

Contents

Preface

	 Introduction

	 Installation
	Loading Crud

	 Setup
	Application

	Controller

	Exception Handler

	Routing

	Request detector

Listener Configuration

	 Listener Options
	withJsonApiVersion

	meta

	absoluteLinks

	debugPrettyPrint

	jsonOptions

	include

	fieldSets

	docValidatorAboutLinks

	queryParameters

	 Debugging

	 Pagination

	 Schemas
	Custom entity schema

	Custom dynamic schema

API Usage

	 Fetching Collections

	 Fetching Resources

	 Creating Resources
	Request Data

	Side-Posting

	 Updating Resources
	Updating To-One Relationships

	Updating To-Many Relationships

	 Deleting Resources

	 Errors and Exceptions
	Default Errors

	Validation Errors

	Invalid Request Data

Advanced API Usage

	 Inclusion
	Associated Data

	Include Parameter

	allowList/denyList

	 Sparse Fieldsets
	Limiting Associated Data

	Combinations

	 Sorting
	Single Field Sorting

	Multi Field Sorting

	Sorting By Related Data

	Combined Sorts

	 Filtering

Additional Information

	 JSON Examples

	 Common Issues
	Missing template

	Missing routes

	Schema not registered

	Normal HTML is returned

	 Customizing Output
	Date Formats

	 Contributing

Introduction

Crud listener for building JSON API [http://jsonapi.org/] Servers with almost no code.

Comes with advanced features like:

	Compound Documents (Deeply Nested Includes)

	Sparse Fieldsets

	Multi-field Search (Filtering)

	Multi-field Sorting

	Multi-field Validation

	Pagination

Installation

Install the JsonApi Listener by running the following command inside your project folder:

composer require friendsofcake/crud-json-api

It is highly recommended that you install the Search plugin as well:

composer require friendsofcake/search

Loading Crud

Only run the following command if your application does not yet use Crud:

bin/cake plugin load Crud

Setup

Before you can start producing JSON:API you will have to set up
your application by following the steps in this section.

Application

CakePHP needs to be told that JSON:API requests should be parsed
as JSON.

To do this, the BodyParserMiddleware must be added to your application
middleware queue, and a parser for the application/vnd.api+json mime-type
must be added.

In your Application class’ middleware method, add the following.

$bodies = new BodyParserMiddleware();
$bodies->addParser(['application/vnd.api+json'], function ($body) {
 return json_decode($body, true);
});

$middlewareQueue->add($bodies);

Assuming you are using the default App Skeleton’s middleware queue, change it to.

public function middleware(MiddlewareQueue $middlewareQueue): MiddlewareQueue
{
 $bodies = new BodyParserMiddleware();
 $bodies->addParser(['application/vnd.api+json'], function ($body) {
 return json_decode($body, true);
 });

 $middlewareQueue
 // Catch any exceptions in the lower layers,
 // and make an error page/response
 ->add(new ErrorHandlerMiddleware(Configure::read('Error')))

 // Handle plugin/theme assets like CakePHP normally does.
 ->add(new AssetMiddleware([
 'cacheTime' => Configure::read('Asset.cacheTime'),
]))

 // Add routing middleware.
 // If you have a large number of routes connected, turning on routes
 // caching in production could improve performance. For that when
 // creating the middleware instance specify the cache config name by
 // using it's second constructor argument:
 // `new RoutingMiddleware($this, '_cake_routes_')`
 ->add(new RoutingMiddleware($this))

 // Parse various types of encoded request bodies so that they are
 // available as array through $request->getData()
 // https://book.cakephp.org/4/en/controllers/middleware.html#body-parser-middleware
 ->add($bodies);

 return $middlewareQueue;
}

Controller

Attach the listener using the components array if you want to attach
it to all controllers, application wide, and make sure RequestHandler
is loaded before Crud.

<?php
class AppController extends Controller {

 public function initialize()
 {
 $this->loadComponent('RequestHandler');
 $this->loadComponent('Crud.Crud', [
 'actions' => [
 'Crud.Index',
 'Crud.View'
],
 'listeners' => ['CrudJsonApi.JsonApi']
]);
 }

Alternatively, attach the listener to your controllers beforeFilter
if you prefer attaching the listener to only specific controllers on the fly.

<?php
class SamplesController extends AppController {

 public function beforeFilter(\Cake\Event\Event $event) {
 parent::beforeFilter();
 $this->Crud->addListener('CrudJsonApi.JsonApi');
 }
}

Exception Handler

The JsonApi listener overrides the Exception.renderer for jsonapi requests,
so in case of an error, a standardized error will be returned,
according to the JSON API specification.

Create a custom exception renderer by extending the Crud’s JsonApiExceptionRenderer
class and enabling it with the exceptionRenderer configuration option.

<?php
class AppController extends Controller {

 public function initialize()
 {
 parent::initialize();
 $this->Crud->config(['listeners.jsonApi.exceptionRenderer' => 'App\Error\JsonApiExceptionRenderer']);
 }
}

Note

The listener setting above is ignored when using CakePHP’s PSR7 middleware feature.

If you want to use CakePHP’s ErrorHandlerMiddleware:

	make sure that you are using CakePHP 3.4+

	set the Error.exceptionRenderer option in config/app.php to 'CrudJsonApi\Error\JsonApiExceptionRenderer' like shown below:

'Error' => [
 'errorLevel' => E_ALL,
 'exceptionRenderer' => 'CrudJsonApi\Error\JsonApiExceptionRenderer',
 'skipLog' => [],
 'log' => true,
 'trace' => true,
],

Routing

Only controllers explicitly mapped can be exposed as API resources so make sure
to configure your global routing scope in config/routes.php similar to:

const API_RESOURCES = [
 'Countries',
 'Currencies'
];

Router::scope('/', function ($routes) {
 foreach (API_RESOURCES as $apiResource) {
 $routes->resources($apiResource, [
 'inflect' => 'dasherize'
]);
 }
});

Request detector

The JsonApi Listener adds the jsonapi request detector
to your Request object which checks if the request
contains a HTTP Accept header set to application/vnd.api+json
and can be used like this inside your application:

if ($this->request->is('jsonapi')) {
 return('cool, using JSON API');
}

Note

To make sure the listener won’t get in your way it will
return null for all requests unless is('jsonapi') is true.

Listener Options

The output produced by the listener is highly configurable using the Crud
configuration options described in this section.

Either configure the options on the fly per action or enable them for all
actions in your controller by adding them to your contoller’s initialize() event
like this:

public function initialize()
{
 parent::initialize();
 $this->Crud->config('listeners.jsonApi.withJsonApiVersion', true);
}

withJsonApiVersion

Pass this mixed option a boolean with value true (default: false) to
make the listener add the top-level jsonapi node with member node
version to each response like shown below.

{
 "jsonapi": {
 "version": "1.0"
 }
}

Passing an array or hash will achieve the same result but will also generate
the additional meta child node.

{
 "jsonapi": {
 "version": "1.0",
 "meta": {
 "cool": "stuff"
 }
 }
}

meta

Pass this array option (default: empty) an array or hash will make the listener
add the the top-level jsonapi node with member node meta to each response
like shown below.

{
 "jsonapi": {
 "meta": {
 "copyright": {
 "name": "FriendsOfCake"
 }
 }
 }
}

absoluteLinks

Setting this boolean option to true (default: false) will make the listener
generate absolute links for the JSON API responses.

debugPrettyPrint

Setting this boolean option to false (default: true) will make the listener
render non-pretty json in debug mode.

jsonOptions

Pass this array option (default: empty) an array with
PHP Predefined JSON Constants [http://php.net/manual/en/json.constants.php]
to manipulate the generated json response. For example:

public function initialize()
{
 parent::initialize();
 $this->Crud->config('listeners.jsonApi.jsonOptions', [
 JSON_HEX_QUOT,
 JSON_UNESCAPED_UNICODE,
]);
}

include

Pass this array option (default: empty) an array with associated entity
names to limit the data added to the json included node.

Please note that entity names:

	must be lowercased

	must be singular for entities with a belongsTo relationship

	must be plural for entities with a hasMany relationship

$this->Crud->config('listeners.jsonApi.include', [
 'currency', // belongsTo relationship and thus singular
 'cultures' // hasMany relationship and thus plural
]);

Note

The value of the include configuration will be overwritten if the
the client uses the ?include query parameter.

fieldSets

Pass this array option (default: empty) a hash with
field names to limit the attributes/fields shown in the
generated json. For example:

$this->Crud->config('listeners.jsonApi.fieldSets', [
 'countries' => [// main record
 'name'
],
 'currencies' => [// associated data
 'code'
]
]);

Note

Please note that there is no need to hide id fields as this
is handled by the listener automatically as per the
JSON API specification [http://jsonapi.org/format/#document-resource-object-fields].

docValidatorAboutLinks

Setting this boolean option to true (default: false) will make the listener
add an about link pointing to an explanation for all validation errors caused
by posting request data in a format that does not comply with the JSON API document
structure.

This option is mainly intended to help developers understand what’s wrong with their
posted data structure. An example of an about link for a validation error caused
by a missing type node in the posted data would be:

{
 "errors": [
 {
 "links": {
 "about": "http://jsonapi.org/format/#crud-creating"
 },
 "title": "_required",
 "detail": "Primary data does not contain member 'type'",
 "source": {
 "pointer": "/data"
 }
 }
]
}

queryParameters

This array option allows you to specify query parameters to parse in your application.
Currently this listener supports the official include parameter. You can easily add your own
by specifying a callable.

$this->Crud->listener('jsonApi')->config('queryParameter.parent', [
 'callable' => function ($queryData, $subject) {
 $subject->query->where('parent' => $queryData);
 }
]);

Query Logs

This listener fully supports the Crud API Query Log listener and will,
once enabled as described here [https://crud.readthedocs.io/en/latest/listeners/api-query-log.html#setup]
, add a top-level query node to every response when debug mode is enabled.

{
 "query": {
 "default": [
 {
 "query": "SHOW FULL COLUMNS FROM `countries`",
 "took": 0,
 "params": [],
 "numRows": 10,
 "error": null
 }
 }
}

Pagination

This listener comes with an additional Pagination listener that, once enabled,
wil add the meta and links nodes as per the JSON API specification.

Attach the listener using the components array if you want to attach
it to all controllers, application wide.

<?php
class AppController extends Controller {

 public function initialize()
 {
 $this->loadComponent('RequestHandler');
 $this->loadComponent('Crud.Crud', [
 'actions' => [
 'Crud.Index',
 'Crud.View'
],
 'listeners' => [
 'CrudJsonApi.JsonApi',
 'CrudJsonApi.Pagination',
]
]);
 }

Alternatively, attach the listener to your controllers beforeFilter
if you prefer attaching the listener to only specific controllers on the fly.

<?php
class SamplesController extends AppController {

 public function beforeFilter(\Cake\Event\Event $event) {
 parent::beforeFilter();
 $this->Crud->addListener('CrudJsonApi.Pagination');
 }
}

All GET requests to the index action will now add
JSON API pagination information to the response as shown below.

{
 "meta": {
 "record_count": 15,
 "page_count": 2,
 "page_limit": null
 },
 "links": {
 "self": "/countries?page=2",
 "first": "/countries?page=1",
 "last": "/countries?page=2",
 "prev": "/countries?page=1",
 "next": null
 }
}

Schemas

This listener makes use of NeoMerx schemas [https://github.com/neomerx/json-api/wiki/Schemas]
to handle the heavy lifting that is required for converting CakePHP entities to JSON API format.

By default all entities in the _entities viewVar will be passed to the
Listener’s DynamicEntitySchema for conversion. This dynamic schema extends
Neomerx\JsonApi\Schema\SchemaProvider and is, amongst other things, used to
override NeoMerx methods so we can generate CakePHP specific output (like links).

Even though the dynamic entity schema provided by Crud should cater to the
needs of most users, creating your own custom schemas is also supported. When
using custom schemas please note that the listener will use the first matching
schema, following this order:

	Custom entity schema

	Custom dynamic schema

	Crud’s dynamic schema

Custom entity schema

Use a custom entity schema in situations where you need to alter the
generated JSON API but only for a specific controller/entity.

An example would be overriding the NeoMerx getSelfSubUrl method used
to prefix all self links in the generated json for a Countries
controller. This would require creating a src/Schema/JsonApi/CountrySchema.php
file looking similar to:

<?php
namespace App\Schema\JsonApi;

use CrudJsonApi\Schema\JsonApi\DynamicEntitySchema;

class CountrySchema extends DynamicEntitySchema
{
 public function getSelfSubUrl($entity = null)
 {
 return 'http://prefix.only/countries/controller/self-links/';
 }
}

Custom dynamic schema

Use a custom dynamic schema if you need to alter the generated JSON API for all
controllers, application wide.

An example of a custom dynamic schema would require creating
a src/Schema/JsonApi/DynamicEntitySchema.php file looking similar to:

<?php
namespace App\Schema\JsonApi;

use CrudJsonApi\Schema\JsonApi\DynamicEntitySchema as CrudDynamicEntitySchema;

class DynamicEntitySchema extends CrudDynamicEntitySchema
{
 public function getSelfSubUrl($entity = null)
 {
 return 'http://prefix.all/controller/self-links/';
 }
}

Fetching Collections

Fetching JSON API Resource Collections is done by calling the index action of your API with:

	the HTTP GET request type

	an Accept header set to application/vnd.api+json

A successful request will respond with HTTP response code 200
and response body similar to this output produced by
http://example.com/countries:

{
 "data": [
 {
 "type": "countries",
 "id": "1",
 "attributes": {
 "code": "NL",
 "name": "The Netherlands"
 },
 "links": {
 "self": "/countries/1"
 }
 },
 {
 "type": "countries",
 "id": "2",
 "attributes": {
 "code": "BE",
 "name": "Belgium"
 },
 "links": {
 "self": "/countries/2"
 }
 }
]
}

Fetching Resources

Fetch a single JSON API Resource by calling the view action of your API with:

	the HTTP GET request type

	an Accept header set to application/vnd.api+json

A successful request will respond with HTTP response code 200
and response body similar to this output produced by
http://example.com/countries/1:

{
 "data": {
 "type": "countries",
 "id": "1",
 "attributes": {
 "code": "NL",
 "name": "The Netherlands",
 "dummy-counter": 11111
 },
 "relationships": {
 "currency": {
 "data": {
 "type": "currencies",
 "id": "1"
 },
 "links": {
 "self": "/currencies/1"
 }
 },
 "national-capital": {
 "data": {
 "type": "national-capitals",
 "id": "1"
 },
 "links": {
 "self": "/national-capitals/1"
 }
 }
 },
 "links": {
 "self": "/countries/1"
 }
 }
}

Note

When retrieving a single Resource, crud-json-api will automatically generate relationships links for
all belongsTo attributes in your model UNLESS you pass the include request parameter OR define
a contain statement inside your Controller.

Creating Resources

Creating a new JSON API Resource is done by calling the add action of your API with:

	the HTTP POST request type

	an Accept header set to application/vnd.api+json

	a Content-Type header set to application/vnd.api+json

	request data in valid JSON API document format

A successful request will respond with HTTP response code 201
and a JSON API response body presenting the newly created Resource
along with id, attributes and belongsTo relationships.

Request Data

All data posted to the listener is transformed from JSON API format to
standard CakePHP format so it can be processed “as usual” once the data
is accepted.

To make sure posted data complies with the JSON API
specification it is first validated by the listener’s DocumentValidator which
will throw a (422) ValidationException if it does not comply along
with a pointer to the cause.

A valid JSON API request body for creating a new Country would look similar to:

{
 "data": {
 "type": "countries",
 "attributes": {
 "code": "NL",
 "name": "The Netherlands"
 }
 }
}

The same rules apply when you create a new Resource and want to set its belongsTo relationships.
For example, the JSON API request body for creating a new Country with currency_id=1 would like:

{
 "data": {
 "type": "countries",
 "attributes": {
 "code": "NL",
 "name": "The Netherlands"
 },
 "relationships": {
 "currency": {
 "data": {
 "type": "currencies",
 "id": "1"
 }
 }
 }
 }
}

Note

See this link for more examples of
valid JsonApiRequestBodies [https://github.com/FriendsOfCake/crud-json-api/tree/master/tests/Fixture/JsonApiRequestBodies].

Side-Posting

Side-posting is an often requested feature which would allow creating multiple Resources (and/or relationships) using a single POST request.

However, this functionality is NOT supported by version 1.0 of the JSON API specification and is therefore NOT supported by crud-json-api.

In practice this means:

	you will only be able to create Resources with belongsTo relationships pointing to EXISTING foreign keys

	crud-json-api will throw a BadRequestException when it detects attempts to side-post hasMany relationships

Note

Side-posting might land in version 1.1 of the JSON API specification, more information available in
this Pull Request [https://github.com/json-api/json-api/pull/1197].

Updating Resources

Updating an existing JSON API Resource is done by calling the edit action of your API with:

	the HTTP PATCH request type

	an Accept header set to application/vnd.api+json

	a Content-Type header set to application/vnd.api+json

	request data in valid JSON API document format

	request data containing the id of the resource to update

A successful request will respond with HTTP response code 200
and response body similar to the one produced by the view action.

A valid JSON API document structure for updating the name field
for a Country with id 10 would look similar to the following output
produced by http://example.com/countries/1:

{
 "data": {
 "type": "countries",
 "id": "10",
 "attributes": {
 "name": "My new name"
 }
 }
}

Updating To-One Relationships

When updating a primary JSON API Resource, you can use the same PATCH request to set one or multiple To-One
(or belongsTo) relationships but only as long as the following conditions are met:

	the id of the related resource MUST correspond with an EXISTING foreign key

	the related resource MUST belong to the primary resource being PATCHed

For example, a valid JSON API document structure that would set a single related
national-capital for a given country would look like:

{
 "data": {
 "type": "countries",
 "id": "2",
 "relationships": {
 "national-capital": {
 "data": {
 "type": "national-capitals",
 "id": "4"
 }
 }
 }
 }
}

Note

Please note that JSON API does not support updating attributes for the related resource(s) and thus
will simply ignore them if detected in the request body.

Updating To-Many Relationships

When updating a primary JSON API Resource, you can use the same PATCH request to set one or multiple To-Many
(or hasMany) relationships but only as long as the following conditions are met:

	the id of the related resource MUST correspond with an EXISTING foreign key

	the related resource MUST belong to the primary resource being PATCHed

For example, a valid JSON API document structure that would set multiple related cultures
for a given country would look like:

{
 "data": {
 "type": "countries",
 "id": "2",
 "relationships": {
 "cultures": {
 "data": [
 {
 "type": "cultures",
 "id": "2"
 },
 {
 "type": "cultures",
 "id": "3"
 }
]
 }
 }
 }
}

Note

Please note that JSON API does not support updating attributes for the related resource(s) and thus
will simply ignore them if detected in the request body.

Deleting Resources

Deleting an existing JSON API Resource is done by calling the delete action of your API with:

	the HTTP DELETE request type

	an Accept header set to application/vnd.api+json

	a Content-Type header set to application/vnd.api+json

	request data in valid JSON API document format

	request data containing the id of the resource to delete

A successful request will return HTTP response code 204 (No Content)
and empty response body. Failed requests will return HTTP response
code 400 with empty response body.

An valid JSON API document structure for deleting a Country
with id 10 would look similar to:

{
 "data": {
 "type": "countries",
 "id": "10"
 }
 }
}

Errors and Exceptions

Default Errors

The listener will produce error responses in the following
JSON API format for all standard errors and all non-validation
exceptions:

{
 "errors": [
 {
 "code": "501",
 "title": "Not Implemented"
 }
],
 "debug": {
 "class": "Cake\\Network\\Exception\\NotImplementedException",
 "trace": []
 }
}

Note

Please note that the debug node with the stack trace will only be included if debug is true.

Validation Errors

The listener will produce validation error (422) responses
in the following JSON API format for all validation errors:

{
 "errors": [
 {
 "title": "_required",
 "detail": "Primary data does not contain member 'type'",
 "source": {
 "pointer": "/data"
 }
 }
]
}

Invalid Request Data

Please be aware that the listener will also respond with (422) validation errors
if request data is posted in a structure that does not comply with the
JSON API specification.

Inclusion

Associated Data

The listener will detect associated data as produced by
contain and will automatically render those associations
into the JSON API response as specified by the specification.

Let’s take the following example code for the view action of
a Country model with a belongsTo association to Currencies
and a hasMany relationship with Cultures:

public function view()
{
 $this->Crud->on('beforeFind', function (Event $event) {
 $event->getSubject()->query->contain([
 'Currencies',
 'Cultures',
]);
 });

 return $this->Crud->execute();
}

Assuming a successful find the listener would produce the
following JSON API response including all associated data:

{
 "data": {
 "type": "countries",
 "id": "2",
 "attributes": {
 "code": "BE",
 "name": "Belgium"
 },
 "relationships": {
 "currency": {
 "data": {
 "type": "currencies",
 "id": "1"
 },
 "links": {
 "self": "/currencies/1"
 }
 },
 "cultures": {
 "data": [
 {
 "type": "cultures",
 "id": "2"
 },
 {
 "type": "cultures",
 "id": "3"
 }
],
 "links": {
 "self": "/cultures?country_id=2"
 }
 }
 },
 "links": {
 "self": "/countries/2"
 }
 },
 "included": [
 {
 "type": "currencies",
 "id": "1",
 "attributes": {
 "code": "EUR",
 "name": "Euro"
 },
 "links": {
 "self": "/currencies/1"
 }
 },
 {
 "type": "cultures",
 "id": "2",
 "attributes": {
 "code": "nl-BE",
 "name": "Dutch (Belgium)"
 },
 "links": {
 "self": "/cultures/2"
 }
 },
 {
 "type": "cultures",
 "id": "3",
 "attributes": {
 "code": "fr-BE",
 "name": "French (Belgium)"
 },
 "links": {
 "self": "/cultures/3"
 }
 }
]
}

Include Parameter

Crud-json-api fully supports the JSON API include request parameter which allows a client
to specify which related/associated resources should be returned.

As an example, a client could produce the exact same JSON API response as shown above by using
/countries/2?include=cultures,currencies.

Note

If the include parameter is provided, then only the requested relationships will be included
in the included schema.

allowList/denyList

It is possible to denyList, or allowList what the client is allowed to include.
This is done using the listener configuration:

public function view()
{
 $this->Crud
 ->listener('jsonApi')
 ->config('queryParameters.include.allowList', ['cultures', 'cities']);

 return $this->Crud->execute();
}

allowListing will prevent all non-allowListed associations from being
contained. Blacklisting will prevent any denyListed associations from
being included. Blacklisting takes precedence of allowListing (i.e
denyListing and allowListing the same association will prevent it from
being included). If you wish to prevent any associations, set the denyList
config option to true:

public function view()
{
 $this->Crud
 ->listener('jsonApi')
 ->config('queryParameters.include.denyList', true);

 return $this->Crud->execute();
}

Sparse Fieldsets

JSON API Sparse Fieldsets [http://jsonapi.org/format/#fetching-sparse-fieldsets]
allow you to limit the fields returned by your API by passing the fields parameter
in your request.

To select all countries but only retrieve their code field:

/countries?fields[countries]=code

To select a single country and only retrieve its name field:

/countries/1?fields[countries]=name

Limiting Associated Data

It is also possible to limit the fields of associated data. The following example will
return all fields for countries (the primary data) but will limit the fields returned
for currencies (the associated data) to id and name.

/countries?include=currencies&fields[currencies]=id,name

Please note that you MUST include the associated data in the fields args, eg:

	/countries?fields[countries]=name&include=currencies&fields[currencies]=id,code will NOT work

	/countries?fields[countries]=name,currency&include=currencies&fields[currencies]=id,code does WORK

Combinations

You may also use any combination of the above. In this case we are limiting the fields for both the primary
resource and the associated data.

/countries/1?fields[countries]=name,currency&include=currencies&fields[currencies]=id,name

Sorting

JSON API Sorting [http://jsonapi.org/format/#fetching-sorting]
allows you to sort the results produced by your API according to one
by passing one or more criteria to your request using the sort parameter.

Before continuing please note that the default sort order for each field is ascending
UNLESS the field is prefixed with a hyphen (-) in which case the sort order will
be descending.

Single Field Sorting

To sort by a single field using ascending order:

/currencies?sort=code

To sort descending:

/currencies?sort=-code

Multi Field Sorting

To sort by multiple fields simply pass comma-separated sort fields
in the order you want them applied:

	/currencies?sort=code,name

	/currencies?sort=-code,name

	/currencies?sort=-code,-name

	/currencies?sort=name,code

Sorting By Related Data

You can also sort your primary data using fields in the related data. In this case
all currencies (the primary data) would be sorted using the ascending order of the
code field in countries (the associated data).

	/currencies?include=countries&sort=countries.code

	/currencies?include=countries&sort=-countries.code

Combined Sorts

CrudJsonApi supports any combination of the above sorts. E.g.

	/currencies?include=countries&sort=name,countries.code

	/currencies?include=countries&sort=name,-countries.code

Filtering

JSON API Filtering [http://jsonapi.org/format/#fetching-filtering]
allow searching your API and requires:

	Composer installing friendsofcake/search

	Configuring the Crud SearchListener as described here [http://crud.readthedocs.io/en/latest/listeners/search.html]

Now create search aliases named filter in your tables like shown below:

// src/Model/Table/CountriesTable.php

public function searchManager()
{
 $searchManager = $this->behaviors()->Search->searchManager();
 $searchManager->like('filter', [
 'before' => true,
 'after' => true,
 'field' => [$this->aliasField('name')]
]);

 return $searchManager;
}

Once that is done you will be able to search your API using URLs similar to:

	/countries?filter=netherlands

	/countries?filter=nether

Please note that the following search requests would also be matched:

	/countries?filter[id]=1

	/countries?filter[id][]=1&filter[id][]=2

Examples

We realize the JSON API document structure can be complex and hard to memorize which is exactly why we have decided to use
pure JSON API documents as fixtures for our integration tests. This not only assures crud-json-api will behave exactly as we
expect, it also provides you with a reference directory you can use to lookup fully-functional examples of:

	JsonApiRequestBodies [https://github.com/FriendsOfCake/crud-json-api/tree/master/tests/Fixture/JsonApiRequestBodies]:, the JSON API bodies used when Creating or Updating Resources

	JsonApiResponseBodies [https://github.com/FriendsOfCake/crud-json-api/tree/master/tests/Fixture/JsonApiResponseBodies]:, the JSON API responses crud-json-api will produce

Note

Please submit a PR if you are missing a use case.

Common Issues

Missing template

Crud-json-api does not require you to create templates so if you see the following error you are
most likely not sending the correct application/vnd.api+json Accept Header with your requests:

Error: Missing Template

Missing routes

Crud-json-api depends on CakePHP Routing to generate the correct links for all resources
in your JSON API response.

If you encounter errors like the one shown below, make sure that both your primary resource and all related
resources are added to the API_RESOURCES constant found in your config/routes.php file.

A route matching '' could not be found.

Schema not registered

If you see the following error make sure that valid Table and Entity classes are
present for both the primary resource and all related resources.

Schema is not registered for a resource at path ''.

Normal HTML is returned

If you are just getting back a standard page response, rather than a JSON response (and you have confirmed that you are sending the correct JSON API Request Headers) it is most likely because you already have a controller action defined for the resource you are trying to request. For CRUD to handle it, you must remove any existing controller actions that conflict with the routes you are trying to configure.

Customizing Output

Date Formats

By default crud-json-api will return timestamps in the following format:

"created-at": "2018-06-10T13:41:05+00:00"

If you prefer a different format, either specify it in your bootstrap.php file or right before a
specific action. E.g.

\Cake\I18n\FrozenTime::setJsonEncodeFormat("yyyy-MM-dd'T'HH:mm:ss'Z'");
\Cake\I18n\FrozenDate::setJsonEncodeFormat('yyyy-MM-dd');

Contributing

There are many ways you can help improving this plugin:

	submit a Pull Request, code optimizations are more than welcome

	raise a Github issue if you detect missing functionality or behavior not according to the JSON API specification

	suggest improvements to this documentation

Note

We welcome and appreciate contributions on all levels.

Index

Pagination

This listener comes with an additional Pagination listener that, once enabled,
wil add the meta and links nodes as per the JSON API specification.

Attach the listener using the components array if you want to attach
it to all controllers, application wide.

<?php
class AppController extends Controller {

 public function initialize()
 {
 $this->loadComponent('RequestHandler');
 $this->loadComponent('Crud.Crud', [
 'actions' => [
 'Crud.Index',
 'Crud.View'
],
 'listeners' => [
 'CrudJsonApi.JsonApi',
 'CrudJsonApi.Pagination',
]
]);
 }

Alternatively, attach the listener to your controllers beforeFilter
if you prefer attaching the listener to only specific controllers on the fly.

<?php
class SamplesController extends AppController {

 public function beforeFilter(\Cake\Event\Event $event) {
 parent::beforeFilter();
 $this->Crud->addListener('CrudJsonApi.Pagination');
 }
}

All GET requests to the index action will now add
JSON API pagination information to the response as shown below.

{
 "meta": {
 "record_count": 15,
 "page_count": 2,
 "page_limit": null
 },
 "links": {
 "self": "/countries?page=2",
 "first": "/countries?page=1",
 "last": "/countries?page=2",
 "prev": "/countries?page=1",
 "next": null
 }
}

Filtering

JSON API Filtering [http://jsonapi.org/format/#fetching-filtering]
allow searching your API and requires:

	Composer installing friendsofcake/search

	Configuring the Crud SearchListener as described here [http://crud.readthedocs.io/en/latest/listeners/search.html]

Now create search aliases named filter in your tables like shown below:

// src/Model/Table/CountriesTable.php

public function searchManager()
{
 $searchManager = $this->behaviors()->Search->searchManager();
 $searchManager->like('filter', [
 'before' => true,
 'after' => true,
 'field' => [$this->aliasField('name')]
]);

 return $searchManager;
}

Once that is done you will be able to search your API using URLs similar to:

	/countries?filter=netherlands

	/countries?filter=nether

Please note that the following search requests would also be matched:

	/countries?filter[id]=1

	/countries?filter[id][]=1&filter[id][]=2

Debugging

This listener fully supports the Crud API Query Log listener and will,
once enabled as described here [https://crud.readthedocs.io/en/latest/listeners/api-query-log.html#setup]
, add a top-level query node to every response when debug mode is enabled.

{
 "query": {
 "default": [
 {
 "query": "SHOW FULL COLUMNS FROM `countries`",
 "took": 0,
 "params": [],
 "numRows": 10,
 "error": null
 }
 }
}

 _static/comment.png

_static/minus.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Contents

 		 Introduction

 		 Installation

 		Loading Crud

 		 Setup

 		Application

 		Controller

 		Exception Handler

 		Routing

 		Request detector

 		 Listener Options

 		withJsonApiVersion

 		meta

 		absoluteLinks

 		debugPrettyPrint

 		jsonOptions

 		include

 		fieldSets

 		docValidatorAboutLinks

 		queryParameters

 		 Debugging

 		 Pagination

 		 Schemas

 		Custom entity schema

 		Custom dynamic schema

 		 Fetching Collections

 		 Fetching Resources

 		 Creating Resources

 		Request Data

 		Side-Posting

 		 Updating Resources

 		Updating To-One Relationships

 		Updating To-Many Relationships

 		 Deleting Resources

 		 Errors and Exceptions

 		Default Errors

 		Validation Errors

 		Invalid Request Data

 		 Inclusion

 		Associated Data

 		Include Parameter

 		allowList/denyList

 		 Sparse Fieldsets

 		Limiting Associated Data

 		Combinations

 		 Sorting

 		Single Field Sorting

 		Multi Field Sorting

 		Sorting By Related Data

 		Combined Sorts

 		 Filtering

 		 JSON Examples

 		 Common Issues

 		Missing template

 		Missing routes

 		Schema not registered

 		Normal HTML is returned

 		 Customizing Output

 		Date Formats

 		 Contributing

_static/down-pressed.png

_static/file.png

_static/down.png

_static/comment-close.png

_static/up-pressed.png

_static/up.png

