composite.wav"





If we want only a portion of the sound to be played we can use the
function:

takeSnd :: Sigs a => Sig -> a -> a





It takes only given amount of seconds from the input signal
and fills the rest with silence.

The first argument is signal, but often it’s set with a constant
or it’s taken from signal on the moment of invocation (it’s like a constant snapshot).
the second type is a bit unusual: Sigs a => a.
In Haskell notation it means anything which is signal-like.
It means not only a signal but all sorts of tuples of signals.
It’s useful so that we can use the same function with mono and stereo or
Dolby-surround audio signals.

It’s interesting that we can loop not
only with samples but with regular signals too:

repeatSnd :: Sigs a => Sig -> a -> a





It loops the signal over given amount of time (in seconds).
We can try it out:

> dac $ repeatSnd 3 $ leg 1 2 0 0 * osc 220







Tables (Tab)

We have studied the four main waveform functions: osc, tri, saw, sqr.
But what if we want to create our own waveform. How can we do it?

What if we want not a pure sine but two more partials. We want
a sum of sine partials and a first harmonic with the amplitude of 1
the second is with 0.5 and the third is with 0.125.

We can do it with osc:

> wave x = mul (1/3) $ osc x + 0.5 * osc (2 * x) + 0.125 * osc (3 * x)
> vdac $ midi $ onMsg $ mul (fades 0.1 0.5) . wave





But there is a better way for doing it. Actually the oscillator reads
a table with a fixed waveform. It reads it with a given frequency and
we can hear it as a pitch. Right now our function contains three osc.
Each of them reads the same table. But the speed of reading is different.
It would be much better if we could write the static waveform with
three harmonics in it and read it with one oscillator. It would be much
more efficient. Think about waveforms with more partials.

We can achieve this with function:

oscBy :: Tab -> Sig -> Sig





It creates an oscillator with a custom waveform. The static waveform is encoded
with value of type Tab. The Tab is for one dimensional table of doubles.
In the Csound they are called functional tables. They can be created
with GEN-routines. We don’t need to create the tables directly. Like filling
each cell with a value (going through the table in the loop). There are plenty
of functions that can create specific tables.

Right now we want to create a sum of partials or harmonic series.
We can use the function sines:

sines :: [Double] -> Tab





Let’s rewrite the example:

> wave x = oscBy (sines [1, 0.5, 0.125]) x
> vdac $ midi $ onMsg $ mul (fades 0.1 0.5) . wave





You can appreciate the simplicity of these expressions
if you try to make it directly in the Csound. But you don’t
need to! There are better ways and here is one of them.

What if we want not 1, 2, and third partials but 1, 3, 7 and 11?
We can use the function:

sines2 :: [(PartialNumber, PartialStrength)] -> Tab





It works like this:

> wave x = oscBy (sines2 [(1, 1), (3, 0.5), (7, 0.125), (11, 0.1)]) x






The table size

What is the size of the table? We can create the table of the given size.
By default it’s 8196. The more size the better is precision.
For efficiency reason the tables size in most cases should be
equal to some degree of 2. We can set the table size with one of the functions:

lllofi, llofi, lofi, midfi, hifi, hhifi, hhhifi :: Tab -> Tab





The lllofi is the lowest fidelity and the hhhfi is the highest fidelity.

We can set the size explicitly with:

setSize :: Int -> Tab -> Tab





In many cases the table size should be the power of two, consult the
corresponding docs for Csound reference manual [http://csound.com/docs/manual/index.html]
(see the section on GEN-routines).



The guard point

If you are not familiar with Csound’s conventions you are probably
not aware of the fact that for efficiency reasons Csound requires
that table size is equal to power of 2 or power of two plus one
which stands for guard point (you do need guard point if your intention
is to read the table once but you don’t need the guard point if you
read the table in many cycles, then the guard point is the the first point of your table).

If we read the table once we have to set the guard point with function:

guardPoint :: Tab -> Tab





There is a short-cut called just gp. We should use it with exps or lins.



Specific tables

There are a lot of GEN-routines available [http://hackage.haskell.org/package/csound-expression/docs/Csound-Tab.html].
Let’s briefly discuss the most useful ones.

We can write the specific numbers in the table if we want:

doubles :: [Double] -> Tab





Linear and exponential segments:

consts, lins, exps, cubes, splines :: [Double] -> Tab





Reads samples from files (the second argument is duration of an audio segment in seconds)

data WavChn = WavLeft | WavRight | WavAll
data Mp3Chn = Mp3Mono | Mp3Stereo | Mp3Left | Mp3Right | Mp3All

wavs :: String -> Double -> WavChn -> Tab
mp3s :: String -> Double -> Mp3Chn





Harmonic series:

type PartialStrength = Double
type PartialNumber   = Double
type PartialPhase    = Double
type PartialDC       = Double

sines  :: [PartialStrength] -> Tab
sines2 :: [(PartialNumber, PartialStrength)] -> Tab
sines3 :: [(PartialNumber, PartialStrength, PartialPhase)] -> Tab
sines4 :: [(PartialNumber, PartialStrength, PartialPhase, PartialDC)] -> Tab





Special cases for harmonic series:

sine, cosine, sigmoid :: Tab





There are other tables. We can find the complete list in the module Csound.Tab [http://hackage.haskell.org/package/csound-expression/docs/Csound-Tab.html].
In Csound the tables are created by specific integer identifiers but in CE they are defined with names (hopefully self-descriptive). If you are used
to integer identifiers you can check out the names in the Appendix to the documentation of
the Csound.Tab [http://hackage.haskell.org/package/csound-expression/docs/Csound-Tab.html] module.




Side effects (SE)

The SE-type is for functions that work with side effects.
They can produce effectful value or can be used just for the
side effect.

For example every function that generates random numbers
uses the type SE.

To get the white, pink or red (Brownian) noise we can use:

white :: SE Sig
pink  :: SE Sig
brown :: SE Sig





Let’s listen to the white noise:

> dac $ mul 0.5 $ white





We can get the random numbers with linear interpolation.
The output values lie in the range of -1 to 1:

rndi :: Sig -> SE Sig





The first argument is frequency of generated random numbers.
We can get the constant random numbers (it’s like sample and hold
function with random numbers):

rndh :: Sig -> SE Sig





We can use the random number generators as LFO.
The SE is a Functor, Applicative and Monad.
Those are standard ways to manipulate values that are wrapped
in some sort of behaviour or are containers.
We rely on these properties to get the output.

With Functor we can map over wrapped value:

> instr lfo = 0.5 * saw (440 + lfo)
> dac $ mul 0.5 $ fmap instr (20 * rndi 5)





We use function fmap:

fmap :: Functor f => (a -> b) -> f a -> f b





There are unipolar variants: urndh and urndi.
The output ranges form 0 to 1 for them.

Note that the function dac can work not only signals but
also on the signals that are wrapped in the type SE
and also on all sorts signal-like or renderable values.

Let’s take a break and listen to the filtered pink noise:

> dac $ mul 0.5 $ fmap (mlp (on 50 2500 $ tri 0.2) 0.3) $ pink





The function on is useful for mapping the range (-1, 1) to
a different interval. In the expression on 50 2500 $ tri 0.2
oscillation happens in the range (50, 2500). There is another
useful function uon. It’s like on but it maps from the range (0, 1).

The essence of the SE Sig type lies in the usage of random values.
In the pure code we can not distinguish between these two expressions:

x1 =
  let a = rndh 1
  in a + a

x2 = rndh 1 + rndh 1





For x1 we want only one random value but
for x2 we want two random values.

The value is just a tiny piece of code (we don’t evaluate expressions
but use them to generate Csound code).
The renderer performs common subexpression elimination.
So the examples above would be rendered in the same code.

We need to tell to the renderer when we want two random values.
Here comes the SE monad (Side Effects for short).

x1 = do
  a <- rndh 1
  return $ a + a

x2 = do
  a1 <- rndh 1
  a2 <- rndh 1
  return $ a1 + a2





The SE was introduced to express the randomness.
But then it was useful to express many other things.
Procedures for instance. They don’t produce signals
but do something useful:

procedure :: SE ()





The SE is used for allocation of delay buffers in the functions.

deltap3 :: Sig -> SE Sig
delayr :: D -> SE Sig
delayw :: Sig -> SE ()





The deltap3 is used to allocate the delay line. After allocation
we can read and write to delay lines with delayr and delayw.

The SE is used for allocation of local or global variables (see the type SERef
in the module Csound.Control.SE).

For convenience the SE Sig and SE of tuples of signals is instance of Num.
We can sum and multiply the signals wrapped in the SE. The code is ok:

> dac $ white + 0.5 * pink
> dac $ white + return (osc 440)







Mutable values

We can create mutable variables. It works just like
the normal Haskell mutable variables. We can create
a reference and the we should use the functions
on the reference to read and write values.

There are two types of the variables: local and global variables.
The local variables are visible only within one Csound instrument.
The global variables are visible everywhere.

We can create a reference to the mutable variable with functions:

newRef          :: Tuple a => a -> SE (Ref a)
newGlobalRef    :: Tuple a => a -> SE (Ref a)





They take in an initial value and create a value of the type Ref:

data Ref a = Ref
	{ writeRef :: a -> SE ()
	, readRef  :: SE a
	}





We can write and read values from reference.


Mutable values with control signals

By default newRef or newGlobalRef create placeholders for audio-rate signals.
But if we want them to hold control-rate signals we have to use special variants:

newCtrlRef          :: Tuple a => a -> SE (Ref a)
newGlobalCtrlRef    :: Tuple a => a -> SE (Ref a)





If signals are created with them they are control-rate signals.




Tuples (Tuple)

Some of the Csound functions are producing several outputs.
Then the output is represented with Tuple. It’s a special
type class that contains all tuples of Csound values.

There is a special case. The type Unit. It’s Csound’s alias
for Haskell’s ()-type. It’s here for implementation reasons.

We have already encountered the tuples when we have studied
the function diskin2.

diskin2 :: Tuple a => Str -> a





In Csound the functions can produce varied amount of arguments.
The number of arguments is specified right in the code. But Haskell
is different. The function can produce only certain number of arguments.
To relax this rule we can use the special type class Tuples.
Now we can return different number of arguments. But we have to
specify them with type signature. There are helpers to make it easier:

ar1 :: Sig -> Sig
ar2 :: (Sig, Sig) -> (Sig, Sig)
ar3 :: (Sig, Sig, Sig) -> (Sig, Sig, Sig)
ar4 :: (Sig, Sig, Sig, Sig) -> (Sig, Sig, Sig, Sig)





Also we can just specify the type of output:

In the interpreter:

> sample = diskin2 (text "fox.wav") :: Sig2
> :t sample
 sample :: Sig2





Or in the code:

sample :: Sig2
sample = diskin2 (text "fox.wav")








	<= Introduction [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Intro]


	=> Signals everywhere [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SignalTfm]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]








          

      

      

    

  

    
      
          
            
  
Creating plugins with Cabbage

[image: ../../_images/cabbage_transparent.svg]Cabbage logo

(since version 5.1)

WARNING: Right now Cabbage is not stable on my environment (Ubuntu)
so it’s hard for me to test things out. But when things will improve we are going to have
the set of tools to create cabbage instruments.

The Cabbage is a cool program that let’s you run Csound instruments and effects as VST-plugins.
Moreover it let’s you run Csound on Android. It defines it’s own way to define UI-widgets in Csound.
Cabbage is very easy to learn, the Haskell implementation faithfully represents the cabbage.
So for better understending you should get the taste of cabbage on the official site [http://cabbageaudio.com/docs/introduction/].
Do have a look at the docs [http://cabbageaudio.com/docs/introduction/] or watch the video tutorials [http://cabbageaudio.com/tutorials/].
But take the light view on Csound stuff since we have the haskell way of doing this just
get acquinted with the cabage way of UI-declaration.

The native cabbage declaration is a list of widget declarations.
Each declaration takes it’s own line. The first goes the name of the widget
and then on the same line we can write the properties of the widget:

<Cabbage>
form size(100, 100), pluginid("plugin")
button bounds(10, 10, 80, 80), channel("button-id"), text("Click Me"), colour:0(150, 30, 0), colour:1(30, 150, 12)
</Cabbage>





With markup language enclosed in Cabbage tag we define the UI. And in the audio engine
code we can read the values from channels. We define the name of the channel with channel property.

To use the cabbage we need to import it separately. It’s supposed to be imported qualified
to aviod name-clashes with csound-functions:

import Csound.Base
import qualified Csound.Cabbage as C





The Haskell EDSL for Cabbage is inspired with blaze-html library.
We represent the lists of widgets and properties with monads (scary word).
It means that we can use the next line and identation  as delimiter for widgets and properties:

import Csound.Base
import qualified Csound.Cabbage as C

ui = do
	C.cabbage $ do
		C.form $ do
			C.size 100 100
			C.pluginid "plugin"
		C.button $ do
			C.bounds 10 10 80 80
			C.channel "button"
			C.text1 "Click me"
			C.colour0 (C.Rgb 150 30 0)
			C.colour1 (C.Rgb 30 150 12)	
	res <- chnCtrlGet "button"	
	return res

main = dac $ do
	btn <- ui
	return $ btn * osc 220





So in Haskell the properties are delimited by indentation. There are some differences
that are copuled with Haskell restrictions on names and type-system:


	Notice that in Haskell the function can not take variable number of arguments
so we use text1 for text with one argument and text2 for text with to arguments.


	We can not use colon in the identifiers so colour:0 becomes just colour0.


	The haskell has strict types. But in Cabbage there are two ways to represent colours.
We can pass strings (web-hash codes) and we can pass triplets (RGB-values).
To emulate this behaviour in Haskell there is a special type with two cases:

data Col = Hash String | Rgb Int Int Int









We use the chnCtrlGet to get the control signal from the button with named channel.

If you are accustomed to Cabbage way of writing properties you can use the function sequence_:

C.form $ sequence_ [C.size 100 100, C.pluginid "plugin"]





What makes Haskell embedding really great is that it’s not a spearate block of specific markdown.
It’s a code.

And we can abstract away the common blocks of code:

colors = do
	C.colour0 (C.Rgb 150 30 0)
	C.colour1 (C.Rgb 30 150 12)	

C.cabbage $ do
	C.form $ do
		C.size 200 100
		C.pluginid "plugin"
	C.button $ do
		C.bounds 10 10 80 80
		C.channel "button1"
		C.text1 "Hi"
		colors
	C.button $ do
		C.bounds 110 10 80 80
		C.channel "button2"
		C.text1 "Bye"
		colors		





We can write functions to avoid duplication:

colors = do
	C.colour0 (C.Rgb 150 30 0)
	C.colour1 (C.Rgb 30 150 12)	

mkButton name id (x, y) = C.button $ do
		C.bounds x y 80 80
		C.channel id
		C.text1 name
		colors

C.cabbage $ do
	C.form $ do
		C.size 200 100
		C.pluginid "plugin"
	mkButton "Hi"  "button1" (10, 10)
	mkButton "Bye" "button2" (110, 10)





We can share the variables between audio-engine and markup.
It can be useful to store the names for channels:

ui = do
	C.cabbage $ do
		C.form $ do
			C.size 200 100
			C.pluginid "plugin"
		mkButton "Hi"  btn1 (10, 10)
		mkButton "Bye" btn2 (110, 10)
	b1 <- chnCtrlGet btn1
	b2 <- chnCtrlGet btn2
	return (b1, b2)
	where
		btn1 = "button1"
		btn2 = "button2"





After the csound file is rendered we can load it to cabbage and then use it
as VST or AU plugin or load it to the Cabbage App on android.
We can find out how to do it o the official web-site [http://cabbageaudio.com/docs/exporting/].




	<= Csound API. Using generated code with another languages [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/CsoundAPI]


	=> Imperative instruments [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/ImperativeInstruments]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]







          

      

      

    

  

    
      
          
            
  
Csound API. Using generated code with other languages

The cool thing about Csound is that it’s not only a text to audio converter.
It’s also a C-library! Also it has bindings to many languages!
Python, Java, Clojure, Lua, Clojure, Csharp,  C++, racket, VB!
Also it works on Android, iOS, and RaspPi.

We can create audio engine with Haskell and then we can
wrap it in the UI written in some another language!
Let’s look at how it can be done.


Interaction with generated code.

We can interact with Csound with two main methods.


	Channels for updating values.


	Named instruments for triggering instruments.





Channels

With channel we can update specific value inside Csound code.
We can create a global channel and then send write or read values
with another program.

We can make a channel and the we can read/write values.
We can pass four types of values:


	Constant doubles (chnGetD / chnSetD)


	Control rate signals. Signals to control the audio (chnGetCtrl / chnSetCtrl)


	Audio rate signals. Signals that encode the audio output. (chnGetSig / chnSetSig)


	Strings (chnGetStr / chnSetStr)




Let’s create a pair of channels to control the volume and the frequency of audio signal:

module Main where

import Csound.Base

volume      = text "volume"
frequency   = text "frequency"

instr = do
    vol <- chnGetCtrl volume
    cps <- chnGetCtrl frequency
    return (vol * osc cps)

main = writeCsd "osc.csd" instr





So we have a file main.csd that encodes our audio engine.
Let’s create Python program to control our audio.
We are going to use Csound API and we need to install the python bindings.
On Debian/Ubuntu we can install it with apt-get:

> sudo apt-get python-csound





On Windows it’s installed with Csound installer. You can download it
from the official Csound site. On OSX we can install it with brew.

The source code with examples can be found at the github directory [https://github.com/spell-music/csound-expression/tree/master/examples/Api].



How to use channels with Python

There is a cool GitHub project Csound API examples [https://github.com/csound/csoundAPI_examples]
that shows how to ue the Csound with various languages.
We can quikly check how to use the audio engine that we have generated
with our language of choice. We are going to illustrate the
Csound API workflow with Python. The python examples is based on the information
from this repo.

import csnd6

class Controll:
    def __init__(self, volume, frequency):
        engine = csnd6.Csound()
        engine.SetOption("-odac")
        engine.Compile("osc.csd")

        thread = csnd6.CsoundPerformanceThread(engine)
        thread.Play()

        self.engine = engine
        self.thread = thread

        self.set_volume(volume)
        self.set_frequency(frequency)

    def set_volume(self, volume):
        self.engine.SetChannel("volume", volume)

    def set_frequency(self, frequency):
        self.engine.SetChannel("frequency", frequency)

    def close(self):
        self.thread.Stop()
        self.thread.Join()





We create an object that can start a Csound engine and update volume and frequency.
In the initialization step we create an audio engine? load file “osc.csd” to it
and start csound in the separate thread:

        engine = csnd6.Csound()
        engine.SetOption("-odac")
        engine.Compile("osc.csd")

        thread = csnd6.CsoundPerformanceThread(engine)
        thread.Play()





Then we save the state for the object:

        self.engine = engine
        self.thread = thread





and set the initial values for frequency and volume:

        self.set_volume(volume)
        self.set_frequency(frequency)





These functions update values for csound channels.
So with channels we can propagate changes from python to csound:

    def set_volume(self, volume):
        self.engine.SetChannel("volume", volume)





The last method close stops the engine:

    def close(self):
        self.thread.Stop()
        self.thread.Join()





What’s interesting with thism code is that we can control our engine within
the python interpreter. It’s very simple skeleton for creation of Live coding with python and haskell combo!
Let’s try some commands. Navigate to the directory with our python file oscil.py:

$ python
> from oscil import Controll
> c1 = Controll(0.5, 220)
> c1.set_frequency(440)
> c1.set_volume(0.3)
> c1.set_volume(0.1)
> c1.close()





We can instantiate several Csound audio engines!

> c1 = Controll(0.5, 220)
> c2 = Controll(0.3, 330)
> c3 = Controll(0.6, 110)
> c3.set_frequency(150)
>
> for c in [c1, c2, c3]:
>   c.close()





With channels we can update a continuous signal.
With Csound API we can also trigger the instruments with notes or messages.



Messages

We can send messages to instruments. To send the message we need to know
the numeric identifier of the instrument. When we use Csound directly
we know what numbers do we assign to the instruments. But Haskell wrapper
hides this process from us.

Csound also provides named instruments. We can assign not only unique numeric
value to the instrument, but also a name as a string. There is no need to use
the named instruments in the haskell wrapper since we can use plain haskell values
to construct instruments and framework will take care about allocation
of integer identifiers. But named insturments can help us when we want
to trigger instrument with program that is written in another language through Csound API.

There is a function:

trigByName :: (Arg a, Sigs b) => String -> (a -> SE b) -> SE b
trigByName name instrument = aout





It takes an instrument name and instrument definition and creates
an instrument with the given name. We can not use this instrument
with Haskell. There are no way to trigger it. But we can trigger it
with Csound API.

All basic Csound API functions can be found in the module Csound.Control.Instr (see the API section).

Let’s write a simple program:

module Main where

import Csound.Base

instr :: (D, D) -> SE Sig
instr (amp, cps) = return $ (sig amp) * fades 0.01 0.1 * osc (sig cps)

main = writeCsd "message.csd" $ trigByName "osc" instr





If we run this code with runhaskell it will produce the message.csd file that
contains the definition of our audio engine.

We create an instrument  that has name osc. It takes in amplitude and frequency and produces mono output.

The Csound API the csound thread object has a method InputMessage.
That takes in a string with Csound note-triggering expression.
If you know the Csound the syntax of i-score statment should be straightforward to you.
But don’t skip the next section. It explains not only the Csound syntax but also
how it’s related to Haskell code.


Csound i-score statment

The Csound musicians trigger insturmnets with i-score statements. It can look like this:

i "osc" 0 10 0.5 220





The i is special syntax for i-statement. Then goes the list of arguments that are separated with spaces.
The first argument is the instrument identifier. It’s an integer number or string (note the mandatory double quotes).
Then we can see two parameters that are hidden from the haskell user. It’s delay to trigger the note
and note duration. Both are in seconds. In the example we have a note with no delay that lasts for 10 seconds.
Then we can see the arguments that our haskell-instrument  takes in. They are amplitude value and frequency value.

The InputMessage code for our python code looks like this:

    def play(self, delay, duration, volume, frequency):
        self.thread.InputMessage("i \"%s\" %f %f %f %f" % ("osc", delay, duration, volume, frequency))





We use python string-formating syntax to substitute f’s with floats and s’s with strings.
Note the escaped double quotes in the python code!



Example continued

Now we are ready to look at the python code:

import csnd6

class Audio:
    def __init__(self):
        engine = csnd6.Csound()
        engine.SetOption("-odac")
        engine.Compile("message.csd")

        thread = csnd6.CsoundPerformanceThread(engine)
        thread.Play()

        self.engine = engine
        self.thread = thread

    def play(self, delay, duration, volume, frequency):
        self.thread.InputMessage("i \"%s\" %f %f %f %f" % ("osc", delay, duration, volume, frequency))

    def close(self):
        self.thread.Stop()
        self.thread.Join()





The initialization and termination of audio engine are the same as in the previous example.
The new funtion is play. The syntax is already explained. We take in dleay to trigger the note,
note’s duration and pair of our Haskell parameters (amplitude and frequency).

Let’s try out our engine in the python interpreter:

$ python
> from message import Audio
> c = Audio()
> c.play(1, 3, 0.5, 220)
> c.play(0, 2, 0.3, 330)
> c.close()







Triggering instruments as procedures

Sometimes we don’t want to produce the sound as the response to messages.
Sometimes we want to update some parameters. You can imagine a drone sound going on
or arpeggiator and we want to update a note or LFO rate with message.
To do it we can use the function:

trigByName_ :: (Arg a) => String -> (a -> SE ()) -> SE ()
trigByName_ name instrument = aout





Note the underscore at the end. It creates a named procedure.
The procedure can be called with Csound API just in the same way as
an ordinary instrument. It’s useful to know the turnoff function.
It turns the instrument off. By default all Csound instrument last
for some time. With turnoff we can simulate instant reaction procedure.
It does some work (robably updates the global parameters) and then
it turns itself off. The pattern of usage looks like this:

procedure args = do
    doSomeStuff
    turnoff

main = trigByName_ "update_param" procedure







Creation of MIDI-controlled instruments

If we want to create a VST plugin we want to be able to control
our csound insturment in the MIDI-like manner.
We want to send note on and note off messages. This functionality
can be simulated with trigByName_ function and global variables.
There are predefined library function that already implement this
behavior:

trigByNameMidi :: (Arg a, Sigs b) => String -> ((D, D, a) -> SE b) -> SE b
trigByNameMidi name instrument = ...





The instrument takes in two mandatory arguments: pitch and amplitude midi-keys.
It produces an audio signal as output. We can use it with Csound API
just as in previous examples. We have special format for Csound arguments
to simulate note-on/off behavior:

i "givenName" delay duration 1 pitchKey volumeKey auxParams     -- note on
i "givenName" delay duration 0 pitchKey volumeKey auxParams     -- note off





Alongside with delay and duration we have another hidden argument. It’s  the fourth argument.
It’s 1 for note on and 0 for note off. Which note to turn off is determined by pitch key.

There is a procedure version of the function:

trigByNameMidi_ :: (Arg a, Sigs b) => String -> ((D, D, a) -> SE ()) -> SE ()
trigByNameMidi_ name instrument = ...







Monophonic MIDI-controlled instruments

The monophonic instruments need special treatment:

trigNamedMono :: D -> D -> String -> SE (Sig, Sig)
trigNamedMono portamentoTime releaseTime name = ...





The function is located at the module Csound.Control.Midi (see section Mono-midi synth).

The argument list for Csound is the same as for normal midi instruments.

i "givenName" 1 delay duration pitchKey volumeKey     -- note on
i "givenName" 0 delay duration pitchKey volumeKey     -- note off







MIDI-controlled patches

There are predefined midi-like named functions for patches (see section Csound API at the module Csound.Air.Patch):

patchByNameMidi :: (SigSpace a, Sigs a) => String -> Patch D a -> SE a
patchByNameMidi name patch = ...

monoPatchByNameMidi :: (SigSpace a, Sigs a) => String -> Patch Sig a -> SE a
monoPatchByNameMidi name patch = ...

monoSharpPatchByNameMidi :: (SigSpace a, Sigs a) => String -> Patch Sig a -> SE a
monoSharpPatchByNameMidi name patch = ...





If you are interested in non-trivial application that uses Csound API
you can look at the python synthesizer called tiny-synth [https://github.com/anton-k/tiny-synth].
It uses functions for named midi-controlled patches. It features 100+ patches from the standard
collection of csound-expression instruments.





Example: Audio player

Let’s create a command line audio player. We are going to create
3 instruments. One for playing wavs and aiffs, another one for playing mp3s
and the last one to stop player.

-- the file Player.hs
module Main where

import Csound.Base

declick :: Sig2 -> Sig2
declick = mul (fades 0.01 0.1)

playWav :: Str -> SE Sig2
playWav file = return $ declick $ diskin2 file 1

playMp3 :: Str -> SE Sig2
playMp3 file = return $ declick $ mp3in file

stop :: Unit -> SE ()
stop _ = do
    turnoffByName "wav" 0 0.1
    turnoffByName "mp3" 0 0.1
    turnoff

main = writeCsd "player.csd" $ do
    wavs <- trigByName "wav" playWav
    mp3s <- trigByName "mp3" playMp3
    trigByName_ "stop" stop
    return $ wavs + mp3s





Let’s take this file apart. The first thing we create is declicking envelope
so that playback starts and fades without clicks:

declick :: Sig2 -> Sig2
declick = mul (fades 0.01 0.1)





Next we define an instruemnt to play wavs and aiffs:

playWav :: Str -> SE Sig2
playWav file = return $ declick $ diskin2 file 1





We define an instrument to play mp3s:

playMp3 :: Str -> SE Sig2
playMp3 file = return $ declick $ mp3in file





We define an instrument to turn off any notes for all instruments
that play wavs and mp3s.

stop :: Unit -> SE ()
stop _ = do
    turnoffByName "wav" 0 0.1
    turnoffByName "mp3" 0 0.1
    turnoff





It uses the new function turnoffByName. The function
is defined to turnoff named instruments. The first argument is the name of the instrument.
The next is the code for turning off. Zero means turnoff all instances. The last argument is for release time (in seconds).

At the main function we assign names to instruments and direct the output to speakers.

main = writeCsd "player.csd" $ do
    wavs <- trigByName "wav" playWav
    mp3s <- trigByName "mp3" playMp3
    trigByName_ "stop" stop
    return $ wavs + mp3s





So we can create a file with audio engine and give it a name player.csd with command:

> runhaskell Player.hs





Let’s look at the python code:

import csnd6, os.path, time

def is_mp3(filename):
    filename, file_extension = os.path.splitext(filename)
    return file_extension == '.mp3'

class Player:
    def __init__(self):
        engine = csnd6.Csound()
        engine.SetOption("-odac")
        engine.Compile("player.csd")

        thread = csnd6.CsoundPerformanceThread(engine)
        thread.Play()

        self.engine = engine
        self.thread = thread

    def play_file_by_ext(self, ext, file):
        self.thread.InputMessage("i \"%s\" 0 -1 \"%s\"" % (ext, file))

    def stop(self):
        self.thread.InputMessage("i \"stop\" 0 0.01")
        time.sleep(0.02)

    def play(self, file):
        self.stop()
        if is_mp3(file):
            self.play_file_by_ext("mp3", file)
        else:
            self.play_file_by_ext("wav", file)

    def close(self):
        self.thread.Stop()
        self.thread.Join()





The initialization and termination are the same as in previous examples.
In the body of the instrument  we use a trick to play note forever.
To play note forever in the Csound we have to invoke it with negative duration.
Look at the code for triggering the notes:

    def play_file_by_ext(self, ext, file):
        self.thread.InputMessage("i \"%s\" 0 -1 \"%s\"" % (ext, file))





Notice the duration of the note is set to -1. It’s going to held the note forever.
In the play function we stop all previous instances and then start new note. We determine the file type by extension:

    def play(self, file):
        self.stop()
        if is_mp3(file):
            self.play_file_by_ext("mp3", file)
        else:
            self.play_file_by_ext("wav", file)





Let’s try it out in the terminal:

$ python
> from player import Player
> p = Player()
> p.play("muzzy.wav")
> p.stop()
> p.play("song.mp3")
> p.close()








	<= Arrays [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Arrays]


	=> Creating VST-plugins with Cabbage [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/CabbageTutorial]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]








          

      

      

    

  

    
      
          
            
  
Events

We have learned how to trigger an instrument with the score.
Now we are going to learn how to do it with an event stream.
The model for event streams is heavily inspired with
functional reactive programming (FRP) though it’s not a FRP
model in the strict sense, because our signals are discrete
and not continuous as FRP requires. But nevertheless it’s useful
to know the basics of FRP to learn the construction of event streams.


Introduction to FRP

FRP is a novel approach for description of interactive systems.
It introduces two main concepts: behaviors and event streams.
A behavior can be though as continuous signal of some value.
It represents the changes in the life of the value.
What’s interesting is that it describes the whole
life of the value. An event stream contains a value
that may happen sometimes. For example if we have a computer mouse.
The position of the cursor is a behavior that contains two values
(X and Y) and an event stream is a stream of all clicks
for the mouse’s buttons.

In the traditional callback based approach we have
some instrument to register a callback function for the mouse clicks.
The function accepts an event that carries the information about
which button was pressed and what is the position of the mouse.
When something happens we can update some mutable variables.

With FRP we can manipulate event streams as if they are values.
We can map over the values that are contained in the events.
We can merge two event streams together. We can accumulate
some value based on upcoming events. And we can convert the
event streams to behaviors. The simplest function that
comes into mind is creation of step-wise constant function.
When something happens on the event stream we hold the value
until the next event fires and updates the value.

stepper :: a -> Event a -> Behavior a
stepper initVal events





We have an initial value. It lasts while nothing has happened.

More complicated function is a switch function:

switch :: Behavior b -> (a -> Behavior b) -> Event a -> Behavior b
switch initVal behaviorProducer events





The switch applies some behavior constructor to the value of event
when something happens. The resulting behavior lasts until
the next event happens. Then we apply the function again and so on.

With this approach we can build complex behaviors from simple ones.
The key feature is that a single value can contain a whole event stream!
It removes the need for mutable variables. we use mutable
values with callbacks when we want to communicate the changes of
the value from one callback to another. If we want to use the results of
a callback in the rest of the program.

That’s how we can count the clicks of the mouse:

> showOnScreen $ stepper 0 $ accum 0 (+ 1) $ filter isLeftClick $ mouseClicks





It’s an imaginary code but it shows the idea. The ides is
that we can take the stream of all mouse clicks. Then we can filter it
so that we get only clicks for the left button. Then we can accumulate
a value over the event stream and in the last function we convert
the stream of counter into the continuous signal and show it on the screen.

The callback based solution can look like this (again it’s an imaginary imperative
code written in Haskell):

counter <- newIORef 0
screen <- newScreen

Mouse.registerCallback $ \evt -> do
    if isLeftClick evt then do
        modifyIORef (+1) counter
        pushValuetoScreen screen =<< readIORef counter
    else do
        return ()







Triggering instruments with event streams

Let’s trigger an instrument with event stream.
There is a function:

sched :: (Arg a, Sigs b) => (a -> SE b) -> Evt (Sco a) -> b





It takes in an instrument and an event stream of scores.
Every event contains a score. We have a simple instrument:

> bam _ = mul (fades 0.01 0.3) $ pink





It plays a pink noise. It takes no arguments but the
sched function requires an instrument to be a function
so we created an “empty” argument.
Let’s trigger it with the stream:

> dac $ sched bam $ withDur 0.1 $ metro 2





The metro creates an event stream of ticks that
happen with given frequency. We have set the frequency to 2
per second. The function withDur creates an event stream of scores
out of event stream of values. We can set the duration of every event.
The final function sched applies an instrument to an event stream.
We get the signal as a result.

Let’s create an instrument with a parameter. We are going
to produce a filtered pink noise:

> bam x = mul (fades 0.01 0.3) $ at (mlp (2500 * sig x) 0.1) $ pink





The parameter is responsible for the center frequency.
The example introduces an instrument that is not parametrized
with an amplitude or frequency but still it can produce
a musical result. Let’s create a sound:

> dac $ sched bam $ withDur 0.1 $ cycleE [1, 0.5, 0.5, 0.25, 1, 0.5, 0.8, 0.65] $ metro 4





The function cycleE substitutes a values of the event stream with
repeating values that are taken from the given list. When something
happens it takes a next value from the list and puts it to the
event stream when it reaches the last value in the list it starts
from the first value and so on. With the example we create a drum pattern.

Also we can create an arpeggio:

> instr x = return $ mul (fades 0.01 0.1) $ tri $ sig x
> notes = fmap (* 220) [1, 5/4, 1, 3/2, 5/4, 2, 3/2, 10/4, 2, 3, 10/4, 4]
> dac $ mul 0.5 $ sched instr $ withDur 0.1 $ cycleE notes $ metro 8





Let’s add a couple effects. We add a delay (echo) and low pass filter (mlp):

> dac $ mul 0.25 $ at (mlp 3500 0.1) $ echo 0.25 0.5
    $ sched instr $ withDur 0.1 $ cycleE notes $ metro 8





We can recieve the events from the user. Let’s create a button:

> btn = button "play"





The button produces an event stream of clicks:

> :t btn
btn :: Source (Evt Unit)





The Unit is Csound value that signifies no value or empty tuple.
It has to be defined for implementation reasons. We can not just use Haskell empty tuple.

Let’s trigger an instrument:

> dac $ lift1 (sched instr . withDur 0.1 . fmap (const 440)) btn





The fun part of it is that an instrument can contain signals that were
created with event streams! Let’s abstract away our arpeggios in an instrument:

> arpInstr _ = mul (fadeOut 1) $ at (mlp 3500 0.1) $ echo 0.25 0.5 $ mul 0.25
    $ sched instr $ withDur 0.1 $ cycleE notes $ metro 8
> dac $ lift1 (sched (return . arpInstr) . withDur 1) btn





Kind of ring tone we made :)

There are functions that play an instrument until something happens
with another event stream:

schedUntil :: (Arg a, Sigs b) => (a -> SE b) -> Evt a -> Evt c -> b





Let’s create another button for stopping an instrument.
We are going to play the arpInstr until we press another button.

> stop = button "stop"
> dac $ hlift2 (schedUntil $ return . arpInstr) btn stop





We can create an event stream of keyboard presses.
There are handy functions:

charOn, charOff :: Char -> Evt Unit





The function takes in a symbolic representation of key and produces
an event stream of clicks/ Let’s rewrite previous example:

> dac $ (schedUntil $ return . arpInstr) (charOn 'a') (charOff 'a')





Try to press the key a. We should focus on the Csounds window.

There is a more generic function keyIn:

> :t keyIn
keyIn :: KeyEvt -> Evt Unit
> :i KeyEvt
data KeyEvt = Press Key | Release Key





And type Key contains all special keys. We can find the complete
description in the documentation.

There are functions to listen for midi event streams:

midiKeyOn, midiKeyOff :: MidiChn -> D -> SE (Evt D)
> :i MidiChn
data MidiChn = ChnAll | Chn Int | Pgm (Maybe Int) Int





We are going to study them later.



Main functions for event streams

Let’s study the main functions for construction of event streams.


Monoid

Event stream is a Monoid. The mempty is an event stream
that has no events and mappend combines to event streams
into a single event stream that contains events from both streams.
Reminder: mconcat is a version of mappend that is defined
on lists.

We can create an intricate drum pattern:

> bam _ = mul (fades 0.01 0.05) $ pink
> dac $ sched bam $ withDur 0.1 $ mconcat [metro 2, metro 1.5, metro $ 3/7]





Try to exclude values from the list or include your own and see what happens.



Functor

An event stream is a functor.
We can transform the events of an event stream with a function.
We can map over events with fmap:

fmap :: (a -> b) -> Evt a -> Evt b





The function withDur that turns values to scores is
defined with fmap:

withDur :: Sig -> Evt a -> Evt (Sco a)
withDur dur = fmap (str dt . temp)





There is another useful function devt. It substitutes
any value in the stream with the given value:

devt :: a -> Evt b -> Evt a
devt a = fmap (const a)





We can create pitched beats:

> oscInstr x = return $ mul (fades 0.01 0.1) $ osc $ sig x
> dac $ sched oscInstr $ withDur 0.1 $ mconcat
    [devt 440 $ metro 2, devt 660 $ metro 1.5, devt 220 $ metro 0.5]







Picking values from the lists

We already familiar with th function cycleE it
cycles over the values in the list. Another useful
function is oneOf it picks a value at random from the list:

> dac $ mlp 2500 0.1 $ sched oscInstr $ withDur 0.1 $
    oneOf (fmap (* 220) [1, 9/8, 5/4, 3/2, 2]) $ metro 8





The type signatures:

cycleE, oneOf :: [a] -> Evt b -> Evt a





We can also set the frequencies of repetition for the values in the list:

type Rnds a = [(Sig, a)]

freqOf :: (Tuple a, Arg a) => Rnds a -> Evt b -> Evt a





The type Rnds is a list of pairs. They are values augmented with probabilities.
The sum of probabilities should be equal to 1.

The most generic function is:

listAt :: (Tuple a, Arg a) => [a] -> Evt D -> Evt a





It picks values from the list by the event stream of indices.



Accumulation of values

We can create a simple accumulation of values.

The simple function iterateE applies a function
over and over when something happens on the event stream:

iterateE :: Tuple a => a -> (a -> a) -> Evt b -> Evt a





Let’s listen to the midi notes:

> dac $ sched oscInstr $ withDur 0.2 $ fmap cpsmidinn $ iterateE 30 (+1) $ metro 4





The function cpsmidinn trn an integer number of midi key to frequency.

The function iterateE doesn’t take into account the value of events.
We can run counter that takes values from the event stream:

appendE :: Tuple a => a -> (a -> a -> a) -> Evt a -> Evt a





The function appendE takes in an initial value and a function
to apply to the current value and the value of the event.
When event happens the function is applied and result is stored
as the state. The current value is put into the output stream.
We can create a simple synth with two buttons.
Left button is for going down the scale and the right button
is for going up the scale:

> btnDown = button "down"
> btnUp   = button "up"
> dac $ hlift2 (\down up -> mlp 1500 0.1 $ saw $ cpsmidinn $ evtToSig 60
    $ appendE 60 (+) $ mconcat [devt 1 up, devt (-1) down])
    btnDown btnUp





It’s interesting to note how an instrument is controlled with
an event stream. We don’t trigger any instrument. We convert
the event stream to signal. The signal controls the pitch of the filtered saw.

The function evtToSig converts an event stream of numbers to a signal:

evtToSig :: D -> Evt D -> Sig
evtToSig initVal evt





Let’s unwind this expressin. First we transform the event streams
for buttons so that each button produces 1’s or -1’s and we merge
two streams in the single stream:

mconcat [devt 1 up, devt (-1) down]





Then we create a running sum. So that when user presses up
the value goes up and when the user presses down we subtract the 1.

appendE 60 (+) $ previousExpression





Then we convert event stream to signal and convert numbers to pitches:

cpsmidinn $ evtToSig 0 $ previousExpression





At the last expression we apply the pitch to filtered saw and send the output to speakers:

mlp 1500 0.1 $ saw $ previousExpression





The whole expression is wrapped in the hlift2 so that
we can read the values from UI-widgets and stack the widgets
horizontally.

There are more generic functions for accumulating state:

accumE  :: Tuple s => s -> (a -> s ->    (b, s)) -> Evt a -> Evt b
accumSE :: Tuple s => s -> (a -> s -> SE (b, s)) -> Evt a -> Evt b





They accumulate state in pure expressions and on expressions with side effects.



Filtering event streams

We can skip some events if we don’t like them.
We can do it with function:

filterE :: (a -> BoolD) -> Evt a -> Evt a





The first argument is a predicate, if it’s true for
the given event it is put in the output otherwise it’s left out.

We can also skip events at random:

randSkip :: Sig -> Evt a -> Evt a





The first argument is the probability of skip.

There are many more functions we can check them out in the docs (see module Csound.Control.Evt).




Signal segments

The signal segments lets us schedule signals with event streams.
They are defined in the module Csound.Air.Seg.
A signal segment can be constructed from a single signal or a tuple of signals:

toSeg :: a -> Seg a





It plays the signal indefinitely. We can limit the duration of the segment
with static length measured in seconds:

constLim :: Sig -> Seg a -> Seg a





or with an event stream:

type Tick = Evt Unit

lim :: Tick -> Seg a -> Seg a





The signal is played until something happens on the given event stream.
When segment is limited we can loop over it:

loop :: Seg a -> Seg a





It plays the segment and the replays it again when it comes to an end.

If we several limited signals we can play them in sequence:

mel :: [Seg a] -> Seg a





When the first signal stops the next one comes into play and
when it stops the next one is turned on.

Also we can play segments at the same time:

par :: [Seg a] -> Seg a





The length of the result equals to the longest length among all input segments.

We can delay the segment with an event stream or a static length:

del      :: Tick -> Seg a -> Seg a
constDel :: Sig  -> Seg a -> Seg a





There is a handy shortcut for playing nothing for the given amount of time:

rest      :: Num a => Tick -> Seg a
constRest :: Num a => Sig  -> Seg a





To listen the segment we need to convert it to signal:

runSeg :: Sigs a => Seg a -> a





That’s it. With signal segments we can easily schedule the signals with
event streams.

Let’s create a button and turn the signal on when it’s pressed:

> dac $ lift1 (\x -> runSeg $ del x $ toSeg $ osc 440) (button "start")





Let’s create a second button that can turn off the signal.

> dac $ hlift2 (\x y -> runSeg $ del x $ lim y $ toSeg $ osc 440)
    (button "start")
    (button "stop")





When signal stops the program exits. We can repeat the process by looping:

> dac $ hlift2 (\x y -> runSeg $ loop $ del x $ lim y $ toSeg $ osc 440)
    (button "start")
    (button "stop")





Let’s play several signals one after another with sflow:

> dac $ hlift2 (\x y -> runSeg $ loop $ lim y
    $ del x $ loop $ mel $ fmap (lim x . toSeg . osc) [220, 330, 440])
    (button "start")
    (button "stop")





Warning: Note that signal release is not working with signal segments.



Samplers

There are handy functions to trigger signals that are based on signal segments.
We can look at the module Csound.Air.Sampler to find them.

The functions trigger the signals with event streams, keyboard presses and midi messages.
Let’s look at the functions for keyboard (the rest functions are roughly the same).

There are several patterns of (re)triggering.


	Trig – triggers a note and plays it while the same key is not pressed again

charTrig :: Sigs a => Maybe a -> String -> String -> a -> SE a
charTrig ons offs asig = ...





It accepts a possible initial value (if nothing it’s set to zero),
string of keys to turn on the signal and the string of keys to turn it off.

Let’s try it out:

> dac $ at (mlp 500 0.1) $ charTrig Nothing "q" "a" $ saw 110





Try to hit q and a keys.



	Tap – is usefull optimization for Trig it plays the note only for
a given static amount of time (it’s good for short drum sounds)
Tap has the same arguments but the turn off string is substituted
with a note’s length in seconds (it comes first):

charTap :: Sigs a => Sig -> String -> a -> SE a







	Push – plays a signal while the key is pressed.

charPush :: Sigs a => Maybe a -> Char -> a -> SE a





The first argument holds signal to play while nothing is pressed.
If we pass Nothing, then nothing is playd back :)
Let’s create a simple note:

> dac $ at (mlp 500 0.1) $ charPush (Just $ osc 330) 'q' $ saw 110





Let’s create a couple of notes:

> dac $ at (mlp 500 0.1) $ sum [charPush def 'q' $ saw 110, charPush def 'w' $ saw (110 * 9 / 8)]





The maybe is instance of Default, so we can use def value as alias for Nothing.

Note that only one key (de)press can be registered at the moment.
It’s current limitation of the library. It’s not so for midi events.



	Toggle – uses the same key to turn the signal on/off.

> dac $ at (mlp 500 0.1) $ charToggle 'q' $ saw 110







	Group – creates a mini mono-synth. It’s give a list of pairs
of keys an signals. When key is pressed the corresponding
signal starts playing. When the next key is pressed
the previous is turned off and the current is turned on.

charGroup :: Sigs a => Maybe a -> [(Char, a)] -> SE a









There are many more functions. You can find them in
the module Csound.Air.Sampler [http://hackage.haskell.org/package/csound-expression/docs/Csound-Air-Sampler.html].


Turning keyboard to DJ-console

Let’s create a mini mix board for a DJ.
The first thing we need is a cool dance drone:

> snd1 a b = mul 1.5 $ mlp (400 + 500 * uosc 0.25) 0.1 $ mul (sqrSeq [1, 0.5, 0.5, 1, 0.5, 0.5, 1, 0.5] b) $ saw a





Let’s trigger it with keyboard!

> dac $ charTrig def "q" "a" (snd1 110 8)





Try to press q and a  keys to get the beat going.
Let’s create another signal. It’s intended to be high pitched pulses.

> snd2 a b = mul 0.75 $ mul (usqr (b / 4) * sqrSeq [1, 0.5] b) $ osc a





Let’s try it out. Try to press w, e, r keys.

> dac $ mul 0.5 $ sum [charPush def 'w' $ snd2 440 4, charPush def 'e' $ snd2 330 4, charPush def 'r' $ snd2 660 8]





Note that only one keyboard event can be recognized. So if you press or depress
several keys only one is going to take effect. It’s a limitation of
current implementation. It’s not so with midi events. Let’s join the results:

> pulses = mul 0.5 $ sum [charPush def 'w' $ snd2 440 4, charPush def 'e' $ snd2 330 4, charPush def 'r' $ snd2 660 8]
> beat = mul 0.5 $ sum [charTrig def "q" "a" (snd1 110 8), charTrig def "t" "g" $ snd1 220 4]





Let’s create some drum sounds:

> snd3 = osc (110 * linseg [1, 0.2, 0])
> snd4 = mul 3 $ hp 300 10 $ osc (110 * linseg [1, 0.2, 0])
> drums = sum [charTrig def "z" "" snd3, charTrig def "x" "" snd4]





Let’s rave along.

> dac $ sum [pulses, mul 0.5 beat, mul 1.2 drums]








	<= Scores [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/ScoresTutorial]


	=> Real-world instruments show case [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Patches]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]









          

      

      

    

  

    
      
          
            
  
Family of effects

There is a family of effects that are common to electronic music.
The module `Csound.Air.Fx.FxBox’ defines many typical effects.
This code can turn your code into a pedalboard! We can use effects as spice for the tibre.
It defines useful functions for typical guitar effects and defines
shortcuts to quickly add the effects to your instrument, also it has
support for UI. We can not only add effects but also  tweak them in real time
just like we do it with guitar stompboxes.

All effects are kindly provided by Iain McCurdy and recoded from the original csound files.

To make things more fun I’ve given names to all instruments. So let’s get aquinted to
the family of effects:


	adele - analog delay


	pongy - ping-pong delay


	magnus - magnetic tape echo


	tort  - distortion


	fowler - envelope follower


	revsy - reverses audio stream


	flan - flanger


	phasy - phaser


	crusher - bit crusher


	chory - chorus


	pany - auto-pan


	tremy - tremolo


	ringo – ring modulation




Reverbs:

    room, chamber, hall, cave





Almost all effects have normalized parameters (belong to the interval 0 to 1).


Effects


Adele - analog delay

It’s single delay line with low-pass filter in the feedback:

adele :: Sigs a => Balance -> DelayTime -> Feedback -> ToneSig -> a -> a





arguments are:


	balance – dry/wet ratio (0, 1)


	delay-time  measured in seconds


	feedback level (0, 1)


	tone – low-pass filter center frequency (0, 1)




If tone is low the echoes are muddy (or muted) and if it’s high the echoes are as bright as original signal.



Pongy - ping-pong delay

It’s a special version of ping-pong delay. The dry/wet ratio and feedback are controlled with the same parameter.

pongy :: Sigs a => Feedback -> DelayTime -> a -> SE a
pongy feedback delayTime





The signature is generic but it’s intended to be used with stereo signals or tuples of stereo signals.
It can be used like this:

dac $ pongy $ loopWav 1 "vox.wav"







Magnus - magnetic tape echo/delay

It’s a simulation of magnetic tape delay (as found in Roland Space Echo).
Original code is developed by Jon Downing, then it was ported to CE.

magnus :: Sigs a => D -> DelayTime -> Feedback -> EchoGain -> ToneSig -> RandomSpreadSig -> a -> a
magnus size feedback echoGain tone randomSpread ain





Arguments:


	size - how many heads in the tape


	feedback - controls the number of repeats


	echo gain - prominence of echo effect


	tone - normalized center frequency of the filter (0  to 1)


	randomSpread - quality of the tape (the higher - the worser)






Reverbs

There are usefull functions to easily add a reverb:

room, chamber, hall, cave :: Sigs a => Balance -> a -> a





The first argument is dry/wet ratio.



Tort - distortion

Distortion can make your instrument scream.

tort :: Sigs a => DriveSig -> ToneSig -> a -> a





The arguments are:


	drive – amount of distortion (0, 1).


	tone – the level of center frequency of the low-pass filter (0, 1).






Fowler - envelope follower

Envelope follower applies a low-pass filter to the audio and the center frequency is controlled by the amplitude of the signal (RMS-level).

fowler :: Sigs a => SensitivitySig -> BaseCps -> Resonance -> a -> a





Arguments:


	sensitivity – sensitivity of the envelope follower (suggested range: 0 to 1)


	baseFrequencyRatio – base frequency of the filter before modulation by the input dynamics (range: 0 to 1)


	resonance – resonance of the lowpass filter (suggested range: 0 to 1)






Revsy - reversing the audio

An effect that reverses an audio stream in chunks

revsy :: Sigs a => TimeSig -> a -> a





time – the size of the chunck in seconds.



Flan - flanger

A flanger effect following the typical design of a so called ‘stomp box’

flan :: Sigs a => RateSig -> DepthSig -> DelayTime -> Feedback -> a -> a





Arguments


	rate – rate control of the lfo of the effect NOT IN HERTZ (range 0 to 1)


	depth – depth of the lfo of the effect (range 0 to 1)


	delayTime – static delay offset of the flanging effect (range 0 to 1)


	feedback – feedback and therefore intensity of the effect (range 0 to 1)






phasy - phaser

An phase shifting effect that mimics the design of a so called ‘stomp box’

phasy :: Sigs a => RateSig -> DepthSig -> BaseCps -> Feedback -> a -> a
phasy rate depth freq fback ain





Arguments:


	rate – rate of lfo of the effect (range 0 to 1)


	depth – depth of lfo of the effect (range 0 to 1)


	freq – centre frequency of the phase shifting effect in octaves (suggested range 0 to 1)


	fback – feedback and therefore intensity of the effect (range 0 to 1)






Crusher - bit crusher

crusher :: Sigs a => BitsReductionSig -> FoldoverSig -> a -> a
crusher  bits fold ain = ...





‘Low Fidelity’ distorting effects of bit reduction and downsampling (foldover)

Arguments


	bits – bit depth reduction (range 0 to 1)


	fold – amount of foldover (range 0 to 1)






Chory - stereo chorus

chory :: RateSig -> DepthSig -> WidthSig -> Sig2 -> Sig2
chory rate depth width (ainLeft, ainRight)





Arguments


	rate  – rate control of the lfo of the effect NOT IN HERTZ (range 0 to 1)


	depth – depth of the lfo of the effect (range 0 to 1)


	width – width of stereo widening (range 0 to 1)


	ainX  – input stereo signal






Pany - autopan

pany :: TremWaveSig -> DepthSig -> RateSig -> Sig2 -> Sig2
pany wave rate depth ain





Arguments:


	wave – waveform used by the lfo (0=sine 1=triangle 2=square)


	rate – rate control of the lfo of the effect NOT IN HERTZ (range 0 to 1)


	depth – depth of the lfo of the effect (range 0 to 1)




Also there are special functions with LFO-wave set to specific wave: oscPany, triPany, sqrPany.



Tremy - tremolo

tremy :: Sigs a => TremWaveSig -> DepthSig -> RateSig -> a -> a
tremy wave rate depth ain





; Arguments:


	wave – waveform used by the lfo (0=sine 1=triangle 2=square)


	rate – rate control of the lfo of the effect NOT IN HERTZ (range 0 to 1)


	depth – depth of the lfo of the effect (range 0 to 1)




Also there are special functions with LFO-wave set to specific wave: oscTremy, triTremy, sqrTremy.



Ringo - An ring modulating effect with an envelope follower

ringo :: Sigs a => Balance -> RateSig -> EnvelopeModSig -> a -> a
ringo balance rate envelopeMod






	balance   –  dry / wet mix of the output signal (range 0 to 1)


	rate  –  frequency of thew ring modulator NOT IN HERTZ (range 0 to 1)


	envelopeMod   –  amount of dynamic envelope following modulation of frequency (range 0 to 1)







Presets

Sometimes we want to quickly add some effect. We don’t care that much about particular numbers for parameters.
We just want to add a bit of distortion, lot’s of delay and spoonful of flanger. To achieve that easily we have
a predefined presets for every member of fx-family.

The preset name is a name of the member followed by a number 1 to 5 (means small to large coloring). For some members (adele and tort)
it has auxiliary suffix m (muted) or b (bright) like adele2m or tort3b. This suffix relates to the effects
that have built-in low-pass filter or tone parameter.



UI stompboxes

If we use prefix ui we can create an image of our effect that looks like guitar stompbox.
Let’s take a distortion fr instance:

type Fx a = a -> SE a

uiTort2 :: Sigs a => Source (Fx a)





We can combine the effects with functions:

fxHor, fxVer :: [Source (Fx a)] -> Source (Fx a)

fxGrid :: Int -> [Source (Fx a)] -> Source (Fx a)
fxGrid numberOfColumns fxs = ...





All these functions stack the effects in the list
and align visuals. The visuals can be stacked horizontally, vertically
or placed on a square grid.

Let’s create a chain of effects and apply it to the input signal:

> let pedals ain = lift1 (\f -> f ain) $ fxHor [uiFlan1, uiAdele2 0.25 0.5, uiHall 0.2, uiGain 0.4]

> let player = atMidi $ dryPatch vibraphone1

> vdac $ pedals =<< player





With uiGain we can change the volume of the output.

Noticw how we used a standard monadic bind operator (=<<) to apply the effects to the signal.
How does it work? Let’s check out the types:

> :t pedals
pedals :: Sig2 -> Source (SE Sig2)
> :t player
player :: SE Sig2





And bind expects the types to be:

(=<<) :: Monad m => (a -> m b) -> m a -> m b





The SE is a monad but the Source doesn’t seem to match for SE b part of signature.
It’s ok! The Source is an alias for

type Source a = SE (Gui, Input a)





So the uderlying type of pedals is:

pedals :: Sig2 -> SE (Gui, Input (SE Sig2))





and it’s just the right food for bind operator.

Also we can apply the UI-widget with FX processing function with the help of the function fxApply:

fxApply :: Source (a -> SE b) -> a -> Source b





If the argument is wrapped in SE we can use the bind operator =<<:

fxApply fx =<< atMidi hammondOrgan





*Reminder: With functions like fxHor and fxGrid we can easily stack many stompboxes.
We can stack so many of them that they no longer fit to the screen. To adjust the total size
of the window we can use the function resizeSource:

resizeSource :: (Double, Double) -> Source a -> Source a

> dac $ resizeSource (0.75, 1) $ fxApply (fxHor [ ... many stompboxes ... ]) ourInput





Also we can set the default scaling factor parameters wit the options (see the paramter csdScaleUI):

> dacBy (def { csdScaleUI = (2, 2) }) $ ...






Composing mono and stereo effects

It’s often happens when chain starts with monophonic processing units (Sig -> SE Sig)
and then proceeds with stereophonic processing units (Sig2 -> SE Sig2). The reverb is often
used as mono to stereo  transition.  To make it easy to create chains of effects from mixed up
units there are analogs of functions fxHor and fxVer. They have suffix MS for Mono-To-Stereo:

fxHorMS, fxVerMS ::
    [Source Fx1] ->
    Maybe (Source (Sig -> SE Sig2)) ->
    [Source Fx2] ->
    Source (Sig -> SE Sig2)





Type seems to be complicated but let’s break it apart. The chain starts with the list of monophonic effects:

[Source Fx1] ->





Recall that Fx1 is an alias for Sig -> SE Sig. Then we encounter a possible bridge from mono to stereo signals:

Maybe (Source (Sig -> SE Sig2)) ->





It’s wrapped in maybe type. We have to options. We can explicitly define the effect that takes us from mono to stereo (reverb is often used at this place).
Also we can just omit it with Nothing case and then the identity mono to stereo converter will be inserted.

Next we proceed with the chain of stereo effects:

[Source Fx2] ->





At the output we get UI-widget with the mono to stereo effect:

Source (Sig -> SE Sig2)





An example:

> let fx = fxHorMS [uiTort1, uiFlan2] def [uiChamber2]
> :t fx
fx :: Source (Sig -> SE Sig2)





We create the ui widget with a bit of distortion, slightly more flanger and not too big reverb.
We use def as an alias for maybe’s constructor Nothing. We can apply the effect to the imput signal
received from say guitar pluged into audio card.

> dac $ onCard2 $ \(aLeft, aRight) -> fxApply fx aLeft





The onCard2 is a helper function to derive the types. It passes the argument through unchanged but it has more strict type signature.
The dac is to much overloaded for this case. We can do without it but then we need to specify the types explicitly.




Example: Virtual pedalboard

We can create a virtual pedalboard quite easily. Here is a complete example:

import Csound.Base

main = run proc

run = dacBy (setAdc <> setJack "fx" <> setRates 44100 32 <> setBufs 64 32)

proc :: Sig2 -> Source Sig2
proc (a1, a2) = fxApply fx a1
    where
        fx = fxGridMS 4 [uiTort1m, uiFlan1, uiPhasy2, uiAdele2 0.4 0.35] def [uiChory2, uiHall2, uiGain 0.6]





Let’s take it apart. It uses JACK tool but you can also read from your sound card directly.

With function run we set the global command line flags for JACK:

run = dacBy (setAdc <> setJack "fx" <> setRates 44100 32 <> setBufs 64 32)





We set the jack client name to be "fx". We set the rates and audio IO buffers like in the JACK settings.
In your system there might be different settings. So adjust the example!

The next thing is the procedure proc that takes in a stereo signal and produces UI-widget.

proc :: Sig2 -> Source Sig2





In this function we create a chain of effects:

fx = fxGridMS 4 [uiTort1m, uiFlan1, uiPhasy2, uiAdele2 0.4 0.35] def [uiChory2, uiHall2, uiGain 0.6]





Notice the usage fxGridMS function. It creates the chain of effects that start from mono effects
and proceeds with stereo effects.

We apply the chain of effects to the first input from the audio-card. This example is for
2x2 audio-card but if your card is different you should adjust the input/output signatures.

proc (a1, a2) = fxApply fx a1





Finally we render the function proc with our function run:

main = run proc





If the run (dacBy in disguise) takes in a function the argument signals of the function
are interpreted as input audio channels.

So this is how we can create a pedalboard with Haskell!




	<= Real-world instruments show case [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Patches]


	=> Sound fonts [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SoundFontsTutorial]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]








          

      

      

    

  

    
      
          
            
  
Granular synthesis

Granular synthesis is good for creation of atmospheric ambient textures.
We can take a plain violin note in the sustain phase and turn it into
wonderful soundscape.

The Csound contains a set of functions for granular synthesis.
Unfortunately they are very hard to use due to large number of arguments.
This module attempts to set most of the arguments with sensible defaults.
So that a novice could start to use it. The defaults are implemented with
the help of the class Default. It’s a standard way to implement defaults
in the Haskell. The class Defaults defines a single constant called def.
With def we can get the default value for the given type.
Several csound opcodes are reimplemented so that first argument contains
secondary parameters. The type for parameters always has the instance for the
class Default. The original csound opcodes are defined in the end of the module
with prefix csd.

Also many granular synthesis opcodes expect the sound file as input.
There are predefined versions of the opcodes that take in the file names
instead of tables with sampled sound. They have suffix Snd for stereo and Snd1 for mono files.

For example, that’s how we can use the @granule@ opcode:

> dac $ granuleSnd1 spec [1, 2, 3] grainSize "fox.wav"





No need to set all 22 parameters.

The four functions are reimplemented in this way: sndwarp, syncgrain, partikkel, granule.

The most often used arguments are:


	Scale factors for tempo and pitch: TempoSig or speed and PitchSig. Ranges in 0 to 1.


	Grain size is the size of produced grains in seconds. Good range is 0.005 to 0.01 or even 0.1.
The higher the value the more it sounds like the original sound.


	Grain rate. It’s the speed of grain production in Hz. If it’s in audio range
we can no longer perceive the original pitch of the file. Then the pitch is determined
with grain rate value.


	Grain gap. It’s the gap in samples between the grains. Good values are 1 to 100.


	Grain window function. For the sound to be a grain it have to be enveloped
with grain window (some sort of bell shaped envelope). We can use half-sine for this purpose
(and it’s so in most of the defaults) or we can use a table in the GEN20 family. In the library
they implemented as window tables see the table constructors with prefix win.




Usual order of arguments is: GrainRate, GrainSize, TempoSig, PitchSig, file table or name,
poniter to the table.

Let’s study some examples. We assume that there is a file "fox.wav" in the current directory.

file = "fox.wav"





We assume that it contains a long note in the sustain phase. It varies but not so much.


Grainy

The simplest granular function is grainy. Grainy is based on the function partikkel.
It’s the most basic version of it. Here is the signature:

grainy :: GrainRate -> GrainSize -> TempoSig -> PitchSig -> String -> Sig2





As we can see it takes the grain rate and size, scaling factors for tempo and pitch,
file name. It produces the stereo signal. It expects the stereo file as input
(for mono files there is a function grainy1).

Let’s see how the grain rate nd grain size affect the sound:

> dac $ grainy 200 (linseg [0.1, 5, 0.01]) 1 1 file
> dac $ grainy (linseg [200, 5, 10]) 0.1 1 1 file





In the first function we change the grain size. And in the second example
we change the grain rate.



Sndwarp

we can change the tempo and pitch of the sound with sndwarp.
Also we can add a special grainy noise if we change the secondary parameters.
secondary parameters are defined in the structure SndwarpSpec (short for sndwarp specification).
If we are too lazy to care for the parameters we can supply the default value.
The SndwarpSpec is instance of Default so we can use the constant def.

sndwarp :: SndwarpSpec -> TempoSig -> PitchSig -> Tab -> Sig





Let’s create a drone sound. We can create the drone if we
lower the pitch down an octave. Then we can read a small portion
of the file (just half a second). We can control the read position
with special function ptrSndwarpSnd

ptrSndwarpSnd :: SndwarpSpec -> PitchSig -> String -> Pointer -> Sig2





It takes in not only a file but also a pointer to the reading position (in seconds).
we can create a slow motion of the playhead with function linseg:

> dac $ ptrSndwarpSnd def 0.5 w2 (linseg [0, 10, 0.5, 10, 0.25])





Let’s create a more involved example. Let’s create continuous sound.
We are going to trigger long notes so that the next one starts
just several seconds before the current one is stopped.
Each note is going to play an audio file with sndwarp
that scales the pitch with random notes from the given scale.

Let’s create an instrument:

instr dt file n = do
	a <- random 1.5 (lengthSnd file - 1.5)	
	b <- random (-1) 1
	iwin <- random 0.4 1
	let a1 = a
	    a2 = a + b
	    spec = def { sndwarpWinSize = iwin, sndwarpRandw = iwin / 3 }
	return $ mul (0.5 * env) $ at (mlp (12000 * env) 0.5) 
		$ ptrSndwarpSnd spec (sig n) file (linseg [a1, dt, a2])
	where 
		env = linseg [0, 0.2 * dt, 1, 0.4 * dt, 1, 0.4 * dt, 0]





The instrument takes in a note duration, filename and the pitch scaling factor.
It creates a short interval to read from and reads the file. The grains
are scaled by pitch.

Let’s trigger the instrument:

grainOcean :: D -> [D] -> String -> Sig2
grainOcean dt scale file = at largeHall2 $ mul 0.5 
	$ sched (instr dt file) $ withDur dt 
	$ oneOf scale $ metroE (recip $ sig $ dt * 0.8)





Here we create a stream of events with a period that is slightly shorter
than the total length of the note (so that there is an intersection of the notes).

metroE (recip $ sig $ dt * 0.8)





Then we pick pitches at random from the given scale (oneOf):

oneOf scale $ metroE (recip $ sig $ dt * 0.8)





Then we trigger the instrument and add a reverb:

at largeHall2 $ mul 0.5 
	$ sched (instr dt file) $ withDur dt 
	$ oneOf scale $ metroE (recip $ sig $ dt * 0.8)





Let’s invoke the function:

> dac $ grainOcean 16 [1, 9/8, 6/5, 3/2, 2, 0.5, 3/4, (3/2) * (5/4), 6/2] "fox.wav"







Granule

With granule we can create a clouds of grains.
We can supply a list of pitch scaling factors so
that the resulting sound plays a chord:

type ConstPitchSig = D
type GrainSize = Sig

granuleSnd :: GranuleSpec -> [ConstPitchSig] -> GrainSize -> String -> Sig2





The second argument is a chord of pitches.

Let’s study an example:

> dac $ granuleSnd def [1, 3/2, 2, 0.5] 0.2 "fox.wav"







Syncgrain

The syncgrain implements synchronous granular synthesis.
The grains are created not at random but with some law.
The syncgrain can dramatically change the sound:

syncgrainSnd :: SyncgrainSpec -> GrainSize -> TempoSig -> PitchSig -> String -> Sig2





Here is an example

> dac $ smallHall2 $ syncgrainSnd def 0.01 (1.5) 0.3 "fox.wav"





Let’s study the three parameters. we are going to change them with knobs:

> dac $ mul 0.5 $ hlift3 (\a b c -> smallHall2 $ 
	syncgrainSnd def (0.2 * a) (-2 + 4 * b) (-2 + 4 * c) file)
	(uknob 0.7)	(uknob 0.7)	(uknob 0.7)





There are many more functions to study. Take a look at the module Csound.Air.Granular.




	<= Padsynth algorithm [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Padsynth]


	=> Arguments modulation [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/ModArg]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]








          

      

      

    

  

    
      
          
            
  
Imperative instruments (or Csound way)

The CE let’s do the music design with functional primitives.
The instrument is a function and w eapply it to the bunch of notes.
But some features of the Csound language con not be expressed in that way.
For this reasom there are primitives that let us invoke the instruments in Csound way.

What do I mean by Csound way? In Csound each instrument has a unique identifier (it’s integer or string).
It looks like this in csound code:

instr InstrName

... body of the instrument ...
... some useful work goes on here ...

endin





With that identifier InstrName we can schedule an event or invoke the instrument with the note:

schedule InstrName, startTime, duration, arg1, arg2, ... , argN





We can write it anywhere in the code and the given instrument is going to be invoked.
Note that Csound handles polyphony for us. If we trigger the instrument with the same
name twice two separate invocations are going to be scheduled. Each note is played within
it’s own context.

Csound has some interesting tricks. If duration is negative the instrument is gong to be played forever.
Until we invoke the turnoff opcode within the body of the instrument or we call turnoff2 which
allows us to stop the instrument by name.

Another interesting trick is to be able to schedule the notes with identifiers. We can start the note
with integer identifier and stop exactly that note when we need it. This behavior is done by using
fractional part of the instrument name (it works only instrument name is an integer).

Suppose we have an instrument called 12. Than we can trigger three infinite notes:

schedule 12.1, 0, -1, 220
schedule 12.2, 0, -1, 330
schedule 12.3, 0, -1, 440





And then we can stop the specific note:

turnoff2 12.2





Another interesting trick is to be able to update the values of the instrument arguments
without stopping the instrument. We can do it if the instrument integer name is negative.

In CE all this kitchen is hidden and instrument names are automatically generated.
Right now I don’t have a suitable functional model for behaviors like this. But there are
cases when they are very useful. So finally I decided to expose the Csound-like functions
for creation of instruments:


Instrument reference

There is a special opaque data type for instrument names (or references). It’s called InstrRef:

data InstrRef a = ...





It has a single parameter which is an argument of the instrument body function.
We can create instrument references with functions:

For procedures (produce no output):

newInstr :: Arg a => (a -> SE ()) -> SE (InstrRef a)





For signal generating functions:

newOutInstr :: (Sigs b, Arg a) => (a -> SE b) -> SE (InstrRef a, b)





The newOutInstr returns a reference and a variable that holds a mixed output
of all invocations of the given instrument.

Then we can schedule an event:

scheduleEvent :: Arg a => InstrRef a -> D -> D -> a -> SE ()
scheduleEvent instrRef startTime duration arguments





Let’s create a simple example. We are going to do it not in the interpreter but in text file:

module Main where

import Csound.Base

instr cps = return $ fades 0.05 0.1 * osc (sig cps)

main = dac $ do
    (ref, outSig) <- newOutInstr instr
    runEvt (cycleE [220, 330, 440, 660] $ metro 2) $ \cps -> scheduleEvent ref 0 0.2 cps
    return outSig





Let’s import the file in the ghci and run the main function.
With newOutInstr we create an instrument reference and result signal.
With runEvt we trigger the procedure that schedules the notes when
the event happens on the even stream. The event stream cycles over list
of frequencies with frequency 2 Hz.

With function turnoff2 we can stop a held note or given invocation of the instrument.

turnoff2 :: InstrRef a -> Sig -> Sig -> SE ()
turnoff2 instrRef mode releaseTime





The mode is sum of the following values:


	0, 1, or 2: turn off all instances (0), oldest only (1), or newest only (2)


	4: only turn off notes with exactly matching (fractional) instrument number, rather than ignoring fractional part


	8: only turn off notes with indefinite duration (p3 < 0 or MIDI)




releaseTime  if non-zero, the turned off instances are allowed to release, otherwise are deactivated immediately (possibly resulting in clicks).

Let’s look at simple example:

main = dac $ do
    (ref, outSig) <- newOutInstr instr
    runEvt loadbang $ \_ -> scheduleEvent ref 0 (-1) 220
    runEvt (impulseE 2) $ \_ -> turnoff2 ref 0 0    
    return outSig





With loadbang we schedule an event right away. With impulseE we create an event that is going to be happen later.
First we start an infinite instance of the event and then we stop it after 2 seconds.



Fractional instrument names

We can start or stop specific instance of the instrument with fractional instrument names.

addFracInstrRef :: D -> D -> InstrRef a -> InstrRef a
addFracInstrRef maxSize noteId instrRef = ...





The maxSize is the maximum size of the note identifiers. The noteId is the note identifier.
This function adds fractional part to the instrument reference.

Then we can use scheduleEvent and turnoff2 functions to start and stop the specific notes.



Negation of the instrument name

We can negate the instrument name with function:

negateInstrRef :: InstrRef a -> InstrRef a








	<= Creating VST-plugins with Cabbage [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/CabbageTutorial]


	=> Happy Haskelling / Csounding


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]








          

      

      

    

  

    
      
          
            
  
Real-world instruments show case

TODO




	<= Granular synthesis [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/GranularSynthesisTutorial]


	=> Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]







          

      

      

    

  

    
      
          
            
  
Introduction

Csound-expression is a framework for creation of computer music.
It’s a Haskell library to make Csound much more friendly.
It generates Csound files out of Haskell code.

Csound [http://www.csounds.com/] is an audio programming language. It is really awesome.
It features unlimited polyphony, hundreds of synth-units
including FM, granular synth, frequency domain transforms and many more.
Midi and OSC control, compatible with JACK. With JACK it’s easy to use with your DAW
of choice. It can run on mobile devices and even in the web browser.
It has the support for GUI-widgets.

But Csound is clumsy. It’s an old  C-style language. We can boost it with
functional programming. The Csound-expression gives you eloquence of Haskell
combined with power of Csound.

With the help of the library we can create our instruments on the fly.
A few lines in the interpreter is enough to get the cool sound going
out of your speakers. Some of the features of the library are heavily inspired
by reactive programming. We can invoke the instruments with event streams.
Event streams can be combined in the manner of reactive programming.
The GUI-widgets are producing the event streams as a control messages.
Moreover with Haskell we get all standard types and functions like
lists, maps, trees. It’s a great way to organize code and data.

Let’s look at how we can create computer music with Haskell.
If you are a Csounder that stumbled upon this page and got interested then
it’s better to learn some Haskell. The basic level is enough to use
the library. I recommend the book Learn you a Haskell for a Great Good [http://learnyouahaskell.com/] by Miran Lipovaca.
It’s a great book with an elephant on the cover. It’s a wonderful introduction to the
wisdom and miracles of the Haskell.


Installation guide

Let’s install everything. The first thing we need is a
csound compiler [http://www.csounds.com/resources/downloads/].
When it’s installed properly we can type in the terminal:

> csound





It will print the long message. Ubuntu/Debian users can install the Csound with apt-get:

> sudo apt-get install csound csound-gui





The next thing is a working Haskell environment with ghc and cabal-install
It can be installed with Haskell Platform [http://www.haskell.org/platform/].
If it works to install the csound-expression we can type in the terminal:


Installing with cabal

> cabal update
> cabal install csound-expression --lib





Let’s have a break and take a cup of tea. The library contains
a lot of modules to install.



Installing with Stack (recommended)

I prefer to use the library with stack.
My usual workflow is to try ideas in the ghci and to save the expressions that sound cool in the file.
To setup ghci with the most recent library we can clone the github repo.
And create an alias in .bashrc file to load with dependency:

alias cei='stack exec ghci --stack-yaml /home/anton/dev/hs/csound/csound-expression/stack.yaml -- -XOverloadedStrings -ghci-script /home/anton/dev/hs/csound/csound-expression/scripts/default.ghci'





It launches the ghci interpreter and loads the needed default modules to the interpreter session.
See file scripts/default.ghci for defaults.

Also we can add to this command -interactive-print=Csound.Base.dac.
By default interpreter prints values to console, but when we work we sound we would like
to listen to result. And with this line we can substitute the default print function
with dac which sends the sound to speakers.




The first sound

Let’s start the ghci and load the main module Csound.Base. It exports
all modules:

> ghci
Prelude> :m +Csound.Base
Prelude Csound.Base> 





We can play a sine wave with 440 Hz:

> dac $ osc 440





Pressing Ctrl+C stops the sound. The expression osc 440 makes the sine wave and
the function dac makes a file tmp.csd in the current directory invokes the csound
on it and sends the output to speakers.

WARNING: the library works best within ghci. The real-time sound rendering
function dac spawns a child process in the background which may continue
to execute after you stop the main process that runs the program.
It’s not so in vim but it happens in the Sublime Editor and when you
invoke runhaskell. So the best is to write you program in the
separate file and then load it in the ghci and invoke the function
main (which runs the sound rendering with the function dac or
another sound rendering function).



Key principles

Here is an overview of the features:


	Keep it simple and compact.


	Try to hide low level Csound’s wiring as much as we can (no ids for ftables, instruments, global variables).


	Don’t describe the whole Csound in all it’s generality
but give the user some handy tools to play with sound.


	No distinction between audio and control rates on the type level.
Derive all rates from the context. If the user plugs signal to
an opcode that expects an audio rate signal the argument is converted to the right rate.


	Watch out for side-effects. There is a special type called SE. It functions as IO in Haskell.


	Less typing, more music. Use short names for all types. Make library
so that all expressions can be built without type annotations.
Make it simple for the compiler to derive all types. Don’t use complex type classes.


	Make low level opcode definitions simple. Let user define his own opcodes (if they are missing).


	Ensure that output signal is limited by amplitude. Csound can produce
signals with HUGE amplitudes. Little typo can damage your ears
and your speakers. In generated code all signals are clipped
by 0dbfs value. 0dbfs is set to 1. Just as in Pure Data.
So 1 is absolute maximum value for amplitude.


	No dependency on Score-generation libraries. Score (or list of events)
is represented with type class. You can use your favorite Score-generation
library if you provide an instance for the CsdSco type class. Currently
there is support for temporal-music-notation library (see temporal-csound package).


	Remove score/instrument barrier. Let instrument play a score within a note
and trigger other instruments.


	Set Csound flags with meaningful (well-typed) values.
Derive as much as you can from the context.


	Composable GUIs. Interactive instruments should be easy to make.






Acknowledgements

I’d like to mention those who supported me a lot with their music and ideas:


	music: entertainment for the braindead [http://entertainmentforthebraindead.com/],
three pandas and the moon [https://soundcloud.com/three-pandas-and-the-moon],
odno no [http://odnono.ru/], ann’s’annat & alizbar [http://www.alizbar-harp.com/],
toe [http://toe.st/], iamthemorning [http://iamthemorning.com/], atoms for piece / radiohead [http://www.radiohead.com/deadairspace/],
loscil [http://www.loscil.ca/], boards of canada [http://boardsofcanada.com/vinyl-reissues/], Hozan Yamamoto, Tony Scott and Shinichi Yuize [http://en.wikipedia.org/wiki/Music_for_Zen_Meditation].


	ideas: Conal Elliott [http://conal.net/], Oleg Kiselyov [http://okmij.org/ftp/],
Paul Hudak [http://haskell.cs.yale.edu/people/paul-hudak/], Gabriel Gonzalez [http://www.haskellforall.com/],
Rich Hickey [http://thechangelog.com/rich-hickeys-greatest-hits/] and Csound’s community.


	Thanks a lot to all who patiently answered my questions and provided skillful solutions, encouragement and ideas:

Iain McCurdy, Victor Lazarini, Rory Walsh, Steven Yi, John Ffitch, Joachim Heintz, Peter Burgess, Dr. Richard Boulanger, Michael Gogins, Oeyvind Brandtsegg,
Richard Dobson, Partev Barr Sarkissian, Dave Phillips, Guillermo Senna, Art Hunkins,
Ben McAllister, Michael Rhoades, Brian Merchant, Gleb Rogozinsky, Eugene Cherny, Wolf Peuker,Hlöðver Sigurðsson, Aaron Krister Johnson, Andy Fillebrown and friends)

tell me if I forgot to mention you :)








	<= Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]


	=> Basic types [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/BasicTypesTutorial]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]








          

      

      

    

  

    
      
          
            
  
Widgets for live performances

Since the version 4.2.0 there are many widgets tageted
at real-time performance. They should make it easy to
mix and process audio live.

It’s assumed that the library csound-sampler is installed.


Playing samples

We can start and stop samples with function sim.

module Main where

import Csound.Base
import Csound.Sam

a1 = infSig1 $ osc 220
a2 = infSig1 $ osc 330

main = dac $ mul 0.5 $ lift1 (runSam 120) $ sim 4 [("220", a1), ("330", a2)]~~~





For simplicity we use pure sine waves but we can use samples
with cool sounds instead.

The first argument for sim (it’s 4 in the example above)
is responsible for syncronization. The samples are started only
on every n’th beat.

we can toggle between samples with the function tog.
The example is the same but write tog in place of sim.
With tog only one sample is going to be played.

The widget live resembles the session view of the Ableton.
the samples are arranged in matrix. We can start all samples
in the row by the single click of the mouse and we can toggle samples
within each column. Let’s look at the example:

module Main where

import Csound.Base
import Csound.Sam

b1 = infSig1 $ sqr 220
b2 = infSig1 $ sqr 330
b3 = infSig1 $ sqr 440

c1 = infSig1 $ tri 220
c2 = infSig1 $ tri 330
c3 = infSig1 $ tri 440

main = dac $ mul 0.3 $ lift1 (runSam 120) $
  live 4 ["triangle", "square"]
    [ c1, b1
    , c2, b3
    , c3, b3]





the function live takes in the number of beats for syncronization,
the names for columns and the list of samples. The number of columns
in the matrix is defined with the length of list of the column names.



Using mixer

We can mix several stereo signals together with the widget mixer.

mixer :: Sigs a => [(String, SE a)] -> Source a





Mixer takes in the list of pairs. The first element of the pair
is the name of the instrument and the second element is the actual signal.

Let’s balance the sound of the chord:

main = dac $ do
	(g, res) <- mixer $ fmap (\x -> mixMono (show x) (osc $ sig $ int x)) [220, 330, 440]
	win "mixer" (600, 300) g
	return $ mul 0.5 $ res





Note the function win. It constructs the window with the given name, size and content.
The function mixMono is usefull for mixing mono signals.

We can use mixer with functions sim and tog:

a1 = infSig1 $ osc 220
a2 = infSig1 $ osc 330

run = runSam 120

main = dac $ do
	(g1, sam1) <- tog 4 [("220", a1), ("330", a2)]
	(g2, sam2) <- sim 4 [("220", a1), ("330", a2)]
	(g3, res)  <- mixer [("tog", run sam1), ("sim", run sam2)]
	win "main" (600, 400) $ ver [sca 0.6 $ hor [g1, g2], g3]
	return res







Processing signals

There are many widgets to process stereo signals.
The sound processing function is a function of the type:

type Fx = a -> SE a





To be truly interesting the sound processing function
should depend on parameters which control the behavior of
the effect:

Sigs a => Sig -> Sig -> ... -> Sig -> Fx a





We can create a visual representation of this type
with fxBox:

fxBox :: FxUI a => String -> ([Sig] -> Fx a) -> Bool -> [(String, Double)] -> Source (Fx a)
fxBox name fx isOn args = ...





It expects the name of the widget, the sound processing function
the flag that turns on the widget (is it active at the start time)
and the list of arguments. The result contains the widget and fx-function.
The FX-processing function takes in a list of signal arguments, each argument
in the list is going to be represented with a slider. Names for the sliders are
taken fron te last argument.

There are many predefined widgets that implement typical
effects (reverbs, distortion, chorus, flanger etc).

module Main where

import Csound.Base
import Csound.Sam

main = dac $ do
    (gui, fx) <- fxHor
        [ uiFilter False 0.5 0.5 0.5
        , uiChorus False 0.5 0.5 0.5 0.5
        , uiPhaser False 0.5 0.5 0.5 0.5
        , uiReverb True  0.5 0.5
        , uiGain   0.5
        ]
    win "main" (900, 300) gui
    fx $ fromMono $ saw 110





We can group the fx-widgets with functions fxHor, fxVer and fxSca.
They group widgets horizontaly, verticaly and scale the widgets.
There are many more widgets to consider you can find them in the modules
Csound.Air.Live and Csound.Air.Fx.FxBox.

Let’s look at the types of the functions fxHor and fxVer to see what’s going on:

fxHor, fxVer :: [Source (Fx a)] -> Source (Fx a)





So with those functions we stuck the visual representations in the line and compose
the FX-functions in the list. Also there is a function fxGrid. We can create a matrix
of Fx-widgets with it:

fxGrid :: Int -> [Source (Fx a)] -> Source (Fx a)





The first argument is a number of cells per row.




	<= Signal segments [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SignalSegmentsTutorial]


	=> Padsynth algorithm [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Padsynth]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]








          

      

      

    

  

    
      
          
            
  
Argument modifiers

Argument modifiers make it easy to add an LFO or small amount of noise to parameters
of synthesizer.

Let’s consider a plain sine wave:

> dac $ osc 220





Let’s add a vibrato:

> dac $ osc (220 * (1 + 0.05 * osc 2))





What if we want to add a noisy vibrato:

> dac $ osc (220 * (1 + 0.05 * white))

<interactive>:6:30:
    Couldn't match expected type ‘Sig’ with actual type ‘SE Sig’
    In the second argument of ‘(*)’, namely ‘white’
    In the second argument of ‘(+)’, namely ‘0.05 * white’





Ooops, we’ve got an error! That’s because osc 2 has type Sig
and white has type SE Sig. There is a type mismatch and
compiler just reminds us about it.

But can we abstract out this pattern of vibrato and devise such a function
that we can easily use both types Sig and SE Sig. There is such a function!

It’s defined in the module Csound.Air.ModArg. It’s called modArg1. Let’s see it in action:

> dac $ modArg1 0.05 (osc 2) osc 220





It takes three parameters:

> modArg1 depth modSignal function





It transforms a function so that the first argument is modulated with modSignal
with given depth. It’s defined so that we can use both types Sig and SE Sig
for modSig:

> dac $ modArg1 0.05 white osc 220





It might seem that modArg1 takes in four arguments but the last argument 220
is the argument for modified function. We may write it like this to clarify it:

> let vibrOsc = modArg1 0.05 white osc
> dac $ vibrOsc 220





modArg1 can modify functions with up to four parameters. The output of the function
should be one of the following types:

Sig, Sig2, SE Sig, SE Sig2





Also there are siblings: modArg2, modArg3 and modArg4. They can modify second,  third and fourth arguments of the function.
All functions take in depth of modulation, modulation signal and the function to transform.
The functions are defined so that the wiring is hidden from the user. If modulated
signal is pure it’s just applied to the argument if it contains side effects than
function output will have side effects too!

Let’s look at another example. Let’s modulate the filter’s center frequency:

> dac $ at (modArg1 0.17 (osc 2) mlp 1750 0.2) $ white





We can  also modulate second argument too:

dac $ at (modArg2 0.4 (osc 8) (modArg1 0.17 (osc 2) mlp) 1750 0.5) $ white





We can add some noise to the modulation:

> dac $ at (modArg2 0.4 (osc 8) (modArg1 0.17 (mul (uosc 2) white) mlp) 1750 0.5) $ white






Delayed modulation

Sometimes we want the modulation to start aftter some initial delay.
Take the vibrato for instance. Often there s no vibrato at the attack
and then it starts to rise. We can simulate it with the function:

delModArg1 delTime riseTime depth modSig function





It takes in two more parameters. The first is time of delay and the second
is time to rise the modulation depth from zero to the given maximum amount.
Let’s take a look at the example:

> dac $ delModArg1 0.5 1 0.03 (osc 4) osc 220





The cool thing to know about modulation signal is that it’s a signal.
It’s parameters can vary too. Let’s increase the vibrato rate over time:

dac $ delModArg1 0.5 1 0.03 (osc (linseg [3, 3, 8, 4, 4])) osc 220





The function delModArg is also defined for 1, 2, 3, 4 arguments.



Predefined patterns of modulation

There common ways to modulate signals. Let’s look at some of them.
For every pattern N can be 1, 2, 3 or 4. The full list of functions can be found in the module Csound.Air.ModArg.


Oscillators

The modulation most often happens with some LFO. There are predefined functions:

oscArgN depth rate function





Also there are LFOs with other wave shapes: triArgN, sqrArgN, sawArgN.
There are LFOs with random phases: rndOscArgN, rndTriArgN, rndSqrArgN, rndSawArgN.
There are delayed versions of these functions all of them has prefix del.

Let’s revrite the vibrato example:

> dac $ oscArg1 0.05 4 osc 220





Let’s delay the vibrato and make it saw-tooth shape:

> dac $ delSawArg1 0.5 1 0.05 4 osc 220







Noise generators

We can add some noise to parameters to imitate aliveness of the acoustic instruments.
There are severl types of noises:


	White Nose: noiseArgN.


	Pink noise: pinkArgN.


	gauss noise: gaussArgN.


	gauss noise with frequency of generation of new random values: gaussiArgN depth cps.


	jitter noise: jitArgN depth cpsMin cpsMax. It generates random nombers from -1 to 1
within the given interval of frequency of generation of new numbers.




The rest arguments are the same as with oscillators. They are depth and function.
The first argument is always depth of modulation.

It’s a common trick to add some liveness to the sound with randomizing the parameters.
We add a bit of noise or randomness to the center frequency of the filter or to the resonance.
It makes the insturments more interesting.

Let’s create a Pad sound with no modulation:

> vdac $ midi $ onMsg $ mul (fades 0.5 0.5) . at (mlp 1200 0.15) . saw





Let’s add a vibrato:

> vdac $ midi $ onMsg $ mul (fades 0.5 0.5) . at (mlp 1200 0.15) . delOscArg1 0.3 0.8 4 saw





Let’s modulate the parameters of the filter:

> vdac $ midi $ onMsg $ mul (fades 0.5 0.5) . at ((gaussArg1 0.31 (noiseArg2 0.2 mlp)) 1000 0.15) . delOscArg1 0.3 0.8 0.013 4 saw





Let’s add a reverb:

> vdac $ mixAt 0.25 largeHall2 $ midi $ onMsg $ mul (fades 0.5 0.5) . at ((gaussArg1 0.31 (noiseArg2 0.2 mlp)) 1000 0.15) . delOscArg1 0.3 0.8 0.013 4 saw





We can lower the center frequency and increase the volume, to make sound more spacy:

> vdac $ mul 2.5 $ mixAt 0.25 largeHall2 $ midi $ onMsg $ mul (fades 0.5 0.5) . at ((gaussArg1 0.31 (noiseArg2 0.2 mlp)) 550 0.15) . delOscArg1 0.3 0.8 0.013 4 saw







Envelopes

Also there are predefined functions for common envelopes:

 adsrArgN depth att dec sust rel function   -- linear

xadsrArgN depth att dec sust rel function   -- exponential





Also there are delayed versions that add initial delay time:

 delAdsrArgN delTime depth att dec sust rel depth function   -- linear

delXadsrArgN delTime depth att dec sust rel depth function   -- exponential





Note that there is no riseTime as it’s the same as attack portion of the envelope.
It’s often useful to modulate the center frequency of the envelope:

> dac $ at (adsrArg1 1 0.5 0.5 0.1 0.3 mlp 1500 0.1) $ saw 110








	<= Granular synthesis [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/GranularSynthesisTutorial]


	=> Spectrums [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Spectrums]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]









          

      

      

    

  

    
      
          
            
  
Padsynth algorithm

Padsynth is an interesting technique to make you timbre alive.
It’s created by Paul Nasca in his famous synthesizer ZynAddSubFX.
It was ported to Csound by Michael Gogins. It requires at least Csound 6.05.

The main idea lies in the notion that all cool sounds are inharmonic.
They can be harmonic but there are tiny fluctuations and digressions
from the ideal shape. The human ear catches those tiny fluctuations and
this what can make a difference between dull digital sound and warm analog sound.

The main idea is to add continuous sidebands to each harmonic, then we
can apply invere fourier transform to the spectrum and get inharmonic wave.
Then we can write the audio wave to table and play it back with an oscillator.
It’s going to be periodic. But the period of repetition is quite large (about 5-10 seconds).

So in place of single harmonics we get Gaussian curves with peaks at the given harmonics:

[image: ../../_images/a025ca1a688610af428780ecd0674b485bd93c48.png?height=261&width=400]Image

The algorithm is described by the author here [http://www.paulnasca.com/algorithms-created-by-me].

Also you can read the Csound docs [http://csound.github.io/docs/manual/GENpadsynth.html].

The Csound provides only GEN routine to create the PADsynth long ftables.
But the algorithm is so much useful that I’ve decided to supply many more
functions to make it easy to create beautiful PADsynth-instruments.
There are predefined patches that use the algorithm.

Let’s start with simplest functions and then we can dive deeper.



PADsynth standard audio waves

There are versions of standard audio waves: pure sine, triangle, square, sawtooth
that are enriched by padsynth algorithm. They have the same prefix bw:

type PadsynthBandwidth = Double

bwOsc, bwTri, bwSqr, bwSaw :: PadsynthBandwidth -> Sig -> SE Sig





The good values for padsynth bandwidth are 0 to 120. When it increases it creates chorus like effect.
You can hear the difference between pure sine and sine with bandwidth:

> dac $ osc 220
> dac $ bwOsc 15 220
> dac $ bwOsc 45 220
> dac $ bwOsc 85 220





Let’s listen to the saw filtered with moog-like low pass filter:

dac $ at (mlp (2500 * linseg [0, 3, 1, 4, 0]) 0.2) $ bwSaw 45 220





Let’s modulate the filter with LFO:

dac $ at (mlp (1500 * utri (2 + 2 * usaw 1)) 0.2) $ bwSaw 65 70





Let’s try the same algorithm but with different bandwidth:

dac $ at (mlp (1500 * utri (2 + 2 * usaw 1)) 0.2) $ bwSqr 2 70





There is an oscillator with given list harmonics:

bwOscBy :: PadsynthBandwidth -> [Double] -> Sig -> Sig






Stereo waves

The padsynth algorithm can become more alive and natural when we use
separate oscillators for each channel. There are “stereo”-versions for
most of padsynth-related functions. So there are stereo oscillators:

bwOsc2, bwTri2, bwSqr2, bwSaw2 :: PadsynthBandwidth -> Sig -> SE Sig

bwOscby2 :: PadsynthBandwidth -> [Double] -> Sig -> SE Sig2





The signals in each channel have different phase. The phase is random for each note.




PADsynth oscillators

There is a generic PADsynth-oscillator:

padsynthOsc :: PadsynthSpec -> Sig -> SE Sig





It takes in padsynth initialization parameters and produces an oscillator.
Let’s look at those parameters:

-- | Padsynth parameters.
--
-- see for details: <http://csound.github.io/docs/manual/GENpadsynth.html>
data PadsynthSpec = PadsynthSpec
    { padsynthFundamental     :: Double
    , padsynthBandwidth       :: Double
    , padsynthPartialScale    :: Double
    , padsynthHarmonicStretch :: Double
    , padsynthShape           :: PadsynthShape
    , padsynthShapeParameter  :: Double
    , padsynthHarmonics       :: [Double]
    } deriving (Show, Eq)

data PadsynthShape = GaussShape | SquareShape | ExpShape





Wow! Lots of parameters.


	Fundamental – is the frequency of the note that is stored in the table.


	Bandwidth – is the bandwidth of harmonic. How wide we should spread the harmonics.


	PartialScale – Is the ratio with which we increase the bandwidth for each subsequent harmonic.
There is a notion that for the sound to sound natural the bandwidth should become bigger
when we go from lower harmonics to higher. This parameter declares


	HarmonicStretch – ratio of stretch of the overtones


	Shape – shape of the single harmonic (gaussian, square or exponential)


	ShapeParameter – shape parameter of the curve.


	Harmonics – list of relative amplitudes of the partials




There seems to be too many parameters to set! But there is a handy function to set
reasonable defaults:

defPadsynthSpec :: Double -> [Double] -> PadsynthSpec





It requires only bandwidth and harmonics. Also you can modify some parameters like this:

> (defPArameters 45 [1, 0.5, 0.1]) { padsynthPartialScale  = 2.3  }





Let’s listen to the sound of some harmonics:

> let wave cps = padsynthOsc (defPadsynthSpec 25 [1, 0.5, 0, 0.2]) cps
> dac $ at (mlp (150 + 2500 * uosc 0.25) 0.1) $ wave $ constSeq [110, 137, 165, 220] 6





We modify the center frequency of moogladder low-pass filter with LFO. The frequency is created with running sequence of four notes.

It’s useful to be able to assign different harmonic content to different
regions of frequencies. We can do it with :

padsynthOscMultiCps :: [(Double, PadsynthSpec)] -> D -> SE Sig
padsynthOscMultiCps specs frequency = ...





The list of pairs contains thresholds for frequencies and padsynth specifications.
The given padsynth specification is going to be applied to all notes
with frequencies that are below the given threshold and above of the threshold of
the previous element in the list.

There is a function that can apply different padsynth specs according to the value of the amplitude.

padsynthOscMultiVol :: [(Double, PadsynthSpec)] -> (D, Sig) -> SE Sig
padsynthOscMultiVol specs (amplitude, frequency) = ...





There are stereo versions of the padsynth oscillators:

padsynthOsc2 :: PadsynthSpec -> Sig -> SE Sig2

padsynthOscMultiCps2 :: [(Double, PadsynthSpec)] -> D -> SE Sig2

padsynthOscMultiVol2 :: [(Double, PadsynthSpec)] -> (D, Sig) -> SE Sig2







Low level PADsynth table generator

If the default oscillators are not good for you and you want to implement
your own you may beed to create the padsynth ftable first.
It’s not that hard to do if we understand the PadsynthSpec data type (see prev section).

We can create a table with a following function:

padsynth :: PadsynthSpec -> Tab







PADsynth instruments

The package csound-catalog contains many predefined instruments that are based
on padsynth algorithm. They take in a spectrum of Sharc instrument
and create a padsynth instrument with it:

psOrganSharc :: SharcInstr -> Patch2
psPianoSharc :: SharcInstr -> Patch2
psPadSharc :: SharcInstr -> Patch2
psSoftPadSharc :: SharcInstr -> Patch2





There are about 30 predefined sharc instruments. The sharc instrument contains
spectrum of some orchestral instrument. You can find the full list of sharc instruments in
the module Csound.Patch (Section Sharc instruments > Concrete instruments)

Let’s listen to some of them (recall that  we need to import the Csound.Patch module to use the predefined patches):

> :m +Csound.Patch
> vdac $ mul 0.5 $ atMidi $ psSoftPadSharc shAltoFlute
> vdac $ mul 0.5 $ atMidi $ psOrganSharc shCello
> vdac $ mul 0.5 $ atMidi $ psPiano shTrumpetC





The timbre of an instrument can be altered by changing the bandwidth of padsynth.
There are special versions of aforementioned functions that allows to alter
specific parameters (The function name stays the same but it’s followed by ').

data PadSharcSpec = PadSharcSpec {
        padSharcBandwidth :: Double,
        padSharcSize      :: Int
    }

psPadSharc' :: PadSharcSpec -> SharcInstr -> Patch2





The type PadSharcSpec is defined in the module Csound.Catalog.Wave (see SHARC section).
It contains two parameters:


	Bandwidth – bandwidth for padsynth ftables


	Size – number of frequency regions (1 to 40)




The size determines how many tables are going to be used. The default is 15.

There is an instance of Default class for PadSharcSpec:

instance Default PadSharcSpec where
    def = PadSharcSpec 15 8





So if we want to alter only bandwidth we can do it like this:

vdac $ atMidi $ psSoftPadSharc' (def { padSharcBandwidth = 56 }) shAltoFlute





There are many more functions they are related to altering reverb effect for the instruments
and the number of frequency regions. We can increase the number of regions if we use the suffix Hifi:

vdac $ atMidi $ psLargeOrganSharcHifi shAltoFlute






Deep pads

The padsynth algorithm is super cool for creation of pads. There are predefined functions that
create great pads. They have vedic names:

vibhu, rishi, agni, prakriti, rajas, avatara, bhumi :: PadsynthBandwidth -> Patch2





The only argument is the bandwidth for underlying tables.

You can try them out:

> dac $ atMidi $ vibhu 35
> dac $ atMidi $ vibhu 0.6





You can switch dac to vdac if you don’t have the real hardware midi device
attached to your computer.



Pads with crossfades

There are cool instruments that allow to morph between several timbres.
Right now they are defined only for pads. They have got suffix Cfd
for morphing of two timbres and Cfd4 for morphing four timbres:

psPadSharcCfd :: Sig -> SharcInstr -> SharcInstr -> Patch2
psPadSharcCfd cfdLevel instr1 instr2 = ...

psPadSharcCfd4 :: Sig -> Sig -> SharcInstr -> SharcInstr -> SharcInstr -> SharcInstr -> Patch2
psPadSharcCfd4 cfdLevelX cfdLevelY instr1 instr2 instr3 instr4 = ...





The cfdLevel lies in the interval (0, 1). The 0 produces only first instrument and
the 1 produces only second instrument. So we have the mixture of two timbres.
Also we can create the mixture of four signals. But in this case we have two levels:
cfdLevelX and cfdLevelY. We can imagine that timbres lie at the corners of the rectangle.
The levels define the coordinates of the point that lies inside the rectangle.
The output timbre is produced with bilinear interpolation of timbres that lie at the corners of the rectangle.
The values for levels lie at the interval (0, 1). The 0 means left corner (or bottom) and 1
stands for right corner (or top corner).

Let’s create a simple crossfade pad:

vdac $ atMidi $ psPadSharcCfd (uosc 0.25) shAltoFlute shCello





reminder: the uosc produces unipolar sine wave with given frequency.

There are many more functions. They have different prefixes:

psSoftPadSharcCfd, psDeepPadSharcCfd, psDeepSoftPadSharcCfd, ...





See the full list at the module Csound.Patch.

Also there are deep pads with corssfades:

vedicPadCfd :: Sig -> SharcInstr -> SharcInstr -> PadsynthBandwidth -> Patch2
vedicPadCfd cfdLevel instr1 instr2 bandwidth = ...

vedicPadCfd4 :: Sig -> Sig -> SharcInstr -> SharcInstr -> SharcInstr -> SharcInstr -> PadsynthBandwidth -> Patch2
vedicPadCfd4 cfdLevelX cfdLevelY instr1 instr2 instr3 instr4 bandwidth = ...





They are particularly useful to test timbres with different values for bandwidth (it’s the last input argument).
Good values lie at the interval (0.01, 130).

There are crossfade versions of specific pads: vibhuRishi, vibhuAgni, rishiPrakriti and so on.
They take in the bandwidth and crossfade level:

> dac $ mul 2 $ vibhuRajas 45 (uosc 0.25)





Also we can use a randomized signal to control the crossfade level:

> dac $ do { k <- 0.5 + jitter 0.5 0.1 0.2;  mul 2 $ atMidi $ vibhuRajas 65 k }





We can create a timbral shimmer effect if we increase the rate of randomized crossfade level:

> dac $ do { k <- 0.5 + jitter 0.5 1 8;  mul 2 $ atMidi $ vibhuRajas 65 k }






Padsynth and noise

we can make the pad more interesting if we add some noise. There are two predefined
patches that illustrate this idea: noisyRise and noisySpiral:

> vdac $ atMidi noisyRise
> vdac $ atMidi noisySpiral








	<= Widgets for live performances [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/LiveWidgetsTutorial]


	=> Granular synthesis [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/GranularSynthesisTutorial]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]









          

      

      

    

  

    
      
          
            
  
Batteries included

There are plenty of beautiful instruments designed for the library!
They can be found at the package csound-catalog (available on Hackage).

Let’s load the module:

> import Csound.Patch





Now we can play a patch:

> vdac $ mul 0.75 $ atMidi dreamPad
> vdac $ mul 0.75 $ atMidi vibraphone1





With vdac we can play midi instruments on a virtual midi-keyboard.
If you have a real midi-keyboard attached to your computer you can
use the plain old dac. This way we can play the patches with real MIDI-device:

> dac $ mul 0.75 $ atMidi toneWheelOrgan





There are many predefined instruments. Some goodies to try out:
vibraphone1, dreamPad, razorPad, epianoBright, xylophone, scrapeDahina,
noiz, mildWind, toneWheelOrgan, banyan, caveOvertonePad, flute, hulusiVibrato,
shortBassClarinet, pwBass, pwEnsemble, albertClockBellBelfast etc.

The main type for the instrument is a Patch. The patch is a  data-type
that holds a complete set up for the instrument to be played live or
to apply it to musical scores.

Let’s look at the definition of the Patch:

data Patch a
    = MonoSynt MonoSyntSpec (GenMonoInstr a)
    | PolySynt PolySyntSpec (GenInstr D   a)
    | SetSkin SyntSkin (Patch a)
    | FxChain [GenFxSpec a] (Patch a)
    | SplitPatch (Patch a) D (Patch a)
    | LayerPatch [(Sig, Patch a)]





We can


	create monophonic (MonoSynt) synthesizers


	create polyphonic (PolySynt) synthesizers


	set generic parameters for synthesizers (SetSkin) such as filter type,


	add effects (FxChain)


	split keyboard on sections (SplitPatch). We can assign different patches to each section.


	play several patches at the same time (LayerPatch)





Generic parameters for Patches

The Gen-prefix for instruments and effects refers to one peculiarity of the Patch data type.
I’d like to be able to change some common parameters of the instrument after it’s already constructed.
Right now we can change only the type of the low-pass filter but some more parameters can be added in the future.

In Haskell we can do this with Reader data type. Reader lets us parametrize the values with some common arguments
and we can supply those arguments later.

The value: Reader a b  means that the result value b depends on argument a which we provide later.

type SyntSkin = ResonFilter

type GenInstr a b = Reader SyntSkin (Instr a b)
type GenFxSpec a = Reader SyntSkin (FxSpec a)
type GenMonoInstr a = Reader SyntSkin (MonoInstr a)





So the polyphonic and monophonic synthesizers and effects are parametrized with value of the type SyntSkin.
The SyntSkin should contain some common parameters. We can change the filter type with it. By default it’s set
to mlp (moog low pass filter). But we can set other types with the constructor SetSkin skin patch.

Let’s discuss each case of the Patch data type.



Polyphonic instruments

Patch can be a polyphonic synth:

PolySynt PolySyntSpec (GenInstr D a)

type GenInstr a b = Reader SyntSkin (Instr a b)

type CsdNote a = (a, a)
type Instr a b = CsdNote a -> SE b

data PolySyntSpec = PolySyntSpec
    { polySyntChn :: MidiChn }





It converts notes to signals. With polyphonic instrument we can
play several notes at the same time. The note is a pair of amplitude and frequency.

With PolySyntSpec we can specify midi channel to play the instrument.
The PolySyntSpec has default instance with which we listen for midi messages on all channels.

Let’s play a polyphonic patch:

> vdac $ atMidi whaleSongPad





We can change the volume by signal multiplication:

> vdac $ mul 0.5 $ atMidi whaleSongPad





We have played the predefined polyphonic synth. But we can also create our own! We can do it directly with constructor PolySynt
and with smart constructors:

polySynt :: (Instr D a) -> Patch a

polySyntFilter :: (ResonFilter -> Instr D a) -> Patch a





Let’s create a simple polyphonic instrument. It’ just plays pure sines waves with percussive shape of amplitude:

> instr (amp, cps) = return $ sig amp * xeg 0.01 4 0.001 2 * osc (sig cps)
> patch = polySynt instr
> vdac $ atMidi patch





Reminder: xeg – creates exponential ADSR-envelope, osc is for pure sine wave, with sig we convert
constant. We use return to wrap the result in the SE-type.

We can do it in the regular Haskell-file:

import Csound.Base

instr :: CsdNote D -> SE Sig
instr (amp, cps) = return $ sig amp * env * wave
    where
        env  = xeg 0.01 4 0.001 2
        wave = osc (sig cps)


patch = polySynt instr

main = vdac $ atMidi patch





With polySyntFilter we can let the user decide which type of filter is going to be used:

polySyntFilter :: (ResonFilter -> Instr D a) -> Patch a





We can create a simple instrument with generic filter:

import Csound.Base

instr :: ResonFilter -> CsdNote D -> SE Sig
instr resonFilter (amp, cps) = return $ filter $ sig amp * env * wave
    where
        env  = xeg 0.01 4 0.001 2
        wave = sqr (sig cps)
        filter = resonFilter (200 + 1500 * env) 0.25

patch = polySyntFilter instr

main = vdac $ atMidi patch





We can alter the filter with SetSkin constructor.



Monophonic instruments

Patch can be a monophonic synth. The monophonic synth can play
only one note at the time (like flute or voice). But it converts not just
notes but signals of amplitude and frequency.

MonoSynt MonoSyntSpec (GenMonoInstr a)

type GenMonoInstr a = Reader SyntSkin (MonoInstr a)

type MonoInstr a = MonoArg -> SE a

data MonoArg = MonoArg
    { monoAmp  :: Sig
    , monoCps  :: Sig
    , monoGate :: Sig
    , monoTrig :: Sig }

data MonoSyntSpec = MonoSyntSpec
    { monoSyntChn       :: MidiChn
    , monoSyntSlideTime :: Maybe D }    -- portamento for amplitude and frequency





It looks like polyphonic synth but monophonic synt argument type is a bit more complicated.
It contains four components:


	amplitude signal monoAmp


	frequency signal monoCps


	mask of when instrument is on monoGate. It equals to 1 when any note is played or 0 otherwise.


	trigger signal. It equals to 1 when note is triggered and 0 otherwise.




The argument type is designed to be used with the function adsr140 it creates complex ADSR envelope
which is retriggered when note is played. There is a shortcut to create the ADSR-function out of the arguments:

-- | ADSR that's used in monophonic instruments.
type MonoAdsr = Sig -> Sig -> Sig -> Sig -> Sig

monoAdsr :: MonoArg -> MonoAdsr





we can create monophonic instruments with smart constructors:

monoSynt :: (MonoInstr a) -> Patch a
monoSyntFilter :: (ResonFilter -> MonoInstr a) -> Patch a

adsrMono :: (MonoAdsr -> Instr Sig a) -> Patch a
adsrMonoFilter :: (ResonFilter -> MonoAdsr -> Instr Sig a) -> Patch a





The monoSynt creates the synt out of raw value of type MonoArg.
The adsrMono converts the arguments to a simpler form. It provides
a retriggering adsr-envelope which is syncronized with notes and a pair of amplitude and frequency signals.
With Filter suffix we can parametrize the insturment by low-pass filter.

Let’s create a very basic mono-insturment:

instr adsrFun (amp, cps) = return $ amp * env * osc (port cps 0.007)
    where env = adsrFun 0.01 4 0.001 2

patch = adsrMono instr

main = vdac $ atMidi patch





We add a portamento to frequency signal to make transition between the notes smooth.

Let’s play some predefined monophonic synth:

> vdac $ atMidi nightPadm





By convention many polyphonic synthesizers have monophonic sibling
with an m as a suffix.



Patch with chain of effects

Also we can apply a chain of effects to the patch:

FxChain [GenFxSpec a] (Patch a)

type GenFxSpec a = Reader SyntSkin (FxSpec a)

type DryWetRatio = Sig

data FxSpec a = FxSpec
    { fxMix :: DryWetRatio
    , fxFun :: Fx a
    }

type Fx a = a -> SE a





An effect is a function that transforms signals (can be as single signal or a tuple of signals).
An effect unit comes with a main parameter that’s called dry/wet ratio. It signifies the ratio of
unprocessed (dry) and processed signal (wet). And the fx chain contains a list of pairs of ratios
and effect functions. Note that the list is reversed (like in haskell dot notation). The first
function in the list is going to be applied at the last moment.

We can create effects in the chain with smart constructors:

type Fx a = a -> SE a

fxSpec :: Sig -> Fx a -> GenFxSpec a
fxSpecFilter :: Sig -> (ResonFilter -> Fx a) -> GenFxSpec a





Almost all predefined patches have a bit of reverb. We can strip down the effect
with useful function dryPatch:

> vdac $ atMidi $ dryPatch nightPadm





It throws away all the effects.

Also there are speciall functions to add effects to existing patch.
We can add effects to the both ends of the chain:

addPreFx, addPostFx :: DryWetRatio -> Fx a -> Patch a -> Patch a





There are functions to add monophonic effects:

mapFx  :: SigSpace a => (Sig -> Sig)    -> Patch a -> Patch a
bindFx :: BindSig a  => (Sig -> SE Sig) -> Patch a -> Patch a





There are variants to specify dry/wet ratio:

mapFx'  :: SigSpace a => Sig -> (Sig -> Sig)    -> Patch a -> Patch a
bindFx' :: BindSig a  => Sig -> (Sig -> SE Sig) -> Patch a -> Patch a





Let’s add a delay to our patch:

> vdac $ mapFx' 0.5 (echo 0.5 0.65) patch







Layered patch

Sometimes we want to play several instruments by the same key press.
We can achieve it with ease by layered patches:

LayerPatch [(Sig, Patch a)]





This case contains a list of pairs. Each element contains a volume of the layer and the patch of the layer.
The output is a mix of the outputs from all patches in the list.

Let’s layer the vibraphone with pad-sound:

> vdac $ atMidi $ LayerPatch [(0.5, nightPad), (1, vibraphone1)]







Split patch

On the modern synthesizer we can find a useful function that is called split.
With split we can play two instruments at the same keyboard. We define a split point (frequency or pitch)
and two instruments. One is going to be active for all instruments below the pitch and another one
is going to be active for all notes above the given pitch.

SplitPatch (Patch a) D (Patch a)





We specify the split with the frequency value. We can use cpspch to convert
frequencies to pitches. Here is how we can split the keyboard by the note C:

> SplitPatch instr1 (cpspch 8.00) instr2





Let’s play a pad in the low register and electric piano in the upper one:

vdac $ atMidi $ SplitPatch dreamPad (cpspch 8.00) epiano2





Note that with split you can combine monophonic instruments with polyphonic ones.
We can play even several monophonic instruments in the diferent areas of the keyboard.



How to play a patch

There are many ways to play the patch. We have already discovered how to play with
midi device, but we also can play it with other ways.

We can trigger a single note:

dac $ atNote overtonePad (0.5, 110)





We can apply the patch to scores:

> ns = fmap temp [(0.5, 220), (0.75, 330), (1, 440)]
> notes = str 0.25 $ mel [mel ns, har ns, rest 4]
> dac $ mul 0.75 $ mix $ atSco banyan notes





We can play the patch with an event stream:

> notes = cycleE [(1, 220), (0.5, 220 * 5/ 4), (0.25, 330), (0.5, 440)]
> dac $ atSched hammondOrgan (withDur 0.15 $ notes $ metro 6)







Useful functions for patches

We can play a dry patch (throw away all the effects).
Can be useful if you like the tone of the instruments
but want to apply you own effect:

vdac $ atMidi $ dryPatch $ scrapeXylophone





We can transpose a patch two semitones up:

> vdac $ atMidi $ transPatch (semitone 2) $ dahina





or one octave down:

> vdac $ atMidi $ transPatch (octave (-1)) $ dahina





We can add an effect to the patch. Note that we can append from both ends of the fx-chain.
Let’s add a delay to the sound:

> vdac $ atMidi $ addPreFx 0.5 (return . (mapSig $ echo 0.25 0.75)) banyan





We can use the function addPostFx to add the effect to the end of the chain
and the function addPreFx to add effect to the beginning of the effect chain.

We can change the amount of dry-wet ratio for the last effect in the chain with function setFxMix:

vdac $ atMidi $ setFxMix 0 $ addPostFx 0.5 (return . (mapSig $ echo 0.25 0.75)) banyan





In this example we add post-delay, but set the ratio to zero so we can hear no delay.

We can also set a list of ratios with function setFxMixes :: [Sig] -> Patch a -> Patch a.

With deepPad we can add a second note that plays an octave below to deepen the sound:

> vdac $ atMidi $ deepPad cathedralOrgan





There is a more generic function that let’s us to add any number of harmonics
that are played with the given patch:

harmonPatch :: (SigSpace b, Sigs b) => [Sig] -> [D] -> Patch b -> Patch b





We can quickly fuse two patches together with function mixInstr:

mixInstr :: (SigSpace b, Num b) => Sig -> Patch b -> Patch b -> Patch b





We can create patches out of soundfonts! This way we can quickly turn our PC
into rompler. Check the soundfont section of the guide for the details on the type Sf.

sfPatchHall :: Sf -> Patch2
sfPatch     :: Sf -> Patch2





There other functions. See the full list at the module Csound.Air.Patch.

We can set a midi channel for all instruments in the patch with function setMidiChn:

setMidiChn :: MidiChn -> Patch a -> Patch a







There are many beautiful instruments

Let’s study some predefined patches. We should install the csound-catalog package.
Then we need to import the module Csound.Patch and try some goodies (you can use dac
instead of vdac if you have a real midi device):

>:m +Csound.Patch
> vdac $ atMidi vibraphone1

> vdac $ atMidi dreamPad

> vdac $ atMidi $ deepPad razorPad

> vdac $ atMidi epianoBright

> vdac $ atMidi xylophone

> vdac $ atMidi scrapeDahina

> vdac $ atMidi noiz

> vdac $ atMidi mildWind

> vdac $ atMidi toneWheelOrgan

> vdac $ atMidi $ addPreFx 1 (at $ echo 0.35 0.65) banyan

> vdac $ atMidi caveOvertonePad

> vdac $ atMidi flute

> vdac $ atMidi fmBass2

> vdac $ atMidi hulusiVibrato

> vdac $ atMidi shortBassClarinet

> vdac $ atMidi $ withDeepBass 0.75 pwBass

> vdac $ atMidi pwEnsemble

> vdac $ atMidi albertClockBellBelfast

> vdac $ atMidi $ vibhu 65





There are 200+ of other instruments to try out! You can find the complete list
in the module Csound.Patch.




	<= Events [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/EventsTutorial]


	=> FX family [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/FxFamily]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]








          

      

      

    

  

    
      
          
            
  
Rendering Csound files

We know how to play the sound live. We can use the function dac
for it. Also we know how to use virtual midi-device. We can use vdac for it.
But there are many other ways to render the Csound file. Let’s study them.
The functions that we are going to look at live in the
module Csound.IO [http://hackage.haskell.org/package/csound-expression-3.3.2/docs/Csound-IO.html].


Producing the Csound code

The csound-expression library at its core is a Csound file
generator. The most basic thing it can do is to make
a String that contains the Csound code.

renderCsd :: RenderCsd a => a -> IO String





It takes something renderable and produces a String.
We can write the String to the file with function:

writeCsd :: RenderCsd a => String -> a -> IO ()
writeCsd fileName csd = ...





These functions are useful if we want to use the Csound code
without Haskell. For instance we can take it on some computer
that doesn’t have the Haskell installed on it and run it with Csound.
It can be used on mobile devices inside of the other programs
with Csound API. We can send it to our friend by mail. So that
he can render it at home and hear the music.



Saving the output to sound-file

We can write the output to wav-file or aiff-file with function:

writeSnd :: RenderCsd a => String -> a -> IO ()
writeSnd fileName csd = ...





Let’s write a 10 seconds of concert A (440 Hz). We can use it
for tuning:

> writeSnd "A.wav" $ setDur 10 $ osc 440





The audio is going to be rendered off-line. The good thing
about off-line rendering is that it can happen much faster than real clock time.
It depends on the complexity of the sound units. It’s not limited
with real-time constraints. So we can render a file with 30 minutes
very quickly.



Playing live

We have already seen these functions. You can guess them:

dac  :: RenderCsd a => a -> IO ()
vdac :: RenderCsd a => a -> IO ()





The dac is for sending the sound to sound card and
the vdac is for playing with virtual midi device.
If you have the real midi-controller you can use it
with dac function. Just use the plain midi-function
and everything should work out of the box.



Playing the sound with player

We can render the file to sound file and play it with sound player.
Right now only Linux players are supported:

mplayer, totem :: RenderCsd a => a -> IO ()







Render-able types

It’s time to take a closer look at the arguments of the functions.
What does type class RenderCsd mean?

We have seen how we can play a mono and stereo signals with it.
But can we do anything else? Yes, we can.

We can render the signals or tuples of signals.

Sig, (Sig, Sig), (Sig, Sig, Sig, Sig)





They can be wrapped in the type SE (they can contain side effects)

SE Sig, SE (Sig, Sig), SE (Sig, Sig, Sig, Sig)





We can listen on the sound card ports for input signals.
Yes, we can use the Csound as a sound-effect. Then we render
a function:

(Sigs a, Sigs b) => RenderCsd (a -> b)
(Sigs a, Sigs b) => RenderCsd (a -> SE b)





We can render a procedure:

SE ()





In this case we are using Csound to do something useful
but without making any noise about it. Maybe we are going
to manipulate some sound-files or receive Midi-messages
and silently print them on the screen.

There is also support for GUIs. We are going to encounter it soon.
The signal that is wrapped in the UI is also can be rendered:

Source Sig, Source (Sig, Sig), ...







Options

We don’t care much about sound rates for the output or
what sound card to use or what size does internal sound buffers have.
But if we do?

Can we alter the sample rate? The default is 44100. It’s good enough
for real-time performance. If we want to produce the high quality audio
we need to alter the defaults. That’s where the Options are handy.

If we look at the module Csound.IO [http://hackage.haskell.org/package/csound-expression-3.3.2/docs/Csound-IO.html]
we shortly notice that there are duplicate functions that ends with By

dacBy 		:: RenderCsd a => Options -> a -> IO ()
writeCsdBy 	:: RenderCsd a => Options -> String -> a -> IO ()
writeSndBy 	:: RenderCsd a => Options -> String -> a -> IO ()
...





They take in one more argument. It’s Options
(Csound.Options [http://hackage.haskell.org/package/csound-expression-3.3.2/docs/Csound-Options.html]).
With Options we can do a lot of fine tuning.
we can alter audio sample rate, alter the default size for
functional tables, assign settings for JACK-instruments and so on.

That’s how we can alter the sound-rates:

> let opt = setRates 96000 64
> writeSndBy opt result





The sound rates contain two integers. The former is the result audio rate
and the latter is for the length of the single audio array. The latter is called
block size (it’s ksmps in Csound). It affects the rate of control signals.
We produce the audio signals in frames of the blockSize length.
When we are done with one frame we can listen for the control signals
and then apply them in the production of the next frame.

The cool thing about Options is that it’s a Monoid.
We can use the default Options and alter only the things
we need to alter without the need to redefine the other things.
Let’s see how we can combine different settings:

> let opt = setRates 96000 64 <> def { tabFi = coarseFi 15 }
> writeSndBy opt result





We combine the two options with Monoid’s mappend function.
The first option is for rate and the second set’s higher degree
of fidelity for functional tables. It affects the default table size.
By default it’s 13th degree of 2. But we have set it to 15.



Global config parameters

We can create files that have some parameters which we can change with command line arguments.
We render Haskell code to Csound file. After that we can run the file anywhere where Csound is installed.
What if we want to change some aspects of performance without the need for recompilation.
Some parameters like OSC-port or MIDI control change mappings. We can do it with Csound-Macroses.

To read the macros there are functions:

readMacrosString :: String -> String -> Str
readMacrosDouble :: String -> Double -> D
readMacrosInt :: String -> Int -> D





They take name and initial value which is used if no flag is set on command line.
Let’s create a pure tone with frequency parametrized with macros:

> freq = readMacrosDouble "FREQ" 440
> dac $ osc (sig freq)





As simple as this! After rendering we have the file tmp.csd with Csound code.
Let’s run it with different frequencies:

> csound tmp.csd --omacro:FREQ=330

> csound tmp.csd --omacro:FREQ=800





With flag --omacro:Name=Value we can assign the flag with given Name.
Notice that of course no type-checking is happening. If we assign integers to strings
bad things can happen.



Altering the defaults

The library comes with good default options that are most common and
should produce good result out of the box. Csound provides many fine-tuning
arguments with options that suit best for specific hardware and OS configuration.

If the defaults of the library are not best for us we can use dacBy or
other -By variants to alter the defaults but this way we should use them all the time!
Not so easy to use.

The library provides solution for this case. We can set alter the defaults
per folder and per system. The engine looks for defaults in special file called .csound-expression-rc
(it’s non human readable format). First it looks for it in the current directory, if
it’s found the options are applied, then if nothing is found it looks in the user HOME
directory, if nothing is found there than it resolves to the common defaults that
are defined in the library.

To create our own profile for defaults we can invoke the function:

saveUserOptions :: Options -> IO ()





It saves the options in the file .csound-expression-rc in the current directory.
So if we invoke it in the our home directory those options would become the
new global defaults.

So for example if we want to use 48 kHz  by default and don’t want to see
real-time events on the screen while csound plays. We can save the options:

> saveUserOptions (setRates 48000 128 <> noTrace)





If you don’t like the new defaults and want to get back to library defaults
just remove the file .csound-expression-rc or overwrite it with default:

> saveUserOptions def







Common options

We can access all the  options that are available in Csound with the module Csound.Options [http://hackage.haskell.org/package/csound-expression-5.3.1/docs/Csound-Options.html].
You can look at all Csound flags at the Csound docs [http://csound.com/docs/manual/CommandFlagsCategory.html].

But some options are so much important that there are special shortcuts to access them.
Let’s take review.


	Set rates - alter audio rate of rendering and block size
It affects the audio quality of the audio and control signals.
The higher the better, but if they are too high we can end up with
not enough CPU for real-time problems.




setRates :: Int -> Int -> Options
setRates audioRate blockSize






	Set buffer size - When we render audio in real time the audio
is not sent directly to speakers instead it’s written to special
buffers where audio-card looks for them when it needs them.
This options affect the latency of the system or how fast it can response.




setBufs :: Int -> Int -> Options
setBufs hardwareBuf ioBuf





There are two types of buffers:


	hardware buffer - Number of audio sample-frames held in the DAC hardware buffer. This is a threshold on which software
audio I/O (above) will wait before returning. A small number reduces audio I/O delay; but the value is often hardware
limited, and small values will risk data lates.


	IO buffer - Number of audio sample-frames per sound i/o software buffer. Large is efficient, but small will reduce audio
I/O delay and improve the accuracy of the timing of real time events. The default is 256 on Linux, 1024 on MacOS X,
and 4096 on Windows. In real-time performance, Csound waits on audio I/O on NUM boundaries. It also processes audio
(and polls for other input like MIDI) on orchestra ksmps boundaries. The two can be made synchronous. For
convenience, if NUM is negative, the effective value is ksmps * -NUM (audio synchronous with k-period boundaries).
With NUM small (e.g. 1) polling is then frequent and also locked to fixed DAC sample boundaries.


	Activates audio input and output (on by default):




setAdc, setDac :: Options






	Keeps the command line output to minimum, no trace messages: noTrace :: Options


	Sets how much output do we need (for level value consult the Csound docs [http://csound.com/docs/manual/CommandFlagsCategory.html]).




setMessageLevel :: Int -> Options






	Uses csound instance as JACK unit, defined a name for it: setJack :: String -> Options


	Set midi-device to all: setMa :: Options


	Sets the output to nosound: setSilent :: Options. It can be useful for audio processing tasks
if we work with files.


	Sets the output string code: setOutput :: String -> Options


	Sets the input string code: setInput :: String -> Options


	Sets the device for real-time output: setDacBy :: String -> Options


	Sets the device for real-time input: setAdcBy :: String -> Options


	Sets different real-time audio drivers:




setAlsa, setCoreAudio, setMme :: Options






	Changes the midi device string id: setMidiDevice :: String -> Options


	Sets default gain for output audio: setGain :: Double -> Options







	<= Signals everywhere [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SignalTfm]


	=> Basics of sound synthesis [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SynthTutorial]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]








          

      

      

    

  

    
      
          
            
  
Samples

There is a rich set of functions to playback samples or audio files.
We can create complex patterns from tiny sound files.

To do it we need to install the library csound-sampler:

> cabal update
> cabal install csound-sampler





The detailed guide to the library can be found here [https://github.com/anton-k/csound-sampler].




	<= Events [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SoundFontsTutorial]


	=> Signal segments [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SignalSegmentsTutorial]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]







          

      

      

    

  

    
      
          
            
  
Scores

The type for Score comes from another library temporal-media.
The score is a bunch of notes for an instrument to be played.
Every note has a start time, duration (both in seconds) and
some arguments for the instrument. The arguments can carry
information about volume and pitch or some timbral parameters.

We can invoke an instrument with functions:

sco :: (Arg a, Sigs b) => (a -> SE b) -> Sco a -> Sco (Mix b)
mix :: Sigs a => Sco (Mix a) -> a





With sco we convert a score of notes to score of unmixed signals.
With mix we can mix the score of signals to a single signal.

We can notice the two type classes.


	The Arg is for arguments.
It contains the primitive types D (numbers), Str (strings)
and Tab (tables). Also the argument can contain tuples
of afore mentioned primitive types.


	The Sigs is for tuples of signals. It can be Sig, Sig2, Sig4 and so on.




That’s how we can play a single note for one second:

> instr x = return $ osc $ sig x
> dac $ mix $ sco instr (temp 440)





The function temp creates a note that starts right away
and lasts for one second. The argument of the function becomes
the argument for the instrument to play.

Why do we need two functions? Isn’t it better to convert
the score of notes to signal? The answer to this question
lies in the fact that when we have scores of signals we can
combine them together. We can construct scores that contain
signals from different instruments:

> oscInstr x = return $ osc $ sig x
> sawInstr x = return $ saw $ sig x
> dac $ mul 0.5 $ mix $ mel [sco oscInstr (temp 440), rest 1, sco sawInstr (temp 440)]





We have created two instruments for pure sine and saw-tooth.
Then we create a couple of notes (temp), apply the instruments to
them (sco) and play them one after another (mel). We have put a one second
rest between the notes. So the mix contains a signals
from two different instruments.


Main functions

The main strength of the type Sco is that we can build complex
scores out of simple primitives. Let’s repeat our simple notes four times (loopBy)
and play it four times faster (str):

> dac $ mix $ str 0.25 $ loopBy 4 $ mel [sco oscInstr (temp 440), rest 1, sco sawInstr (temp 440), rest 1]





Let’s study the most important functions for composition
(the complete list can be found in the docs for temporal-media package, on Hackage).


Primitive functions

Let’s start with primitive functions:

temp :: a   -> Sco a
rest :: Sig -> Sco a





The temp creates a single note that starts right away and lasts for one second.
The function rest creates a pause that lasts for the given amount of time.



Functions for sequential and parallel composition

The next functions can group lists of scores.
If we play notes one after another we can get a melody (mel).
If we play notes at the same time we can get a harmony (har).
So there are two functions:

mel, har :: [Sco a] -> Sco a





Let’s play a major chord. First we play it in line and then we form a chord:

> notes = fmap temp $ fmap (220 * ) [1, 5/4, 3/2, 2]
> q = mel [mel notes, har notes]
> dac $ mix $ sco oscInstr q





We can hear the buzz in the last chord. It’s caused by clipping.
All signals for dac should have the amplitude less or equal than 1.
We can scale the last chord by amplitude with the function eff:

eff :: (Sigs b, Sigs a) => (a -> SE b) -> Sco (Mix a) -> Sco (Mix b)





The eff applies an effect to the scores of signals.

dac $ mix $ mel [sco oscInstr (mel notes), eff (return . mul 0.2) $ sco oscInstr $ har notes]





The cool part of it is that we can treat a block of notes as a single value.
We can give it a name, process it with a function or produce it with the function.
It’s impossible with plain Csound.



Time to delay

We can delay a bunch of notes with function:

del :: Sig -> Sco a -> Sco a





It takes a time to delay and a score. Let’s play a note after two seconds delay:

> dac $ mix $ sco oscInstr $ del 2 $ temp 440







Speed up or slow down

We can speed  up or slow down the notes playback with function str (short for stretch).
It stretches the length of notes in time domain. Let’s play our previous example four times faster:

> dac $ mix $ str 0.25 $ mel [sco oscInstr (mel notes), eff (return . mul 0.2) $ sco oscInstr $ har notes]







Loops

We can repeat a score several times with function loopBy:

loopBy :: Int -> Sco a -> Sco a







Functor

Needless to say that Sco is a functor. We can map the notes with fmap:

fmap :: (a -> b) -> Sco a -> Sco b








Twinkle twinkle little star

Let’s create a simple melody and play it with a sine instrument.
We are going to play a twinkle twinkle little star song.
For this tune we have two kind of bars. The first bar
contains two notes that are played twice. In the second type
of bar one note is played twice and then another is held.
We’ve got two patterns:

> p1 a b = mel $ fmap temp [a, a, b, b]
> p2 a b = mel [mel $ fmap temp [a, a], str 2 $ temp b]





Alsow we have a third pattern. It’s more higher level.
If we study the song we can see that we always play a first
pattern and then we play a second one. So let’s create a function for it:

> p3 a b c d = mel [p1 a b, p2 c d]





Let’s add an amplitude envelope to the instrument:

oscInstr x = return $ mul (linsegr [0, 0.03, 1, 0.2, 0] 0.1 0) $ osc $ sig x





Let’s also define a synonym for rendering function:

> run = dac . mix . sco oscInstr . fmap cpspch





The cpspch is csound function that converts numeric values (encoded
in Csound) to frequencies. The value 8.00 is a C1, the 8.01 is D#1
the value 8.02 is D1, the 9.00 is C2, and so on. The 8.12 is the
same as 9.00.

Let’s listen for the first phrase:

> run $ str 0.25 $ p3 8.00 8.07 8.09 8.07





And then goes the second phrase:

> run $ str 0.25 $ mel [p3 8.00 8.07 8.09 8.07, p3 8.05 8.04 8.02 8.00]





We can notice that the third and fourt phrases are the same. And in the last
two phrases we are going to repeat first two phrases. Let’s give a name to phrases.
And combine them in the tune:

> ph1 = p3 8.00 8.07 8.09 8.07
> ph2 = p3 8.05 8.04 8.02 8.00
> ph3 = p3 8.07 8.05 8.04 8.02

> ph12 = mel [ph1, ph2]
> ph33 = loopBy 2 ph3
> ph   = mel [ph12, ph33, ph12]

> run $ str 0.25 ph





With this approach we can better see the structure of the song.

Let’s add chords to the tune. The song is based on three chords: C, F, G7.
Let’s create a function to play a chord:

> ch a b c = mel [temp a, har [temp b, temp c]]
> chC = ch 7.00 7.04 7.07
> chF = ch 7.00 7.05 7.09
> chG = ch 7.02 7.05 7.07





The structure of the chords is the same as the structure of the tune:

> ch1 = mel [chC, chC, chF, chC]
> ch2 = loopBy 2 $ mel [chG, chC]
> ch3 = loopBy 2 $ mel [chC, chG]

> ch12 = mel [ch1, ch2]
> ch33 = mel [ch3, ch3]

> ch = mel [ch12, ch33, ch12]





We can play the tune with chords. Let’s play it twice:

> run $ str 0.25 $ loopBy 2 $ har [ch, ph]





Here it is! But what about clipping? Some signals are above the 1 in amplitude.
We can easily solve this problem by scaling thae output signal. But here
we are going to take another approach. We are going to introduce another parameter
for the instrument. The instrument was defined for frequencies. Now it’s going
to get in the amplitudes also:

> let oscInstr (amp, cps) =
  return $ mul (sig amp * linsegr [0, 0.03, 1, 0.2, 0] 0.1 0) $ osc $ sig cps





We have to update the run function also:

> let run = dac . mix . sco oscInstr . fmap (\(a, b) -> (a, cpspch b))





We transform not the whole argument with cpspch but
only the second value in the tuple. We have the scores of frequencies.
Let’s transform them in the scores of pairs! We assume that chords are
quieter than the melody:

> run $ str 0.25 $ loopBy 2 $ har [fmap (\x -> (0.4, x)) ch,  fmap (\x -> (0.6, x)) ph]







Main classes for composition

I have simplified a bit the types for functions.
For example, If we try to query the type in the ghci:

> :t mel
mel :: Compose a => [a] -> a





Or for del:

> :t del
del :: Delay a => DurOf a -> a -> a





The main functions belong to the type class. They are not
defined for Sco lone. There is an implementation for del,
mel, har, rest, etc. But later we are going to meet some other
types which we can compose with the same functions. We are going
to compose with samples (pieces of audio) and signal segments
(signals that are limited with event streams).

The only functions that was defined on Sco is temp:

:t temp
temp :: Num t => a -> Track t a





We can see that is defined for Tracks but the Sco is
a special case for Track:

type Sco a = Track Sig a






Compose

Let’s review the main classes. We can Compose things:

:i Compose
class Compose a where
  mel :: [a] -> a
  har :: [a] -> a
  (+:+) :: a -> a -> a
  (=:=) :: a -> a -> a
    -- Defined in ‘Temporal.Class’





We can see our good friends mel and har alongside
with corresponding binary equivalents (+:+) and (=:=).

There is a function that is based on this class:

> :t loopBy
loopBy :: Compose a => Int -> a -> a





It’s defined as

loopBy n a = mel $ replicate n a







Delay

We can delay things:

> :i Delay
class Delay a where
  del :: DurOf a -> a -> a
    -- Defined in ‘Temporal.Class’





The DurOf is a type family. If you don’t know what type family
is here is the description. Type family is a function defined
on types. It means that for any type that is instance of DurOf
there is a corresponding type that signifies it’s duration.

The duration for Sco is a constant number D.

So the function for delaying is:

del :: Delay a => DurOf a -> a -> a







Stretch

We can stretch things:

> :i Stretch
class Stretch a where
  str :: DurOf a -> a -> a







Rest

We can create pauses:

> :i Rest
class Compose a => Rest a where
  rest :: DurOf a -> a
    -- Defined in ‘Temporal.Class’







Loops

We can create an infinite loop:

class Loop a where
  loop :: a -> a
    -- Defined in ‘Temporal.Class’







Limit

We can limit the length:

:i Limit
class Limit a where
  lim :: DurOf a -> a -> a





This function is not defined for Sco.




	<= User interaction [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/UserInteractionTutorial]


	=> Events [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/EventsTutorial]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]









          

      

      

    

  

    
      
          
            
  
Signal segments

The signal segments lets us schedule signals with event streams.
They are defined in the module Csound.Air.Seg.
A signal segment can be constructed from a single signal or a tuple of signals:

toSeg :: a -> Seg a





It plays the signal indefinitely. We can limit the duration of the segment
with static length measured in seconds:

constLim :: Sig -> Seg a -> Seg a





or with an event stream:

type Tick = Evt Unit

lim :: Tick -> Seg a -> Seg a





The signal is played until something happens on the given event stream.
When segment is limited we can loop over it:

loop :: Seg a -> Seg a





It plays the segment and the replays it again when it comes to an end.

If we several limited signals we can play them in sequence:

mel :: [Seg a] -> Seg a





When the first signal stops the next one comes into play and
when it stops the next one is turned on.

Also we can play segments at the same time:

har :: [Seg a] -> Seg a





The length of the result equals to the longest length among all input segments.

We can delay the segment with an event stream or a static length:

del      :: Tick -> Seg a -> Seg a
constDel :: Sig    -> Seg a -> Seg a





There is a handy shortcut for playing nothing for the given amount of time:

rest      :: Num a => Tick -> Seg a
constRest :: Num a => Sig  -> Seg a





To listen the segment we need to convert it to signal:

runSeg :: Sigs a => Seg a -> a





That’s it. With signal segments we can easily schedule the signals with
event streams.

Let’s create a button and turn the signal on when it’s pressed:

> dac $ lift1 (\x -> runSeg $ del x $ toSeg $ osc 440) (button "start")





Let’s create a second button that can turn off the signal.

> dac $ hlift2 (\x y -> runSeg $ del x $ lim y $ toSeg $ osc 440)
	(button "start")
	(button "stop")





When signal stops the program exits. We can repeat the process by looping:

> dac $ hlift2 (\x y -> runSeg $ loop $ del x $ lim y $ toSeg $ osc 440)
	(button "start")
	(button "stop")





Let’s play several signals one after another with sflow:

> dac $ hlift2 (\x y -> runSeg $ loop $ lim y
	$ del x $ loop $ mel $ fmap (lim x . toSeg . osc) [220, 330, 440])
	(button "start")
	(button "stop")





Warning: Note that signal release is not working with signal segments.


Samplers

There are handy functions to trigger signals that are based on signal segments.
We can look at the module Csound.Air.Sampler to find them.

The functions trigger the signals with event streams, keyboard presses and midi messages.
Let’s look at the functions for keyboard (the rest functions are roughly the same).

There are several patterns of (re)triggering.


	Trig – triggers a note and plays it while the same key is not pressed again

charTrig :: Sigs a => Maybe a -> String -> String -> a -> SE a
charTrig ons offs asig = ...





It accepts a possible initial value (if nothing it’s set to zero),
string of keys to turn on the signal and the string of keys to turn it off.

Let’s try it out:

> dac $ at (mlp 500 0.1) $ charTrig Nothing "q" "a" $ saw 110





Try to hit q and a keys.



	Tap – is usefull optimization for Trig it plays the note only for
a given static amount of time (it’s good for short drum sounds)
Tap has the same arguments but the turn off string is substituted
with a note’s length in seconds (it comes first):

charTap :: Sigs a => Sig -> String -> a -> SE a







	Push – plays a signal while the key is pressed.

charPush :: Sigs a => Maybe a -> Char -> a -> SE a





The first argument holds signal to play while nothing is pressed.
If we pass Nothing, then nothing is playd back :)
Let’s create a simple note:

> dac $ at (mlp 500 0.1) $ charPush (Just $ osc 330) 'q' $ saw 110





Let’s create a couple of notes:

> dac $ at (mlp 500 0.1) $ sum [charPush def 'q' $ saw 110, charPush def 'w' $ saw (110 * 9 / 8)]





The maybe is instance of Default, so we can use def value as alias for Nothing.

Note that only one key (de)press can be registered at the moment.
It’s current limitation of the library. It’s not so for midi events.



	Toggle – uses the same key to turn the signal on/off.

> dac $ at (mlp 500 0.1) $ charToggle 'q' $ saw 110







	Group – creates a mini mono-synth. It’s give a list of pairs
of keys an signals. When key is pressed the corresponding
signal starts playing. When the next key is pressed
the previous is turned off and the current is turned on.

charGroup :: Sigs a => Maybe a -> [(Char, a)] -> SE a









There are many more functions. You can find them in
the module Csound.Air.Sampler [http://hackage.haskell.org/package/csound-expression/docs/Csound-Air-Sampler.html].


Turning keyboard to DJ-console

Let’s create a mini mix board for a DJ.
The first thing we need is a cool dance drone:

> snd1 a b = mul 1.5 $ mlp (400 + 500 * uosc 0.25) 0.1 $ mul (sqrSeq [1, 0.5, 0.5, 1, 0.5, 0.5, 1, 0.5] b) $ saw a





Let’s trigger it with keyboard!

> dac $ charTrig def "q" "a" (snd1 110 8)





Try to press q and a  keys to get the beat going.
Let’s create another signal. It’s intended to be high pitched pulses.

> snd2 a b = mul 0.75 $ mul (usqr (b / 4) * sqrSeq [1, 0.5] b) $ osc a





Let’s try it out. Try to press w, e, r keys.

> dac $ mul 0.5 $ sum [charPush def 'w' $ snd2 440 4, charPush def 'e' $ snd2 330 4, charPush def 'r' $ snd2 660 8]





Note that only one keyboard event can be recognized. So if you press or depress
several keys only one is going to take effect. It’s a limitation of
current implementation. It’s not so with midi events. Let’s join the results:

> pulses = mul 0.5 $ sum [charPush def 'w' $ snd2 440 4, charPush def 'e' $ snd2 330 4, charPush def 'r' $ snd2 660 8]
> beat = mul 0.5 $ sum [charTrig def "q" "a" (snd1 110 8), charTrig def "t" "g" $ snd1 220 4]





Let’s create some drum sounds:

> snd3 = osc (110 * linseg [1, 0.2, 0])
> snd4 = mul 3 $ hp 300 10 $ osc (110 * linseg [1, 0.2, 0])
> drums = sum [charTrig def "z" "" snd3, charTrig def "x" "" snd4]





Let’s rave along.

> dac $ sum [pulses, mul 0.5 beat, mul 1.2 drums]








	<= Samples [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SamplesTutorial]


	=> Widgets for live performances [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/LiveWidgetsTutorial]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]









          

      

      

    

  

    
      
          
            
  
Signals everywhere

The signal type Sig is the key aspect of the library!
So let’s make good friends with it!

We will learn how to transform signals in this chapter
and find out some interesting peculiarities of it.


Control-rate vs audio-rate signals

In CE we have a type Sig to represent both audio and control signals.
For ease of use some context is hidden from the user. But sometimes we need
to distinguish them.

Audio signals work on audio rate (typical values are 44.1 KHz or 48 KHz) while control signals
are updated on much lower rate (like 1/64 or 1/128 fraction of audio rate).
Using control signals can save a lot of CPU.

For instance we can use them with LFOs or envelope generators or
to modify with time any sort of parameter of synthesizer.

If you want to know the gory details of it.
Under the hood the audio- and control-rate signals are represented with different data structures.
Audio-rate signal is array of doubles and control rate is just a single double value.
But for the ease of use they are represented with the same type in CE.

The smart engine makes coversions behind the scenes. But if we want we can
give it a hint:

kr :: Sig -> Sig   -- enforces control-rate
ar :: Sig -> Sig   -- enforces audio-rate
ir :: Sig -> D     -- takes a snapshot of the signal (init-time rate or constant)






Mutable values with control signals

By default newRef or newGlobalRef create placeholders for audio-rate signals.
But if we want them to hold control-rate signals we have to use special variants:

newCtrlRef          :: Tuple a => a -> SE (Ref a)
newGlobalCtrlRef    :: Tuple a => a -> SE (Ref a)





If signals are created with them they are control-rate signals.




The Signal space (SigSpace)

We often want to transform the signal which is wrapped
in the other type. It can be a monophonic signal.
If it’s just a pure Sig then it’s not that difficult.
We can apply a function and get the output. But what
if the signal is stereo or what if it’s wrapped in the SE.
But it has a signal(s) that we want to process. We can use
different combinations of the function fmap. But there is
a better way.

We can use the special type class SigSpace :

class Num a => SigSpace a where
  mapSig :: (Sig -> Sig) -> a -> a





There are lots of instances. For signals, tuples of signals,
tuples of signals wrapped in the SE, the signals that come
from UI-widgets such as knobs and sliders.

If you are too lazy to write mapSig there is a shortcut at for you.
It’s the same as mapSig. Thats how we can filter a noise. The linseg
creates a straight line between the points 1500 and 250 that lasts for 5 seconds:

> dac $ at (mlp (linseg [1500, 5, 250]) 0.1) $ white





It let us apply signal transformation functions to values of
many different types. The one function that we have already seen is mul:

mul :: SigSpace a => Sig -> a -> a





It can scale the signal or many signals.

There is another cool function. It’s cfd:

cfd :: SigSpace a => Sig -> a -> a -> a





It’s a crossfade between two signals. The first signal
varies in range 0 to 1. It interpolates between second
and third arguments.

Also we can use bilinear interpolation with four signals

cfd4 :: SigSpace a => Sig -> Sig -> a -> a -> a -> a -> a
cfd4 x y asig1 asig2 asig3 asig4





We can imagine that we place four signals on the corners of the unipolar square.
we can move within the square with x and y signals. The closer we get to the
corner the more prominent becomes the signal that sits in the corner and other
three become quiter. The corner to signal map is:


	(0, 0) is for asig1


	(1, 0) is for asig2


	(1, 1) is for asig3


	(0, 1) is for asig4




The cfds can operate on many signals. The first list
length equals the second one minus one.

cfds :: SigSpace a => [Sig] -> [a] -> a





Another usefull function is weighted sum

wsum :: SigSpace a => [(Sig, a)] -> a





It’s a weighted sum of signals. Can be useful for mixing
sounds from several sources.

If we take a closer look at the function mapSig:

 mapSig :: (Sig -> Sig) -> a -> a





We can notice that it can only transform value with pure functions.
Pure functions have no side-effects and are deterministic in nature.
But what if we want to make something random and weird?
Like filtering the signal with some random function:

Take for example jitter:

jitter :: Sig -> Sig -> Sig -> SE Sig
jitter kamp kcpsMin kcpsMax





It creates random line segments with amplitude between (-kamp, +kamp)
with frequency of change in the interval (kcpsMin, kcpsMax).
It’s very useful to introduce some natural changes.
The output is random so it’s wrapped in the SE.

Let’s filter saw-tooth with it, as a filter we use blp,
which is Butterworth low-pass filter:

> env = on 50 1500 $ jitter 1 0.5 2
> filt x = at (\cps -> blp cps x) env





So we apply our random env to the center frequency of the filter
and process signal x with it.

To apply a function to signal we can use the method bindSig
from the class BindSig. It works hust like SigSpace
only it’s designed for effectful processing:

class Num a => BindSig a where
  bindSig :: (Sig -> SE Sig) -> a -> SE a





Here is the result:

> dac $ bindSig filt $ (saw 220 + sqr 110)





To apply it to the white noise we need more quirky expression:

> dac $ bindSig filt =<< white





The new thing is operator =<<, which comes from the Monad type class.
It’s standard way to apply effectful transformations to effectful values in the Haskell.
It’s simplified type is:

(=<<) :: (a -> SE b) -> SE a -> SE b





We can write the whole book on explanation of the Monad. But right now
just remember the signature. It allows us to plug effectful values
to effectful computations. It’s just like fmap but with effectful input.



Generic At-class

Wow so many conversions going on: SigSpace, BindSig or even combo of Monad with BindSig.
The head can go in rounds. This happens because Haskell is mmm.. well.. strongly
typed language and sometimes can be restrictive on types.

But it can be very awkward at times. imagine the expression:

mapSig (f . g . h) expr





Here dot is Haskell way to compose functions. (we plug input of rightmost to the input of next and so on).
But now we change the f to ef which has side effects. And then we need to
change mapSig to bindSig and moreover if expr changes to effectful expr
we need to add =<< in proper place.

bindSig (eff . g . h) =<< expr'





This can be quite annoying when we want to quickly test some effects on input signals.
To solve this we can use the very generic function at.
It calculates by the types of inputs the right conversion for it.
So it can be used inplace of mapSig, bindSig and many others.
It’s kind of swiss army knife to apply any signal processing function to anything.

The type is very generic. We use some clever hackery to make things right.

at :: At a b c => (a -> b) -> c -> AtOut a b c





Just use it! It’s convenient. Let’s look at examples:

In place of mapSig:

dac $ at (mlp (linseg [1500, 5, 250]) 0.1) $ white





In place of bindSig:

> env = on 50 1500 $ jitter 1 0.5 2
> filt x = at (\cps -> blp cps x) env

> dac $ at filt (saw 220 + sqr 110)
> dac $ at filt white





Notice no need for monadic operator when we switch from
pure waves to white noise!



The signal outputs (Sigs)

It’s a tuple of signals. It’s for mono, stereo and other sound-outputs.

class Tuple a => Sigs a







SigSpace for stereo transformations

There are special variants of SigSpace and BindSpace
which are useful for stereo-effects. The process inputs with stereo transformations:

class SigSpace2 a where
  mapSig2 :: (Sig2 -> Sig2) -> a -> a





and also

class SigSpace2 a => BindSig2 a where
  bindSig2 :: (Sig2 -> SE Sig2) -> a -> SE a





And of course at unifies them all!.




	<= Basic types [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/BasicTypesTutorial]


	=> Rendering Csound files [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/ProducingTheOutputTutorial]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]








          

      

      

    

  

    
      
          
            
  
SoundFonts

With soundfonts it’s very easy to turn your computer in synthesizer.
A sound font encodes the timbre of the instrument with samples.
There are many free soundfonts with good level of quality.


Midi

We can read soundfonts that are encoded in sf2 format.
The function sfMsg can turn sound font file in midi instrument:

> let sf = Sf "rhodes.sf2" 0 0
> vdac $ midi $ sfMsg sf 0.5





We play the file "rhodes.sf2" at the bank 0
with program 0. The sound font can contain many instruments.
They are identified with the pair of integers: bank and program number.
The second argument of the function sfMsg is sustain value of the instrument
in seconds.

The funciton sfMsg reads the samples with linear interpolation.
We can improve the quality with cubic interpolation if we
use the function sfMsg3.



Non-midi

We are not constrained to midi-frequencies. We can read samples at any frequency
with function sfCps:

> let sf = Sf "rhodes.sf2" 0 0
> dac $ sfCps sf 0 0.5 440





The arguments are:


	a soundfont preset.


	sustain.


	the amplitude (it ranges in the iterval [0, 1])


	the frequency in Hz.




We can find a lot of soundfonts in the net. Some links to start:


	Hammer sound [http://www.hammersound.net/]


	Rhodes [http://learjeff.net/sf/sf.html]


	And many more [http://www.synthfont.com/links_to_soundfonts.html]







	<= FX family [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/FxFamily]


	=> Custom temperament. Microtonal music [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Tuning]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]








          

      

      

    

  

    
      
          
            
  
Spectrums (Spec)

We can extract a spectrum from the signal. It’s an advanced type.
The simplest function to create a spectrum is:

toSpec   :: Sig -> Spec
fromSpec :: Spec -> Sig
mapSpec  :: (Spec -> Spec) -> Sig -> Sig





With Spec we can apply spectral transformations to signal.
we can create a vocoder effect with it for instance or scale a pitch
or crossfade between several timbres.

We can interpolate between several signals:

cfdSpec :: Sig -> Spec -> Spec -> Spec
cfdSpec4 :: Sig -> Sig -> Spec -> Spec -> Spec -> Spec -> Spec
cfdsSpec :: [Sig] -> [Spec] -> Spec





To scale the pitch there are handy shortcuts:

scaleSpec :: Sig -> Sig -> Sig
scalePitch :: Sig -> Sig -> Sig





scaleSpec scales the frequency of the signal in Hz ratios
but scalePitch does it in semitones.

If we have a spectrum we can process it with many functions from the
module Spectral processing [http://hackage.haskell.org/package/csound-expression-opcodes-0.0.0/docs/Csound-Typed-Opcode-SpectralProcessing.html].




	<= Argument modifiers [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/ModArg]


	=> Arrays [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Arrays]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]







          

      

      

    

  

    
      
          
            
  
Basics of sound synthesis

Let’s explore the sound synthesis with Haskell. We are going to
study the subtractive synthesis. In subtractive synthesis we start with a complex waveform
and then filter it and apply cool effects. That’s how we make
interesting instruments with subtractive synthesis. Let’s look at
the basic structure of synthesizer.


Basic structure of synthesizer

Let’s imagine that we have a piano midi controller. When we press the key
we get the pitch (what note do we press) and volume (how hard do we press it).
So the input is the volume and pitch. An instrument converts it to the sound wave.
The sound wave should naturally respond to the input parameters. When we hit harder
it should be louder and when we press the lower notes it should be lower in
pitch and possibly richer in timbre.

To get the sound wave we should ask ourselves: what is an instrument (or timbre)?
How it is constructed? What parts should it contain?

The subtractive synthesis answers to these questions with the following scheme:

            +----------+     +--------+      +-------+     +--------+
Pitch, --->	| Wave Gen |---->| Filter |----->| Gain  |---->| Effect |---> Sound
Velocity	  +----------+     +--------+      +-------+     +--------+

		+-----+   +----+
		| LFO |   | EG |
		+-----+   +----+





Synth has six main units:


	Wave generator (VCO): It defines the basic spectrum of the sound. It’s often defines the pitch of the sound.
We create the static sound waveform with the given pitch. Sometimes we produce the noise
with it (for percussive sounds).


	Filter (VCF):  Filter controls the brightness of the timbre.
With filter we can vary the timbre in time or make it dynamic.


	Amplifier or gain (VCA): With gain we can adjust the volume of the sound (scale the amplitude).


	Processor of effects (FX): With effects we can make the sound cool and shiny. It can be delay, reverb,
flanger, chorus, vocoder, distortion, name your favorite effect.




Units to make our sounds alive (we can substitute the dumb static numbers with
time varied signals that are generated with LFO’s or EG’s):


	Low frequency generator (LFO): A low frequency oscillator generates waves at low frequency (0 to 50 Hz).
It’s used to change the parameters of the other units in time.
LFO’s are used to change parameters periodically.


	Envelope generator (EG): An envelope creates a piecewise function (linear or exponential). It slowly varies in time.
We can describe the steady changes with EG’s. It’s often used to
control the volume of the sound. For example the sound can start from the
maximum volume and then it fades out gradually.




Enough with theory! Let’s move on to practice!
Let’s load the csound-expression to the REPL and define
the basic virtual midi instrument:

> ghci
Prelude> import Csound.Base
Prelude> :set -XTypeFamilies -XFlexibleContexts
Prelude Csound.Base> run f = vdac $ midi $ onMsg f







Wave generator

Wave generator defines the timbre content. What spectrum do we need in the sound?
There are four standard waveforms: sine, sawtooth, square and triangle.
The standard waveforms are represented with functions:

osc, saw, sqr, tri :: Sig -> Sig





All functions take in a frequency (it can vary with time, so it’s a signal).

The most simple is sine wave or pure tone. It represents the sine function.
In csound-expression the pure sine is generated with function osc. Let’s listen to it.

> run osc





It starts to scream harshly when you press several notes. It happens
due to distortion. Every signal is clipped to the amplitude of 1.
The function osc generates waves of the amplitude 1. So when we press
a single note it’s fine. No distortion takes place. But when we press
several notes it starts to scream because we add several waves and the amplitude
goes beyond 1 and clipping results in distortion and leads to the harsh sound.
If we want to press several keys we can scale the output sound:

> run $ mul 0.25 . osc





Pure tone contains only one partial in the spectrum. It’s the most naked sound.
We can make it a little bit more interesting with different waves. The next wave is
triangle:

> run $ mul 0.25 . tri





Little bit more rich in harmonics is square wave:

> run $ mul 0.25 . sqr





The most rich is a saw wave:

> run $ mul 0.25 . saw





All sounds are very 8-bit and computer-like. That’s because they
are static and contain no variance. But that’s only beginning.
We can see that we are going to use the scaling all the time so why not
to move it inside our runner function. Also we scale the pitch by 2
to make pitch lower:

> run k f = vdac $ midi $ onMsg (mul k . f . (/ 2))





Now we can run the saw wave like this:

> run 0.25 saw





We can make our waves a little bit more interesting with
additive synthesis. We can add together several waves (something that resembles harmonic series):

> run 0.15 $ \x -> saw x + 0.25 * sqr (2 * x) + 0.1 * tri (3 * x)





Or we can introduce the higher harmonics:

run 0.15 $ \x -> saw x + 0.25 * tri (7 * x) + 0.15 * tri (13 * x)







Gain

Gain or amplifier can change the amplitude of the sound. We already
did it. When we scale the sound with number it’s an example of the gain.
But instead of scaling with number we can give the output a shape.
That’s where the envelope generators come in the play.



Dynamic changes

To make our sounds more interesting we can vary it parameters in time.
We are going to study two types of variations. They are slowly moving variations and rapid periodic ones.
The former are envelope generators (EG) and former are Low frequency oscillators (LFO).
Let’s make our sound more interesting by shaping it’s amplitude.
That’s how we change the volume in time.


Envelope generator

Envelope generators produce piecewise functions. Most often they are linear or exponential.
In csound-expression we can produce piecewise functions with two function: linseg and expseg.

linseg, expseg :: [D] -> Sig





They take in a list of timestamps and values and produce piecewise signal.
Here is an example:

Let’s look at the input list:

linseg [a, t_ab, b, t_bc, c, t_cd, d, ...]





It constructs a function that starts with the value a then moves
linearly to the value b for t_ab seconds, then goes from b to c
in t_bc seconds and so on. For example, let’s construct the function that
starts at 0 then goes to 1 in 0.5 seconds, then proceeds to 0.5 in 2 seconds,
and finally fades out to zero in 3 seconds:

linseg [0, 0.5, 1, 2, 0.5, 3, 0]





There are two usefull functions for midi instruments:

linsegr, expsegr :: [D] -> D -> D -> Sig





They take two additional parameters for release of the note.
Second argument is a time of the release and the last argument
is a final value. All values for expsegr should be positive.

For example we can construct a saw that slowly fades out after
release:

run 0.25 $ \cps -> expsegr [0.001, 0.1, 1, 3, 0.5] 3 0.001 * saw cps





We can make a string-like sound with long fade in:

run 0.25 $ \cps -> linsegr [0.001, 1, 1, 3, 0.5] 3 0.001 * (tri cps + 0.5 * tri (2 * cps) + 0.1 * sqr (3 * cps))






ADSR envelope

Let’s study the most common shape for envelope generators.
It’s attack-decay-sustain-release envelope (ADSR). This shape
consists of four stages: attack, decay, sustain and release.
In the attack amplitude goes from 0 to 1, in the decay it goes
from 1 to specified sustain level and after note’s release it
fades out completely.

Here is a definition:

 adsr a d s r = linseg [0,      a, 1, d, s, r, 0]
xadsr a d s r = expseg [0.0001, a, 1, d, s, r, 0.0001]





There are two more function that wait for note release
(usefull with midi-instruments):

 madsr a d s r = linsegr [0,      a, 1, d, s] r, 0
mxadsr a d s r = expsegr [0.0001, a, 1, d, s] r, 0.0001





The functions madsr and mxadsr are original Csound functions.
They are used so often so there are short-cuts leg and xeg.
They are linear and exponential envelope generators.

So we can express the previous example like this:

run 0.25 $ \cps -> leg 1 3 0.5 3 * saw cps





The EGs are for slowly changing control signals.
Let’s study some fast changing ones.




Low frequency oscillator

Low frequency oscillator is just a wave form (osc, saw, sqr or tri)
with low frequency (0 to 20 Hz). It’s inaudible when put directly
to speakers but it can produce interesting results when it’s used
as a control signal.

Let’s use it for vibrato:

run 0.25 $ \cps -> leg 1 3 0.5 0.7 * saw (cps * (1 + 0.02 * osc 5))





Or we can make a tremolo if we modify an amplitude:

run 0.25 $ \cps -> osc 5 * leg 1 3 0.5 0.7 * saw cps





The lfo-frequency can change over time:

run 0.25 $ \cps -> osc (5 * leg 1 1 0.2 3) * leg 2 3 0.5 0.7 * saw cps





Also we can change the shape of the LFO. We can use saw, tri or sqr
in place of osc.

With EG’s and LFO’s we can make our instruments much more interesting.
We can make them alive. They can control any parameter of the synth.
We are aware of two types of control signals. We can alter pitch (vibrato)
or result amplitude (amplitude envelope, tremolo). But there are many more
parameters. Let’s study new way of controlling sound. Let’s study brightness.

There is a special function to make the LFOs more explicit:

type Lfo = Sig

lfo :: (Sig -> Sig) -> Sig -> Sig -> Lfo
lfo shape depth rate = depth * shape rate





It takes the waveform shape, depth of the LFO and rate as arguments.



Setting the range for changes

The LFOs are ranging in the interval (-1, 1). The EGs are ranging
in the interval (0, 1). Often we want to change the range.

We can do t with simple arithmetic:

From (0, 1) to (a, b):

> let y = a + b * x





Or from (-1, 1) to (a, b):

> let y = a + b * (x + 1) / 2





It happens so often that there are special functions that abstracts these patterns:

From (0, 1) to (a, b):

uon :: SigSpace a => Sig -> Sig -> a -> a
uon a b x = ...

let y = uon a b x





Or from (-1, 1) to (a, b):

on :: SigSpace a => Sig -> Sig -> a -> a
on a b x = ...

let y = on a b x





The function on can be used with LFOs and uon can be used with EGs.



Looping envelope generators

Since the version 4.3 we can use a lot of looping envelope generators.
They work as step sequencers.

Let’s see how we can use LFO’s to turn the sound in the patters of notes.
Let’s take a boring white noise and turn it in to equally spaced bursts:

> dac $ mul (usqr 4) white





We have multiplied the noise with unipolar square wave. We can change the shape of envelope
if we multiply the noise with sawtooth wave:

> dac $ mul (usaw 4) white





We can reverse the envelope:

> dac $ mul (1 - usaw 4) white





We can create a simple drum pattern this way:

dac $ mul (usaw 2) white + mul (usqr 1 * (1 - usqr 4)) (return $ saw 50)





But the real drummer don’t kicks all notes with the same volume we need
a way to set accents. We can do it with special functions.
They take in a list of accents and they scale the unipolar LFO-wave.
Let’s look at sqrSeq. It creates a sequence of squares which are scaled
with given pattern:

> dac $ mul (sqrSeq [1, 0.5, 0.2, 0.5] 4) $ white





We can create another pattern for sawtooth wave:

> b1 = mul (sqrSeq [1, 0.5, 0.2, 0.5] 4) $ white
> b2 = mul (sawSeq [0, 0, 1] 2) $ white
> b3 = return $ mul (triSeq [0, 0, 1, 0] 4) $ osc (stepSeq [440, 330] 0.25)
> dac $ b1 + b2 + b3





We can use these functions not only for amplitudes. We can
control other parameters as well.

> dac $ tri $ constSeq [220, 220 * 5/4, 330, 440] 8





The constSeq creates a sequence of constant segments.
The cool thing about wave sequencers is that the values in the
sequence are signals. We can change them easily.

> dac $ tri $ constSeq [220, 220 * 5/4, 330, constSeq [440, 220 * 4/ 3] 1] 8





> let b3 = return $ mul (triSeq [0, 0, 1, 0] 4) $ osc (stepSeq [440, 330] 0.25)





The function stepSeq creates a sequence of constant segments. The main difference
with constSeq is that all values are placed in a single period. The period
of constSeq is a single line but the period of stepSeq is the sequence of
const segments. We can create arpeggiators this way:

Let’s create a simple bass line:

> dac $ mlp (400 + 1500 * uosc 0.2) 0.1 $ saw (stepSeq [50, 50 * 9/ 8, 50 * 6 / 5, 50 * 1.5, 50, 50 * 9 / 8] 1)





We are using the function mlp. It’s a moog low pass filter (the arguments: cut off frequency, resonance and the signal).
We modulate the center frequency with LFO.

There are many more functions. We can create looping adsr sequences with adsrSeq and xadsrSeq.
We can loop over generic line segments with linSeq and expSeq. We can create
sample and hold envelopes with sah. We can find the functions in the module Csound.Air.Envelope.

Let’s create a simple beat with step sequencers.
The first line is the steady sound of kick drum:

> kick = osc (100 * linloop [1, 0.1, 0, 0.9, 0])
> dac kick





The kick is a pure sine wave that is rapidly falls in pitch. We are using the function linloop
to repeat the pitch changes. The linloop is just like linseg but it repeats over and over.
Let’s create a simple snare:

> snare = at (hp 500 23) $ mul (sqrSeq [0, 0, 1, 0, 0, 0, 0.5, 0.2] 4) $ pink
> dac $ return kick + snare





We use high pass filtered pink noise. We create the drum pattern with square waves.
The function at is the generic map for signal-like values. Simplified conceptual
signature is:

at :: (SigSpace a) => (Sig -> Sig) -> a -> a





We wrap the kick in the SE monad to add it to the snare wave.
Let’s add a hi-hat. The hi-hat is going to be filtered white noise
with sequence of saw envelopes:

> hiHat = at (mlp 2500 0.1) $ mul (sawSeq [1, 0.5, 0.2, 0.5, 1, 0, 0, 0.5] 4) $ white
> dac $ mul 0.5 $ return kick + snare + hiHat





Let’s add some pitched sounds. Also we can make the kick louder:

> ticks = return $ mul (sqrSeq [0, 0, 0, 0, 1, 1] 8) $ osc 440
> dac $ mul 0.3 $ return (mul 2.4 kick) + ticks + snare + hiHat







Syncronization of changes

In the example we set tempos so that all of them were in single tempo.
we used a simple math for it. All tempos were fractions of 1, divided by 2, 4 or 8.
It’s easy to do with 1, but this sticks us to the single tempo.

We can change the global tempo wit function setBpm :: Sig -> SE ().
It should be used only once prior to all processing.

Then we can use magic functions: syn and takt, to claculate
ratio and time relative to global BPM value.

Let’s define a function that runs our code with our own BPM:

> dacBpm x y = dac $ setBpm x >> y





Now let’s use it with kick and snare:

kick = osc (100 * linloop [1, 0.1 * takt 1, 0, 0.9 * takt 1, 0])
snare = at (hp 500 23) $ mul (sqrSeq [0, 0, 1, 0, 0, 0, 0.5, 0.2] (syn 4)) $ pink





Notice how we multiply the time measured in seconds by takt
and ratios measured in Hz by syn. So it’s our smart way to keep the tempo
the same for both units. This way we can measure all rations in convenient
units of simple fractions of one and leave calculations for BPM to engine.

Let’s try it out:

> dacBpm 120 $ return kick + snare





Let’s make tempo slower:

> dacBpm 95 $ return kick + snare





With these simple functions: setBpm, syn, takt we can
align all sorts of values: LFO rates, line segments in envelopes,
delay times for delay effects, drum patterns.

There is also handy function getBpm, that reads the global tempo:

getBpm :: Sig







Using GUIs as control signals

We can change parameters with UI-elements such as sliders and knobs.
it’s not the place to discuss GUIs at length. But I can show you a couple of tricks.

We have a simple audio wave:

> dac $ mlp 1500 0.1 $ saw 110





It’s  a filtered sawtooth wave. Let’s plugin a knob to change the volume:

> dac $ lift1 (\amp -> mul amp $ mlp 1500 0.1 $ saw 110) $ uknob 0.5





The uknob creates a knob that outputs a unipolar signal (it belongs to the interval [0, 1]).
The argument is the initial value of the knob. The lift1 maps over the value of the knob.
The uknob returns not the signal itself but the signal and the GUI-element. With lift1 we
can easily transform control signal to audio wave.

What if we want to change the frequency? It’s best to change the frequency with eXponential
control signals (the change is not linear but exponential). we can use the function xknob:

> dac $ hlift2 (\amp cps -> mul amp $ mlp 1500 0.1 $ saw cps) (uknob 0.5) (xknob (50, 600) 110)





The xknob takes in three values. They are the minimum and maximum values and the initial value.
The hlift2 can join two UI-control signals with functions. It aligns the visual representation
horizontally. The vlift2 aligns visuals vertically.

Let’s change the parameters of the filter with sliders:

> dac $ vlift2 (\(amp, cps) (cflt, q)  -> mul amp $ mlp cflt q $ saw cps)
	  (hlift2 (,) (uknob 0.5) (xknob (50, 600) 110))
	  (vlift2 (,) (xslider (250, 7000) 1500) (mul 0.95 $ uslider 0.5))





We can see the picture of the talking robot.
The uslider and xslider work just like uknob and xknob but
they lokk like sliders. Notice the scaling of the value of the second slider with mul.
It’s as simple as that.

There are functions hlift3, hlift4 and hlift4 to combine more widgets.
The hlift2', hlift3' . Notice the last character also take in scaling parameters
for visual objects. We can define four knobs with different sizes:

> dac $ mul 0.5 $ hlift4' 8 4 2 1
	(\a b c d -> saw 50 + osc (50 + 3 * a) + osc (50 + 3 * b) + osc (50 + c) + osc (50 + d))
	(uknob 0.5) (uknob 0.5) (uknob 0.5) (uknob 0.5)





Another usefull widget is ujoy. It creates a couple of signal which control xy
coordinates on the plane:

> dac $ lift1 (\(a, b) -> mlp (400 + a * 5000) (0.95 * b) $ saw 110) $ ujoy (0.5, 0.5)





To use exponential control signals wwe should try the function joy:

joy :: ValSpan -> ValSpan -> (Double, Double) -> Source (Sig, Sig)





The ValSpan can be linear or exponential. Both functions take in minimum and maximum values:

linSpan, expSpan :: Dounle -> Double -> ValSpan





Let’s look at the simple example:

> dac $ lift1 (\(amp, cps) -> amp * tri cps) $ joy (linSpan 0 1) (expSpan 50 600) (0.5, 110)








Filter

We can control brightness of the sound with filters. A filter can
amplify or attenuate some harmonics in the spectrum. There are
four standard types of filters:

Low pass filter (LP) attenuates all harmonics higher than a given center frequency.

High pass filter (HP) attenuates all harmonics lower than a given center frequency.

Band pass filter (BP) amplifies harmonics that are close to center frequency and
attenuates all harmonics that are far away.

Band reject filter or notch filter (BR)  does the opposite to the BP-filter.
It attenuates all harmonics that are close to the center frequency.

A filter is very important for the synth. The trade mark of the synth
is defined by the quality of its filters.

The strength of attenuation is represented by the ratio of how much decibels
the harmonic is weaker per octave from the center frequency. The greater the number
the stronger the filter.

In csound-expression there are plenty of filters. Standard filters are:

lp, hp, bp, br :: Sig -> Sig -> Sig -> Sig





The first parameter is center frequency, the second one is resonance
and the last argument is the signal to modify.

There is an emulation of the Moog low pass filter:

mlp :: Sig -> Sig -> Sig -> Sig





The arguments are: central frequency, resonance, the input signal.

We can change parameters in real-time with EG’s and LFO’s.
Let’s create an envelope and apply it to the amplitude and center frequency:

> env = leg 0.1 0.5 0.3 1
> run (0.15 * env) (lp (1500 * env) 1.5 . saw)





Normal values for resonance range from 1 to 100. We should carefully
adjust the scaling factor after filtering. Filters change the volume of the signal.

We can align the center frequency with pitch. So that if we make pitch higher
the center frequency gets higher and we get more bright sounds:

> run (0.15 * env) (\x -> lp (x + 500 * env) 3.5 $ saw x)





We can make a waveform more interesting with new partials.

> run (0.1 * env) (\x -> lp (x + 2500 * env) 3.5 $ saw x + 0.3 * tri (3 * x) + 0.1 * tri (4 * x))





We can apply an LFO to the resonance.

run (0.15 * env) (\x -> lp (x + 500 * env) (7 + 3 * sqr 4) $ saw x)





Also we can apply LFO to the frequency:

run (0.15 * env) (\x -> lp (x + 500 * env) (7 + 3 * sqr 4) $ saw (x * (1 + 0.1 * osc 4)))





We can increase an order of the resonant filter applying it several times.
There is a function filt that does it:

run (0.15 * env) (\x -> filt 2 lp (x + 500 * env) (3 + 2 * sqr 4) $ saw x)





You can find lots of filters in the module Csound.Air.Filter.

Let’s quickly review the most interesting of them:


	mlp, mlp3, ladder, alp1, alp2, alp3 - various implementations of Moog ladder filter


	zlp, zhp, zladder, zbp, zbr - zero delay feedback filters


	klp, khp, kbp - Korg 35 filter


	blp, bhp, bbp, bbr - Butterworth filters


	diode - resonant filter for Roland TB-303


	formant - filter that vocalizes the sound, it resembles the harmonics of human voice.
There are special cases: singA, singO, singE, singU.


	smooth time asig - useful to smooth control signals. For familiar with Csound it’s portk
with reversed order of arguments.




and many other the general rule is that watch out for the suffix:


	lp - low-pass


	hp - high-pass


	bp - band-pass


	br - band-reject




For the filter arguments. The center frequency is always first argument,
but sometimes filter has distortion and it precedes, than goes resonance (if present)
and the last one is processed signal.

Notice for Csound users: The arguments are reversed in order since it’s
more convenient to use them that way in Haskell. It makes easy to
compose the functions with dot operator.



Effects

We can make our sounds much more interesting with effects!
Effect transforms the sound of the instrument in some way.
There are several groups of effects. Some of them affect only amplitude,
while the other alter frequency or phase or place sound in acoustic
environment.

To apply effect to the sound we have to modify our runner function.
Right now all arguments control the sound that is produced with the
single note. But we want to alter the total sound that goes out of
the instrument. It includes the mixed sound from all notes that are played.
Let’s modify our definition for function run:

run eff k f = vdac $ (eff =<< ) $ midi $ onMsg (mul k . f . (/ 2))





The first argument now applies some effect to the output signal.


Time/Based


Reverb



Handy reverbs

Reverb is so important that there are very useful shortcuts:

room, chamber, hall, cave :: Sig -> a -> a





First argument is dry/wet ratio, the last one is processed signal
or tuples of signals or many other processable units.

Let’s apply hall to the simple synt:

vdac $ mul 0.5 $ hall 0.25 $ midi $ onMsg $ mul (fades 0.05 0.2) . osc





or we can create dream pad with cave:

> filt = mlp (700 * fadeIn 0.5) 0.1
> instr x = sqr x + pw (0.5 + 0.2 * osc 0.25) (x * 0.5)
> env2 = fades 0.75 0.2
> vdac $ mul 0.3 $ cave 0.25 $ midi $ onMsg $ filt . mul env2 . instr







Low level reverbs

Reverb places the sound in some room, cave or hall.
We can apply reverb with function reverTime:

reverTime :: Sig -> Sig -> Sig





It expects the reverb time (in seconds) as a first argument and the signal as
the second argument.

run (return . reverTime 1.5) (0.05 * env) (\x -> lp (x + 500 * env) (7 + 3 * sqr 4) $ saw x)





There is also a function rever1:

rever1 :: Sig -> Sig -> (Sig, Sig)





It’s base on very cool Csound unit reverbsc. It takes in feedback level (0 to 1)
and input signal and produces the processed output. The shortcuts like cave or hall
are based on this function.

Let’s place our sound in the magic cave:

run (return . cave 0.15) (0.05 * env) (\x -> lp (x + 500 * env) (7 + 3 * sqr 4) $ saw x)





You can hear how dramatically an effect can change the sound.




Delay

Delay adds some echoes to the sound. the simplest function is echo:

echo :: D -> Sig -> Sig -> SE Sig
echo dt fb asig





It takes the delay time, the ratio of signal attenuation (reflections will be weaker by this amount)
and the input signal. Notice that the output is wrapped in the SE-monad. SE means side effect.
It describes some nasty impure things. This function allocates the buffer of memory to hold
the delayed signal. So thats why the output contains side-effects.

Let’s try it out:

run (return . echo  0.5 0.4) (0.05 * env) (\x -> lp (x + 500 * env) (7 + 3 * sqr 4) $ saw x)





Let’s add some reverberation:

run (return . hall 0.2 . echo  0.5 0.4) (0.05 * env) (\x -> lp (x + 500 * env) (7 + 3 * sqr 4) $ saw x)





There is the very generic function fvdelay. With it we can vary the delay time:

fvdelay :: MaxDelayTime -> DelayTime -> Feedback -> Sig -> Sig
fvdelay maxDelTime delTime fbk mix asig





It takes the maximum delay time and the delay time which is signal (it must be bounded by maxDelTime).
Other arguments are the same.

Multitap delays can be achieved with function

fvdelays :: D -> [(Sig, Sig)] -> Sig -> Sig -> SE Sig
fvdelays maxDelTime delTimeAndFbk  mix asig





The list holds tuples of delay times and attenuation ratio for each delay line.



Distortion

A distortion can make our sound scream. We can use the function

distortion :: Sig -> Sig -> Sig
distortion gain asig





It takes a distortion level as first parameter. It ranges from 1 to infinity.
The bigger it is the harsher the sound.



Pitch/Frequency

Let’s review briefly some other cool effects.


Chorus

Chorus makes sound more natural by adding slightly transformed versions of the original sound:

chorus :: DepthSig -> RateSig -> Balance -> Sig -> SE Sig
chorus rate depth asig





Beside the input signal chorus takes two arguments that range from 0 to 1.
They represent the chorus rate and depth.



Flanger

The next two effects are useful for creating synthetic sounds or
adding electronic flavor to the natural sounds.

The flanger can be applied with function flange:

flange :: Lfo -> Feedback -> Balance -> Sig -> Sig
flange lfo fbk balance asig





Where arguments are: an LFO signal, feedback level, balance level between
pure and processed signals and an input signal.

Let’s apply a flanger:

run (return . flange (lfo tri 0.9 0.05) 0.9 0.5) (0.05 * env) (\x -> lp (x + 500 * env) (7 + 3 * sqr 4) $ saw x)







Phaser

The phaser is a special case of flanger effect. It processes the signal with series
of all-pass filters. We can simulate a sweeping phase effect with phaser.

There are three types of phasers. The simplest one is

phase1 :: Sig -> Lfo -> Feedback -> Balance -> Sig -> Sig
phase1 ord lfo fbk mx asig





The arguments are: the order of phaser (an integer value,
it represents the number of all-pass filters in chain, 4 to 2000, the better is 8,
the bigger the number the slower is algorithm), an LFO for
phase sweeps (depth is in range acoustic waves, something around 5000 is good start,
the rate is something between 0 and 20 Hz), amount of feedback, the balance between
pure and processed signals, the input signal.

There are two more phasers:

harmPhase, powerPhase :: Sig -> Lfo -> Sig -> Sig -> Feedback -> Balance -> Sig -> Sig
harmPhase ord lfo q sep fbk mx asig = ...





The arguments are: order of phaser, LFO-signal for frequency sweep, resonance of the filters (0 to 1),
separation of the peaks, feedback level (0 to 1), balance level.





Noise

We can make our sounds more interesting by introducing randomness.
There are several ways to create random signals (including noise).

We can create a sequence of random numbers that change linearly
with given frequency. Also this unit can be used as LFO.

rndi, urndi :: Sig -> SE Sig

 rndi frequency
urndi frequency





The urnds varies between 0 and 1. The rnds varies between -1 and 1.

We can generate colored noises with:

white, pink, brown, pinker :: SE Sig





Let’s create a simple wind instrument:

> simpleWind x = do { cfq <- 2000 * urndi 0.5; asig <- white; return $ mlp (x + cfq) 0.6 asig }





We filter the white noise with filter. The center frequency randomly varies
above the certain threshold. Let’s hear the wind:

dac $ mul (fadeIn 0.5) $ simpleWind 500







Complex waves

Let’s study how we can made our waveforms more interesting.
We can apply several simple techniques to achieve it.


Reading sound signals from files

We can reuse the sound signals. The music is everywhere and we can
take a somebody else’s music as a start point.

There are handy functions for reading the sound from files:

readSnd :: String -> (Sig, Sig)
loopSnd :: String -> (Sig, Sig)

readSnd fileName = ...





The readSnd plays the file only once. The loopSnd repeats the file
over and over again. There is another useful function:

loopSndBy :: D -> String -> (Sig, Sig)





It takes the duration of the loop-period as a first argument.

These functions can read files in many formats including wav and mp3.
If your sound sample is stored in the wav or aiff format we can
read it with the given speed. The speed is a signal. It can change with time.
We can create interesting effects with it:

loopWav :: Sig -> String -> (Sig, Sig)
loopWav speed fileName = ...





The normal playback is a speed that equals 1. We can play it in reverse
if we set the speed to -1.

The output is a stereo signal. If we want to force it to mono we can use the function:

toMono :: (Sig, Sig) -> Sig





It produces the mean of two signals.



Additive synthesis

The simplest one is additive synthesis. We add two or more waveforms so
that they form harmonic series.

> run return (0.25 * env) (\x -> saw x + 0.5 * sqr (2 * x) + 0.15 * tri (3 * x))







Stacking together several waveforms

When several violins play in the orchestra the timbre is quite
different from the sound of the single violin. Though timbre of each
instrument is roughly the same the result is different. It happens
from the slightly detuned sound of the instruments. We can recreate this
effect by stacking together several waveforms that are slightly detuned.
It can be achieved with function:

chorusPitch :: Int -> Sig -> (Sig -> Sig) -> (Sig -> Sig)
chorusPitch numberOfCopies chorusWidth wave = ...





It takes the integer number of copies and chorus width.
Chorus width specifies the radius of the detunement.

> run return (0.25 * env) (chorusPitch 8 0.5 saw)







Ring modulation

Ring modulation can add metallic flavor to the sound.
It multiplies the amplitude of the signal by LFO.

run return (0.25 * env) (mul (osc (30 * env)) . chorusPitch 8 0.5 saw)







Diving deeper

Csound contains thousands of audio algorithms. It’s impossible
to cover them all in depth in the short guide. But we can explore
them. They reside in the separate package csound-expression-opcodes
that is re-exported by the module Csound.Base. Take a look in the docs.
there are links to the originall Csound docs. Maybe you can find your
own unique sound somewhere in this wonderful forest of algorithms.

The modules Csound.Typed.Opcode.SignalGenerators, Csound.Typed.Opcode.SignalModifiers
and Csound.Typed.Opcode.SpectralProcessing are good place to start the journey.




	<= Rendering Csound files [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/ProducingTheOutputTutorial]


	=> User interaction [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/UserInteractionTutorial]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]









          

      

      

    

  

    
      
          
            
  
Custom temperament

The temperament in music is the set of exact values in Hz that
we assign to notes. In modern western music tradition
the main temperament is equal temperament.

Equal temperament divides octave on 12 equal parts (in logarithmic scale)
so that each interval with the same number of notes in between is
should sound the same no matter from where you place the root of the interval.
For instance a C major triad should
sound the same as F# major triad. The sound is different in pitch but not
in quality or relationships of the notes. It gives a huge advantage for
transposition. If you want to sing along with the song but the scale
is not good for your voice you can easily transpose the scale and it
should sound the same.

But it brings some disadvantages too. The main strength of the equal temperament
can become it’s main weakness. All major thirds are the same and all minor seconds
are the same. In fact all same intervals produce the same sound in all scales.
It can wipe away all the colors from the music. The Bach, Chopin, Beethoven
and all composers from the Romanticism era used different temperaments.
So when we listen Chopin on the modern piano we listen to the music that is not quite the same
as Chopin intended it to be.

They used temperaments that have many slightly different triads. It gives the specific
colors to the scales and it makes the scale divergence within the composition more profound.
Change in scale is not just a trasnposition it can affect the mood of the piece.

Ethnic music enjoys the variety of temperaments. In the Indian classical music
octave is divided in 22 notes (or shruties). The musician picks up 5 to 9 notes from
the raw material of 22 shruties and each combination can create different mood.
For Indian music different scales have not only different sharps and flats
but the quality of the note’s flatness can be different from scale to scale.
For example there can be three different F#.

By default all midi playing utilities use equal temperament.
But we can alter this behavior.


Patches

The most common way to play patches is to use the function atMidi.
It plays the patch with equal temperament. If you have a real midi device
you can use the dac in place of vdac:

> ghci
> :m +Csound.Base Csound.Patch
> vdac $ atMidi vibraphone1





To change the temperament we can use the function atMidiTemp
that accepts the temperament as the first argument:

> vdac $ atMidiTemp young1 vibraphone1





We can try out an ancient Pythagorean tuning:

> vdac $ atMidiTemp pythagor1 vibraphone1





We have several predefined temperaments to try out:
equal1, pythagor, meantone, just1, werckmeister,
young1, young2, young3.



Temperament

Temperament is defined with the base note and the set of relationships
for the notes of the scale. The temperament (Temp) can be created
with function genTemp:

genTemp :: Double -> Double -> Double -> [Double] -> Temp
genTemp mainInterval baseHz baseMidiKey cents





Let’s look at the arguments:


	mainInterval - The frequency range covered before repeating the grade ratios, for example 2 for one octave, 1.5 for a fifth etcetera.


	baseHz - The base frequency of the scale in cycles per second.


	baseMidiKey - The integer index of the scale to which to assign baseHz unmodified.


	cents - the list of ratios for each note of the temperament in cents.




So here is the definition for equal temperament:

equal1  = genTemp 2 261.63 60 equalCents1
equalCents1 = [0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200]





The list should include the first note from the next octave (scale’s main interval).

There are utility functions that simplify the definition of the temperament:

baseC :: [Double] -> Temp
baseC cents 





The baseC creates a temperament with octave interval and modern C as the base note of the temperament.
We can rewrite the previous definition as:

equal1 = baseC equalCents1





There are other useful functions

stdTemp, barTemp :: [Double] -> Temp





The function stdTemp creates a scale so that 9nth note is modern concert A (440 Hz).
The barTemp creates a temperament with baroque concert A (415 Hz).
There are predefined lists of cents for several western temperaments:
equalCents1, pythagorCents1, meantoneCents, werckmeisterCents,
youngCents1, youngCents2, youngCents3.
We can use them as an example to define our own temperaments.



Midi instruments

Let’s invoke a simple virtual midi instrument:

> vdac $ midi $ onMsg $ \cps -> 0.5 * fades 0.01 0.1 * tri cps





The onMsg function takes in a function of type Sig -> Sig
and converts it to midi function of the type Msg -> SE Sig
We can change the temperament with function onMsg'

> vdac $ midi $ onMsg' just1 $ \cps -> 0.4 * fades 0.01 0.1 * tri cps





The onMsg takes in a temperament as the first argument.
Behind the scenes the function onMsg invokes the function ampCps.
it extracts the amplitude and frequency from the midi message.
To change the temperament we can use the the function ampCps'.
it accepts the temperament as the first argument:

ampCps' :: Temp -> Msg -> (D, D)
ampCps temp msg = (amplitude, frequency)





The ampCps' uses the function cpsmidi' to extract frequency with custom temperament:

cpsmidi' :: Temp -> Msg -> D







Patches

With patches we can use the functions atMidiTemp (for polyphonic synths) and
atMonoTemp (for monophonic synths). Let’s lookt at a couple of examples:

> vdac $ atMidiTemp young1 dreamPad





> vdac $ atMonoTemp just1 nightPadm







Sound fonts

Also we can use custom temperaments with sound fonts.

> vdac $ sfTemp meantone (Sf "/path/to/soundfont/jRhodes3.sf2" 0 0) 0.2







Temperament as a note’s parameter

It’s worth to note that we can pass the temperament as the instrument’s argument.
It can be used inside the scores or with event streams.
The Temp type is an instance of the typeclass Arg.

More information on the datatype Temp  and it’s functions
you can find in the module Csound.Tuning.




	<= Custom temperament. Microtonal music [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/Tuning]


	=> Samples [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SamplesTutorial]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]








          

      

      

    

  

    
      
          
            
  
User interaction

Let’s explore the ways of how we can interact with instruments.


Midi-instruments

The simplest way to create a responsive instrument is
to make a midi-instrument. A Midi-instrument is something
that expects a midi-message and produces sound output.
A midi-message contains pitch and volume of the note and
possibly some control data (to change the parameters of the synth).

The midi-message is represented with opaque type:

data Msg

cpsmidi :: Msg -> D   		-- extract frequency (Hz)
ampmidi :: Msg -> D -> D  	-- extract amplitude (0 to second argument)

ampCps  :: Msg -> (D, D)    -- ampmidi & cpsmidi, amplitude is 0 to 1





We can extract amplitude and frequency (Hz) with function ampCps.

The midi-intrument listens for message on the specified channel (It’s
an integer from 1 to 16):

type Channel = Int





The simplest function for midi instruments is:

midi :: Sigs a => (Msg -> SE a) -> SE a





It creates a signal that is produced from the output of midi-instrument.
A midi-instrument listens for messages on all channels.

There are two more refined functions:

midin  :: Sigs a => Channel -> (Msg -> SE a) -> SE a
pgmidi :: Sigs a => Maybe Int -> Channel -> (Msg -> SE a) -> SE a





They allow to specify a midi-channel and probably a midi-program.
Shortly after creation of the Midi-protocol it was understood that
1 to 16 channels is not enough. So there come the programs. You can
specify a midi instrument with 16 channels and 128 programs.
We can specify a program with function pgmidi.

If you have a real midi-keyboard connected to your computer (most often with USB)
you can start to play along with it in csound-expression. Just type:

> ghci
> import Csound.Base
> instr msg = return $ 0.25 * (fades 0.1 0.5) * (sig $ ampmidi msg 1) * saw (sig $ cpsmidi msg)
> dac $ room 0.25 $ fmap fromMono $ midi instr





If we don’t have the midi-device we can test the instrument with virtual one.
We need to use vdac in place of dac:

> vdac $ room 0.25 $ fmap fromMono $ midi instr





We have created a simple saw-based instrument. The function fades adds
the attack and release phase for the instrument. It fades in with time of the
first argument and fades out after release with time of the second argument.
We used a lot the function sig :: D -> Sig. It’s just a converter.
It constructs signals from the constant values. The function fromMono
converts mono signal to stereo. The mixAt pplies an effect with given
dry/wet ratio. The value 0 is all dry and the 1 is all wet.

Yo can notice how long and boring the expression for the instrument is.
Instrument expects a midi-message. Then we have to extract amplitude and frequncy
and convert it to signals and apply to the instrument. It’s a typical pattern
that repeats over and over again. There is a type class that converts functions
to midi-instruments. It’s called MidiInstr:

class MidiInstr a where
	type MidiInstrOut a :: *
	onMsg :: a -> Msg -> SE (MidiInstrOut a)





It converts a value of type a to midi-instrument.
There are plenty of instances for this class. We can check them out
in the docs. Among them we can find the instance for the type:

Sig -> Sig





It’s assumed that single argument is a frequency (Hz). This instrument
is a wave-form. To convert it to midi-instrument we apply midi-frequency to it
(it’s converted to signal) and scale it with midi-amplitude. So we can redefine
our instrument like this:

> instr = onMsg $ mul (0.25 * fades 0.1 1) . saw
> dac $ room 0.25 $ fmap fromMono $ midi instr





The function mul scales the signal-output like types.
They are all tuples of Sig probably wrapped in the type SE.


Continuous midi-instruments

So far every midi-instrument has triggered the instrument in the separate note instance.
In the end we get the sum of all notes. It’s polyphonic mode. But what if we
want to use synth in monophonic mode. So that frequency and amplitude are continuous
signals that we can use in the other instruments.

There are two functions for this mode:

data MidiChn = ChnAll | Chn Int | Pgm (Maybe Int) Int

monoMsg :: MidiChn -> D -> D -> SE (Sig, Sig)
monoMsg portamentoTime releaseTime

holdMsg :: MidiChn -> D -> SE (Sig, Sig)
holdMsg portamentoTime





Both of them produce amplitude and frequency as time varied signals.
The former fades out when nothing is pressed and the latter holds the
last value until the next one is present.

The first argument for both of them is specification of the midi channel.
The second argument is portamento time. It’s
time in second that it takes for transition from one value to another.
The function monoMsg takes another parameter that specifies a release time.
Time it takes for the note to fade out or fade in.

Let’s play with these functions:

> vdac $ chamber 0.2 $ fmap (\(amp, cps) -> amp * tri cps) $ monoMsg ChnAll 0.1 1
> vdac $ chamber 0.2 $ fmap (\(amp, cps) -> amp * tri cps) $ holdMsg ChnAll 0.5








Midi-controls

If our midi-device has some sliders or knobs we can
send the control-messages. Control messages allow us
to change parameters for the instruments during performance.

We can use the function ctrl7:

ctrl7 :: D -> D -> D -> D -> Sig
ctrl7 chno ctrlId imin imax





It expects the channel number (where we listen for the control messages),
the identity number of control parameter, and two parameters for minimum
and maximum of the output range. Let’s apply the filter to the output of
the previous example:

> vdac $ room 0.2 $ fmap (\(amp, cps) -> amp * mlp (ctrl7 1 1 50 5000) (ctrl7 1 2 0.1 0.9) (tri cps)) $ holdMsg ChnAll 0.5





You can try to use the first slider at the virtual midi. It should control the filter parameters in real-time.

Another function that is worth to mention is:

initc7 :: D -> D -> D -> SE ()
initc7 chno ctrlId val 				-- value ranges from 0 to 1





It sets the initial value for the midi control.

> ctrl = 1
> out = fmap smallRoom $ fmap (\(amp, cps) -> amp * mlp (ctrl7 1 ctrl 50 5000) 0.5 (tri cps)) $ holdMsg ChnAll 0.5
> dac $ do { initc7 1 ctrl 0.5; out }





Unfortunately the function initc7 doesn’t work with virtual midi. It’s only for real midi-devices.

There are three more functions to make things more easy:

midiCtrl7 :: D -> D -> D -> D -> D -> SE Sig
midiCtrl7 chanNum ctrlNum initVal min max





It combines the functions ctrl7 and initc7. So that we don’t have to
specify the same channel number and control number twice.

There are functions for specific ranges

midiCtrl, umidiCtrl :: D -> D -> D -> SE Sig





They are the same as midiCtrl7, but former sets the range to [-1, 1] and
the latter to [0, 1].



Basics of GUI

If we don’t have real sliders and knobs we can use the virtual ones.
It can be done easily with GUI-elements. Csound has support for GUI-widgets.
GUI-widgets live in the module Csound.Control.Gui.


Note on installation of GUI

However GUI support is now discontinued in Csound. We can still install it and use it
but it’s not packaged with Csound right away. So it means we need to apply some effort to install
it but bear with I’ll guide you through the process:


	install fltk package


	Find out your csound installation path:




> whereis csound
csound: /usr/local/bin/csound /usr/local/lib/csound /usr/include/csound





For me the path prefix is /usr/local/lib


	clone csound plugins [https://github.com/csound/plugins] repo. Make sure that you are on latest develop branch


	Follow instructions on their installation guide but also make sure to setup the flags CMAKE_INSTALL_PREFIX and USE_LIB64
on cmake. For me it looks:

cmake -DCMAKE_INSTALL_PREFIX=/usr/local -DUSE_LIB64=0 ../







	After sudo make install we can check that it was installed alright by command:

> csound -z1 2>&1 | grep FLpanel





It should produce output.





Somewhile ago I’ve struggled with installation. For me problem was that I used it on master branch
and master branch has a bug in installation copy path. Hopefully you will avoid that and
you can have great synths with UIs. It’s worth it!



Continue

Let’s study how can we use them. First of all let’s define the notion of
widget. A widget is something that contains graphical representation
(it’s what we see on the screen) and behaviour (what we can do with it).

A slider for instance is represented as a moving small line segment in the box.
It’s a graphical representation of the slider. At the same time the slider can give us a time
varying signal. It’s behaviour of the slider. There are different types of behaviour.
Some widgets can produce the values (like sliders or buttons). They are sources.
Some widgets can wait for the value (like text box that shows the value on the screen).
They are sinks. Some widgets can do all this in the same time and some widgets can
do neither (like static text. It’s only visible but it can not do anything).

In the Haskell type system we can express it like this:

data Gui    -- visual representation

type Widget a b = SE (Gui, Output a, Input b, Inner)

type Input a = a 				-- produces a value
type Output a = a -> SE ()		-- waits for a value
type Inner = SE ()				-- does smth useful

type Sink a = SE (Gui, Output a)	-- value consumer
type Source a = SE (Gui, Input a)   -- value producer
type Display = SE Gui 				-- static element





Let’s look at the definition of the slider:

slider :: String -> ValSpan -> Double -> Source Sig
slider tag valueRange initValue





The slider expects a tag-name, value range and initial value.
It produces a Source-widget that contains a signal.

The value type specifies the value range and the type of
the change of the value (it can be linear or exponential).

linSpan, expSpan :: Double -> Double -> ValSpan

linSpan min max
expSpan min max





Let’s define a slider in the ghci:

> vol = slider "volume" (linSpan 0 1) 0.5
> dac $ do { (gui, v) <- vol; panel gui; return (v * osc 440) }





We can control the volume of the concert A note with the slider!
To see the slider we have to place it on the window. That is why
we used the function pannel:

pannel :: Gui -> SE ()





It creates a window and renders the graphical representation of
the GUI on it. You can notice the strange quirk of the slider
it updates the values in reverse. The top is lowest value
and the bottom is for the highest value. It’s strange implementation
of the vertical sliders in the Csound. We can only take it for granted.

Ok. That it’s good but how about using two sliders at the same time?
We can create the second slider and place it right beside the other with
function hor. It groups a list of widgets and shows them side by side:

> vol = slider "volume" (linSpan 0 1) 0.5
> pch = slider "pitch" (expSpan 20 3000) 440
> dac $ do { (vgui, v) <- vol; (pgui, p) <- pch ; panel (hor [vgui, pgui]); return (v * osc p) }





Try to substitute hor for ver and see what happens.



The layout functions

We can see how easy it’s to use the hor and ver. Let’s study all
layout functions:

hor :: [Gui] -> Gui
ver :: [Gui] -> Gui

space :: Gui
sca   :: Double -> Gui -> Gui

padding :: Int -> Gui -> Gui
margin  :: Int -> Gui -> Gui

resizeUi :: (Double, Double) -> Gui -> Gui





The functions hor and ver are for horizontal and vertical grouping of the elements.
The space creates an empty space. The sca  can scale GUIs. The margin and padding
are well .. mm .. for setting the margin and padding of the element in pixels.

We can stack as many sliders as we want. Let’s explore the low-pass filtering of
the saw waveform.

> cfq = slider "center frequency" (expSpan 100 5000) 2000
> q = slider "resonance" (linSpan 0.1 0.9) 0.5
> :set +m
> dac $ do {
	(vgui, v) <- vol;
	(pgui, p) <- pch;
	(cgui, c) <- cfq;
	(qgui, qv) <- q;
	panel (ver [vgui, pgui, cgui, qgui]);
	return (v * mlp c qv (saw p))
}





With :set +m we enter the multiline mode in REPL.
The last expressions spreads across multiple lines.

We can scale the whole window size with function resizeUi. It takes in a pair of x and y scale factors.
The difference between sca and resizeUi is that sca scales the relative size of the widget
within a container but resizeUi affects the default all absolute sizes of UI-widgets.

The typical usage of resizeUi is when we created an intricated UI with many widgets
and it doesn’t fits the screen we can make everything smaller by calling something like resizeUi (0.75, 0.75) on it.

If you find yoursel using this function to much it’s probably the defaults of the library are not
good for your screen. You can set the scaling factor globaly with options (see parameter csdScaleUI).
We would like to make our own dac function that overrides the defaults:

run = dacBy (def { csdScaleUI = Just (1.5, 1.5) })





And then we can use our run function in place of dac.

Note that there is a handy function to rescale sources. The widget source is the most frequently used.
So there is a shortcut to easily adjust the sizes:

resizeSource :: (Double, Double) -> Source a -> Source a
resizeSource factorXY = mapGuiSource (resizeUi factorXY)







Applicative style GUIs

Let’s turn back to the example with pitch and volume sliders:

> vol = slider "volume" (linSpan 0 1) 0.5
> pch = slider "pitch" (expSpan 20 3000) 440
> dac $ do { (vgui, v) <- vol; (pgui, p) <- pch ; panel (ver [vgui, pgui]); return (v * osc p) }





There is a much more convenient way of writing widgets like this.
We can use applicative style GUIs. There are functions that combine
visual representation and behavior of the UIs at the same time:

lift1 :: (a -> b) -> Source a -> Source b

hlift2 :: (a -> b -> c) -> Source a -> Source b -> Source c
vlift2 :: (a -> b -> c) -> Source a -> Source b -> Source c

hlift3 :: (a -> b -> c -> d) -> Source a -> Source b -> Source c -> Source d
vlift3 :: (a -> b -> c -> d) -> Source a -> Source b -> Source c -> Source d

hlift4, vlift4 :: ...
hlift5, vlift5 :: ...





It takes a function to combine the outputs of the widget and the prefix
is responsible for catenation of the visuals. h – means horizontal and
v – vertical.

Let’s rewrite the last line of our example:

> dac $ vlift2 (\v p -> v * tri p) vol pch





The (Sigs a => Source a) is also renderable type and we can apply dac to it.
The cool thing is that result of the vlift2 is an ordinary source-widget. We can
apply another lift-function to it.

Let’s add a filter:

> cfq = slider "center frequency" (expSpan 100 5000) 2000
> q = slider "resonance" (linSpan 0.1 0.9) 0.5
> filter = vlift2 (\cps res -> mlp cps res) cfq q





Notice that our widget produces a function. Like any real functional programming language
Haskell can do it! Let’s apply the filter:

> wave = vlift2 (\v p -> v * tri p) vol pch
> dac $ hlift2 ($) filter wave





Also there are functions to stack a list of similar widgets:

hlifts, vlifts :: ([a] -> b) -> [Source a] -> Source b





Let’s create a widget to study harmonics:

> harmonics cps weights = mul (1.3 / sum weights) $
		sum $ zipWith (\n w -> w * osc (cps * n))(fmap (sig . int) [1 .. ]) weights
> dac $ mul 0.75 $ hlifts (harmonics 110) (uslider 0.75 : (replicate 9 $ uslider 0))





The uslider is convenient alias for creation of linear unipolar anonymous sliders.
The only value it takes is an initial value. That’s it! We have created a widget
with ten sliders for harmonic series exploration with just two lines of code!
Also there is a function xslider for exponential anonymous sliders. It has the
arguments:

type Range a = (a, a)

xslider :: Range Double -> Double -> Source Sig
xslider (min, max) init





The same functions are defined for knobs: uknob, xknob.

Let’s add a couple of controls. We want to change pitch and volume.
We already have the required sliders vol and pch:

> harms = hlifts (flip harmonics) (replicate 10 $ uslider 0)
> dac $ vlift3 (\amp cps f -> amp * f cps) vol pch harms





it’s ok by the audio but the picture is ugly. The problem is that vlift3
gives the same amount of space to all widgets. But we want to change the proportions.
Right for this task there are functions:

hlift2', vlift2' :: Double -> Double -> (a -> b -> c) -> Source a -> Source b -> Source c

hlift3', vlift3' :: Double -> Double -> Double -> (a -> b -> c -> d) -> Source a -> Source b -> Source c -> Source d

hlift4', vlift4' :: ...
hlift5', vlift5' :: ...

vlifts', hlifts' :: [Double] -> ([a] -> b) -> [Source a] -> Source b





They take in scaling factors for each widget. Let’s see how they can help us to solve the problem:

> dac $ vlift3' 0.15 0.15 1 (\amp cps f -> amp * f cps) vol pch harms







Widgets


Knobs

There are many more widgets. Let’s turn some sliders into knobs.
The knob is a sort of circular slider:

> vol = knob "volume" (linSpan 0 1) 0.5
> pch = knob "pitch" (expSpan 20 3000) 440
> dac $ vlift3 (\v p f -> v * f (saw p))  vol pch filter





Also there are aliases. Produces unipolar linear anonymous knob:

uknob :: Double -> Source Sig
uknob initVal = ...





Produces exponential anonymous knob:

type Range a = (a, a)

xknob :: Range Double -> Double -> Source Sig
xknob (min, max) init







Numeric values

Numeric creates a time varying signal like a slider.
But it’s graphical representation is different. It’s
a box with a number inside it. You can change the value by dragging
the mouse from the box.

numeric :: String -> ValDiap -> ValStep -> Double -> Source Sig
numeric tag valueDiapason valueStep initialValue







Buttons

Let’s create a switch button. We can use a toggleSig for it:

toggleSig :: String -> Bool -> Source Sig





This function just creates a button that produces a signal that
is 1 whenthe button is on and 0 when it’s off. The button is
initialized with value Bool.

> switch = toggleSig "On/Off" true
> dac $ vlift3 (\v p (sw, f) -> sw * v * f (saw p))  vol pch (hlift2 (,) switch filter)





We can make the gradual change wit portamento:

..	smooth 0.7 sw * v * mlp c qv (saw p) ..





Buttons can produce the event streams:

button :: String -> Source (Evt Unit)





The event stream Evt a is something that can apply a procedure of
the type a -> SE () to the value when it happens.

There is a function:

runEvt :: Evt a -> (a -> SE ()) -> SE ()





Also event streams can trigger notes with:

type Sco a = Track Sig a -- holds notes
sched :: (Arg a, Sigs b) => (a -> SE b) -> Evt (Sco a) -> b





The sched invokes the instrument on event stream.
Each event contains score of notes.

Let’s create two buttons that play notes:

> n1 = button "330"
> n2 = button "440"
> instr x = return $ fades 0.1 0.5 * osc x
> go x evt = sched (const $ instr x) (withDur 1 evt)
> dac $ hlift2 (\p1 p2 -> mul 0.25 $ go 330 p1 + go 440 p2) n1 n2





The new function withDur turns a single value into Score with single note with passed duration.

We can do it with a little bit more simple expression if we know
that events are functors and monoids. With Monoid’s append we can get
a single event stream that contains events from both event streams.

Let’s redefine our buttons:

> n1 = mapSource (fmap (const (330 :: D))) $ button "330"
> n2 = mapSource (fmap (const (440 :: D))) $ button "440"





The function mapSource maps over the value of the producer widget.
Right now every stream contains a value for the frequency with it.
Let’s merge two streams together and invoke the instrument on the
single stream. The result should be the same:

> instr x = return $ fades 0.1 0.5 * osc x
> dac $ hlift2 (\p1 p2 -> mul 0.25 $ sched (instr . sig) (withDur 1 $ p1 <> p2)) n1 n2







Box

With boxes we can just show the user some message.

box :: String -> Display





Let’s say something to the user.

> gmsg = box "Two buttons. Here we are."
> dac $ gmsg >>= \msg ->
          mapGuiSource (\g -> ver [msg, g]) $
          hlift2 (\p1 p2 -> mul 0.25 $ sched (instr . sig) (withDur 1 $ p1 <> p2)) n1 n2





The function mapGuiSource - maps over Gui value of the source:

mapGuiSource :: (Gui -> Gui) -> Source a -> Source a







Radio-buttons

Radio buttons let the user select a value from the set of choices.

radioButton :: Arg a => String -> [(String, a)] -> Int -> Source (Evt a)





Let’s redefine our previous example:

> ns = radioButton "two notes" [("330", 330 :: D), ("440", 440)] 0
> dac $ lift1 (\p -> mul 0.25 $ sched (instr . sig) (withDur 2 p)) ns







Meter

We have studied a lot of sources. Is there any sink-widgets?
The meter is the one. It let’s us monitor the value of the signal:
It shows the output as the slider:

> let sa = slider "a" (linSpan 1 10) 5
> let sb = slider "b" (linSpan 1 10) 5
> let res = setNumeric "a + b" (linDiap 2 20) 1 10
> dac $ do {
	(ga, a) <- sa;
	(gb, b) <- sb;
	(gres, r) <- res;
	panel $ ver [ga, gb, gres];
	r (a + b)
}








Making reusable source

The applicative style lets us create reusable combos of widgets.

Let’s make a reusable widget for a Moog low-pass filter.
It’s a producer or source. It’s going to produce a
transformation Sig -> Sig:

import Csound.Base

mlpWidget :: Source (Sig -> Sig)
mlpWidget = vlift2 mlp cfq q
  where
    cfq = slider "center frequency" (expSpan 100 5000)  2000
    q   = slider "resonance"        (linSpan 0.01 0.9)  0.5





Let’s save this definition in the file and load it in ghci.
Now we can use it as a custom widget:

dac $ lift1 (\f -> mul 0.5 $ f $ saw 220) mlpWidget





Notice that a widget can produce a function as a value!

Let’s define another widget for saw-oscillator:

sawWidget :: Source Sig
sawWidget = vlift2 (\a c -> a * saw c) amp cps
  where
    amp = slider "amplitude" (linSpan 0 1) 0.5
    cps = slider "frequency" (expSpan 50 10000) 220





Now let’s use them together:

dac $ vlift2 (\wave filt -> filt wave) sawWidget mlpWidget







Low-level representation of widgets

Note that any widget is made with just handful of functions:

type Output a = a -> SE ()
type Input a = a
type Display = SE Gui

sink    :: SE (Gui, Output a) -> Sink a
source  :: SE (Gui, Input a) -> Source a
display :: SE Gui -> Display
sinkSource :: SE (Gui, Output a, Input a) -> SinkSource a





Thy specify low level behaviour of the widget.


	sink - widget that consumes the value. So it has visual representation
and function to consume the value.


	source - widget that produces value. So it has  visual  representation
and holds the value.


	display - has only visuals


	sinkSource - combines all behaviours into one.




Let’s see how one of the widgets from the previous example can be made
with low level functions. Let’s look at the moog filter widget:

import Csound.Base

mlpWidget :: Source (Sig -> Sig)
mlpWidget = source $ do
	(gcfq, cfq) <- slider "center frequency" (expSpan 100 5000)  2000
	(gq,   q)   <- slider "resonance"        (linSpan 0.01 0.9)  0.5
	return (ver [gcfq, gq], mlp cfq q)





Now we can apply it to the value with low level functions:

> dac $ do {
	(g, filt) <- mlpWidget;
	panel g;
	return $ mul 0.5 $ filt $ saw 220
}








Open sound control protocol (OSC)

Open sound control is a modern data transfer protocol
that should supersede the Midi protocol. It’s much more
lightweight and efficient. It can be used over network to
orchestrate a lot of instruments.

We can send or receive the data over network on the specified port.
We should declare the port, the address of the data and
the type of the expected data.

The port is an integer. The address is a path-like string:

"/foo/bar"
"/note"





The type of the data is a string of special characters.
The string can contain the characters “cdfhis” which stand
for character, double, float, 64-bit integer, 32-bit integer, and string.

There are special type synonyms for all these terms:

type OscPort = Int
type OscAddress = String
type OscType = String
type OscHost = String





There are two modes. We can listen for the OSC-messages or we can
send them.


Listening for messages

To listen for the events we have to create a background process.
It waits for messages on the given port:

initOsc :: OscPort -> OscRef
initOsc port





We can specify an integer port. It gives us a reference to the process
which should be used in the function listenOsc:

listenOsc :: Tuple a => OscRef -> OscAddress -> OscType -> Evt a
listenOsc ref addr type =





The function listenOsc produces a stream of OSC-messages that are
coming on the given port, address and have a certain type.


Listening for signals

It’s often happens that OSC-messages encode a continuous signal. The signal controls
some parameter of the synth. In this case we can use a handy function:

listenOscVal :: (OscVal a) => OscRef -> String -> a -> SE a
listenOscVal oscRef address initValue





The OscVal signnifies all sorts of tuples of Str’s and Sig’s.
We listen on the specific port and address. The last argument is an initial value for the signal (or tuple of signals).
When new value comes the output signal is set to that value. It’s like sample and hold function
only messages for signal update come from the OSC-channel.

There are two useful aliases for this function. They read signals and pairsof signals:

listenOscSig  :: (Tuple a, OscVal a) => OscRef -> String -> Sig  -> SE Sig
listenOscSig2 :: (Tuple a, OscVal a) => OscRef -> String -> Sig2 -> SE Sig2








Sending messages

To send OSC-messages we can use the function sendOsc:

sendOsc :: Tuple a => OscHost -> OscPort -> OscAddress -> OscType -> Evt a -> SE ()





The Osc-messages are coming from the event-stream. We send them
to the machine with given host name (an empty string means the local machine).
We also specify the OSC-address (it’s a path-like string) and type of the messages.




Jack-instruments

With Jack-interface (native for Linux, also there are ports for OSX and PC)
we can stream the output of one program to the input of another one.
With Jack we can use our Csound instruments in DAW-software
(like Ardour, Cubase, Ableton or BitWig).

We can create Jack-instrument if we set the proper options.
We have to set the name of the instrument:

setJack :: String -> Options
setJack clientName





We have to set the proper rates (audio and control rates)

setRates :: Int -> Int -> Options
setRates sampleRate blockSize





Sample rate is a resolution of the output audio (typical values are 44100 or 48000).
It should be the same as for the JACK.
The block size is how many samples are in the control period.
We have to process the control signals at the lower rate. The blockSize
specifies the granularity of the control signals (typical values are 64, 128, 256).

We have to set the hardware and software buffers (It’s B and b flags in the Csound):

setBufs :: Int -> Int -> Options
setBufs totalBufferSize  singlePeriodSize





To send or receive the values from the JACK Csound uses the buffer.
We have to define the size of the whole buffer (the first argument)
and the one period of the buffer (it should be integer multiplier of
the blockSize).

To set all these properties we need to use the Monoid instance for Options.
We need to append all the options:

> options = mconcat [ setJack "anInstrument", setRates 44800 64, setBufs 192 64 ]
> dacBy options asig








	<= Basics of sound synthesis [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/SynthTutorial]


	=> Scores [https://github.com/anton-k/csound-expression/blob/master/tutorial/chapters/ScoresTutorial]


	Home [https://github.com/anton-k/csound-expression/blob/master/tutorial/Index]








          

      

      

    

  _static/down.png





_static/comment.png





_static/down-pressed.png





_static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/comment-bright.png





_static/ajax-loader.gif





_static/comment-close.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

