
cross-browser-tests-runner
Documentation

Release 1.2.3

Reetesh Ranjan

Feb 05, 2018





Contents:

1 Overview 1
1.1 What is cross-browser-tests-runner? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Why this tool? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Get Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Quick Start 3
2.1 Selenium Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 JavaScript Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Common Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 How To Test 5
3.1 Initial Common Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 JavaScript Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Selenium Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Status 9
4.1 Integrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 JS Frameworks supported by Native Runner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Supported Node.js Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Minimum Node.js Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Platform Configuration 11
5.1 Local Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Updating Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 Standard Names & Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4 JS & Selenium Browsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.5 Capabilities & Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Browsers YAML 13
6.1 Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Multiple Copies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.3 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Settings 17
7.1 Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

i



7.2 Multiple Copies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.3 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 cbtr-init 25
8.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.2 Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9 cbtr-testem-browserstack-init 27
9.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.2 Questions asked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

10 cbtr-testem-saucelabs-init 29
10.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10.2 Questions asked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

11 cbtr-testem-crossbrowsertesting-init 31
11.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
11.2 Questions asked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

12 Server 33
12.1 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

13 Native Runner 35
13.1 Need for a tool like cross-browser-tests-runner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
13.2 Limitations of existing work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
13.3 What a cross-browser tester needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
13.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
13.5 JavaScript Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
13.6 Selenium Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

14 Troubleshooting 39

ii



CHAPTER 1

Overview

1.1 What is cross-browser-tests-runner?

It is a tool to help you run cross-browser javascript unit tests and selenium tests on multiple cross-browser testing
platforms.

1.2 Why this tool?

This tool was created to test browse.js, with following requirements:

• Be able to run Jasmine 1.x unit tests to cover oldest browsers not supported by other newer versions or other
frameworks like Mocha

• Be able to send the Jasmine 1.x test data to server that can display it in a popular test results format (Mocha
chosen eventually)

• Be able to collect code coverage data and send to test server that can store it in a widely supported format (lcov)
which could be uploaded to any third party code coverage tool/website

• Be able to run tests in parallel on multiple cross-browser testing platforms e.g. browserstack.com, sauce-
labs.com, crossbrowsertesting.com to minimize build duration

Existing tools were not able to bring all the above pieces together, as was seen while trying to write the tests, and this
tool was born.

1.3 Get Started

• Install:

$ npm install cross-browser-tests-runner

• Quick Start: Get started quickly and see some sample tests running

1

https://github.com/browsejs/browse.js


cross-browser-tests-runner Documentation, Release 1.2.3

• How To Test: See a more detailed description of the testing steps

1.4 References

1.4.1 Configuration Files

• Platform Configuration: About how and why we store each platform’s supported browser/os configuration
locally

• Browsers YAML: Syntax of specifying browsers for your test

• Settings: Test settings file serving multiple purposes

1.4.2 Executables

• cbtr-init: Binary that generates test settings file given an input browsers YAML file

• cbtr-testem-browserstack-init: Binary that helps your generate testem.json for testing on BrowserStack

• cbtr-testem-saucelabs-init: Binary that helps your generate testem.json for testing on SauceLabs

• cbtr-testem-crossbrowsertesting-init: Binary that helps you generate testem.json for testing on Cross-
BrowserTesting

1.4.3 Components

• Server: Description of the test server

• Native Runner: Description of the in-built unit and selenium tests runner

1.5 Troubleshooting

• See Troubleshooting

2 Chapter 1. Overview



CHAPTER 2

Quick Start

2.1 Selenium Tests

First do the following:

• For BrowserStack, complete BrowserStack common steps

• For SauceLabs, complete SauceLabs common steps

• For CrossBrowserTesting, complete CrossBrowserTesting common steps

Replace {platform} in the following commands with one of: browserstack, saucelabs,
crossbrowsertesting.

$ cp -r ./node_modules/cross-browser-tests-runner/samples/ samples/
$ ./node_modules/.bin/cbtr-server --native-runner --config ./samples/cbtr-{platform}-
→˓selenium.json

2.2 JavaScript Unit Tests

For any of the following sections first do the following:

• For BrowserStack, complete BrowserStack common steps

• For SauceLabs, complete SauceLabs common steps

• For CrossBrowserTesting, complete CrossBrowserTesting common steps

2.2.1 Using In-built Native Runner

Replace {platform} in the following commands with one of: browserstack, saucelabs,
crossbrowsertesting.

3



cross-browser-tests-runner Documentation, Release 1.2.3

$ cp -r ./node_modules/cross-browser-tests-runner/samples/ samples/
$ ./node_modules/.bin/cbtr-server --native-runner --config ./samples/cbtr-{platform}-
→˓js-testing.json

2.2.2 Using Testem

NOTE: You need to have a testem.json with src_files or test_page setting.

Replace {platform} in the following commands with one of: browserstack, saucelabs,
crossbrowsertesting.

$ ./node_modules/.bin/cbtr-quick-start -p {platform} -r testem
$ ./node_modules/.bin/cbtr-server &
$ testem ci

2.3 Common Steps

2.3.1 BrowserStack

$ export BROWSERSTACK_USERNAME=<your-browserstack-username>
$ export BROWSERSTACK_ACCESS_KEY=<your-browserstack-access-key>

2.3.2 SauceLabs

$ export SAUCE_USERNAME=<your-saucelabs-username>
$ export SAUCE_ACCESS_KEY=<your-saucelabs-access-key>

2.3.3 CrossBrowserTesting

$ export CROSSBROWSERTESTING_USERNAME=<your-crossbrowsertesting-username>
$ export CROSSBROWSERTESTING_ACCESS_KEY=<your-crossbrowsertesting-access-key>

4 Chapter 2. Quick Start



CHAPTER 3

How To Test

3.1 Initial Common Steps

3.1.1 Environment Settings

BrowserStack

$ export BROWSERSTACK_USERNAME=<your-browserstack-username>
$ export BROWSERSTACK_ACCESS_KEY=<your-browserstack-access-key>

SauceLabs

$ export SAUCE_USERNAME=<your-saucelabs-username>
$ export SAUCE_ACCESS_KEY=<your-saucelabs-access-key>

CrossBrowserTesting

$ export CROSSBROWSERTESTING_USERNAME=<your-crossbrowsertesting-username>
$ export BROWSECROSSBROWSERTESTINGRSTACK_ACCESS_KEY=<your-crossbrowsertesting-access-
→˓key>

3.1.2 Update Supported Browsers (Optional)

See Platform Configuration for the significance and details of this step.

Replace {platform} in the command below with any of: browserstack, saucelabs,
crossbrowsertesting.

5



cross-browser-tests-runner Documentation, Release 1.2.3

$ ./node_modules/.bin/cbtr-{platform}-update

3.1.3 Specify Your Browsers

See Browsers YAML for details on how to specify browsers for your tests.

Here is a list of few sample files you can use, if you want to understand the format later:

• BrowserStack sample: ./node_modules/cross-browser-tests-runner/samples/yml/
browserstack.yml

• SauceLabs sample: ./node_modules/cross-browser-tests-runner/samples/yml/
saucelabs.yml

• CrossBrowserTesting sample: ./node_modules/cross-browser-tests-runner/samples/
yml/crossbrowsertesting.yml

3.1.4 Generate Test Settings

See Settings for details on the JSON format test settings cross-browser-tests-runner uses.

Generate it using the following command that uses the browsers YAML file as input:

$ ./node_modules/.bin/cbtr-init --input <path-to-browsers-yml-file> --output <path-to-
→˓settings-file>

See cbtr-init for usage and how to use defaults for the command line input options.

3.2 JavaScript Unit Testing

First complete the Initial Common Steps, as applicable.

3.2.1 Using Native Runner

To run your tests using Native Runner, add the following parameters in your test settings file:

• framework (See Parameters) - the JavaScript unit test framework used in your tests

• test_file (See Parameters) - the local HTML file that your test would open (See Test HTML)

Run the following:

$ ./node_modules/.bin/cbtr-server --native-runner --config <path-to-settings-file>

This would run all your tests and exit once completed.

See Server for details on cbtr-server command.

6 Chapter 3. How To Test



cross-browser-tests-runner Documentation, Release 1.2.3

3.2.2 Using Testem

Generate the Testem configuration file testem.json for your platform.

Replace {platform} in the command below with one of: browserstack, saucelabs,
crossbrowsertesting.

$ ./node_modules/.bin/cbtr-testem-{platform}-init --input <path-to-settings-file> --
→˓output <path-to-testem-json>

It would overwrite launchers and launch_in_ci settings in an existing testem settings file

See the following for details on platform-specific executable binaries for generating testem settings:

• cbtr-testem-browserstack-init

• cbtr-testem-saucelabs-init

• cbtr-testem-crossbrowsertesting-init

Run the cross-browser-tests-runner server using the following command:

$ ./node_modules/.bin/cbtr-server &

Now run testem in CI mode as follows:

$ testem ci

3.3 Selenium Testing

First complete the Initial Common Steps, as applicable.

Add the following parameters in the test settings file:

• test_file (See Parameters) - the local HTML file that your test would open

• test_script (See Parameters) - a file that contains your Selenium test script (See Test Script)

Run the cross-browser-tests-runner server using the following command:

$ ./node_modules/.bin/cbtr-server --native-runner --config <path-to-settings-file>

This would run all your tests and exit once completed.

3.3. Selenium Testing 7



cross-browser-tests-runner Documentation, Release 1.2.3

8 Chapter 3. How To Test



CHAPTER 4

Status

4.1 Integrations

Platform JS - Testem JS - Native Runner Selenium
BrowserStack X X X
SauceLabs X X X
CrossBrowserTesting X X X

4.2 JS Frameworks supported by Native Runner

Unit Testing Framework
Jasmine 1.x

4.3 Supported Node.js Versions

Node version Linux OS X Windows
4.8.6 X X X
8.9.1 X X X

NOTE: v6.9.0 is the minimum version for Selenium tests and core Selenium functionality has been verified on this
version. For the sake of time, v6 is not part of CI builds currently, and would be included later.

9



cross-browser-tests-runner Documentation, Release 1.2.3

4.4 Minimum Node.js Versions

Platform JS - Testem JS - Native Runner Selenium
BrowserStack v4.8.5+ v5.x.x v4.8.5+ v6.9.0+
SauceLabs v6.9.0+ v6.9.0+ v6.9.0+
CrossBrowserTesting v4.8.5+ v5.x.x v4.8.5+ v6.9.0+

10 Chapter 4. Status



CHAPTER 5

Platform Configuration

Cross-browser testing platforms have very different configurations in browsers/platforms supported, selenium/appium
capabilities and various intricacies involved with these values. Another important aspect is that these change over
time.

To test with multiple platforms, one needs to understand these details separately for each of these platforms and keep
a tab on how these change. Cross-browser-tests-runner aims to make it easy to test across different platforms by
abstracting these details beneath a simpler interface, which begins with representing each platform’s configuration
details through values and rules (as applicable) stored into local config files.

5.1 Local Configuration Files

The ./node_modules/cross-browser-tests-runner/conf directory contains these:

• Platform-specific browsers/operating systems, capabilities and configuration rules/conditions

– browserstack-conf.json

– saucelabs-conf.json

– crossbrowsertesting-conf.json

• Common/Generic config information:

– cbtr-conf.json: pre-v1.0 this file had significant common details. Post-v1.0 it has very little details
and may be removed in later releases.

5.2 Updating Configuration

Replace {platform} in the command below with any of: browserstack, saucelabs,
crossbrowsertesting.

$ ./node_modules/.bin/cbtr-{platform}-update

11



cross-browser-tests-runner Documentation, Release 1.2.3

5.3 Standard Names & Conversions

Each cross-browser testing platform uses its own browser and OS names and from case-to-case there are intricate
details as follows:

• SauceLabs uses ‘Browser’ as the browser name for all Android appium tests

• BrowserStack uses iphone or ipad name for Mobile Safari on iphones and ipads respectively

Cross-browser-tests-runner helps you specify your test configuration using standard/uniform browser/operating system
names (See Browsers YAML). The conversions from standard/uniform names is done internally using the conversions
available in Platform Configuration files.

5.4 JS & Selenium Browsers

Some cross-browser testing platforms provide different browsers for JavaScript unit testing and Selenium testing. This
is taken into account, and the configuration files store JS and Selenium browsers of each platform separately.

• JS browsers: for writing JavaScript unit tests using testing frameworks

• Selenium browsers: for writing Selenium-based tests

5.5 Capabilities & Conditions

Apart from browser, browser version, os, os version and device capabilities, which provide the unique identification
of a browser, there are several capabilities e.g. selenium version, appium version, resolution, orientation etc. and each
platform has its own intricacies e.g.

• Selenium version for OS X Snow Leopard has to be < 2.47.1 on BrowserStack

• Capturing console logs is supported only for Chrome on BrowserStack

• Different platforms have different screen resolutions available, and different sets of them for different operating
systems or devices

• Selenium version has to be < 3.0.0 on SauceLabs if it’s not Chrome/Firefox on Windows/OS X (and that’s one
of the conditions)

• SauceLabs allows specific sets of appium versions with each device

• The Gecko driver (for Firefox) has specific values depending on the Selenium version used on BrowserStack

The Platform Configuration files represent all these capabilities and conditions using a novel JSON-based syntax that
represents the conditions using rules. The test configurations written by you are parsed and validated against the
information in the files, so that you can avoid errors.

12 Chapter 5. Platform Configuration



CHAPTER 6

Browsers YAML

A typical cross-browser test involves running your code on multiple browsers. Specifying them in the form of what is
referred as “Selenium capabilities” and managing them becomes complex as it requires too much of code.

Cross-browser-tests-runner provides you with a compact and smart format in which you can specify the browsers.
This helps you manage the browsers to be used in your tests more efficiently.

6.1 Format

6.1.1 Example

CrossBrowserTesting:
JS:
Windows:

"10":
Chrome x64:
"45.0-49.0, 54.0":

resolution: 1920x1200
Android:

"6.0":
Dolphin Mobile:
"11.5":
Android Nexus 9:

Maxthon Mobile:
"4.3":
Android Nexus 9:
resolution: 1536x2048

Selenium:
OS X:

El Capitan:
Safari:
"9.0":
resolution: 2560x1440

13



cross-browser-tests-runner Documentation, Release 1.2.3

iOS:
"9.3":

iPhone 6s Plus Simulator, iPad Pro Simulator:

6.1.2 Variations

The example above illustrates 3 variations of the format.

Desktop Browsers

{Platform}:
{TestType}:
{OS}:

{Os Version}:
{Browser}:
{Browser Versions}:

{Properties}

Mobile Browsers

{Platform}:
{TestType}:
{OS}:

{Os Version}:
{Browser}:
{Browser Versions}:

{Devices}:
{Properties}

Single-Version Native Mobile Browsers

There are cases where a mobile device has exactly one browser that either has exactly one version or has a null version.
In such cases, the browser details must be skipped, and the format looks like the following:

{Platform}:
{TestType}:
{OS}:

{Os Version}:
{Devices}:
{Properties}

14 Chapter 6. Browsers YAML



cross-browser-tests-runner Documentation, Release 1.2.3

6.1.3 Parameters

Parameter Values
Platform BrowserStack, SauceLabs, CrossBrowserTesting
Test
Type

JS, Selenium

OS Any of the OSes specified in platform-specific configuration for the given Platform
and Test Type e.g. node_modules/cross-browser-tests-runner/conf/browserstack-conf.json for
BrowserStack

OS
Version

Any of the versions available for the chosen OS in platform-specific configuration

Browser Any of the browsers available for the chosen OS Version in platform-specific configuration
Browser
Versions

A comma-separated list of versions from those available for the chosen Browser in platform-
specific configuration. As can be seen in the example above, a range of versions can be specified
e.g. 12.0-19.0.

Devices A comma-separated list of devices from those available for the chosen Browser in platform-
specific configuration

PropertiesCapabilities like resolution, orientation etc. from those available for the chosen Browser/Device
in platform-specific configuration. See Properties for details.

NOTE: Please use double quotes around numeric values to avoid unwanted errors caused by the YAML parser.

Properties

Property Values BrowserStack SauceLabs CrossBrowserTesting
deviceType phone tablet X
resolution string type X X X
orientation portrait landscape X X X
isPhysicalDevice true false X

6.2 Multiple Copies

You can create this file anywhere in your project, and you can have multiple such files if you have various tests, with
each using different sets of browsers.

6.3 Samples

./node_modules/cross-browser-tests-runner/samples/yml/*.yml

6.2. Multiple Copies 15



cross-browser-tests-runner Documentation, Release 1.2.3

16 Chapter 6. Browsers YAML



CHAPTER 7

Settings

Here is a summary of 2 entities of cross-browser-tests-runrer created towards the aim of providing a uniform/standard
interface across various cross-browser testing platforms:

1. As one can see in Platform Configuration, since different cross-browser testing platform use different names for
browsers and OSes, cross-browser-tests-runner helps your write your tests using uniform browser and platform
name aliases, and would convert them to platform-specific names internally.

2. To improve efficiency in writing your test configuration, you write browsers involved in your tests in a Browsers
YAML in a smart and compact format, using the uniform aliases from above.

The ‘Settings File’ is the third link of the above chain. It is a JSON format file that is generated based on the Browsers
YAML file (using cbtr-init). It eventually contains other details of your tests e.g. unit testing framework, the test file
paths etc. It serves the following purposes:

1. Provides test settings for the in-built JavaScript unit tests and Selenium tests runner

2. Serves as the common input file to generate multiple third party unit tests runner settings file e.g. testem.json,
using executable binaries provided by cross-browser-tests-runner. Since each third-party unit tests runner has
their own configuration syntax, generating each of them from a common settings file helps reducing efforts.

7.1 Format

7.1.1 Examples

JavaScript Unit Testing

{
"framework": "jasmine",
"test_file": "tests/functional/code/tests/jasmine/html/tests.html",
"retries": 1,
"limit": "4mb",
"browsers": {
"BrowserStack": {

17



cross-browser-tests-runner Documentation, Release 1.2.3

"JS": [
{
"os": "Windows",
"osVersion": "7",
"browser": "Chrome",
"browserVersion": "32.0"

},
{
"os": "iOS",
"osVersion": "6.0",
"browser": "Mobile Safari",
"browserVersion": null,
"device": "iPad 3rd (6.0)"

} ]
},
"SauceLabs": {

"JS": [
{
"os": "Windows",
"osVersion": "7",
"browser": "Chrome",
"browserVersion": "32.0"

},
{
"os": "OS X",
"osVersion": "Sierra",
"browser": "Mobile Safari",
"browserVersion": "10.3"

}
]

},
"CrossBrowserTesting": {

"JS": [
{
"os": "Android",
"osVersion": "7.0",
"browser": "Dolphin Mobile",
"browserVersion": "12.0"

},
{
"os": "OS X",
"osVersion": "Sierra",
"browser": "Safari",
"browserVersion": "10.0"

}
]

}
},
"capabilities": {
"BrowserStack": {

"local": true,
"localIdentifier": "native-functional-tests",
"build": "native-runner-build",
"test": "native-runner-functional-test",
"project": "cross-browser-tests-runner/cross-browser-tests-runner",
"screenshots": true

},
"SauceLabs": {

18 Chapter 7. Settings



cross-browser-tests-runner Documentation, Release 1.2.3

"local": true,
"localIdentifier": "native-functional-tests",
"build": "native-runner-build",
"test": "native-runner-functional-test",
"timeout": 90,
"screenshots": true

},
"CrossBrowserTesting": {

"local": true,
"localIdentifier": "native-functional-tests",
"build": "native-runner-build",
"test": "native-runner-functional-test",
"project": "cross-browser-tests-runner/cross-browser-tests-runner",
"screenshots": true,
"timeout": 90

}
},
"server": {
"port": 8000,
"host": "127.0.0.1"

},
"parallel": {
"BrowserStack": 2,
"SauceLabs": 5,
"CrossBrowserTesting": 5

}
}

Selenium Testing

{
"test_file": "tests/functional/code/tests/selenium/html/tests.html",
"test_script": "tests/functional/code/scripts/selenium/script-1.js",
"browsers": {
"BrowserStack": {

"Selenium": [
{
"os": "OS X",
"osVersion": "Mavericks",
"browser": "Firefox",
"browserVersion": "39.0"

},
{
"os": "Android",
"osVersion": "4.0",
"browser": "Android Browser",
"browserVersion": null,
"device": "Motorola Razr"

}
]

},
"SauceLabs": {

"Selenium": [
{
"os": "OS X",
"osVersion": "Mavericks",

7.1. Format 19



cross-browser-tests-runner Documentation, Release 1.2.3

"browser": "Chrome",
"browserVersion": "33.0"

},
{
"os": "Android",
"osVersion": "5.0",
"browser": "Android Browser",
"browserVersion": null,
"device": "Android Emulator"

},
{
"os": "iOS",
"osVersion": "8.3",
"browser": "Safari",
"browserVersion": null,
"device": "iPhone 6 Plus Simulator"

}
]

},
"CrossBrowserTesting": {

"Selenium": [
{
"os": "OS X",
"osVersion": "Yosemite",
"browser": "Firefox",
"browserVersion": "39.0"

},
{
"os": "Windows",
"osVersion": "8.1",
"browser": "Internet Explorer",
"browserVersion": "11.0"

}
]

}
},
"capabilities": {
"BrowserStack": {

"local": true,
"localIdentifier": "native-functional-tests",
"build": "native-runner-build",
"test": "native-runner-functional-test",
"project": "cross-browser-tests-runner/cross-browser-tests-runner",
"screenshots": true,
"timeout": 120

},
"SauceLabs": {

"local": true,
"localIdentifier": "native-functional-tests",
"build": "native-runner-build",
"test": "native-runner-functional-test",
"project": "cross-browser-tests-runner/cross-browser-tests-runner",
"timeout": 120

},
"CrossBrowserTesting": {

"local": true,
"localIdentifier": "native-functional-tests",
"build": "native-runner-build",

20 Chapter 7. Settings



cross-browser-tests-runner Documentation, Release 1.2.3

"test": "native-runner-functional-test",
"project": "cross-browser-tests-runner/cross-browser-tests-runner",
"screenshots": true,
"timeout": 120

}
},
"server": {
"port": 7883,
"host": "127.0.0.1"

},
"parallel": {
"BrowserStack": 2,
"SauceLabs": 5,
"CrossBrowserTesting": 5

}
}

7.1.2 Parameters

Pa-
rame-
ter

Applies To Description Possible Values De-
fault

frameworkJavaScript unit tests using
the in-built native runner

It is the name of the JavaScript unit tests
framework used in your tests

jasmine jasmine

retriesJavaScript unit tests using
the in-built native runner

Number of retries to try a test once it fails
(See Test Retries)

>=0 0

limit JavaScript unit tests using
the in-built native runner

Size limit of data (test reports, and code cov-
erage data) sent by a browser to accept

See Request Size
Limit

"4mb"

test_fileJavaScript unit tests and
Selenium tests using the
in-built native runner

Path of test HTML file(s), must be relative
to root directory of your project (See Test
HTML for details)

A string or an array
of strings - one per
test html file

test_scriptSelenium tests Path of Selenium test script(s), must be rel-
ative to root directory of your project (See
Test Script for details)

A string or an array
of strings - one per
test script file

browsersAll testing The set of browsers to use for your tests
- generated by cbtr-init based on browsers
specified in your Browsers YAML file

capabilitiesAll testing Testing “capabilities” other than browser de-
tails - generated with defaults by cbtr-init

See capabilities See
capa-
bili-
ties

server All testing Server host and port - generated with de-
faults by cbtr-init

See server See
server

parallelAll testing Number of sessions to run in parallel on a
cross-browser testing platform - generated
with defaults by cbtr-init

See parallel See
par-
allel

capabilities

7.1. Format 21

https://www.npmjs.com/package/body-parser#limit
https://www.npmjs.com/package/body-parser#limit


cross-browser-tests-runner Documentation, Release 1.2.3

Parameter Platforms Description Possible Values Default
local All Enforces testing of local pages if set to true true, false true
localIdentifier All Identifier for tunnel used for local testing string type
screenshots All Enables taking screenshots if set to true, disables if set to false true, false true for BrowserStack
video All Enables capturing a video of test if set to true, disables if set to false true, false
timeout All Timeout for a browser/test session in seconds (note: BrowserStack has a minimum 60s timeout requirement) >0 120
project BrowserStack username/repo slug of your project, automatically set if running on Travis, Circle or Appveyor string type "anonymous/anonymous"
build All build id for your tests, automatically set if running on Travis, Circle of Appveyor to commit SHA1 string type Output of git rev-parse HEAD
test All Name for your test session (applies to all browser sessions in your tests), automatically set to a unique identifier if running on Travis, Circle or Appveyor string type A uuid
tags SauceLabs An array of arbitrary tags for a test array type
customData SauceLabs An object with arbitrary key values object type
priority SauceLabs To assign higher/lower priority to a test as compared to others number type
parentTunnel SauceLabs While using sub-accounts, use this to use parent user’s tunnel string type
noServerFailureScreenshots SauceLabs Do not take screenshots of selenium script failure points true, false true
videoUploadOnPass SauceLabs Upload video even if a test passes true, false true
seleniumVersion BrowserStack SauceLabs Selenium version to use string type
appiumVersion BrowserStack SauceLabs Appium version to use string type
timezone BrowserStack SauceLabs Time zone to use for a test string type
captureConsole BrowserStack Capture console logs of a test string type
captureNetwork BrowserStack CrossBrowserTesting Capture network packets of a test true, false false
captureLogs SauceLabs Record logs of a test true, false true
captureHtml SauceLabs Capture HTML output of a test true, false false
ieNoFlash BrowserStack Do not use Flash in Internet Explorer true, false false
ieDriver BrowserStack SauceLabs Version of Internet Explorer webdriver string type
ieCompat BrowserStack Compatibility level of Internet Explorer number type
iePopups BrowserStack Enable pop-ups in Internet Explorer true, false false
edgePopups BrowserStack Enable pop-ups in Edge true, false false
safariPopups BrowserStack Enable pop-ups in Safari true, false false
safariAllCookies BrowserStack Allow all cookies in Safari true, false true
safariDriver BrowserStack Version of Safari webdriver string type
geckoDriver BrowserStack Version of gecko (Firefox) driver string type
chromeDriver SauceLabs Version of Chrome webdriver string type
automationEngine SauceLabs Automation engine to use on devices string type Appium
autoAcceptAlerts SauceLabs Automatically accept JavaScript created alerts true, false false
prerun SauceLabs An object that describes an executable to run before the test object type

server

Parameter Description Possible Values Default
host The IP address on which the test server listens ip address, host name "127.0.0.1"
port The port on which the test server listens number type 7982

No changes in this section are needed unless:

• You need to connect to the server from a separate machine (probably for your local testing) and not using a
tunnel. In such case you may want to change it to "0.0.0.0".

• The port 7982 is in use by some other process

22 Chapter 7. Settings



cross-browser-tests-runner Documentation, Release 1.2.3

parallel

Parameter Description Possible Val-
ues

De-
fault

BrowserStack Number of sessions that can be run in parallel on Browser-
Stack

>0 2

SauceLabs Number of sessions that can be run in parallel on SauceLabs >0 5
CrossBrowserTestingNumber of sessions that can be run in parallel on Cross-

BrowserTesting
>0 5

7.2 Multiple Copies

You can have more than one test settings files, if you need to break your work down into multiple tests.

7.3 Samples

./node_modules/cross-browser-tests-runner/samples/cbtr/*/*.json

7.2. Multiple Copies 23



cross-browser-tests-runner Documentation, Release 1.2.3

24 Chapter 7. Settings



CHAPTER 8

cbtr-init

This executable binary takes a browsers YAML file as input and outputs a cross-browser-tests-runner test settings file.

8.1 Usage

$ ./node_modules/.bin/cbtr-init [--help|-h] [--input|-i <browsers-yaml-file>] [--
→˓output|-o <cbtr-settings-file>]
Defaults:
input .cbtr-browsers.yml in project root
output cbtr.json in project root

Options:
help print this help
input input data of browsers to use in a compact format
output cross-browser-tests-runner settings file

8.2 Defaults

As can be seen in the usage section above, defaults can be used for command line parameters.

Parameter Default value
-i|--input .cbtr-browsers.yml file in root directory of your project
-o|--output cbtr.json file in root directory of your project

25



cross-browser-tests-runner Documentation, Release 1.2.3

26 Chapter 8. cbtr-init



CHAPTER 9

cbtr-testem-browserstack-init

This executable helps you generate testem.json - Testem’s settings - from cross-browser-tests-runner Settings that
includes BrowserStack browsers.

NOTE: Please note that browsers from other platforms would not work even if they are included in the settings file.

9.1 Usage

$ ./node_modules/.bin/cbtr-testem-browserstack-init [--help|-h] [--input|-i <cbtr-
→˓settings-file>] [--output|-o <testem-settings-file>]

Defaults:
input cbtr.json in project root
output testem.json in project root

Options:
help print this help
input cross-browser-tests-runner settings file
output testem settings file

9.2 Questions asked

The utility would ask you the following questions:

• Are you using multiple tunnels with different identifiers? (y/n) [If
unsure, choose "n"]

– BrowserStack supports multiple tunnels with different identifiers as well as a single tunnel without any id.
If your tests need multiple tunnels, choose ‘y’, or else ‘n’. The tool would generate tunnel IDs in case you
chose ‘y’.

• Do you need to take screenshots of your tests once completed? (y/n)

27



cross-browser-tests-runner Documentation, Release 1.2.3

• Do you need to take video of your test? (y/n)

– Some browsers may not support taking a video, and this behavior is pretty dynamic. So you need to
experiment and figure out for yourself.

• Please provide a timeout value [60]

– Minimum timeout on BrowserStack has to be 60 seconds.

28 Chapter 9. cbtr-testem-browserstack-init



CHAPTER 10

cbtr-testem-saucelabs-init

This executable helps you generate testem.json - Testem’s settings - from cross-browser-tests-runner Settings that
includes SauceLabs browsers.

NOTE: Please note that browsers from other platforms would not work even if they are included in the settings file.

10.1 Usage

$ ./node_modules/.bin/cbtr-testem-saucelabs-init [--help|-h] [--input|-i <cbtr-
→˓settings-file>] [--output|-o <testem-settings-file>]

Defaults:
input cbtr.json in project root
output testem.json in project root

Options:
help print this help
input cross-browser-tests-runner settings file
output testem settings file

10.2 Questions asked

On running, the executable would ask you the following questions:

NOTE: You need to enter a value, and there are no defaults

• Are you using multiple tunnels with different identifiers? (y/n) [If
unsure, choose "n"]

– SauceLabs supports multiple tunnels with different identifiers as well as a single tunnel without any id.
If your tests need multiple tunnels, choose ‘y’, or else ‘n’. The tool would generate one tunnel ID per
browser in case you chose ‘y’.

29



cross-browser-tests-runner Documentation, Release 1.2.3

• Do you need to take screenshots of your tests once completed? (y/n)

• Do you need to take video of your test? (y/n)

• Please provide a timeout value [60]

30 Chapter 10. cbtr-testem-saucelabs-init



CHAPTER 11

cbtr-testem-crossbrowsertesting-init

This executable helps you generate testem.json - Testem’s settings - from cross-browser-tests-runner Settings that
includes CrossBrowserTesting browsers.

NOTE: Please note that browsers from other platforms would not work even if they are included in the settings file.

11.1 Usage

$ ./node_modules/.bin/cbtr-testem-crossbrowsertesting-init [--help|-h] [--input|-i
→˓<cbtr-settings-file>] [--output|-o <testem-settings-file>]

Defaults:
input cbtr.json in project root
output testem.json in project root

Options:
help print this help
input cross-browser-tests-runner settings file
output testem settings file

11.2 Questions asked

On running, the executable would ask you the following questions:

NOTE: You need to enter a value, and there are no defaults.

• Are you using multiple tunnels with different identifiers? (y/n) [If
unsure, choose "n"]

– Please choose ‘n’. CrossBrowserTesting does not support multiple tunnels yet. This question remains for
the sake of uniformity and supporting quick-start executable and would be removed later.

• Do you need to take screenshots of your tests once completed? (y/n)

31



cross-browser-tests-runner Documentation, Release 1.2.3

• Do you need to take video of your test? (y/n)

• Please provide a timeout value [60]

32 Chapter 11. cbtr-testem-crossbrowsertesting-init



CHAPTER 12

Server

Cross-browser-tests-runner uses a server written using express that manages testing state and processes.

12.1 Modes

12.1.1 Third Party Test Runners

$ ./node_modules/.bin/cbtr-server

The server would run and keep waiting. Hooks are provided that bind a third party test runner like Testem with the
interfaces provided by the server to create and manage tests. See Using Testem for an example of how to use this
mode.

12.1.2 Native Runner

Please see Native Runner for details on this home-grown tests runner.

$ ./node_modules/.bin/cbtr-server --native-runner [--config <path-to-settings-file>]

Debugging Mode

If the --config option is not provided, or there are no browsers/testing information specified in the settings file
mentioned, the server would keep running. A user then can open test HTML files on a local browser. In this mode,
you can debug your tests before running the tests on a cross-browser testing platform. For example, if the server is
listening on port 7982, and tests.html exists in the root directory of your project, you can open http://127.
0.0.1:7982/tests.html in a local browser.

33



cross-browser-tests-runner Documentation, Release 1.2.3

CI Mode

The server runs all the tests and exits if the following are provided in the input settings file:

• JS browsers and test_file (Parameters) parameter, or

• Selenium browsers, test_file (Parameters), and test_script (See Parameters) parameters

12.2 Usage

$ ./node_modules/.bin/cbtr-server [--help|-h] [--config|-c <config-file>] [--native-
→˓runner|-n] [--errors-only|-e] [--omit-traces|-o] [--error-reports-only|-E] [--omit-
→˓report-traces|-O]

Defaults:
config cbtr.json in project root, or CBTR_SETTINGS env var
native-runner false
errors-only false
omit-traces false
error-reports-only false
omit-report-traces false

Options:
help print this help
config cross-browser-tests-runner settings file
native-runner if the server should work as native test runner
errors-only (native runner only) print only the specs that failed
omit-traces (native runner only) print only the error message and no stack
→˓traces
error-reports-only (native runner only) report only the error specs from browser
omit-report-traces (native runner only) do not include stack traces in reports sent
→˓by browser

12.2.1 Important Options

NOTE: Please note that all of the following apply to native runner mode only

• errors-only: use this if you are interested in looking at only the failed test specs/suites

• omit-traces: use this if you are interested in the failure messages only and not the stack trace

• error-reports-only: use this if you want to send data of only the failed test specs/suites from the browser

• omit-report-traces: use this if you want to not send stack traces of failures from the browser

First two are aimed at removing clutter in the output. Next two are aimed at reducing the size of test results data sent
by browser.

34 Chapter 12. Server



CHAPTER 13

Native Runner

13.1 Need for a tool like cross-browser-tests-runner

The beginning idea for cross-browser-tests-runner was to help make JavaScript testing using cross-browser testing
platforms easy. It was seen that several JavaScript test runners like Testem exist; however, they do not naturally extend
to cross-browser testing platforms. And, the work to integrate different test runners with different cross-browser testing
platforms is very fragmented, and that creates a steep learning curve if experimenting/working with multiple platforms
and tests runners is required.

So how if there was one tool that enables you to pick any of your favorite test runners and test on any of your favorite
cross-browser testing platforms? That’s what cross-browser-tests-runner aims to be.

13.2 Limitations of existing work

However; as work on integrating existing test runners was taken up, several limitations were found:

• Testem’s instrumented JavaScript does not work on older browsers, starting with assumptions of JSON object
being available in the browser (not true with older browsers). Experiments showed that a risky and major rewrite
of the injected code would be required.

• BrowserStack’s own runner called browserstack-runner does work on older browsers; but does not have a
proxy/bypass mechanism like Testem, so it’s not possible to send client-side code coverage data to the test
server and store it.

• For local testing, each cross-browser testing platform uses tunnels. It was seen with BrowserStack that tunnel
processes die often, which means that the test results would not reach to the test server even if a client browser
sends it, so completion of the test cannot be detected. There is no tool that works around such issues specific to
cross-browser testing platforms.

35



cross-browser-tests-runner Documentation, Release 1.2.3

13.3 What a cross-browser tester needs

Essentially, a serious and purist cross-browser tester needs a solution that:

• takes care of the complete testing workflow taking the state machine and undocumented/unknown/stability is-
sues of a cross-browser testing platforms into account

• does not cause limitations on browser coverage

• supports essential testing features like code coverage, and

• includes fail-over mechanisms to account for errors

It was seen that modifying existing third-party solutions to include all of above can be difficult. This is where the
in-built test runner - called Native Runner - was born.

13.4 Features

13.4.1 Large Browser Coverage

The code injected by Native Runner works on oldest browsers like Internet Explorer 6, and Android 1.5.

13.4.2 Code Coverage Collection

If your JavaScript source is instrumented using a tool like Istanbul, the coverage data collected on the browser is
automatically sent to Native Runner, which stores it into coverage/ directory in your project’s root.

You can use Istanbul or any other compatible tools to generate code coverage reports, and upload the coverage data to
services like https://codecov.io, https://coveralls.io and others.

13.4.3 JavaScript Unit and Selenium Testing

With versions 0.4.0+, Native Runner supports both. For Selenium testing, it abstracts various details for you so you
can focus on writing test code alone.

13.4.4 Monitoring of Tunnels

BrowserStack tunnels die due to undocumented/unknown issues. Native Runner monitors tunnels created across all
platforms and restarts those that die.

With 0.5.0+ this functionality has been moved to the Platform library layer, so this happens even for testing with third
party test runners like Testem.

13.4.5 Test Results Reporting Retries

Native Runner’s injected code includes a retry with exponential back-off mechanism that tries to recover from failures
that occur when tunnels die, exploiting the tunnel monitoring mechanism described above.

Since this is done by code injected by Native Runner, this is not available with third party test runners.

36 Chapter 13. Native Runner

https://codecov.io
https://coveralls.io


cross-browser-tests-runner Documentation, Release 1.2.3

13.4.6 Test Retries

Sometimes, test result reporting fails even with all above mechanisms in place. Native Runner retries tests for which
no results were reported if a non-zero retries (See Parameters) parameter is provided in Settings.

13.5 JavaScript Unit Testing

13.5.1 Test HTML

Unlike Testem that generates the test HTML, one needs to write a test HTML file when using Native Runner. Following
sections provide samples that show the structure the test HTML file needs to have.

A test can use more than test HTML files. The test_file (See Parameters) parameter in Settings specified test
HTML file(s) to use.

Jasmine 1.x

Use the following sample and replace the annotated lines in the sample with your source and test JavaScript files.

<!doctype html>
<html>
<head>
<title>Cross Browser Tests Runner</title>
<script src="//cdnjs.cloudflare.com/ajax/libs/jasmine/1.3.1/jasmine.js"></script>
<script src="//cdnjs.cloudflare.com/ajax/libs/jasmine/1.3.1/jasmine-html.js"></

→˓script>
<script src="/cross-browser-tests-runner.js"></script>
<script>
(function() {

var jasmineEnv = jasmine.getEnv();
jasmineEnv.addReporter(new jasmine.HtmlReporter);
window.onload = function() {

jasmineEnv.execute();
}

})()
</script>
<!-- start of your app and test code -->
<script src="../../js/src/app.js"></script>
<script src="../../js/tests/jasmine/test.js"></script>
<!-- end of your app and test code -->
<link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/jasmine/1.3.1/jasmine.

→˓css">
</head>
<body>
<div id="jasmine_content"></div>

</body>
</html>

13.5. JavaScript Unit Testing 37



cross-browser-tests-runner Documentation, Release 1.2.3

13.6 Selenium Testing

13.6.1 Test Script

For Selenium Testing, one needs to write the test code in a file and provide its path in test_script (See Parameters)
parameter in Settings.

Sample

The following sample shows the structure of a test script file.

'use strict'

exports.script = (driver, webdriver) => {
return driver.findElement({id: 'test-message'})
.then(el => {
return el.getText()

})
.then(text => {
console.log('Selenium Test Script: text of #test-message %s', text)
return true

})
}

exports.decider = (driver, webdriver) => {
return Promise.resolve(true)

}

Structure

A test script exports two functions:

• script required: This implements the test script functionality.

• decider optional: This decides whether the test succeeded or failed.

Arguments provided to both functions:

• driver: This is the thenable web driver instance created by Builder. See Selenium documentation.

• webdriver: This is the handle obtained with javascript require('selenium-webdriver')

Both functions must return a Promise or thenable. See the Selenium documentation.

38 Chapter 13. Native Runner

http://seleniumhq.github.io/selenium/docs/api/javascript/module/selenium-webdriver/index_exports_ThenableWebDriver.html
http://seleniumhq.github.io/selenium/docs/api/javascript/module/selenium-webdriver/index_exports_ThenableWebDriver.html


CHAPTER 14

Troubleshooting

Add LOG_LEVEL=DEBUG to any of the utilities/commands on Linux/OSX, or export LOG_LEVEL as an environment
variable on Windows before running them. For example:

$ LOG_LEVEL=DEBUG ./node_modules/.bin/cbtr-init

Supported logging levels: DEBUG, INFO, WARN, and ERROR, with DEBUG producing most verbose logging.

Default logging level: ERROR

39


	Overview
	What is cross-browser-tests-runner?
	Why this tool?
	Get Started
	References
	Troubleshooting

	Quick Start
	Selenium Tests
	JavaScript Unit Tests
	Common Steps

	How To Test
	Initial Common Steps
	JavaScript Unit Testing
	Selenium Testing

	Status
	Integrations
	JS Frameworks supported by Native Runner
	Supported Node.js Versions
	Minimum Node.js Versions

	Platform Configuration
	Local Configuration Files
	Updating Configuration
	Standard Names & Conversions
	JS & Selenium Browsers
	Capabilities & Conditions

	Browsers YAML
	Format
	Multiple Copies
	Samples

	Settings
	Format
	Multiple Copies
	Samples

	cbtr-init
	Usage
	Defaults

	cbtr-testem-browserstack-init
	Usage
	Questions asked

	cbtr-testem-saucelabs-init
	Usage
	Questions asked

	cbtr-testem-crossbrowsertesting-init
	Usage
	Questions asked

	Server
	Modes
	Usage

	Native Runner
	Need for a tool like cross-browser-tests-runner
	Limitations of existing work
	What a cross-browser tester needs
	Features
	JavaScript Unit Testing
	Selenium Testing

	Troubleshooting

