crx_unpack Documentation
Release 0.1.4

Mike Mabey

Jun 19, 2017

Contents

1 crx_unpack Package 1
2 Encrypted Temp Directory 3
3 Installation 5
4 Structure of CRX Package Format 7
4.1 Package Header @ i e e e e e e 7
42 Extension CONENtS v v v v vt e et e e e e e e e e e e e e e e e e e e e 8

Python Module Index 9

CHAPTER 1

crx_unpack Package

The purpose of this module is to mimic how Google Chrome unpacks CRX files as closely as possible. Involved in this
is the need to remove the CRX headers (see the structure details of CRXs on the Home page), separate the underlying
ZIP file, extract the contents of the ZIP file, among other things.

For end users, the only function you should need to call is unpack, which will handle each of the steps mentioned
above.

crx_unpack .unpack (crx_file, ext _dir=None, *, overwrite_if exists=False, img_tallies=None,
test_contents=True, passwd=None, skip_img_formats=None, un-
pack_in_subprocess=False, convert_in_subprocess=True, do_convert=False,

zip_dir=None)
Unpack the CRX and extract it in the directory at ext_dir.

Return the absolute, normalized path to the extraction directory (useful if it wasn’t given as a parameter).

As part of the unpacking process, this function will create a duplicate of the CRX but with the headers removed.
This is technically a temporary file and will not persist past a reboot of the machine. However, because this ZIP
file may be of interest to users, it is not deleted after the unpacking process is complete. To discover the path to
this file, you’ll need to either (1) set the zip_dir parameter yourself, or (2) set the logging level to DEBUG.

Parameters
e crx_file (str)—Path to the CRX file.
* ext_dir (str)— Directory where to extract the contents.

* zip_dir (str)-Directory where to store the ZIP file after removing the Chrome headers.
Defaults to ext_dir/../.

* overwrite_if exists (bool) — When extracting to a directory that already exists,
unpack will normally fail. Setting this to True will delete the contents of the destination
directory before unzipping.

* img_tallies (dict) — A dictionary for storing the number of each type of image file
converted during the unpacking process.

* test_contents (bool)— When unpacking the CRX, use the zipfile module’s test fea-
ture to test the validity of the embedded zip file before extraction.

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

crx_unpack Documentation, Release 0.1.4

* passwd (str) — Optional password to use when extracting the CRX. If the CRX was
obtained from Google’s Chrome Web Store, you should not need this. If you provide a
password here, it will be passed on to the ext ract_ z1ip function.

* skip_img_ formats (list or tuple)-Theimage formats to skip when attempting
to convert them to PNG. This will typically include the strings ICO, PNG, and WEBP.

* unpack_in_subprocess (bool) — Flag indicating if the job of unpacking the CRX
should be done in a subprocess rather than calling the function directly. Usually this
shouldn’t need to be set as it will only hinder performance.

* convert_in_subprocess (bool)—Flag indicating if the job of converting the images
in the CRX should be done in a subprocess rather than calling the function directly. Usually
this SHOULD be set, since converting images can sometimes cause a segmentation fault,
which kills the whole process.

* do_convert (bool) — Flag indicating whether images should be converted during the
unpacking process (intended to mimic Chrome’s unpacking process more closely).

Returns Directory where the archive was extracted.
Return type str

crx_unpack.extract_zip (zip_file, extract_dir, pwd=None, test_contents=True, reraise_errors=True)
Simple wrapper around the Python zipfile.ZipFile class.

Typically, it is not necessary to call this function directly from anywhere other than the unpack function.
Parameters
* zip file (str) - Path to the zip file to be extracted.
* extract_dir (str)— Directory where the contents will be extracted.
* pwd (str)— Password for the zip file.

* test_contents (bool)— Whether to use the library’s testzip() function on the archive
before extracting. Tests if the CRC and header of each file in the archive are valid.

* reraise_errors (bool) — Set to False when the unpack script is run with the xo
(extract only) command, in which case the function will return a non-zero value when an
error occurs. The default, False, indicates that any errors that come up should just be re-
raised.

Return type None

exception crx_unpack .BadCrxHeader
Bases: Exception

Raised when a CRX’s header length or values aren’t valid.

2 Chapter 1. crx_unpack Package

https://docs.python.org/3/library/stdtypes.html#str
https://chrome.google.com/webstore
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#Exception

CHAPTER 2

Encrypted Temp Directory

The EncryptedTempDirectory class is designed for when you need a directory whose contents are encrypted
by eCryptfs, but you would also like to take advantage of the features of in-memory-only directories, such as increased
access speed and automatic deletion (e.g. when you’re unpacking a CRX).

To understand this class fully, please also read the documentation on the TemporaryDirectory class.

class crx_unpack.encrypted_dir.EncryptedTempDirectory (¥, upper_dir, **kwargs)
Bases: tempfile.TemporaryDirectory

Create and return an encrypted temporary directory.
This behaves similarly to TemporaryDirectory, except for the following:

o[t requires that an “upper directory” be specified, which will be the mount point used by eCryptfs to mount
the encrypted directory to the filesystem.

o[t creates two files in ~/.ecryptfs required to mount the directory (both of which are deleted when this
object is):

—ALIAS.sig - Contains the signatures for the FEK and FNEK encryption keys.
—ALIAS.conf - Contains fstab-style information for which directory eCryptfs should mount and where.

In the above notes, ALIAS (which is a term used in the eCryptfs documentation, see links below) will be the
name of the created temp directory, accessible as the basename of self.name.

To use an EncryptedTempDirectory object, it’s best to use it with a with clause, like so:

with EncryptedTempDirectory (upper_dir=upper) as lower:

Better yet, use an instance of TemporaryDirectory as the upper directory, like this:

with TemporaryDirectory () as upper, \
EncryptedTempDirectory (upper_dir=upper) as lower:

http://ecryptfs.org/
https://docs.python.org/3/library/tempfile.html#tempfile.TemporaryDirectory

crx_unpack Documentation, Release 0.1.4

Note: In the above example, both temporary directories are deleted as soon as the __exit__ () method is
called (triggered by the close of the with clause). So make sure that anything you need to do with these objects,
you do before leaving the with clause.

Note: This class depends on eCryptfs, so it will need to be installed on the system to work properly. Similarly,
this class depends on the following Unix tools/devices:

*head
secryptfs—add-passphrase
emount

skeyctl

*/dev/urandom

On Debian/Ubuntu-based systems, you can install these with:

sudo apt-get install coreutils mount keyutils ecryptfs-utils

For more information, see the following resources:
*http://manpages.ubuntu.com/manpages/zesty/en/manl/mount.ecryptfs_private.1.html
*http://manpages.ubuntu.com/manpages/zesty/en/manl/ecryptfs-add-passphrase.1.html

*https://askubuntu.com/questions/574110/how-to-use-ecryptfs-with-a-random-directory/574425#574425

Parameters

* upper_dir (str) — Path where the encrypted directory will be mounted, and where the
unencrypted version of the files will be accessible.

* kwargs — Additional parameters to pass to the constructor of the
TemporaryDirectory class.

This module contains several utilities for working with Google Chrome extension files (CRXs), which have the * . crx
file extension. The goal of this project is to mimic as closely as possible the functionality of Google Chrome when
these extensions are unpacked and installed.

The first module is crx_unpack, which handles the headers and structure of the CRX itself (see below for more details
on this).

The second module is Encrypted Temp Directory, which gives a way to use eCryptfs to encrypt a directory that only
ever exists in memory by inheriting from the TemporaryDirectory class and hooking into some eCryptfs tools
to handle the encryption of the file contents and file names (handled by different keys).

4 Chapter 2. Encrypted Temp Directory

http://manpages.ubuntu.com/manpages/zesty/en/man1/mount.ecryptfs_private.1.html
http://manpages.ubuntu.com/manpages/zesty/en/man1/ecryptfs-add-passphrase.1.html
https://askubuntu.com/questions/574110/how-to-use-ecryptfs-with-a-random-directory/574425#574425
https://docs.python.org/3/library/stdtypes.html#str
http://ecryptfs.org/
https://docs.python.org/3/library/tempfile.html#tempfile.TemporaryDirectory

CHAPTER 3

Installation

Since crx_unpack is available on PyPI, you can install it using pip:

$ pip install crx_unpack

https://pypi.python.org/pypi/crx_unpack
https://pip.pypa.io/en/stable/installing/

crx_unpack Documentation, Release 0.1.4

6 Chapter 3. Installation

CHAPTER 4

Structure of CRX Package Format

The information in this section introduces the structure and contents of CRX files.

As explained at https://developer.chrome.com/extensions/crx

Package Header

The header contains the author’s public key and the extension’s signature. The signature is generated from the ZIP file
using SHA-1 with the author’s private key. The header requires a little-endian byte ordering with 4-byte alignment.
The following table describes the fields of the . crx header in order:

Field Type | Length| Value Description
magic char[] | 32 bits | Cr24 Chrome requires this constant at the beginning of every . crx package.
number
version | un- 32 bits | 2 The version of the . crx file format used (currently 2).
signed
int
public un- 32 bits | pub- The length of the RSA public key in bytes.
key signed key.length
length int
signa- un- 32 bits | sig.length The length of the signature in bytes.
ture signed
length int
public byte[] | pub- pub- The contents of the author’s RSA public key formatted as an X509
key key.lengthkey.contentSubjectPublicKeylInfo block.
signa- byte[] | sig.lengthsig.contentThe signature of the ZIP content using the author’s private key. The
ture signature is created using the RSA algorithm with the SHA-1 hash
function.

https://developer.chrome.com/extensions/crx

crx_unpack Documentation, Release 0.1.4

Extension Contents

The extension’s ZIP file is appended to the * . crx package after the header. This should be the same ZIP file that the
signature in the header was generated from.

8 Chapter 4. Structure of CRX Package Format

Python Module Index

C

crx_unpack, 1
crx_unpack.encrypted_dir, 3

crx_unpack Documentation, Release 0.1.4

10 Python Module Index

Index

B

BadCrxHeader, 2

C

crx_unpack (module), |
crx_unpack.encrypted_dir (module), 3

E

EncryptedTempDirectory (class
crx_unpack.encrypted_dir), 3
extract_zip() (in module crx_unpack), 2

U

unpack() (in module crx_unpack), |

in

11

	crx_unpack Package
	Encrypted Temp Directory
	Installation
	Structure of CRX Package Format
	Package Header
	Extension Contents

	Python Module Index

