
CrispySystem
Release 1.1.4

Jan 24, 2019

Contents:

1 Installation 3
1.1 Requirements . 3

2 Getting started 5
2.1 Quick start . 5
2.2 Components . 6

3 Changelog 15
3.1 1.4.0 . 15
3.2 1.3.1 . 15
3.3 1.3.0 . 15
3.4 1.2.0 . 15
3.5 1.1.4 . 16
3.6 1.1.3 . 16
3.7 1.1.2 . 16
3.8 1.1.1 . 16
3.9 1.1.0 . 16
3.10 1.0.0 . 16

i

ii

CrispySystem, Release 1.1.4

CrispySystem was originally built so I would have to do less during my exams. Then I made it a public small basic
framework.

The framework uses a MVC approach, which is achieved using: routing, controllers, models and views. It has Depen-
dency Injection with auto-wiring which allows you to write no-mess code that just works.

Contents: 1

CrispySystem, Release 1.1.4

2 Contents:

CHAPTER 1

Installation

To install the CrispySystem framework, you will need to pull it in with Composer.

Add it to the composer.json file

"require": {
"stevenliebregt/crispysystem": "^1.0"

}

Add it to an existing project

"composer require stevenliebregt/crispysystem"

1.1 Requirements

Webserver

You will need to have a webserver with the ability to rewrite a URL.

PHP

The CrispySystem framework requires you to have at least PHP7.0.

3

CrispySystem, Release 1.1.4

4 Chapter 1. Installation

CHAPTER 2

Getting started

To get started with CrispySystem quicly, read the following. If you want to know more about the individual compo-
nents, follow the links at the bottom of this page.

2.1 Quick start

Recomended directory structure

Create the following directory structure:

project_root/
app/
config/
public/

index.php
storage/
vendor/
composer.json

! Note ! The config and storage directories need to be readable and writable.

Index

To create a CrispySystem application, create an index.php in the public folder and put the following content in it:

<?php

use StevenLiebregt\CrispySystem\CrispySystem;
use StevenLiebregt\CrispySystem\Routing\Router;
use StevenLiebregt\CrispySystem\Routing\Route;

define('DEVELOPMENT', true);
define('ROOT', './../');

(continues on next page)

5

CrispySystem, Release 1.1.4

(continued from previous page)

require ROOT . 'vendor/autoload.php';

$crispySystem = new CrispySystem();

Router::group()->routes(function() {

Route::get('/', function() {
return 'Hello World';

});

});

$crispySystem->run();

URL rewriting

In order for the framework to function correctly, all requests will need to be rewritten to the index.php.

2.2 Components

2.2.1 Routing

Routing is an essential part of the framework, it allows you to map an action to a URL.

The namespace for this component is StevenLiebregt\CrispySystem\Routing. In this namespace are the two following
classes: Router and Route.

All routes need to be added before the CrispySystem::run method.

Methods

Each of the following HTTP methods have a static Route method with the same name.

• GET (Route::get)

• POST (Route::post)

• PUT (Route::put)

• PATCH (Route::patch)

• DELETE (Route::delete)

Each of these methods take 2 arguments:

• The URI path to match, this needs to be a string

• The handler, this can be a closure which returns a string, or a (string) path to a Controller class and method.

There are also 2 special route-adding methods, these being: Route::any, which takes the same arguments as the other
route-adding methods, but adds a route that matches any HTTP verb, and Route::match, which takes 3 arguments. The
first argument is an array of HTTP verbs, the route should match to, and the last two arguments are the same as in the
other route-adding methods.

6 Chapter 2. Getting started

CrispySystem, Release 1.1.4

Handler

Closure

<?php

Route::get('/home', function() {
return 'Welcome home!';

});

Controller

<?php

Route::get('/home', 'HomeController.welcome');

This route’s action will return the welcome method from the HomeController.

Naming

Routes can be given names, you can use these names to retrieve a route. For example, you can use this in a template /
view to fill a href element with a named url. This way you can change the url without editing all templates.

The Route::setName method is chained off the HTTP method method.

<?php

Route::get('/foo', function() {
return 'foo';

})->setName('bar');

You can use Router::getRouteByName(‘bar’) to retrieve the above route definition.

Parameters

To add a variable part in your route, you need to add a section wrapped in curly braces. Then you need to chain the
Route::where method off the HTTP method method. This Route::where method takes the following 2 parameters:

• The name of the variable part, this needs to be the same as what is between the curly braces.

• A regular expression, to which the part will need to match. If the regular expression has a capturing group, the
value will be auto-wired into the handler.

<?php

Route::get('/products/{id}', function($id) {
return 'I want product id: ' . $id;

})->where('id', '(\\d+)');

This route would match /products/193 and would return ‘I want product id: 193’, but it wouldn’t match /products/bar
since the parameter part does not match the regular expression.

Grouping

You can also group routes so you can add:

2.2. Components 7

CrispySystem, Release 1.1.4

• path-prefixes

• handler-prefixes

• name-prefixes

These prefixes will be added to all routes within the group. To start a group, use the Router::group method, then chain
the Router::routes method, which takes a closure in which you can add your routes the normal way.

<?php

Router::group()
->setPathPrefix('/api')
->setHandlerPrefix('Controllers\\Backend\\')
->setNamePrefix('api.backend.')
->routes(function() {

Route::get('', function() {
return 'Hello this is api speaking';

});

Route::get('/products', 'ProductsController.index')
->setName('products.index');

});

The above example will add 2 routes, the first one will listen to /api and the second one will answer to /api/products.
With the second one, the handler gets prefixed so it will become Controllers\Backend\ProductsController.index, this
also goes for the route name which will become api.backend.products.index.

2.2.2 View

For views this framework uses the templating engine Smarty 3 <https://www.smarty.net>.

Setting template directory

Use this method to set the template directory. From this directory templates will be sought using the Smar-
tyView::display method.

The default template directory is: ROOT/resources/templates.

Setting the template

The method SmartyView::template is used to set the template to be displayed.

The method takes one parameter, this needs to be the template filename including the extension.

Displaying

! Note ! Before you use this method, make sure you have set a template.

To display the template, the value of the SmartyView::display method needs to be returned from the controller.

8 Chapter 2. Getting started

https://www.smarty.net

CrispySystem, Release 1.1.4

Assigning data to templates

To assign data to a variable inside a template, you can use the SmartyView::with method, which takes an array, with
key / value definitions.

<?php

->with([
'id' => 1235,
'foo' => [

'test',
'bar',

],
]);

The above would allow you to access the variables id and foo inside the template which give you 1235 and the array
with values test and bar respectively.

Example

<?php

$view = new SmartyView();
$view->setTemplateDir('/root/templates');
$view->template('home.tpl');
return $view->display();

In the above example, the class looks for the template home.tpl in the directory /root/templates.

2.2.3 Controllers

Controllers will be called after matching a URL.

The framework includes a base Controller class which can be extended.

The base controller has a property crispySystem which contains a copy of the Container class for Dependency Injec-
tion.

Controllers must return a string.

Example

<?php

namespace App\Controllers;

use StevenLiebregt\CrispySystem\Controllers\Controller;
use StevenLiebregt\CrispySystem\View\SmartyView;

class ProductsController extends Controller
{

private $view;

public __construct(SmartyView $view)

(continues on next page)

2.2. Components 9

CrispySystem, Release 1.1.4

(continued from previous page)

{
$this->view = $view;

}

public function index()
{

return $this->view
->template('index.tpl')
->display();

}

public function item($id)
{

return $this->view
->template('item.tpl')
->with([

'id' => $id,
])
->display();

}
}

2.2.4 Database

Connection

The Connection class returns a PDO object, in order for this to work you need to have a database.php configuration
file in ROOT/config. This file should look something like this:

<?php

return [
'driver' => 'mysql',
'host' => '172.17.0.2',
'port' => '3306',
'dbname' => 'databasename',
'user' => 'root',
'pass' => 'secret',

];

To retrieve a PDO object from the class, use the Config::getPdo method.

Models

With this framework included is a base model (StevenLiebregt\CrispySystem\Database\Model) that contains some
basic queries.

When extending this class, you will need to override 2 properties, those are:

• $table, the name of the table as in the database

• $fields, an array containing all the field names in the database table

The queries included in the base class are:

showTables

10 Chapter 2. Getting started

CrispySystem, Release 1.1.4

Runs a SHOW TABLES query on the database and return the result.

getAll

Runs a SELECT query to retrieve all records from a table, and return the result.

getOneById

Runs a SELECT query to retrieve one record by id from a table, and return the result.

insert

Run an INSERT query, the method takes one parameter which should be an array of a list of the values to insert. This
array should contain the values for all fields except the id field, as that is expected to be an AUTO_INCREMENT field.

This method returns the id of the newly inserted record.

updateById

Update one or more records in the database table. Takes two arguments:

• An id, or an array of ids, these are the ids of the records to be updated

• An associative array with all the values to be updated, as where the key should be the name of the field and the
value the new value of the field

This method returns the amount of rows affected by the query.

deleteById

Delete one or more records from a database table. It takes one parameter, which can be an id or an array of ids.

This method returns the amount of rows affected by the query.

2.2.5 Dependency Injection

Dependency Injection manages dependencies for you, as the name implies.

This class can be accessed by extending the base Controller class, as the property crispySystem.

! Note ! The parameters in a method or function should be type-hinted in order for this to work.

Create instance

The createInstance method takes the name of a class (including namespace) as argument. It resolves any dependencies
for the constructor recursively, and returns the class instance.

This method always creates a new instance, in comparison to the getInstance method which will re-use a previously
created instance, or creates a new one if it doesn’t exist.

Get instance

The getInstance method takes the name of a class (including namespace) as argument. It resolves any dependencies
for the constructor recursively, and returns the class instance.

This method will re-use a previously created instance, or create a new one if it doesn’t exist.

Resolve closure

The resolveClosure method can be used to resolve dependencies in a closure. It takes one parameter, which should be
a closure.

2.2. Components 11

CrispySystem, Release 1.1.4

Resolve method

The resolveMethod method can be used to resolve a specific method of an instance, it takes the following arguments:

• instance, the instance of which you want to resolve a method

• method, the name of the method to resolve

• parameters (optional), if given, any parameters you give in this associative array, where the key = the name of
the parameter, and the value the value, will be used to fill parameter slots. If a value is not given, the default will
be used or resolved.

2.2.6 Helpers

Config

All config files that reside in ROOT/config/ will be read and cached into one array, the first-level keys in the array are
the names of the config files. So if you have a file called database.php and system.php in your config directory, the
configuration array will look like this:

[
'database' => [

'content from database.php'
],
'system' => [

'content from system.php'
],

]

The configuration files must return an array.

Reading the configuration

To read the configuration you can use the Config::get method.

If you leave the parameter empty, it will return an array containing all the configuration, if you give a key you want,
you’ll only receive the value of that key. Multidimensional keys are formatted like this: database.driver, this would
map to $config[‘database’][‘driver’].

Functions

pr

The pr function is a wrapper for the PHP function print_r. It encapsulates the print_r function inside <pre></pre>
tags so you don’t have to type those manually.

vd

The vd function is a wrapper for the PHP function var_dump. It encapsulates the var_dump function inside
<pre></pre> tags so you don’t have to type those manually.

12 Chapter 2. Getting started

CrispySystem, Release 1.1.4

showPlainError

This function shows an error, with a darkred title saying [ERROR], it has an option to exit after showing the error, by
default this is true.

jsonify

This function sets the Content-Type: application/json header and returns the given data as a json_encoded string.

2.2. Components 13

CrispySystem, Release 1.1.4

14 Chapter 2. Getting started

CHAPTER 3

Changelog

3.1 1.4.0

New features

• Added the Route::any method, which matches any HTTP verb

• Added the Route::match method, which matches a list of HTTP verbs

3.2 1.3.1

Fixes

• Fixed a routing issue when the name was not set

3.3 1.3.0

New features

• Added Smarty config plugin, which allows you to retrieve config settings in templates

3.4 1.2.0

New features

• Added base container

• Added complete documentation

15

CrispySystem, Release 1.1.4

3.5 1.1.4

New features

• Added base model for database queries

3.6 1.1.3

New features

• Added database connection class

3.7 1.1.2

New features

• Added jsonify function

3.8 1.1.1

Fixes

• Fixed some dirt that got there when refactored to PHP7.0

3.9 1.1.0

Changed features

• Refactored the project from PHP7.1 down to PHP7.0

3.10 1.0.0

This project was created

16 Chapter 3. Changelog

	Installation
	Requirements

	Getting started
	Quick start
	Components

	Changelog
	1.4.0
	1.3.1
	1.3.0
	1.2.0
	1.1.4
	1.1.3
	1.1.2
	1.1.1
	1.1.0
	1.0.0

