

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.
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CS240h Scribe Notes


David Mazieres, Bryan O’Sullivan, and David Terei

Class notes for the 2014 Spring quarter iteration of this class
written by different students for each lecture.

Class homepage is here [http://www.scs.stanford.edu/14sp-cs240h/].




Writing Notes

Notes should be taken in markdown format and processed by pandoc. To
install pandoc, run:

cabal install pandoc -fhighlighting-kate





Next, to get access to the notes repository, run:

git clone git@github.com:scslab/cs240h-notes.git





Create a separate subdirectory for each lecture, starting with a
two-digit lecture number.  The markdown lecture file should end with
.md.  For example, the basics lecture should be called
01-basics/basics.md.  You can place any additional relevant files
(such as images) in the same directory.  You can rebuild the full set
of notes by running make in the top level directory, and opening the
resulting index.html in your browser.




Submitting your notes

Once you’ve written up your notes, please do one of the following:


	Submit a pull request through Github and email cs240h-staff.


	Email cs240h-staff the URL of a git repository from which we can
pull your notes.




This will allow us to integrate them with the rest of the class.




Writing Markdown

A description of markdown format is available in the pandoc README
file [http://johnmacfarlane.net/pandoc/README.html]. Markdown is a simple format intended to be as
similar as possible to plain text. The most useful forms of markup
available in markdown:


	To include a block of Haskell source code, include it between
lines of at least three tildes, adding {.haskell} after the
start, like so:

~~~ {.haskell}
main :: IO ()
main = putStrLn "hello world"
~~~





which results in nicely syntax highlighted code, like this:

main :: IO ()
main = putStrLn "hello world"







	If the code block is not Haskell source (e.g., you are showing GHCi
interaction), simply omit the {.haskell}.


	To include inline code, surround it with backticks.  For example:

    The code `div a b` throws an exception if `b == 0`.





results in: The code div a b throws an exception if b == 0.

If your code starts or ends with a backtick, you must start or end
with more backticks.  For example:

    In Haskell, placing backticks around a function, e.g., 
    `` `div` ``, turns it from a prefix function to an infix
    function.





Which yields: In Haskell, placing backticks around a function,
e.g., `div`, turns it from a prefix function to an infix
function.



	Sections are started by line beginning with #.  Subsections by a
line starting with two # characters.  For example:

    # Section name
    ...
    ## Subsection name







	To emphasize text, surround it with * or _.  For strong
emphasis, use ** or __.

    This is *emphasized*, while this is **strongly emphasized**.
    You can use underscores and get _the same effect_.





This is emphasized, while this is strongly emphasized.  You
can use underscores and get the same effect.



	To include a hyperlink, the syntax is:
[text-of-link][name-of-link], where someplace else in your file
you have a line declaring the link destination for name-of-link.
Alternatively, you can use [text-of-link](link destination).
For example the following two examples:

    Use [the pandoc tool][pandoc] to format slides.

    [pandoc]: http://johnmacfarlane.net/pandoc/





    Use [the pandoc tool](http://johnmacfarlane.net/pandoc/) to
    format slides.





Both produce: Use the pandoc tool [http://johnmacfarlane.net/pandoc/] to format slides.



	You can comment text out using an html comment (e.g.,
<!-- ... ignore this -->).


	Finally, if you want to be really fancy, you can include an image by
placing a ! before a link.  In a paragraph, the link text becomes
the alt text, but if the image is its own paragraph, the link text
becomes the caption.

    ![caption of this weird image](example.svg)





Produces:

[image: caption of this weird image]

You are by no means expected to draw figures, but if you feel like
doing so, we recommend using inkscape [http://www.inkscape.org] to produce SVG
images.











          

      

      

    

  

    
      
          
            
  % Getting started with Haskell

Install the Haskell Platform or cabal + ghc.


	Cabal


	ghc is the official Haskell compiler.





Hello World

Simple.

main = putStrLn "Hello, world"





Put this in a file (hello_world.hs). Compile it with ghc hello_world.hs,
and run the executable.




ghci

Interpreter for Haskell. Not quite a read-execute loop like other languages,
but it’s useful.




Bindings


	The = sign declares bindings.


	Local bindings with let


	Haskell will auto-insert semicolons by a layout rule.


	You can bind functions.




add arg1 arg2 = arg1 + arg2
five = add 2 3






	Tokens on the line are function arguments


	Associativity - use parentheses for compound expressions







Haskell is a pure functional language.


	By functions, we mean mathematical functions.


	No side effects


	Deterministic - same result every time it is run with an input






	Variables are immutable.


	x = 5; x = 6 is an error, since x cannot be changed.






	order-independent


	lazy - definitions of symbols are evaluated only when needed. If you divide
two variables, for instance, it will not be evaluated until you read the
result


	This means you can divide by 0, create infinite lists… etc. so long as
you’re careful that those don’t get evaluated.






	recursive - bound symbol is in scope within its own definition.




This program will cause an infinite loop (the program “diverges”), because the
variable x in main is defined in terms of itself, not in terms of the
declaration x = 5:

x = 5

main = let x = x + 1
        in print x








How can you program without mutable variables?


Loops


	In C, you use mutable variables to create loops (like a for loop).


	In Haskell, you can use recursion to “re-bind” argument symbols in a new scope
(call the function with different arguments to get different behavior).


	Problem: The example recursive factorial implementation in Haskell uses
function calls to loop, but those function calls will create stack frames,
which will cause Haskell to consume memory.


	Solution: Haskell supports optimized tail recursion. Use an
accumulator argument to make the factorial call tail recursive.











Guards and where clauses


	Guards let you shorten function declarations by declaring conditions in
which a function occurs:


	Pipe (“|”) symbol introduces a guard. Guards are evaluated top to
bottom


	the first True guard wins.


	otherwise in the Haskell system Prelude evaluates to true






	Bindings can end with where clauses


	Where clauses can scope over multiple guards


	Convenient for binding variables to use in guards











Variable names


	It’s conventional in Haskell to have versions of variables and functions
denoted by apostrophes (‘). But David Mazieres finds that this can cause
difficult to find bugs, so he suggests that you use the longer symbol name
for the larger scope.









Types


Every expression and binding has a type (it is strongly typed)


  
    
    <no title>
    

    
 
  

    
      
          
            
  % Basics
% Arun Debray

Lecture given by David Mazières on April 1, 2014.

This course is taught by David Mazières and Bryan O’Sullivan, who
together have done a lot of systems programming and research and
Haskell. Meanwhile, the CA, David Terei, is a member of the Haskell
language standards committee…

The goal of this class is to learn how to use Haskell to program systems
with reduced upfront cost. Haskell is typically taught in the context of
programming language research, but this course will adopt a systems
perspective. It’s a surprisingly flexible and effective language, and
since it was created by and for programming language researchers, there
are lots of interesting things to do, and it’s extremely flexible (if
you want to try something new, even if it’s syntactical, this is as easy
as using a library, unlike most programming languages).

The first week of this class will cover the basics of Haskell, though
having some prior experience or a supplement (e.g. Real World
Haskell [http://book.realworldhaskell.org/] or Learn You a
Haskell [http://learnyouahaskell.com/]) is helpful. After the basics,
we will cover more advanced techniques. The class grade will be based on
attendance and participation, with scribing one of the lectures, and
also three warm-up programming assignments and a large final project and
presentation, in groups of one to three people.

Now, let’s talk about Haskell.

In order to use Haskell, one will want to install the Haskell platform [http://hackage.haskell.org/platform/]
or cabal [http://www.haskell.org/cabal/users-guide/], along with the Haskell compiler, ghc [http://www.haskell.org/ghc/docs/latest/html/users_guide/index.html]. The simplest program
is

main = putStrLn "Hello, world!"





Unsurprisingly, this is a “Hello, world!” program. One can compile it,
e.g. ghc -o hello hello.hs, but also load it into an interpreter
ghci (in this regard, Haskell is much like Lisp).

The first thing you’ve noticed is the equals sign, which makes a
binding, e.g.

x = 2       -- Two hyphens introduce a comment.
y = 3       -- Comments go until the end of a line.
main = let z = x + y -- let introduces local bindings.
       in print z





This program will print 5.

Bound names can’t start with uppercase letters, and are separated by
semicolons, which are usually automatically inserted as above. Functions
can even be bound, e.g.:

add x y = x + y   -- defines function add
five = add 2 3    -- invokes function add





This is a good way to define functions.

Parentheses are important to eliminate ambiguity in function application.

bad = print add 2 3     -- error! (print should have only 1 argument)

main = print (add 2 3)  -- ok, calls print with 1 argument, 5





Haskell is a pure functional language. Thus, unlike variables in
imperative languages, Haskell bindings are immutable: within a given
scope, each symbol can be bound only once. In other words, the following
is an error:

x = 5
x = 6 -- Error, cannot re-bind x





Bindings are thus order-independent; if any two are switched such that the program still makes sense (i.e. things aren’t used after they are bound), the program behaves in the same way.

Another interesting fact is that bindings are lazy: definitions of
symbols are only evaluated when they’re needed. For example:

safeDiv x y =
    let q = div x y     -- safe as q isn't evaluated if y == 0
    in if y == 0 then 0 else q
main = print (safeDiv 1 0) -- prints 0





Notice this is completely different from C-like languages!

Another interesting aspect of bindings, which goes hand-in-hand with
order-independence, is that bindings are recursive, so each binding is
in scope within its own definition.

x = 5                   -- not used in main!

main = let x = x + 1    -- introduces a new x, defined in terms of itself
       in print x       -- loops forever, or stack overflows





In C, this would print 6, but here, x refers to itself! The runtime
sometimes is able to detect the loop, however.

This means that writing things in Haskell requires thinking differently!
For example, here’s a factorial program in C:

long factorial(int n) {
    long result = 1;
    while (n > 1)
        result *= n--;
    return result;
}





But in Haskell, one uses recursion.

factorial n = if n > 1 then n * factorial (n-1)
                       else 1





However, the C function requires constant space, but the Haskell version
requires $n$ stack frames! But Haskell supports optimized tail
recursion; if a function ends with a call to itself (i.e. is
tail-recursive), then it can be optimized into a loop. However, the
definition provided above isn’t tail-recursive.

Using an accumulator, the factorial function can be made tail-recursive.

factorial n = let loop acc n' = if n' > 1
                                then loop (acc * n') (n' - 1)
                                else acc
              in loop 1 n





This uses an accumulator to keep track of the partial result. It’s a
bit clunky, but can be tidied up with Haskell’s incredible concision.
For example, one can use guards to shorten function declarations, e.g.

factorial n = let loop acc n' | n' > 1 = loop (acc * n') (n' - 1)
                              | otherwise = acc
              in loop 1 n





The guards (pipe symbols) are evaluated from top to bottom; the first
one that evaluates to True is followed. otherwise is defined to be
True, but it makes the code easier to read. One might also introduce a
where clause, which is like let but can support multiple guarded
definitions, and is thus convenient for use around guards.

factorial n = loop 1 n
    where loop acc n' | n' > 1    = loop (acc * n') (n' - 1)
                      | otherwise = acc





You’ll notice that there will be plenty of inner functions, and their
arguments are related to that of the outer functions. But it’s easy to
confuse n and n', so the following code compiles and throws a
runtime error!

factorial n = loop 1 n
    where loop acc n' | n' > 1    = loop (acc * n) (n' - 1) -- bug, should be n'
                      | otherwise = acc





One way to work around that is to use a naming convention in which the
outermost variable has the longer name; then, bugs like this are caught
at compile time, due to scope.

Haskell is strongly typed, so we have types such as Bool, which is
either True or False; Char, which is a Unicode code point; Int,
a fixed-size integer; Integer, an arbitrary-sized integer; Double,
which is like a double in C; and also functions. A function from type
a to tybe b is denoted a -> b. We also have tuples:
(a1, a2, a3), including the unit () (a zero tuple, kind of like
void of C).

It’s good practice to write the function’s type on top of a function,
e.g.

add :: Integer -> (Integer -> Integer)
add arg1 arg2 = arg1 + arg2





Well, here’s something interesting. The arrow associates to the right,
so these parentheses aren’t strictly necessary, but they make an
important point: all functions accept only one argument, so the above
function takes an integer and returns a function! For example, add 2 3
is parsed as (add 2) 3, and add 2 is a function. Often, this
behavior (called currying) is optimized out by the compiler, but can be
useful. The compiler can infer types, and in the interpreter this can be
queried by :t.

*Main> :t add
add :: Integer -> Integer -> Integer





The user can also define data types, using the data keyword.

data PointT = PointC Double Double deriving Show





This declares the type PointT with a constructor PointC containing
two Doubles. The phrase deriving Show means that it can be printed,
which is useful in the interpreter. Types and constructors must start
with capital names, but live in different namespaces, so they can be
given the same name.

Types may have multiple constructors, and said constructors don’t
actually need arguments (which makes them look sort of like enums in
C).

data Point = Cartesian Double Double
           | Polar Double Double
             deriving Show

data Color = Red | Green | Blue | Violet deriving (Show, Eq, Enum)





Now, we can do things like myPoint = Cartesian 1.0 1.0 and so on.

One extracts this data using case statements and guards, as in the
following example:

getX, getMaxCoord :: Point -> Double
getX point = case point of
               Point x y -> x       -- if only the Point x y constructor is around
getMaxCoord (Point x y) | x > y     = x
                        | otherwise = y

isRed :: Color -> Bool
isRed Red = True        -- Only matches constructor Red
isRed c   = False       -- Lower-case c just a variable





The latter notion is called pattern matching, which detects which
constructor was used to create the object. For another example, consider
the following:

whatKind :: Point -> String -- Cartesian or polar constructor as above
whatKind (Cartesian _ _) = "Cartesian"
whatKind (Polar _ _)     = "Polar"





This underscore indicates that the value is unused, or something we
don’t care about. The compiler can actually infer and optimize based on
that. It’s bound, but never used, which is quite helpful, especially
given that the compiler warns about unused variables.

Given the following types for a rock-paper-scissors game:

data Move = Rock | Paper | Scissors
     deriving (Eq, Read, Show, Enum, Bounded)

data Outcome = Lose | Tie | Win deriving (Show, Eq, Ord)





Define a function outcome :: Move -> Move -> Outcome. The first move
should be your own, the second your opponent’s, and then the function
should indicate whether one won, lost, or tied.

Solution:

outcome :: Move -> Move -> Outcome
outcome Rock Scissors           = Win
outcome Paper Rock              = Win
outcome Scissors Paper          = Win
outcome us them | us == them    = Tie
                | otherwise     = Lose





There are plenty of other ways to do this.

Types, much like functions, can accept parameters, but type parameters
start with lowercase letters. For example, within the standard Prelude:

data Maybe a = Just a
             | Nothing

data Either a b = Left a
                | Right b





Maybe is used to indicate the presence of an item, or some sort of
error, and Either can provide more useful error information, etc. In
this case, the convention is for Right to indicate the normal value,
and Left some sort of sinister error. The interpreter can reason about
these types, too:

Prelude> :t Just True
Just True :: Maybe Bool
Prelude> :t Left True
Left True :: Either Bool b





Often, one uses the underscore pattern matching mentioned above with
these parameterized types to pass exceptions along. For example,

addMaybes mx my | Just x <- mx, Just y <- my = Just (x + y)
addMaybes _ _                                = Nothing





Equivalently (and more simply),

addMaybes (Just x) (Just y) = Just (x + y)
addMaybes _ _               = Nothing






  
    
    Monad transformers
    

    
 
  

    
      
          
            
  % Language extensions
% Susan Tu


Monad transformers

Monad transformers are type constructors that build monads parameterized by other monads.


	Method lift executes actions from underlying transformed monad:




class MonadTrans t where
    lift :: Monad m => m a -> t m a






	State transformer monad, StateT




newtype StateT s m a = StateT { runStateT :: s -> m (a,s) }

instance (Monad m) => Monad (StateT s m) where
    return a = StateT $ \s -> return (a, s)
    m >>= k  = StateT $ \s0 -> do          -- in monad m
                 ~(a, s1) <- runStateT m s0
                 runStateT (k a) s1

instance MonadTrans (StateT s) where
    lift ma = StateT $ \s -> do            -- in monad m
                a <- ma
                return (a, s)

get :: (Monad m) = > StateT s m s
put :: (Monad m) = > s -> StateT s m ()






	Haskell version of doing x++ in C




import Control.Monad.Trans
import Control.Monad.Trans.State

main :: IO ()
main = runStateT go 0 >>= print
  where go = do xplusplus >>= lift . print
                xplusplus >>= lift . print
        xplusplus = do n <- get; put (n + 1); return n

*Main> main
0
1
((),2)








MonadIO


	Sometimes want to execute IO regardless of current monad (does however many lifts are necessary)




class (Monad m) => MonadIO m where
    liftIO :: IO a -> m a

instance MonadIO IO where
    liftIO = id






	Let’s make liftIO work for StateT




instance (MonadIO m) => MonadIO (StateT s m) where
    liftIO = lift . liftIO

myprint :: (Show a, MonadIO m) => a -> m ()
myprint a = liftIO $ print $ show a






	All standard Monad transformers implement class MonadIO: ContT, ErrorT, ListT, RWST, ReaderT, StateT, WriterT, …





	Recusive bindings allowed in Haskell, i.e., things on left are in scope on the right


	Top-level, let, and where bindings are all recursive in Haskell, e.g.:




oneTwo :: (Int, Int)
oneTwo = (fst y, snd x)
    where x = (1, snd y)    -- mutual recursion
          y = (fst x, 2)

nthFib :: Int -> Integer
nthFib n = fibList !! n
    where fibList = 1 : 1 : zipWith (+) fibList (tail fibList)






	Recursion can be implemented using a fixed-point combinator




-- in standard library
fix :: (a -> a) -> a
fix f = let x = f x in x
-- now, we use it. We define (x, y) to be the fixed point of a carefully constructed function.
oneTwo ' :: (Int, Int)
oneTwo ' = (fst y, snd x)
  where (x, y) = fix $ \ ~(x0, y0) -> let x1 = (1, snd y0)
                                          y1 = (fst x0, 2)
                                          in (x1, y1)

nthFib ' n = fibList !! n
where fibList = fix $ \l -> 1 : 1 : zipWith (+) l (tail l)






	The ~ above is a way of doing an irrefutable pattern match (here, don’t force the thunk for the pair).


	Monadic bindings are not recursive, but there is mfix







The RecursiveDo extension


	New rec keyword introduces recursive bindings in a do block [Erkök02]


	Monad must be an instance of MonadFix (RecursiveDo desugars to mfix calls)




oneTwo'' :: (MonadFix m) => m (Int, Int)
oneTwo'' = do
  rec x <- return (1, snd y)
      y <- return (fst x, 2)
  return (fst y, snd x)






	Desugars to:




oneTwo''' :: (MonadFix m) => m (Int, Int)
oneTwo''' = do
  (x, y) <- mfix $ \ ~(x0, y0) -> do x1 <- return (1, snd y0)
                                     y1 <- return (fst x0, 2)
                                     return (x1, y1)
  return (fst y, snd x)






	In practice RecursiveDo helps structure thinking


	Then can manually desugar rather than require a language extension


	But mfix on its own is quite useful







Example uses of mfix and rec


	Create recursive data structures in one shot




data Link a = Link !a !(MVar (Link a)) -- note ! is okay

mkCycle :: IO (MVar (Link Int))
mkCycle = do
  rec l1 <- newMVar $ Link 1 l2        -- but $! would diverge
      l2 <- newMVar $ Link 2 l1
  return l1






	Call non-strict methods of classes (easy access to return-type dictionary)




class MyClass t where
    myTypeName :: t -> String        -- non-strict in argument
    myDefaultValue :: t
instance MyClass Int where
    myTypeName _ = "Int"
    myDefaultValue = 0

getVal :: (MyClass t) => IO t
getVal = mfix $ \t -> do      -- doesn't use mfix's full power
  putStrLn $ "Caller wants type " ++ myTypeName t
  return myDefaultValue






	Implementing mfix


	Warm-up: The Identity monad




newtype Identity a = Identity { runIdentity :: a }
instance Monad Identity where
    return = Identity
    m >>= k = k (runIdentity m)
--newtype compiles to nothing, so basically same as fix:
instance MonadFix Identity where
    mfix f = let x = f (runIdentity x) in x








fixIO, IO Monad fixed point


	Internally, lazy IO is implemented by magic unsafeInterleaveIO







A generic mfix is not possible


	So mfix needs to take fixed point over value, not over monadic action


	How to do this is monad-specific


	Doesn’t work for all monads (ContT, ListT)


	Remark: let x = f x in x is better than fix f = f (fix f) because the one on the right might lead to stack overflow (the one on the right allocated thunks on the heap)







MultiParamTypeClasses extension


	Extension itself is relatively safe, but encourages other extensions


	each method’s type must use every type parameter, all types must be fully deteremined, and the usual instance restrictions still apply







FlexibleInstances extension


	Allows more specific type paremeters (relatively safe extension)







Overlapping Instances extension


This extension is used but also widely frowned upon


	Only need this extension if overlapping instances actually used


	Enable extension where instances defined not where used


	Compiler picks the most specific matching insrtance. I_1 is more specific than I_2 when I_1 can be created by substituting for variables of I_2 and not vice versa


	Contexts (part before =>) not considered when selecting instances









A case against OverlappingInstances

module Help where
    class MyShow a where
      myshow :: a -> String
    instance MyShow a => MyShow [a] where
      myshow xs = concatMap myshow xs

    showHelp :: MyShow a => [a] -> String
    showHelp xs = myshow xs     -- doesn't see overlapping instance

module Main where
    import Help

    data T = MkT
    instance MyShow T where
      myshow x = "Used generic instance"
    instance MyShow [T] where
      myshow xs = "Used more specific instance"

    main = do { print (myshow [MkT]); print (showHelp [MkT]) }
*Main> main
"Used more specific instance"
"Used generic instance"





#Flexible contexts extension


	MultiParamTypeClasses leads to inexpressible types




toInt val = convert val :: Int






	What is the type of function toInt? Would like to write:




toInt :: (Convert a Int) => a -> Int






	But (Convert a Int) => is an illegal context, as Int not a type variable


	FlexibleContexts extension makes the above type legal to write


	Is a relatively safe extension to use


	Still a couple of restrictions







FunctionalDependencies extension


	Some restrictions: Sufficient conditions of decidable instances







Undecidable vs. exponential – who cares?


	Editorial: maybe decidability of languages is overrated


	Computers aren’t Turing machines with infinite tapes, after all







UndecidableInstances extension


	Lifts Paterson and coverage restrictions


	currently must define an instance for every transformer


	With UndecidableInstances, one instance can cover all transformers







Examples


Type-level booleans


	The utility of TypeEq: can be used to say that two types have to be the same type


	Editorial: TypeEq is kind of the holy grail of fundeps


	If you can implement TypeEq, you can program recursively at type level by distinguishing base and recursive cases!


	But relies deeply on OverlappingInstances…
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  % Pipes
% Paul Martinez


Pipes 5/1/14

This guest lecture was given by Gabriel Gonzalez, creater of the Haskell library Pipes.

Consider the following functions:

replicateM :: Monad m => Int -> ma -> m [a]
mapM :: monad m => (a -> m b) -> [a] -> m[b]
sequence :: Monad m => [m a] -> m [a]





These are three functions involving mapping over monads. A problem with this functions is that they don’t return until everything has been processed, so you can’t consume any results until everything has been processed. This is inefficient both time-wise and memory-wise and it also won’t work for infinite lists.

A potential solution is lazy IO, but this is disappointing for a number of reasons. It only works for the IO monad, and it only works for sources of information, not sinks or transformations. A major problem is that it invalidates the equational reasoning of Haskell programs because evaluation order may be important. It seems like an admission of defeat, declaring that monads are too difficult and awkward.

What we would to do is separate the production of values and the consumption of values.
Pipes is a co-routine library that tries tries to emulate this sort of paradigm in a manner
similar to Unix pipes.

import Pipes
import System.IO (isEOF)

-- Producer designates a generator of values
stdinLn :: Producer String IO ()
stdinLn = do
    eof <- lift isEOF
    if eof
        then return ()
        else do
            str <- lift getLine
            -- Special function yield hands off the value and blocks
            -- until the value is used
            yield str
            stdinLn

-- For every call to "yield str", a corresponding call to "useString str" is made
useString:: String -> Effect IO ()
useString str = lift (putStrLn str)

-- Echoes back string inputs from user
echo :: Effect IO ()
echo = for stdinLn useString

main :: IO ()
main = runEffect echo





How can we build something like this? We can think of the Producer type as
a sort of list containing effects inside.

import Control.Monad.Trans.Class (MonadTrans(lift))

data Producer a m r
    = Yield a (Producer a m r)  -- "Cons" of a list
    | M    (m (Producer a m r))
    | Return r                  -- Empty list

yield :: a -> Producer a m ()
yield a = Yield a (Return ())

instance Monad m => Monad (Producer a m) where
--  return :: Monad m => r -> Producer a m r
    return r = Return r

--  (>>=) :: Monad m
--        => Producer a m r -> (r -> Producer a m s) -> Producer a m s
    (Yield a p) >>= return' = Yield a (p >>= return')
    (M       m) >>= return' = M (m >>= \p -> return (p >>= return'))
    (Return  r) >>= return' = return' r

instance MonadTrans (Producer a) where
--  lift :: Monad m => m r -> Producer a m r
    lift m = M (liftM Return m)





Alternatively, the Producer type can be thought of as a syntax tree of Yield values
and a nil value. In this sense for connects to syntax trees to create a new one.

for :: Monad m
    => Producer a m ()
    -> (a -> Producer b m ())
    -> Producer b m ()
for (Yield a p) yield' = yield' a >> for p yield'
for (M       m) yield' = M (m >>= \p -> return (for p yield'))
for (Return  r) _      = Return r





runEffect is a useful function for actually performing the actions generated by
Producer. An Effect is a Producer Void, where Void is a type with no constructors.
This means that an Effect has no yield constructors, so it contains an entirely
self-contained producer-consumer cycle.


Theory behind Pipes:

A little bit about the theory behind Pipes: One of the cool things about Haskell
is that it uses design patterns that are inspired by category theory. We see these
in the typeclasses Monoid, Applicative, Monad, etc. We use these things because
we want to reduce software complexity. In software we have this problem where we hook
up a bunch of components together and the more components you have the more difficult
it is to keep track of everything. We can reduce the complexity if we make sure that
whenever we add a new component we still have the same type at the end, which is what a monoid is!

class Monoid m where
  mappend :: m -> m -> m
  mempty :: m

(<>) :: Monoid m => m -> m -> m
(<>) = mappend

-- Monids must follow the following rules:
-- Associativity
(x <> y) <> z = x <> (y <> z)
-- Identity
mempty <> x = x
x <> mempty = x





We then see that a Producer can fit into this mold.
Returning unit is the equivalent of returning zero things while calling yield is
the equivalent of adding things. This is because (>>) and return () within a Monad form a Monoid.

(>>)      :: Producer a IO () -- (<>)   :: m
          -> Producer a IO () --        -> m
          -> Producer a IO () --        -> m

return () :: Producer a IO () -- mempty :: m





We can generalize monoids even further by discussing categories.

class Category cat where
  (.) :: cat b c -> cat a b -> cat a c
  id :: cat a a

  (>>>) :: cat a b -> cat b c -> cat a c
  (>>>) = flip (.)





In a monad (>=>) and return form a Category.

We will now define ~> to be a point free oposition operator. We would like (~>) and yield to form a category. What this means in terms of following the appropriate laws can be found
on the ensuing slides.

(f ~> g) x = for (f x) g








Pipes API

In addition to having a producer that creates values, we can also create a consumer
that takes in values in a stateful manner. This example echoes back a user’s input as before
but also prefixes it with a line number:

import Pipes
import Pipes.Prelude (stdinLn)

numbered :: Int -> Consumer String IO r
numbered n = do
    str <- await
    let str' = show n ++ ": " ++ str
    lift (putStrLn str')
    numbered (n + 1)

giveString :: Effect IO String
giveString = lift getLine

nl :: Effect IO ()
nl = giveString >~ numbered 0

main :: IO ()
main = runEffect nl





The Consumer typeclass is defined similarly to Producer.

data Consumer a m r
    = Await (a -> Consumer a m r )
    | M       (m (Consumer a m r))
    | Return r

await :: Consumer a m a
await = Await (\a -> Return a)





The Consumer equivalent of Producer’s for is the (>~), the feed operator.

(>~) :: Monad m
     => Consumer a m b
     -> Consumer b m c
     -> Consumer a m c





We can combine Producers and Consumers with the piper operator (>->).

Mix Producers and Consumers using >->
(>->) :: Producer a IO r
      -> Consumer a IO r
      -> Effect     IO r

main :: IO ()
main = runEffect (stdinLn >-> numbered)





In addition to mixing Producers and Consumers, we also have the Pipe type
which can both yield and await. In a way we can create Consumers and Producers from
Pipes simply by sealing off one end of the pipe:

type Consumer a = Pipe a Void
type Producer b = Pipe () b    -- Almost, the real implementation is a bit more clever





The Pipes API inspired by category theory, equating (>=>) with return,
(~>) with yield, (>~) with await, and (>->) with cat.
A neat advantage or equating these is that the category laws then act as a small
test cases for the library.
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  % Information Flow Control
% Lecture by David Mazières
% Scribed by Chris Copeland (chrisnc@stanford.edu)


Safe Haskell


	How can we incorporate untrusted code in our programs?


	We often want to use 3rd party libraries (e.g., from Hackage), but we need to
limit the damage they can do if they are malicious.





How do we decide whether code is safe?


	We can’t determine safety of functions just from type signatures.


	unsafePerformIO and others can do nasty things without making the
(potential) nastiness obvious in the type signature of the function.


	We need some way to trust the type signature (pure functions should actually be pure).







Enter Safe Haskell


	Prevents your modules from importing “unsafe” modules


	Usage: import safe ...


	Can invoke GHC with -XSafe to force all imports to be safe.


	Forces compilation to fail if the import is not safe.







Trusting packages


	Problem: useful modules often need to do “unsafe” operations, so we need a
way of asserting the safety of these operations.


	Module authors can compile with -XTrustworthy.


	Asserts that the module is safe.


	Does not restrict the module’s implementation from doing unsafe things: unsafePerformIO, inlinePerformIO, etc.


	Forces the module to expose a safe interface.






	How does this help? Can’t anyone just use -XTrustworthy?


	Users of these modules can decide whether to trust them.


	-fpackage-trust enables per-package trust.


	-distrust ignores Trustworthy for a specific package.


	-distrust-all-packages ignores Trustworthy for all packages.











Restricted I/O


	What if untrusted code needs to do I/O (that cannot be hidden behind a pure interface)?


	Implement “restricted” I/O with an RIO monad.


	Implement RIO functions for specific capabilities, and implicitly
disable all other forms of I/O by not implementing them for the RIO monad.


	Use newtype to wrap RIO around IO, and export the type, but not the constructor.


	Export runRIO to allow the IO action to be run, but this can only
happen in the RIO monad, and hence it is safe.


	Internally, the RIO implementation uses the UnsafeRIO constructor.


	This means a user can’t take an IO action and turn it into an RIO action, but can take an
RIO action and turn it into an IO action, and therefore can only run RIO actions.








runRIO :: RIO a -> IO a





Example: restrict access to particular network ports or files.

This isn’t possible in many other languages, where we are always implicitly in the
IO monad.






Decentralized Information Flow Control


Why RIO isn’t enough


	How can we prevent leaking private data on a website while still using 3rd party libraries to
manipulate that data?


	Consider a malicious googleTranslate function.


	We can use code that manipulates and stores private data in a sandbox, but the
implementor might have created a backdoor that returns the contents of the
sandbox when given a certain input.







Information Flow Control (IFC)


	Military origins (managing classified data)


	The basics:


	All data has a label.


	All processes have a label.


	The labels have a partial order: A “can flow to” B is denoted A ⊑ B.






	Examples:


	If “file” ⊑ “emacs” then emacs can read the file.


	If “emacs” ⊑ “file” then emacs can write to the file.


	We often want both directions.






	Access control is transitive (one of the properties of partial orders).


	In IFC we have a lattice of labels.




Consider two users.

public : L_0
userA : L_A
userB : L_B
AandB : L_AB





L_AB is the least upper bound of L_A and L_B.




Decentralized Information Flow Control

A DIFC system has a notion of privileges, which form a preorder on the “can flow to” (⊑)
operator.

Using privileges, users can declassify their own data and partially declassify data
higher on the lattice.

Under A’s privileges, the lattice collapses to (L_0 + L_A) and (L_B + L_AB).

Under B’s privileges, the lattice collapses to (L_0 + L_B) and (L_A + L_AB).




Static implementation in Haskell

Encode a two point lattice in the type system.

data L = Lpriv
data H = Hpriv






	Export types but not constructors.


	Constructors act like “keys” that can deconstruct the value, which would let users
circumvent the labels.




Use a multi-parameter typeclass to implement (⊑).

-- multiparam typeclass extension
class Flows sl sh where
instance Flows L L
instance Flows L H
instance Flows H H

newtype Sec s a = MkSec a
instance Monad (Sec s) where
    return x = MkSec x
    MkSec a >>= k = k





Allow anyone to label a value but require the label’s private constructor to
unlabel.

label :: a -> Sec s a
label x = MkSec x
unlabel :: Sec s a -> s -> a
unlabel (MkSec a) s = s `seq` a -- need to force the privilege with seq, otherwise it won't be checked





There is only one valid value for each of the label types, namely the private
constructor, so if we don’t have access to it, we can’t call unlabel without
crashing (or just failing to compile). (We can pass undefined as the argument
s, but seq will force it and crash.)

Allow data to be relabeled if an instance of Flows exists for that ordered pair.

relabel :: (Flows lin lout) => Sec lin a -> Sec lout a
relabel (MkSec val) = MkSec val








Secure I/O

What if we need both the Sec and IO monads?

Is this code safe?

untrustedTranslate :: Sec H L.ByteString -> Sec H (IO L.ByteString)





No, because the I/O action wrapped by Sec can be arbitrary, and might do
nasty things if we run it.

Solution: combine Sec and RIO into one monad, so that we can define what I/O is
allowed in the secure context.

value :: Sec s a -> SecIO s a
value s a = MkSecIO (return sa)

plug :: Less sl sh => SecIO sh a -> SecIO sl (Sec sh a)

type File s = SecFilePath String

readFileSecIO :: File s -> SecIO s' (Sec s String)





New safe external query type signature:

queryGoogle :: Sec H L.ByteString -> SecIO H L.ByteString





All enforcement done at compile time.




Dynamic DIFC with LIO


	We may need to create new labels at runtime and enforce the DIFC properties on them.


	Idea: track both the current label and maximum label or “clearance”.


	Associate an LIOState with each thread.




data LIOState l = LIOSTate { lioLabel, lioClearance :: !l }

newtype LIO l a = LIOTCB (IORef (LIOState l) -> IO a)

instance Monad (LIO l) where
    return = LIOTCB . const . return
    (LIOTCB ma) >>= k = LIOTCB $ \s -> do
        a <- ma
        case k a of LIOTCB mb -> mb s


-- need back door from IO to LIO for privileged code
-- don't export this symbol
ioTCB :: IO a -> LIO l a
ioTCB = LIOTCB . const





(TCB = Trusted Computing Base)

Encoding privileges:

class (Typeable p, Show p) => SpeaksFor p where
    speaksFor :: p -> p -> Bool

downgradeP -- compute lowest equivalent label under some privilege
canFlowToP -- determine whether the downgrade of one label can flow to





How can we allow computation that encodes the fact that you have seen information
with a particular label?

taint :: Label l => l -> LIO l ()








Privileges vs. privilege descriptions


	We want to be able to name privileges in any context.


	There is an important difference between naming privileges and exercising them.




newtype Priv a = PrivTCB a deriving (Show, Eq, Typeable)

instance Monoid p => Monoid (Priv p) where
  mempty = PrivTCB mempty
  mappend (PrivTCB m1) (PrivTCB m2) = PrivTCB $ m1 `mappend` m2

privDesc :: Priv a -> a
privDesc (PrivTCB a) = a

privInit :: p -> IO (Priv p)
privInit p = return $ PrivTCB p






	Can delegate privileges to someone else.


	Can wrap privileges in closures.


	Can use “Gates”, which take privileges and return privilege descriptions, so
someone can require you to have privileges to do something, without forcing
you to delegate those privileges in order to prove that you have them.




Augmenting normal I/O actions with labels:

{-# LANGUAGE Trustworthy #-}

import LIO.TCB.LObj

type LMVar l a = LObj l (MVar a)

takeLMVar :: Label l => LMVar l a -> LIO l a
takeLMVar = blessTCB "takeLMVar" takeMVar

tryTakeLMVar :: Label l => LMVar l a -> LIO l (Maybe a)
tryTakeLMVar = blessTCB "tryTakeLMVar" tryTakeMVar

putLMVar :: Label l => LMVar l a -> a -> LIO l ()
putLMVar = blessTCB "putLMVar" putMVar








Applications using LIO


	Main application is Hails web framework


	Really a framework for creating web platforms hosting mutually distrustful apps






	Example: GitStar (which is implemented with Hails)


	Host potentially private git repositories


	Functionality for third party extensions (e.g., syntax-highlighting) cannot leak private source code






	Ongoing research here at Stanford
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Implementing Haskell: The Runtime System

A guest lecture by Edward Z Yang, scribed by Thomas Dimson.

Previously, we have discussed the details of the Haskell compiler
but did not discuss another large component of Haskell: the runtime system.
For example, what makes Haskell green threads cheaper than implementations
in other languages? Although we may not hack the GHC runtime, the internals
are “good for the soul” and helps us understand other systems like the JVM.




What is a run-time system?


	Runtimes are a blob of code which sits between C client code and
compiled Haskell code


	The runtime handles things like garbage collection, thread scheduling,
dynamic linking, software transactional memory, profiling, etc.


	The Haskell run-time also includes a bytecode interpreter if you use
GHCi







Garbage collection


	Garbage collection allows us to pretend programs have infinite memory
and allocate indefinitely


	Instead of explicitly freeing memory, we reclaim dead data


	One approach: reference counting.


	We store a count along with each object, representing the number of pointers
still pointing to it. When the count goes to zero, we free the memory.


	Unfortunately this can’t handled cyclical references and may cost more than
expected if we deallocate a large structure.






	Upgraded approach: mark and sweep


	Mark phase: stop the world, go over the heap and mark objects which are alive (i.e. reachable
from the root set of memory)


	Sweep phase: clear free memory that wasn’t marked. Unfortunately, this causes fragmentation
and needs to sweep the entire heap. To reallocate, one needs to a traverse a list of free memory


	Fragmentation can be partially solved by having a compaction phase









Generational copying collector


	A modern approach utilized by GHC and the JVM


	Generational hypothesis: “most objects die young”.


	In other words, if you allocated the memory recently then it is very likely to
disappear.


	Especially true for functional languages because most (or all) data is
immutable






	Cheney’s algorithm


	Maintain a “from space” and a “to space”. The “from space” contains
objects that are both dead and alive while the “to space” will only
contain alive references.


	Begin with “evacuation phase” where we move an object from the “from
space” to the”to space”. We set up a forwarding pointer in the old
location to the new location


	We don’t naively recurse because this may use a large stack. Instead, we
use a queue-based approach liked breadth-first search.


	Next phase is “scavenge” where we start modifying pointers. We maintain a
scavenge pointer which advances over objects in the “to space”. Everything
less than the scavenge pointer has been rewritten with new pointers


	After all is complete, we change the “to space” into the “from space”






	Generational portion


	Instead of just having one “from” or “to” space, we have different spaces for
different generations.


	Fresh objects are allocated in the nursery. If an object from the nursery
survives garbage collection, it is promoted to an older generation






	Copying collectors come with advantages


	The more garbage you have, the faster it runs since it only traverses live
objects.


	Free memory is always contiguous






	We can perform GC whenever the free heap pointer advances past the limit of
the heap (super easy check)







Write barriers and purity


	If generational garbage collectors are so good, why doesn’t every language use
them?


	You need to know all the pointers in an object, which can be difficult to
maintain.


	We assume that nothing from an older generation points to the nursery. This
makes sense in a purely functional language, but doesn’t hold in the
presence of mutation (even in Haskell there are IORefs)


	Solution: we can maintain  “mutable set” which also gets traced during a
minor GC. This complicates generational GC and forces an extra pointer write
for mutable memory.


	Fortunately, in pure languages mutation is rare. IORefs are slow to begin
with, and lazy mutation (thunks) can be specialized






	Special thunk behavior


	When a thunk gets evaluated, it is immutable afterwards. Thus, when the
thunk gets evaluated we can immediately promote the pointed objects into
an older generation


	Doesn’t work for IORefs: they are expected to be mutated a lot, and so we
would end up promoted lots of things into the older generation











Parallel garbage collection


	Key idea: split the heap into blocks and parallelize the scavenge process


	Contrast to concurrent GC, which doesn’t stop the world. Parallel garbage
collection still stops the world


	Problem: two gc threads might try to scavenge something that points to the
same object, forcing us to take a lock


	Fortunately, if the object pointed to is pure we can just copy the object
twice and allow thread to race without locks









Scheduler


	Schedulers are the heart of the run-time system. It is responsible for calling
into Haskell code, which will eventually yield back to the scheduler


	In Haskell, we can force a yield by setting the heap limit to zero and the
thread will yield for garbage collection.


	Each thread contains a stack object pointer with all the stack frames from the
thread. Thus, it can resume where it left off when it is scheduled again


	Threads are fast to allocate because they only consist of a small initial
stack object (lives on the heap, collected as part of the young generation)


	Scheduler inner loop, single threaded edition:


	Thread queue maintains all the threads that need to run


	Scheduler picks up a thread, waits for the thread to run for a while then
interrupts and puts it back into the queue






	Scheduler inner loop, multi threaded edition:


	Each scheduler runs in its own OS thread


	If FFI is marked as safe, then it gives up the scheduler lock while
running. Unsafe doesn’t give up the lock, so