CREAMuide Documentation

Release 0.1

Paolo Andreetto

Dec 17, 2019

Contents

CREAM Functional Description

CREAM installation

2.1 Requirements v it e e e e e e e
22 Installation
23 Example e e
Puppet Configuration

3.1 CREAM service parameters v o v v v v v v v v v e v v oo
32 CREAMDatabase
33 BLAH e
34 CREAM information systemo
3.5 CREAM security and accounting
36 CREAMWwithTORQUE
37 CREAMwithSLURM
3.8 CREAMwithHTCondor
3.9 Experimental features 0000
CREAM User’s Guide

4.1 CREAM Command Line Interface Guide
4.2 Use specific functionality of the CREAMCE
43 CREAMjobstates oo v v v vttt
CREAM JDL Guide

5.1 Introduction
52 RequestandJobTypes
5.3 Job Attributes Descriptiono e
54 JDLExamples i e e e
BLAH User’s Guide

6.1 BLAH Introduction
6.2 BLAHPortability
6.3 The supported batch systems
6.4 BLAH forward requirements to the local batch system
6.5 BLAH Commands syntax and semantics
6.6 BLParser
6.7 New Parser Scenario

6.8 BLAH Accounting ot i e e e e e e e
7 CREAM monitoring

7.1 Requirements o vt i e e e e e e e e e e

7.2 CREAM-CE direct job submission metrics and WN probes
8 Releases

8.1 Release 1.16.7 o e e

8.2 Release 1.16.6 L. e e

9 Indices and tables

79
79
79

91
91
92

95

CREAMuide Documentation, Release0.1

Contents:

Contents 1

CREAMguideDocumentation, Release0.1

2 Contents

CHAPTER 1

CREAM Functional Description

The CREAM (Computing Resource Execution And Management) Service is a simple, lightweight service that im-
plements all the operations at the Computing Element (CE) level; its well-defined WebService-based interface and
its implementation as an extension of the Java-Axis servlet (running inside the Apache Tomcat container) provide
interoperability with clients written in any programming language and running on any computer platform.

The CREAM interface is well-defined using the Web Service Description Language (WSDL); anyone can generate
his/her CREAM client by simply filling in the stub code generated by WSDL parser (gSOAP for C/C++, Axis for Java,
Perl module for perl).

CREAM functionality:

* Job Submission
— Possibility of direct staging of input sandbox files
— gLite JDL compliance (with CREAM-specific extensions)
— Support for batch and parallel jobs

* Manual and automatic proxy delegation

* Job Cancellation

* Job Info with configurable level of verbosity and filtering based on submission time and/or job status

* Job List

* Job Suspension and Resume

* Job output retrieval

* Job Purge for terminated jobs

* Possibility (for admin) to disable new submissions

* Self limiting CREAM behavior: CREAM is able to protect itself if the load, memory usage, etc. is too high.
This happens disabling new job submissions, while the other commands are still allowed

* ARGUS or gJAF based authorization

* Possibility to forward requirements to the batch system

CREAMguide Documentation, Release0.1

* Integration with APEL accounting systems
CREAM can be used
* by the Workload Management System (WMS), via the ICE (Interface to CREAM Environment) service

* by a generic client, e.g. an end-user willing to directly submit jobs to a CREAM CE. A C++ command line
interface (CLI) is available

CREAM service accesses and operates local resource management systems. The current version of the application
supports the following management systems:

* TORQUE

* LSF

* SLURM

e HTCondor

* Grid Engine (partially)

Authentication in CREAM is managed via the trustmanager. The Trust Manager is the component responsible for
carrying out authentication operations. It is an implementation of the J2EE security specifications. Authentication
is based on PKI. Each user (and Grid service) wishing to access CREAM is required to present an X.509 format
certificate. These certificates are issued by trusted entities, the Certificate Authorities (CA). The role of a CA is to
guarantee the identity of a user. This is achieved by issuing an electronic document (the certificate) that contains the
information about the user and is digitally signed by the CA with its private key. An authentication manager, such as
the Trust Manager, can verify the user identity by decrypting the hash of the certificate with the CA public key. This
ensures that the certificate was issued by that specific CA. The Trust Manager can then access the user data contained
in the certificate and verify the user identity.

Authorization in the CREAM CE can be implemented in two different ways (the choice is done at configuration time):
* Authorization with ARGUS
* Authorization with gJAF

Argus is a system meant to render consistent authorization decisions for distributed services (e.g. compute elements,
portals). In order to achieve this consistency a number of points must be addressed. First, it must be possible to
author and maintain consistent authorization policies. This is handled by the Policy Administration Point (PAP)
component in the service. Second, authored policies must be evaluated in a consistent manner, a task performed by
the Policy Decision Point (PDP). Finally, the data provided for evaluation against policies must be consistent (in form
and definition) and this is done by the Policy Enforcement Point (PEP). Argus is also responsible to manage the Grid
user - local user mapping.

gJAF (Grid Java Authorization Framework) provides a way to invoke a chain of policy engines and get a decision
result about the authorization of a user. The policy engines are divided in two types, depending on their functionality.
They can be plugged into the framework in order to form a chain of policy engines as selected by the administrator
in order to let him set up a complete authorization system. A policy engine may be either a PIP or a PDP. PIP collect
and verify assertions and capabilities associated with the user, checking her role, group and VO attributes. PDP may
use the information retrieved by a PIP to decide whether the user is allowed to perform the requested action, whether
further evaluation is needed, or whether the evaluation should be interrupted and the user access denied.

In CREAM CE VO based authorization is supported. In this scenario, implemented via the VOMS PDP, the adminis-
trator can specify authorization policies based on the VO the jobs’ owners belong to (or on particular VO attributes).
When gJAF is used as authorization mechanism, the Grid user - local user mapping is managed via glexec, For what
concerns authorization on job operations, by default each user can manage (e.g. cancel, suspend, etc.) only her own
jobs. However, the CREAM administrator can define specific super-users who are empowered to manage also jobs
submitted by other users.

4 Chapter 1. CREAM Functional Description

CHAPTER 2

CREAM installation

2.1

The requirements for a basic installation of a CREAM site are:
¢ Scientific Linux 6, Cent OS version 7 or compatibile distributions.

* The UMD#4 extension as described in the UMD guide

2.2

Requirements

Installation

The basic installation of a CREAM site consists on the following mandatory packages:

canl-java-tomcat
cleanup-grid-accounts
bdii

dynsched-generic
glite-ce-cream
glite-info-provider-service
globus-gridftp-server-progs
globus-proxy-utils
glue-schema

kill-stale-ftp
lcg-expiregridmapdir
mariadb

sudo

http://repository.egi.eu/category/umd_releases/distribution/umd-4/

CREAMguide Documentation, Release0.1

If the authorization framework used is based on glexec the following packages are mandatory:
* glexec
* Icas-lcmaps-gt4-interface
* Icas-plugins-basic
* Icas-plugins-check-executable
* Icas-plugins-voms
¢ Icmaps-plugins-basic
* Icmaps-plugins-verify-proxy
* Icmaps-plugins-voms
if the authorization framework used is based on Argus the following package is mandatory:
* argus-gsi-pep-callout
The following packages are optional:
e apel-parsers : if the support for APEL accounting is enabled
* glite-Ib-logger : if the support for the Logging and Bookkeping is enabled
¢ info-dynamic-scheduler-Isf : if the batch system used is LSF
¢ info-dynamic-scheduler-Isf-btools : if the batch system used is LSF
* info-dynamic-scheduler-slurm : if the batch system used is SLURM
¢ Icg-info-dynamic-scheduler-condor : if the batch system used is HTCondor
* Icg-info-dynamic-scheduler-pbs : if the batch system used is TORQUE

The standard procedure for the installation and configuration of a CREAM site makes use of the puppet framework.
The puppet module checks for the presence of the packages described above, and in case they’re not available on the
system it installs them.

2.3 Example

This section illustrate an example of installation of a CREAM site by means of a standalone execution of puppet. In
the following examples the FQDN of the CREAM CE is myhost.mydomain.

The required steps are:

* Installation of the packages for puppet:

’yum -y install puppet

* Verification of the puppet environment:

’facter | grep -E 'hostname|fqgdn'

If the FQDN of the host is not correctly resolved it is necessary to specify the parameter creamce: :host

* Installation of the CREAM CE module for puppet:

’puppet module install infnpd-creamce

¢ Creation of the required directories:

6 Chapter 2. CREAM installation

CREAMuide Documentation, Release0.1

mkdir -p /etc/puppet/manifests /var/lib/hiera/node /etc/grid-security

* Creation of the file /etc/puppet/manifests/site.pp with the following definition

node 'myhost.mydomain' {
require creamce

Creation of the file /etc/hiera.yaml with the following definitions:

:backends:
- yaml
thierarchy:
- "node/% "
cyaml:
:datadir: /var/lib/hiera

* Creation of the symbolic link

In -s /etc/hiera.yaml /etc/puppet/hiera.yaml

¢ Creation of the CREAM CE description file /var/lib/hiera/node/myhost .mydomain.yaml, an
example of minimal configuration is:

creamce: :mysgl: :root_password : mysqglp@$sSwOrd

creamce: :creamdb: :password : creamp@$SwOrd

creamce: :creamdb: :minpriv_password : minp@$$wOrd

apel::db::pass : apelp@$swlOrd

creamce: :batch_system : pbs

creamce: :use_argus : false

creamce: :default_pool_size : 10

gridftp::params::certificate : "/etc/grid-security/hostcert.pem"
gridftp::params: :key : "/etc/grid-security/hostkey.pem"
gridftp::params::port : 2811

creamce: :queues :
long : { groups : [dteam, dteamprod] }
short : { groups : [dteamsgm] }

creamce: :vo_table

dteam : {
vo_app_dir : /afs/dteam,
vo_default_se : storage.pd.infn.it,
servers : [

server : voms.hellasgrid.gr,
port : 15004,
dn : /C=GR/O=HellasGrid/OU=hellasgrid.gr/CN=voms.
—hellasgrid.gr,
ca_dn : "/C=GR/O=HellasGrid/OU=Certification,
—Authorities/CN=HellasGrid CA 2016"
}l
{

server : voms2.hellasgrid.gr,

(continues on next page)

2.3. Example 7

CREAMguide Documentation, Release0.1

(continued from previous page)

port : 15004,
dn : /C=GR/0O=HellasGrid/OU=hellasgrid.gr/CN=voms2.
—hellasgrid.gr,
ca_dn : "/C=GR/O=HellasGrid/OU=Certification,
—Authorities/CN=HellasGrid CA 2016"
}
] 14
groups : {
dteam : { fgan : ["/dteam"], gid : 9000 },

dteamsgm : { fgan : ["/dteam/sgm/ROLE=developer"], gid : 9001, pub_

—admin : true },
dteamprod : { fgan : ["/dteam/prod/ROLE=developer"], gid : 9002 }
I
users : {
dteamusr : { first_uid : 6000, fgan : ["/dteam"],
name_pattern : "$<prefix>s%$03<index>d" },
dteamsgmusr : { first_uid : 6100, fgan : ["/dteam/sgm/ROLE=developer
;}n, "/dteam"] ,
pool_size : 5, name_pattern : "$<prefix>s%02<index>d"
“’}l
dteamprodusr : { first_uid : 6200, fgan : ["/dteam/prod/
—ROLE=developer", "/dteam"],
pool_size : 5, name_pattern : "$<prefix>s%$02<index>d

creamce: thardware_table
subcluster001 : {

ce_cpu_model : XEON,
ce_cpu_speed : 2500,
ce_cpu_vendor : Intel,
ce_cpu_version : 5.1,
ce_physcpu : 2,
ce_logcpu : 2,
ce_minphysmem : 2048,

ce_minvirtmem : 4096,
ce_os_family : "linux",
ce_os_name : "CentOS",
ce_os_arch : "x86_64",
ce_os_release : "7.0.1406",
ce_outboundip : true,
ce_inboundip : false,
ce_runtimeenv : ["tomcat_6_0", "mysgl 5_1" 7],
subcluster_tmpdir : /var/tmp/subcluster001,
subcluster_wntmdir : /var/glite/subcluster001,
ce_benchmarks : { specfp2000 : 420, specint2000 : 380, hep-spec06 : 780 },
nodes : ["node-01l.mydomain", "node-02.mydomain", "node-03.mydomain"]
Experimental support to GPUs
accelerators : {
acc_device_001 : {
type : GPU,
log_acc : 4,

(continues on next page)

8 Chapter 2. CREAM installation

CREAMuide Documentation, Release0.1

(continued from previous page)

phys_acc : 2,

vendor : NVidia,
model : "Tesla k80",
version : 4.0,
clock_speed : 3000,
memory : 4000

creamce: :software_table
tomcat_6_0 : {
name : "tomcat",
version : "6.0.24",
license : "ASL 2.0",
description : "Tomcat is the servlet container"
}
mysgl_5_1 : {

name : "mysqgl",
version : "5.1.73",
license : "GPLv2 with exceptions",
description : "MySQL is a multi-user, multi-threaded SQL database server"
}
creamce: :vo_software_dir : /afs

creamce: :se_table
storage.pd.infn.it : { mount_dir : "/data/mount", export_dir : "/storage/
—export",
type : Storm, default : true }
cloud.pd.infn.it : { mount_dir : "/data/mount", export_dir : "/storage/export

type : Dcache }

The permissions of the file /var/lib/hiera/node/myhost .mydomain.yaml must be setto 600.
* Deployment of the host private key in /etc/grid-security/hostkey.pem
* Deployment of the host certificate in /etc/grid-security/hostcert.pem

» Execution of puppet

puppet apply /etc/puppet/manifests/site.pp

2.3. Example 9

CREAMguide Documentation, Release0.1

10 Chapter 2. CREAM installation

CHAPTER 3

Puppet Configuration

The CREAM CE site can be configured with a puppet module. The module resorts to hiera for handling configuration
parameters. Parameters are marked by type; simple types are “string”, “integer” and “boolean”; complex types are

“list” and “hash”.

Hiera can work with different back-ends, like YAML and JSON. For the examples of parameter definitions in the
following document the YAML syntax is used. According to YAML specification, the complex types can be declared

in two different modes:

¢ with indentation:

Example of 1list type
blah::shared_directories
- "/mnt/afs"
- "/media/cvmfs"
Example of hash type,
creamce: :queues
long
groups
- dteam
- dteamprod

short
groups
- dteamsgm

with nested complex definitions

with block style:

Example of list type
blah::shared_directories

Example of hash type,
creamce: :queues : {
long { groups

[dteam,

["/mnt/afs", "/media/cvmfs"
with nested complex definitions

dteamprod] 1},

]

(continues on next page)

11

https://forge.puppet.com/infnpd/creamce
https://puppet.com/docs/puppet/5.3/hiera_intro.html
http://yaml.org/spec/1.2/spec.html

CREAMguide Documentation, Release0.1

(continued from previous page)

short : { groups : [dteamsgm] }

Mixing the two modes is possible but may be misleading; in case it is possible to test the hiera configuration with
special tools like yamllint, already present in EPEL distribution.

3.1 CREAM service parameters

These are the basic configuration parameters related to the CREAM service:

% G

e creamce: :batch_system (string): The installed batch system, mandatory, one of “pbs”, “slurm”, “con-

dor”, “Isf”

creamce: :host (string): The fully qualified Computing Element host name, default the host name
creamce: :port (integer): The tomcat listen port, default 8443

creamce: :site: :name (string): The human-readable name of the site, default the host name

creamce: :site: :email (string): The main email contact for the site. The syntax is a coma separated list
of email addresses, default undefined

creamce: : sandbox_path (string): The directory where the sandbox files are staged on the CREAM CE
node, default “/var/cream_sandbox”

creamce: :delegation: :purge_rate (integer): Specifies in minutes how often the delegation purger
has to run, default 10 minutes

creamce: :lease: :time (integer): The maximum allowed lease time in second. If a client specifies a lease
time too big, this value is used instead, default 36000 seconds.

creamce: :lease: :rate (integer): Specifies in minutes how often the job purger has to run, default 30
minutes

The following parameters enable and configure the internal monitoring system. Whenever a resource metric exceeds
the related resource limit the CREAM CE suspends the job submission.

* creamce: :enable_limiter (boolean): In order to disable the limiter, it is needed to set this parameter

value to false and restart the service, default true

creamce: :limit::loadl (integer): Limiter threshold for the load average (1 minute), default 40
creamce: :limit::load5 (integer): Limiter threshold for the load average (5 minute), default 40
creamce: :limit::loadlb5 (integer): Limiter threshold for the load average (15 minute), default 20
creamce: :limit::memusage (integer): Limiter threshold for the memory usage, default 95 (percentage)
creamce: :limit: :swapusage (integer): Limiter threshold for the swap usage, default 95 (percentage)
creamce: :limit: : fdnum (integer): Limiter threshold for the number of file descriptors, default 500
creamce: :1limit::diskusage (integer): Limiter threshold for the disk usage, default 95 (percentage)

creamce: :1limit::ftpconn (integer): Limiter threshold for the number of concurrent ftp connections,
default 30

creamce: :limit::fdtomcat (integer): Limiter threshold for the number of file descriptors, default 800

creamce::limit::activejobs (integer): Limiter threshold for the number of active jobs, default -1
(unlimited)

12

Chapter 3. Puppet Configuration

CREAMuide Documentation, Release0.1

* creamce::limit::pendjobs (integer): Limiter threshold for the number of pending jobs, default -1
(unlimited)

The following parameters configure the internal job purger mechanism, all the values are expressed in number of days

* creamce: : job: :purge_rate (integer): Specifies in minutes how often the job purger has to run, default
300 minutes.

* creamce: :purge: :aborted (integer): Specifies how often the job purger deletes the aborted jobs, default
10 days

* creamce: :purge: : cancel (integer): Specifies how often the job purger deletes the cancelled jobs, default
10 days

* creamce: :purge: :done (integer): Specifies how often the job purger deletes the executed jobs, default 10
days

e creamce: :purge: : failed (integer): Specifies how often the job purger deletes the failed jobs, default 10
days

* creamce: :purge: :register (integer): Specifies how often the job purger deletes the registered jobs,
default 2 days

The following parameters configure the job wrapper:

* creamce::jw::proxy_retry_wait (integer): The minimum time interval expressed in seconds, be-
tween the first attempt and the second one for retrieving the user delegation proxy, default 60

* creamce: :jw::isb::retry_count (integer): The maximum number of ISB file transfers that should be
tried, default 2

* creamce::jw::isb::retry_wait (integer): If during a input sandbox file transfer occurs a failure, the
JW retries the operation after a while. The sleep time between the first attempt and the second one is the “initial
wait time” (i.e. the wait time between the first attempt and the second one) expressed in seconds. In every next
attempt the sleep time is doubled. Default 60 seconds.

* creamce: :Jjw::0sb::retry_count (integer): The maximum number of ISB file transfers that should be
tried, default 2

* creamce::jw::0sb::retry_wait (integer): If during a output sandbox file transfer occurs a failure, the
JW retries the operation after a while. The sleep time between the first attempt and the second one is the “initial
wait time” (i.e. the wait time between the first attempt and the second one) expressed in seconds. In every next
attempt the sleep time is doubled. Default 300 seconds.

3.2 CREAM Database

The following parameters configure the CREAM back-end:
* creamce: :mysql: :root_password (string): root password for the database administrator, mandatory
* creamce: :creamdb: :password (string): The database user password for the main operator, mandatory

* creamce: :creamdb: :minpriv_password (string): The database user password for the monitor agent,
mandatory

* creamce: :mysqgl: :max_active (integer): The maximum number of active database connections that can
be allocated from this pool at the same time, or negative for no limit, default 200

* creamce: :mysgl::min_idle (integer): The minimum number of connections that can remain idle in the
pool, without extra ones being created, or zero to create none, default 30

3.2. CREAM Database 13

CREAMguide Documentation, Release0.1

3.3

creamce: :mysqgl: :max_wait (integer): The maximum number of milliseconds that the pool will wait for
a connection to be returned before throwing an exception, or -1 to wait indefinitely, default 10000

creamce: :mysqgl::override_options (hash): see the override option defined in https://forge.puppet.
com/puppetlabs/mysql,default

{'mysgld' => {'bind-address' => '0.0.0.0', 'max_connections' => "450" }}

creamce: : creamdb: : name (string): The database name for the CREAM service, default “creamdb”

creamce: :creamdb: :user (string): The database user name with user acting as main operator, default
13 ke
cream

creamce: :creamdb: :host (string): The fully qualified host name for any CE databases, default the host
name

creamce: :creamdb: :port (integer): The mysql listen port for any CE databases, default 3306

creamce: :creamdb: :minpriv_user (string): The database user name with user acting as monitor
agent, default “minprivuser”

creamce: :delegationdb: : name (string): The database name for the Delegation Service, default “dele-
gationcreamdb”

BLAH

These are the basic configuration parameters for BLAH:

blah::config_file (string): The path of the main BLAH configuration file, default “/etc/blah.config”
blah::logrotate::interval (integer): The interval in days for log rotation, default 365 days
blah::logrotate: :size (string): The size of a log file in MB, default “10M”

blah: :use_blparser (boolean): If true it enables the BLParser service otherwise BUpdater/BNotifier is
used, default false

creamce: :blah timeout (integer): Represents the maximum time interval in seconds accepted by
CREAM for the execution of commands by BLAH, default 300 seconds

Lt}

creamce: : job: :prefix (string): The prefix to be used for the BLAH job id, default “cream_

blah::shared_directories (list): A list of of paths that are shared among batch system head and worker
nodes; the empty list is the default value

The following parameters configure BLAH if BNotifier/BUpdater are enabled:

blah: :bupdater: :loop_interval (integer): The interval in seconds between two BUpdater sessions,
default 30 seconds.

blah: :bupdater: :notify_port (integer): The service port for the BNotifier, default 56554
blah::bupdater::logrotate::interval (integer): The interval in days for log rotation, default 50

blah: :bupdater: :logrotate: :size (string): The size of a log file in MB, default “10M”

The following parameters configure BLAH if the BLParser is enabled:

blah::blp: :host (string): The host name for the primary BLParser, mandatory if BLParser is used, default
undefined

blah::blp: :port (integer): The service port for the primary BLParser, default 33333

blah: :blp: :num (integer): The number of BLParser enabled instances, default 1

14

Chapter 3. Puppet Configuration

https://forge.puppet.com/puppetlabs/mysql,default
https://forge.puppet.com/puppetlabs/mysql,default

CREAMuide Documentation, Release0.1

3.4

blah::blp::hostl (string): The host name for the secondary BLParser, default undefined
blah::blp: :portl (integer): The service port for the secondary BLParser, default 33334

creamce: :listener_port (integer): The port used by CREAM to receive notifications about job status
changes sent by the BLParser/JobWrapper, default 49152

creamce: :blp::retry_delay (integer): The time interval in seconds between two attempts to contact
the BLAH parser, default 60 seconds

creamce: :blp::retry_count (integer): Represents the number of attempts to contact the BLAH parser
(if it is not reachable) before giving up. If -1 is specified, CREAM will never give up , default 100

CREAM information system

The following parameters configure the Resource BDII:

bdii::params: :user (string): The local user running the BDII service, default “ldap”
bdii: :params: :group (string): The local group running the BDII service, default “ldap”
bdii::params: :port (integer): The BDII service port, default 2170

creamce: :use_locallogger (boolean): True if the local logger service must be installed and configured,
default is false

creamce: :info: :capability (list): The list of capability for a CREAM site; it’s a list of string, in
general with format “name=value”, default empty list

creamce: :vo_software_dir (string): The base directory for installation of the software used by Virtual
Organizations

creamce: :workarea: : shared (boolean): True if the working area is shared across different Execution
Environment instances, typically via an NFS mount; this attribute applies to single-slot jobs, default false

creamce: :workarea: :guaranteed (boolean): True if the job is guaranteed the full extent of the
WorkingAreaTotal; this attribute applies to single-slot jobs, default false

creamce: :workarea: :total (integer): Total size in GB of the working area available to all single-slot
jobs, default 0

creamce: :workarea: : free (integer): The amount of free space in GB currently available in the working
area to all single-slot jobs, default 0 GB

creamce: :workarea::lifetime (integer): The minimum guaranteed lifetime in seconds of the files
created by single-slot jobs in the working area, default 0 seconds

creamce: :workarea: :mslot_total (integer): The total size in GB of the working area available to all
the multi-slot Grid jobs shared across all the Execution Environments, default 0GB

creamce: :workarea: :mslot_free (integer): The amount of free space in GB currently available in the
working area to all multi-slot jobs shared across all the Execution Environments, default 0 GB

creamce: :workarea: :mslot_lifetime (integer): The minimum guaranteed lifetime in seconds of the
files created by multi-slot jobs in the working area, default O seconds

3.4.1 Hardware table

The hardware table contains any information about the resources of the site; the parameter to be used is
creamce: :hardware_table. The hardware table is a hash table with the following structure:

3.4. CREAM information system 15

CREAMguide Documentation, Release0.1

* the key of an entry in the table is the ID assigned to the homogeneous sub-cluster of machines (see GLUE2
execution environment).

* the value of an entry in the table is a hash containing the definitions for the homogeneous sub-cluster, the
supported mandatory keys are:

ce_cpu_model (string): The name of the physical CPU model, as defined by the vendor, for example
“XEON”

ce_cpu_speed (integer): The nominal clock speed of the physical CPU, expressed in MHz
ce_cpu_vendor (string): The name of the physical CPU vendor, for example “Intel”
ce_cpu_version (string): The specific version of the Physical CPU model as defined by the vendor
ce_physcpu (integer): The number of physical CPUs (sockets) in a work node of the sub-cluster
ce_logcpu (integer): The number of logical CPUs (cores) in a worker node of the sub-cluster

ce_minphysmem (integer): The total amount of physical RAM in a worker node of the sub-cluster,
expressed in MB

ce_os_family (string): The general family of the Operating System installed in a worker node (“linux”,

9 < 9 <.

“macosx”, “solaris”, “windows”)

ce_os_name (string): The specific name Operating System installed in a worker node, for example
“RedHat”

ce_os_arch (string): The platform type of worker node, for example “x86_64"

ce_os_release (string): The version of the Operating System installed in a worker node, as defined
by the vendor, for example “7.0.1406”

nodes (list): The list of the name of the worker nodes of the sub-cluster

the supported optional keys are:

ce_minvirtmem (integer): The total amount of virtual memory (RAM and swap space) in a worker
node of the sub-cluster, expressed in MB

ce_outboundip (boolean): True if a worker node has out-bound connectivity, false otherwise, default
true

ce_inboundip (boolean): True if a worker node has in-bound connectivity, false otherwise default false

ce_runtimeenv (list): The list of tags associated to the software packages installed in the worker node,
the definitions for a tag is listed in the software table, default empty list

ce_benchmarks (hash): The hash table containing the values of the standard benchmarks
(“specfp2000”, “specint2000”, “hep-spec06”); each key of the table corresponds to the benchmark name,
default empty hash

subcluster_tmpdir (string): The path of a temporary directory shared across worker nodes (see
GLUE 1.3)

subcluster_wntmdir (string): The path of a temporary directory local to each worker node (see
GLUE 1.3)

3.4.2 Software table

The software table contains any information about the applications installed in the worker nodes; the parameter to be
used is creamce: : software_table. The software table is a hash with the following structure:

16

Chapter 3. Puppet Configuration

CREAMuide Documentation, Release0.1

* the key of an entry in the table is the tag assigned to the software installed on the machines (see GLUE2
application environment); tags are used as a reference (ce_runtimeenv) in the hardware table.

* the value of an entry in the table is a hash containing the definitions for the software installed on the machines,
the supported keys are:

name (string): The name of the software installed, for example the package name, mandatory

version (string): The version of the software installed, mandatory

license (string): The license of the software installed, default unpublished

description (string): The description of the software installed, default unpublished

3.4.3 Queues table

The queue table contains definitions for local user groups; the parameter to be declared is creamce: : queues. The
queues table is a hash with the following structure:

* the key of an entry in the table is the name of the batch system queue/partition.

* the value of an entry in the table is a hash table containing the definitions for the related queue/partition, the
supported keys for definitions are:

— groups (list): The list of local groups which are allowed to operate the queue/partition, each group MUST
BE defined in the VO table.

3.4.4 Storage table

The storage table contains any information about the set of storage elements bound to this site. The parameter to
be declared is creamce::se_table , the default value is an empty hash. The storage element table is a hash with the
following structure: creamce: : queues. The queues table is a hash with the following structure:

* the key of an entry in the table is the name of the storage element host.

* the value of an entry in the table is a hash table containing the definitions for the related storage element, the
supported keys for definitions are:

— type (string): The name of the application which is installed in the storage element (“Storm”, “DCache”,
etc.)

— mount_dir (string): The local path within the Computing Service which makes it possible to access files
in the associated Storage Service (this is typically an NFS mount point)

— export_dir (string): The remote path in the Storage Service which is associated to the local path in the
Computing Service (this is typically an NFS exported directory).

— default (boolean): True if the current storage element must be considered the primary SE, default false.
Just one item in the storage element table can be marked as primary.

3.4.5 Example

creamce: :queues :
long : { groups : [dteam, dteamprod] }
short : { groups : [dteamsgm] }

creamce: :hardware_table :

(continues on next page)

3.4. CREAM information system 17

CREAMguide Documentation, Release0.1

(continued from previous page)

subcluster001 : {
ce_cpu_model : XEON,
ce_cpu_speed : 2500,
ce_cpu_vendor : Intel,
ce_cpu_version : 5.1,
ce_physcpu : 2,
ce_logcpu : 2,
ce_minphysmem : 2048,
ce_minvirtmem : 4096,
ce_os_family : "linux",
ce_os_name : "CentOs",
ce_os_arch : "x86_64",
ce_os_release : "7.0.1406",
ce_outboundip : true,
ce_inboundip : false,
ce_runtimeenv : ["tomcat_6_0", "mysgl_5_1" 71,
subcluster_tmpdir : /var/tmp/subcluster001,
subcluster_wntmdir : /var/glite/subcluster001,
ce_benchmarks : { specfp2000 : 420, specint2000 : 380, hep-specO06 : 780 },
nodes : ["node-0l.mydomain", "node-02.mydomain", "node-03.mydomain"]
Experimental support to GPUs
accelerators : {
acc_device_001 : {

type : GPU,

log_acc : 4,

phys_acc : 2,

vendor : NVidia,

model : "Tesla k80",

version : 4.0,

clock_speed : 3000,

memory : 4000

creamce: :software_table
tomcat_6_0 : {
name : "tomcat",
version : "6.0.24",
license : "ASL 2.0",
description : "Tomcat is the servlet container"
}
mysqgql_5_1 : {

name : "mysqgl",
version : "5.1.73",
license : "GPLv2 with exceptions",
description : "MySQL is a multi-user, multi-threaded SQL database server"
}
creamce: :vo_software_dir : /afs

creamce: :se_table

storage.pd.infn.it : { mount_dir : "/data/mount", export_dir : "/storage/export",
type : Storm, default : true }
cloud.pd.infn.it : { mount_dir : "/data/mount", export_dir : "/storage/export",

type : Dcache }

18 Chapter 3. Puppet Configuration

CREAMuide Documentation, Release0.1

3.5 CREAM security and accounting

The following parameters configure the security layer and the pool account system:

creamce: :host_certificate (string): The complete path of the installed host certificate, default
/etc/grid-security/hostcert.pem

creamce: :host_private_key (string): The complete path of the installed host key, default /etc/grid-
security/hostkey.pem

creamce: :voms_dir (string): The location for the deployment of VO description files (LSC), default
/etc/grid-security/vomsdir

creamce: :gridmap_dir (string): The location for the pool account files, default /etc/grid-
security/gridmapdir

creamce: :gridmap_file (string): The location of the pool account description file, default /etc/grid-
security/grid-mapfile

creamce: :gridmap_extras (list): The list of custom entry for the pool account description file, default
empty list

creamce: :gridmap_cron_sched (string): The cron time parameters for the pool account cleaner, default
gk ok ok ok

creamce: :groupmap_file (string): The path of the groupmap file, default /etc/grid-security/groupmapfile
creamce: :crl_update_time (integer): The CRL refresh time in seconds, default 3600 seconds

creamce: :ban_list_file (string): The path of the ban list file, if gJAF/LCMAPS is used, default
/etc/lcas/ban_users.db

creamce: :ban_list (list): The list of banned users, each item is a Distinguished Name in old openssl
format. If not defined the list is not managed by puppet.

creamce: :use_argus (boolean): True if Argus authorization framework must be used, false if gJAF must
be used, default true

creamce: :argus::service (string): The argus PEPd service host name, mandatory if
creamce: :use_argus is set to true

creamce: :argus: :port (integer): The Argus PEPd service port, default 8154

creamce: :argus: :timeout (integer): The connection timeout in seconds for the connection to the Argus
PEPd server, default 30 seconds

creamce: :argus: : resourceid (string): The ID of the CREAM service to be registered in Argus, default
https://{ce_host}:{ce_port}/cream

creamce: :admin: : 1ist (list): The list of service administators Distinguished Name, default empty list

creamce: :admin::1list_file (string): The path of the file containing the service administrators list,
default /etc/grid-security/admin-list

creamce: :default_pool_size (integer): The default number of users in a pool account, used if
pool_size is not define for a VO group, default 100

creamce: :create_user (boolean): False if the creation of the users of all the pool accounts is disabled,
default True

3.5.

CREAM security and accounting 19

CREAMguide Documentation, Release0.1

3.5.1 VO table

The VO table contains any information related to pool accounts, groups and VO data. The parameter to be declared is
creamce: : vo_table, the default value is an empty hash. The VO table is a hash, the key of an entry in the table
is the name or ID of the virtual organization, the corresponding value is a hash table containing the definitions for the
virtual organization,the supported keys for definitions are:

* servers (list): The list of configuration details for the VOMS servers. Each item in the list is a hash; the
parameter and any supported keys of a contained hash are mandatory. The supported keys are:

— server (string): The VOMS server FQDN

— port (integer): The VOMS server port

— dn (string): The distinguished name of the VOMS server, as declared in the VOMS service certificate
— ca_dn (string): The distinguished name of the issuer of the VOMS service certificate

e groups (hash): The list of local groups and associated FQANSs, the parameter is mandatory, each key of the
hash is the group name, each value is a hash with the following keys:

— gid (string): The unix group id, mandatory

— fgan (list): The list of VOMS Fully Qualified Attribute Names. The items in the list are used to compose
the group map file. The parameter is mandatory

* users (hash): The description of pool accounts or a static users, the parameter is mandatory, each key of the
hash is the pool account prefix or the user name for a static user, each value is a hash with the following keys:

— name_pattern (list): The pattern used to create the user name of the pool account, the variables used
for the substitutions are prefix, the pool account prefix, and index, a consecutive index described
below; the expression is explained in the ruby guide, default value is

$<prefix>s%03<index>d

— primary_~fgan (list): The list of the primary VOMS Fully Qualified Attribute Names associated with
the user of the pool account. The attributes are used to calculate the primary group of the user and to
compose the grid-map file. The mapping between FQANs and groups refers to the groups hash for the
given VO. For further details about the mapping algorithm refer to the authorization guide. The parameter
ismandatory

— secondary_fgan (list): The list of the secondary VOMS Fully Qualified Attribute Names associated
with the user of the pool account. The items in the list are used to calculate the secondary groups of the
user. The parameter is optional.

— create_user (boolean): False if the creation of the user is disabled for the current pool account, default
is True

— pub_admin (boolean): True if the pool account is the defined administrator account, default false, just
one administrator account is supported. The first user in the pool account, or the static user if it is the case,
is selected for publishing information about VO tags.

— accounts (list): The list of SLURM accounts associated with this set of users, further details can be
found in the SLURM specific section

A pool account can be defined in two different ways. If the user IDs are consecutive the parameters required
are:

— first_uid (integer): The initial number for the unix user id of the pool account, the other ids are
obtained incrementally with step equals to 1

20 Chapter 3. Puppet Configuration

https://ruby-doc.org/core-2.2.0/Kernel.html#method-i-sprintf
https://twiki.cern.ch/twiki/bin/view/EGEE/AuthZOH#Account_and_Group_Mapping

CREAMuide Documentation, Release0.1

— pool_size (integer): The number of user in the current pool account, the default value is global defini-
tion contained into creamce: :default_pool_size. If the value for the pool size is equal to zero
the current definition must be considered for a static user.

If the user IDs are not consecutive their values must be specified with the parameter:
— uid_1list (list): The list of user ID; the pool account size is equal to the number of elements of the list.

In any case the user name is created using the pattern specified by the parameter name_pattern where the
index ranges from 1 to the pool account size (included). It is possible to shift the range of the indexes using the
parameter creamce: :username_offset.

e vo_app_dir (_string_): The path of a shared directory available for application data for the current Virtual
Organization, as describe by Info.ApplicationDir in GLUE 1.3.

* vo_default_se (string): The default Storage Element associated with the current Virtual Organization. It
must be one of the key of the storage element table

3.5.2 Example

creamce: :use_argus : false
creamce: :default_pool_size : 10
creamce: :username_offset : 1

creamce: :vo_table

dteam : {
vo_app_dir : /afs/dteam,
vo_default_se : storage.pd.infn.it,
servers : [
{
server : voms.hellasgrid.gr,
port : 15004,
dn : /C=GR/O=HellasGrid/OU=hellasgrid.gr/CN=voms.hellasgrid.
—gr,
ca_dn : "/C=GR/O=HellasGrid/OU=Certification Authorities/
—CN=HellasGrid CA 2016"
}V
{
server : voms2.hellasgrid.gr,

port : 15004,
dn : /C=GR/0O=HellasGrid/OU=hellasgrid.gr/CN=voms2.
—~hellasgrid.gr,

ca_dn : "/C=GR/0O=HellasGrid/OU=Certification Authorities/
—CN=HellasGrid CA 2016"
}
JI
groups : {
dteam : { fgan : ["/dteam"], gid : 9000 },
dteamsgm : { fgan : ["/dteam/sgm/ROLE=developer"], gid : 9001 1},
dteamprod : { fgan : ["/dteam/prod/ROLE=developer"], gid : 9002 }
}I
users : {
dteamusr : { first_uid : 6000, primary_fgan : ["/dteam" 7],
name_pattern : "$<prefix>s%03<index>d" 1},
dteamsgmusr : { first_uid : 6100, pool_size : 5,
primary_fgan : ["/dteam/sgm/ROLE=developer" 1],
secondary_fgan : ["/dteam"],

(continues on next page)

3.5. CREAM security and accounting 21

CREAMguide Documentation, Release0.1

(continued from previous page)

name_pattern : "%$<prefix>s%02<index>d",
pub_admin : true },
dteamprodusr : { primary_fgan : ["/dteam/prod/ROLE=developer"],
secondary_fgan : ["/dteam"],
name_pattern : "$<prefix>s%02<index>d",
uid_list : [6200, 6202, 6204, 6206, 6208 1 }

3.6 CREAM with TORQUE

The TORQUE cluster must be install before the deployment of CREAM, there’s no support in the CREAM CE puppet
module for the deployment of TORQUE. Nevertheless the module may be used to configure the TORQUE client on
CREAM CE node if and only if the node is different from the TORQUE server node. The YAML parameter which
enables the TORQUE client configuration is torque: :config: :client, if it is set to false the configuration is
disabled, the default value is true. The CREAM CE puppet module can create queues and pool accounts in TORQUE,
the YAML parameter is torque: :config: :pool, if it is set to false the feature is disabled, the default value is
true.

Other configuration parameters for TORQUE are:
* torque: :host (string): The TORQUE server host name, default value is the host name.
* torque::multiple_staging (boolean): The BLAH parameter for multiple staging, default false
* torque: :tracejob_logs (integer): The BLAH parameter for tracejob, default 2

* munge: : key_path (string): The location of the munge key. If TORQUE client configuration is enabled the
path is used to retrieve the manually installed key; mandatory if torque: :config: :client is set to
true.

3.7 CREAM with SLURM

The SLURM cluster must be install before the deployment of CREAM, there’s no support in the CREAM CE puppet
module for the deployment of SLURM. The module provides an experimental feature for configuring SLURM users
and accounts if the accounting subsystem is enabled in SLURM. The YAML parameter which enables the experimental
feature is slurm: : config_accounting, the default value is false. If it is set to true each user of the pool account
is replicated in the SLURM accounting subsystem. The site administrator can associate to the any replicated user one
or more SLURM accounts in two different ways:

 Specifying a list of accounts already created in SLURM. The list of SLURM accounts associated to the new user
is specified by the parameter accounts of the users definition of the VO table; the parameter is mandatory
in this case.

* Delegating the creation of the SLURM accounts to the puppet module. The module creates a SLURM account
for each VO and a SLURM sub-account for each group in a given VO. The parameter to be set for enabling the
automatic creation of account is slurm: : standard_accounts, its default value is false.

22 Chapter 3. Puppet Configuration

https://slurm.schedmd.com/accounting.html

CREAMuide Documentation, Release0.1

3.8 CREAM with HTCondor

The HTCondor cluster must be install before the deployment of CREAM, there’s no support in the CREAM CE puppet
module for the deployment of HTCondor.

The configuration parameters for HTCondor are:

e condor: :deployment_mode (string): The queue implementation model used, the value can be
“queue_to_schedd” or “queue_to_jobattribute”, the default is “queue_to_schedd”

e condor_queue_attr (string): The classad attribute used to identify the queue, when the model used is
“queue_to_jobattribute”, mandatory if the deployment mode is “queue_to_jobattribute”

e condor_user_history (boolean): True if condor_history should be used to get the final state info about
the jobs, the default is false

e condor: :config: :dir (string): The directory containing the configuration files for the HTCondor instal-
lation, the default is /etc/condor/config.d

e condor: :command_caching_filter (string): The executable for caching the batch systems commands,
if not specified the caching mechanism is disabled

3.9 Experimental features

The features described in this section are subject to frequent changes and must be considered unstable. Use them at
your own risk.

3.9.1 GPU support configuration

The GPU support in the information system (BDII) can be enabled with the configuration parameter
creamce: :info: :glue2l_draft(boolean), the default value is false. The GPU resources must be described in
the hardware table, inserting in the related sub-cluster hashes the following parameter:

e accelerators (_hash_): The hash table containing the definitions for any accelerator device mounted in the
sub-cluster. Each item in the table is a key-value couple. The key is the accelerator ID of the device and the
value consists on a hash table with the following mandatory definitions:

type (string): The type of the device (GPU, MIC, FPGA)

log_acc (integer): The number of logical accelerator unit in the sub-cluster

— phys_acc (integer): The number of physical accelerator device (cards) in the subcluster
— vendor (string): The vendor ID

— model (string): The model of the device

— version (string): The version of the device

— clock_speed (integer): The clock speed of the device in MHz

— memory (integer): The amount of memory in the device in MByte

3.8. CREAM with HTCondor 23

CREAMguideDocumentation, Release0.1

24 Chapter 3. Puppet Configuration

CHAPTER 4

CREAM User’s Guide

4.1 CREAM Command Line Interface Guide

This section briefly explains the sequence of operations to be performed by a user to submit and then manage jobs on
CREAM based CEs, referring to the C++ Command Line Interface (CLI).

4.1.1 Before starting: get your user proxy

Before using any of the CREAM client commands, it is necessary to have a valid proxy credential available on the
client machine. You can create it using the voms—-proxy—-init command. If you already have a valid proxy
available on your machine just make the X509_USER_PROXY environment variable point to it.

In order to get a proxy certificate issued by VOMS, you should have in the directory /etc/vomses the proper
VOMS file containing a line as follows:

"EGEE" "kuiken.nikhef.nl" "15001" "/O=dutchgrid/O=hosts/OU=nikhef.nl/CN=kuiken.nikhef.
‘Hnl" "EGEE" "22"

or the corresponding line for your VO. You also need to install the VO related .1lsc files in the /etc/
grid-security/vomsdir/<V0O> directory. In a standard EMI Ul installation, these settings should be already
there.

Make moreover sure you have in the directory SHOME/ . globus your certificate/key pair, i.e. the following files:
¢ usercert.pem
* userkey.pem

Note that file permissions are important: the two files must have respectively 0600 and 0400 permissions.

Then you can issue the VOMS client command (you will be prompted for the pass-phrase):

$ voms-proxy—-init -voms dteam
Enter GRID pass phrase:

(continues on next page)

25

CREAMguide Documentation, Release0.1

(continued from previous page)

Your identity: /C=IT/O0=INFN/OU=Personal Certificate/L=Padova/CN=Massimo Sgaravatto
Creating LemMPOTATY PrOXY vttt eeeeeeeeeannneeeeeeeeenneeeeeeeeeennneeeeeeeseeeeneeenens
b e e ettt e e Done

Contacting voms2.hellasgrid.gr:15004 [/C=GR/0O=HellasGrid/OU=hellasgrid.gr/CN=voms2.
—hellasgrid.gr] "dteam" Done

Creating PrOXY et ittt i e ettt eeeeeeaneeneenns Done

Your proxy is valid until Sat Apr 30 05:05:49 2011

$ voms-proxy—-info -all

subject : /C=IT/O=INFN/OU=Personal Certificate/L=Padova/CN=Massimo Sgaravatto/
—CN=proxy

issuer : /C=IT/O=INFN/OU=Personal Certificate/L=Padova/CN=Massimo Sgaravatto
identity : /C=IT/O=INFN/OU=Personal Certificate/L=Padova/CN=Massimo Sgaravatto
type . proxy

strength : 1024 bits

path ¢ /tmp/x509up_u500

timeleft : 11:59:55

key usage : Digital Signature, Key Encipherment, Data Encipherment
=== VO dteam extension information ===

VO : dteam
subject : /C=IT/O=INFN/OU=Personal Certificate/L=Padova/CN=Massimo Sgaravatto
issuer : /C=GR/0O=HellasGrid/OU=hellasgrid.gr/CN=voms2.hellasgrid.gr

attribute : /dteam/Role=NULL/Capability=NULL

attribute : /dteam/italy/Role=NULL/Capability=NULL

attribute : /dteam/italy/INFN-PADOVA/Role=NULL/Capability=NULL
timeleft : 11:59:55

uri : voms2.hellasgrid.gr:15004

4.1.2 CREAM CLI commands

The most relevant commands to interact with CREAM based CEs are:

glite-ce-job-submit <jdl_file_1> ... <jdl_file_ N>

submits N jobs (N must be >=1) to a CREAM based CE. It requires N JDL files as input and returns N CREAM
job identifiers.

glite-ce-delegate-proxy <delegation_Id>

allows the user to delegate her proxy credential to the CREAM service. This delegated credential can then be
used for job submissions.

glite-ce—Jjob-status <job_Id_ 1> ... <job_Id_N>

displays information (in particular the states) of N jobs (N must be >=1) previously submitted to CREAM based
CEs.

glite-ce—job-list <host[:port]>

lists the identifiers of jobs submitted to a CREAM based CE by the user issuing the command.

glite-ce—job-cancel <job_Id_ 1> ... <job_Id_N>

cancels N jobs (N must be >=1) previously submitted to CREAM based CEs.

26 Chapter 4. CREAM User’s Guide

CREAMuide Documentation, Release0.1

glite-ce—job-suspend <job_Id_1> ... <job_Id_N>

suspends the execution of N jobs (N must be >=1) previously submitted to CREAM based CEs.

glite-ce—job-resume <job_Id_1> ... <job_Id_N>

resumes the execution of N jobs (N must be >=1) which have been previously suspended.

glite-ce—job-output <job_Id_ 1> ... <job_Id_N>

retrieves the output sandbox files of N jobs (N must be >=1) previously submitted to CREAM based CE:s.

glite-ce—job-purge <job_Id_1> ... <job_Id_N>

clears N jobs (N must be >=1) from CREAM based CEs. After this operation the purged jobs canRSQUOLt be
managed anymore.

glite-ce-proxy-renew <delegation_Id_1> ... <delegation_Id_N>

renews N delegations (N must be >=1), and therefore refreshes the proxy of the jobs submitted to CREAM based
CEs using the considered delegations.

glite-ce-service-info <host|[:port]>

returns information about the CREAM service (version, status, etc.).

¢ glite-ce—-enable-submission <host|[:port]>

(re-)enables job submissions on the specified CREAM CE.

glite-ce—-disable-submission <host[:port]>

disables job submissions on the specified CREAM CE.

¢ glite-ce—-allowed-submission <host[:port]>

checks if jobs submissions on the specified CREAM CE are allowed or have been disabled.

¢lglite-ce-job-lease <lease_identifier> —-endpoint <cream_endpoint> \
——leaseTime <lease_time>

create a lease identifier in the CREAM server and associate a time duration to it.

Man pages are available for all the CREAM client commands. You can also access information about the usage of
each command by issuing:

$ <command> --help

4.1.3 Submitting jobs to CREAM based CEs

To submit jobs to CREAM based CEs, the command glite-ce-job-submit must be used. The
glite—-ce-job-submit command requires as input one or more job description files; each file describes the
job characteristics and requirements through the JDL (Job Description Language). A typical example of a JDL job
description file is:

4.1. CREAM Command Line Interface Guide 27

CREAMguide Documentation, Release0.1

[

Type = "Job";

JobType = "Normal";

Executable = "myexe";

StdInput = "myinput.txt";

StdOutput = "message.txt";

StdError = "error.txt";

InputSandbox = {"/users/seredova/example/myinput.txt",
"/users/seredova/example/myexe"};

OutputSandbox = {"message.txt", "error.txt"};
OutputSandboxBaseDestUri = "gsiftp://se.pd.infn.it/data/seredova™;
]

Such a JDL would make the myexe executable be transferred on the remote CREAM CE and be run taking the
myinput.txt file (also copied from the client node) as input. The standard streams of the job are redirected to
files message.txt and error.txt, and when job completes its execution they are automatically uploaded on
gsiftp://se.pd.infn.it/data/seredova.

A detailed description of the available JDL attributes and of the rules for building correct JDL files is documented in
the CREAM JDL guide.

The jobs submitted to a CREAM based CE are given the delegated credentials of the user who submitted it. These
credentials can then be used when operations requiring security support has to be performed by the job.

There are two possible options to deal with proxy delegation:
* asking the automatic delegation of the credentials during the submission operation;

* explicitly delegating credentials, and then asking to rely on these previously delegated credentials on the actual
submission operations.

It is highly suggested to rely on this latter mechanism, using the same delegated proxy for multiple job submissions,
instead of delegating each time a proxy. Delegating a proxy, in fact, is an operation that can require a non negligible
time.

The command glite-ce-delegate—-proxy is the command to be used to explicitly delegate the user credentials
to a CREAM CE.The following shows an example of job submission, performed explicitly delegating credentials.
So first of all the credentials are delegated to a CREAM based CE (whose endpoint is specified with the option
——endpoint (—e):

$ glite-ce-delegate-proxy —-e cream-ce-0l.pd.infn.it mydelid

2006-02-26 15:03:37,286 NOTICE - Proxy with delegation id [mydelid] successfully
delegated to endpoint [https://cream-ce—-01.pd.infn.it:8443//ce-cream/services/
—CREAMDelegation]

The identifier of the delegation is then specified with the ——delegationId (-D) option in the job submit operation:

$ glite-ce-job-submit -D mydelid -r cream-ce-0l.pd.infn.it:8443/cream-1sf-grid02
—myjobl.jdl myjob2.jdl myjob3.jdl

The option —r (-—resource) has been used to specify the identifier of the CREAM CE where the job has to be
submitted to. my job1l. jd1l myjob2. jd1l myjob3. jd1l are the 3 JDL files describing the jobs to be submitted.

The command returns the CREAM job identifiers associated with these jobs (e.g. https://cream-ce-01.pd.
infn.it:8443/CREAM1167j9vgnf) which identify them in clear and unique way all over the Grid system scope.

In addition the user can associate a lease that she/he has previously created with the command
glite-ce-job-lease by mean of the option ——leaseId <lease_identifier>:

28 Chapter 4. CREAM User’s Guide

JDL_Guide.html

CREAMuide Documentation, Release0.1

$ glite-ce-job-submit -D mydelid -r cream-ce-0l.pd.infn.it:8443/cream-1sf-grid02 —-
—leaseld <my_lease_identifier>
myjobl.jdl myjob2.jdl myjob3.jdl

To create a lease in the CREAM service, with a certain duration of time (expressed in seconds), issue the command:

$ glite-ce-job-lease --endpoint cream-27.pd.infn.it --leaseTime 3600 myLID
You requested lease time [3600] for lease ID [myLID]
CREAM negotiated the lease time to [3600]

The above command has created a lease on cream-27.pd.infn. it named “myLID” and lasting 1 hour.

4.1.4 Monitoring jobs

Passing the CREAM job identifiers returned by the glite-ce-Jjob-submit command to the
glite—-ce-job-status command, it is possible to monitor the submitted jobs. Several (static and dy-
namic) information can be shown, depending on the chosen verbosity level. The verbosity level can be 0 (less
verbosity), 1 or 2 (most verbosity). Please note that specifying 0 as verbosity level means calling on the CREAM
service a faster operation than when using 1 or 2 as verbosity level. The most relevant attribute is the job status.

The following is an example of job status operation, specifying 1 as verbosity level:

$ glite-ce-job-status -L 1 https://cream-02.pd.infn.it:8443/CREAM738582717

xx%x JobID=[https://cream-02.pd.infn.it:8443/CREAM738582717]

Current Status = [DONE-FAILED]

ExitCode = [N/A]

FailureReason = [lsf_reason=256; Cannot move ISB (${globus_transfer_cmd}
gsiftp://cream-02.pd.infn.it//CREAMTests/Exel/sshl.sh file:///home/infngrid001/home_
—,cream_738582717/CREAM738582717/sshl.sh):

error: globus_ftp_client: the server responded with an error 500 500-Command failed.
—: globus_1_gfs_file_open failed.

500-globus_xio: Unable to open file //CREAMTests/Exel/sshl.sh

500-globus_xio: System error in open: No such file or directory

500-globus_xio: A system call failed: No such file or directory 500 End.]

Grid JobID = [N/A]

Job status changes:

Status = [REGISTERED] - [Tue 22 Jan 2008 15:55:08] (1201013708)
Status = [PENDING] - [Tue 22 Jan 2008 15:55:08] (1201013708)
Status = [IDLE] - [Tue 22 Jan 2008 15:55:11] (1201013711)

Status = [RUNNING] - [Tue 22 Jan 2008 15:55:18] (1201013718)
Status = [DONE-FAILED] - [Tue 22 Jan 2008 16:03:10] (1201014190)

Issued Commands:

* %+ Command Name [JOB_REGISTER]
Command Category = [JOB_MANAGEMENT]
Command Status = [SUCCESSFULL]

% Command Name = [JOB_START]
Command Category = [JOB_MANAGEMENT]
Command Status = [SUCCESSFULL]

In this example it is interesting to note that the job failed (as reported by the Current Status field) for the problem
reported in the FailureReason field: the file to be transferred was not found.

4.1. CREAM Command Line Interface Guide 29

CREAMguide Documentation, Release0.1

Instead of explicitly specifying the identifiers of the jobs to monitor, the user can also ask to monitor all her jobs, in
case specifying conditions (on the submission date and/or on the job status) that must be met. For example to monitor
all jobs, whose status is DONE-OK or DONE-FAILED, submitted to the grid005.pd.infn.it CREAM CE
between July 23, 2005 10:00 and July 28, 2005 11:00, the following command must be issued:

$ glite-ce-job-status --all -e grid005.pd.infn.it:8443 --from ’'2005-07-23 10:00:00" \
-—to 72005-07-28 11:00:00" -s DONE-OK:DONE-FAILED

4.1.5 Retrieving output of jobs

User can choose to save the output sandbox (OSB) files on a remote server, or save them in the CREAM CE node.
In the latter case these files can then be retrieved using the glite—-ce-job-output command. For example the
following command retrieves the output sandbox files of the specified job from the relevant CREAM CE node:

$ glite-ce-job-output https://cream-38.pd.infn.it:8443/CREAM295728364
2011-01-29 10:09:50,394 INFO - For JobID [https://cream-38.pd.infn.it:8443/
—CREAM295728364]

output will be stored in the dir ./cream-38.pd.infn.it_8443_CREAM295728364

This command can be used also to retrieve output produced by multiple jobs, by specifying multiple job identifiers as
command’s arguments

4.1.6 Getting job identifiers

If a user is interested to get the identifiers of all her jobs submitted to a specific CREAM CE, she can use the
glite—-ce-job-1ist command. For example the following command returns the identifiers of all the jobs sub-
mitted to the specified CREAM CE, owned by the user issuing the command:

$ glite-ce-job-list grid005.pd.infn.it:8443

4.1.7 Cancelling jobs

In some cases it might be needed to cancel jobs which have been previously submitted to CREAM based CEs. This
can be achieved via the glite-ce-job-cancel command. E.g., the command:

$ glite-ce—-job-cancel https://grid005.pd.infn.it:8443/CREAM115]5vEint

cancels the specified job.

4.1.8 Suspending and resuming jobs

A running or idle job can be suspended (i.e. its execution will be stopped), and be resumed (i.e. it will run again)
later. This can be achieved with the glite—-ce—-job-suspend and glite-ce—-job-resume commands. The
following example shows that after having issued the glite—ce-Jjob-suspend command, after a while the job
status becomes HELD.

$ glite-ce-job-suspend https://cream-ce-01l.pd.infn.it:8443/CREAM11a79tnb2

Are you sure you want to suspend specified job(s) [y/n]l: y

$ glite-ce-job-status -L 0 https://cream-ce-0l.pd.infn.it:8443/CREAM11a79tnb2
*x**+xx JobID=[https://cream-ce-01.pd.infn.it:8443/CREAM11a79tnb2]

Status = [HELD]

30 Chapter 4. CREAM User’s Guide

CREAMuide Documentation, Release0.1

Issuing the =glite-ce-job-resume= command, the job will run/will be idle again:

$ glite-ce-job-resume https://cream-ce-01.pd.infn.it:8443/CREAM11a79tnb2

Are you sure you want to resume specified Jjob(s) [y/n]l: y

$ glite-ce-job-status -L 0 https://cream-ce-01.pd.infn.it:8443/CREAM11a79tnb2
*x+x*x JobID=[https://cream-ce-01l.pd.infn.it:8443/CREAM11a79tnb2]

Status = [REALLY-RUNNING]

4.1.9 Purging jobs

A CREAM job can be monitored (via the =glite-ce-job-status=) even after it has completed its execution. A job
gets “lost”; (i.e. it is not possible to monitor or manage it anymore) only when the user who submitted it decides to
explicitly clear it, or when the CREAM system administrator decides to do this purging operation. A user can purge
her own jobs, using the glite-ce—job-purge command. E.g., after having issued the command:

$ glite-ce-job-purge https://cream-ce-01l.pd.infn.it:8443/CREAM116jbi4o0

the specified job canRSQUOLt be managed anymore (e.g. it is not possible to check its status anymore).

4.1.10 Renewing proxies

It is possible that long jobs may outlive the validity of the initial delegated credentials; if so the job will die prematurely.
To avoid this it is possible to renew the proxy of jobs submitted to CREAM CEs with the glite-ce-proxy-renew
command. E.g. the following command:

$ glite-ce-proxy-renew —e cream-ce-0l.pd.infn.it:8443 mydelid

renews the proxy of all the jobs having mydelid as delegation id. It must be stressed that for jobs submitted to
CREAM based CEs via the Workload Management System (WMS), proxy renewal is automatically dealt by the
middleware.

4.1.11 Handling job identifiers

Handling the job identifiers directly quickly becomes tedious. To avoid this, you can make the
glite-ce-job-submit and glite-ce-job-1ist commands append the job Id(s) to a named file using the
——output (-o) option. On the other side, the CREAM client commands which take job identifier(s) as argument
accept also the ——input (—1i) option which allows the job identifier(s) to be read from a file. The following shows
an example:

$ glite-ce-job-submit -a -r cream-ce-0l.pd.infn.it:8443/cream-1sf-grid02 -o idfile
<myjob.jdl
https://cream-ce-01l.pd.infn.it:8443/CREAM116jbs5b9

The returned job id got also inserted in the specified file (idfile), which can be specified with the ——input (-1)
option e.g. with the glite-ce-job—-status command:

$ glite-ce-job-status —-i idfile
*x**+xx JobID=[https://cream-ce-01.pd.infn.it:8443/CREAM116jbs5b9]
Status=[REALLY-RUNNING]

4.1. CREAM Command Line Interface Guide 31

CREAMguide Documentation, Release0.1

4.1.12 Restricting job submissions

In order to prevent that a CREAM CE gets overloaded, the CREAM CE administrator can set a specific policy to
disable new job submissions when certain conditions are met. If submissions are disabled because of that, if newer
job submissions are attempted, users will get an error message such as:

$ glite-ce-job-submit -a -r cream-38.pd.infn.it:8443/cream-pbs-creamtestl oo.jdl
MethodName=[jobRegister] ErrorCode=[0] Description=[The CREAM service cannot accept,
—jobs at the moment]

FaultCause=[Threshold for Load Average(l min): 30 => Detected value for Load,
—Average (1 min): 31.13]

Timestamp=[Sat 29 Jan 2011 11:55:18]

In order to avoid degrading the performance of the system, the specified policy is not evaluated for each job submission,
but instead it is evaluated and imposed from time to time (so it might happen that for a short time job submissions
are allowed even if the specified threshold has been reached). CREAM “super-users”; can also disable newer job
submissions via the command glite-ce-disable-submission. Submissions can then be re-enabled by a
CREAM “‘super-user”; via the command glite-ce-enable-submission. To check if job submissions on a
specific CREAM CE are allowed, the command glite-ce—allowed-submission can be used.

$ glite-ce-disable-submission grid006.pd.infn.it:8443
Operation for disabling new submissions succeeded

$ glite-ce-allowed-submission grid006.pd.infn.it:8443
Job Submission to this CREAM CE is disabled

$ glite-ce-enable-submission grid006.pd.infn.it:8443
Operation for enabling new submissions succeeded

$ glite-ce-allowed-submission grid006.pd.infn.it:8443
Job Submission to this CREAM CE is enabled

It must be stressed that if job submissions to a specific CREAM CE are disabled, all other operations (job status, job
cancellations, etc.) can still be performed.

4.1.13 Getting information about the CREAM service

It is possible to get information about the CREAM service (interface and service version, status, etc) using the
glite-ce-service-info command, e.g.:

$ glite-ce-service-info cream-13.pd.infn.it:8443

Interface Version = [2.1]

Service Version = [1.12]

Description = [CREAM 2]

Started at = [Tue Nov 10 14:42:12 2009]

Submission enabled = [YES]

Status = [RUNNING]

Service Property = [SUBMISSION_THRESHOLD_MESSAGE]->

[Threshold for Load Average

(1 min): 10 => Detected value for Load Average(l min): 0.03

Threshold for Load Average (5 min): 10 => Detected value for Load Average (5 min): 0.03
Threshold for Load Average (15 min): 10 => Detected value for Load Average (15 min): O.
—00

Threshold for Memory Usage: 95 => Detected value for Memory Usage: 57.41%

Threshold for Swap Usage: 95 => Detected value for Swap Usage: 2.02%

Threshold for Free FD: 500 => Detected value for Free FD: 204500

(continues on next page)

32 Chapter 4. CREAM User’s Guide

CREAMuide Documentation, Release0.1

(continued from previous page)

Threshold for tomcat FD: 800 => Detected value for Tomcat FD: 107

Threshold for FTP Connection: 30 => Detected value for FTP Connection: 1

Threshold for Number of active jobs: -1 => Detected value for Number of active jobs: 0
Threshold for Number of pending commands: -1 => Detected value for Number of pending
—commands: 0

4.1.14 CREAM CLI configuration files

The configuration of the CREAM UI is accomplished via three possible configuration files:
* A general configuration file. This file is looked forin /etc/glite_cream.conf
* A VO specific configuration file. This file is looked for in /etc/<VO>/glite_cream.conf
* A user specific configuration file. This file is looked for in the following order:
— The file specified with the ——conf option of the considered command
— The file referenced by the SGLITE_CREAM_CLIENT_CONFIG environment variable

— SHOME/.glite/<VO>/glite_cream.conf (if the VO is defined), or $HOME/.glite/
glite_cream.conf otherwise

Each of these files is a classad containing definitions. If the same attribute is defined in more configuration file, the
definition in the user specific configuration file (if any) is considered. Likewise the definitions in the VO specific
configuration file have higher priority than the ones specified in the general configuration file. It must be noted that
one or more (even all) of these three configuration files can be missing.

We list here the possible attributes that can be specified in the configuration files:

4.1. CREAM Command Line Interface Guide 33

CREAMguide Documentation, Release0.1

Name Description Default
CREAM_URL| PREpiESix to the <hostname>: <port> to build the CREAM service endpoint https://
CREAMDEL- | the prefix to the <hostname>: <port> to build the CREAM delegation service | https://
EGA- endpoint
TION_URL_PREFIX
DE- the port to be appended to the hostname (if not specified by the user) to build the | 8443
FAULT_CREAMCRERRORID CREAM delegation service endpoint
CREAM_URL| PRISHdSERx to be appended to the <hostname>:<port> to build the CREAM | /ce-
service endpoint cream/services/CREAM2
CREAMDEL- | the postfix to be appended to the <hostname>:<port> to build the CREAM | /ce-
EGA- delegation service endpoint cream/services/gridsite-
TION_URL_POSTFIX delegation
JDL_DEFAULT tWd dIRIBYTHAS must be included by default in the user’s JDLs empty clas-
sad
STA- the default verbosity level to be used for the glite—-ce-job—-status com- | 0
TUS_VERBOSIT¥nilLEVEL
UBERFTP_CLIENthe pathname of the uber ftp client executable /usr/bin/uberftp
SUB- the directory where by default the log file | /tmp/glite_cream_cli_logs
MIT_LOG_DIR glite-ce-job-submit_CREAM_<username>_<date>_<time>.log
(created when the ——debug option is used with the glite—-ce-job-submit
command) is created
DELE- the directory where by default the log file | /tmp/glite_cream_cli_logs
GATE_LOG_DIRlite-ce-delegate—-proxy_CREAM_ <username>_<date>_<time>.
log (created when the --debug option 1is used with the
glite—-ce—-delegate—proxy command) is created
STA- the directory where by default the log file | /tmp/glite_cream_cli_logs
TUS_LOG_DIRglite-ce-job-status_CREAM_<username>_<date>_<time>.
log (created when the ——debug option is used with the glite-ce-job-status
command) is created
LIST_LOG_DIRthe directory where by default the log file | /tmp/glite_cream_cli_logs
glite-ce—-job-list_CREAM_<username>_<date>_<time>.log
(created when the ——debug option is used with the glite-ce-job-list
command) is created
SUS- the directory where by default the log file | /tmp/glite_cream_cli_logs
PEND_LOG_DIBlite-ce-job-suspend_CREAM_<username>_<date>_<time>.
log (created when the —--debug option 1is wused with the
glite—-ce-job-suspend command) is created
RE- the directory where by default the log file | /tmp/glite_cream_cli_logs
SUME_LOG_DIRlite-ce-job-resume_CREAM_<username>_<date>_<time>.log
(created when the ——debug option is used with the glite—ce—job-resume
command) is created
CAN- the directory where by default the log file | /tmp/glite_cream_cli_logs
CEL_LOG_DIRglite-ce—-job—-cancel_CREAM_<username>_<date>_<time>.log
(created when the ——debug option is used with the glite-ce-job-cancel
command) is created
JOBOUT- the directory where by default the log file | /tmp/glite_cream_cli_logs
PUT_LOG_DIRglite-ce-job-output_CREAM_<username>_<date>_<time>.log
(created when the ——debug option is used with the glite-ce-job-output
command) is created
PURGE_LOG |DhR directory where by default the log file | /tmp/glite_cream_cli_logs
glite-ce-job-purge_CREAM_<username>_<date>_<time>.log
(created when the ——debug option is used with the glite-ce-job-purge
command) is created
ALLOWED- | the directory where by default the log file | /tmp/glite_cream_cli_logs
UB_LUG_DIKglite-ce-allowed-submission_CREAM_<userngame dates <, .
32 log (created when the --debug option is érpll?s%?r Wit%méﬁﬁser s Guide
glite-ce-allowed-submission command) is created
EN- the directory where by default the log file | /tmp/glite_cream_cli_logs
ABLE LOG DIRl1ite-ce—enable-submission CREAM <username> <date> <time>.

https://
https://

CREAMuide Documentation, Release0.1

As mentioned above, if the same attribute is defined in more than a configuration file, the definition in the user specific
configuration file (if any) has higher priority than the definition in the VO specific configuration file (if any) which has
higher priority than the definition in the generic configuration file. If an attribute is not defined anywhere, the default
value is considered.

4.2 Use specific functionality of the CREAM CE

4.2.1 Forward of requirements to the batch system

The CREAM CE allows to forward, via tha BLAH component, requirements to the batch system. For this purpose the
JDL CERequirements attribute, described in the CREAM JDL guide, can be used. For direct submissions to the
CREAM CE (e.g. jobs submitted to the CREAM CE using the CREAM CLI glite—ce-job-submit command)
the CeRequirements attribute is supposed to be filled by the end-user. For jobs submitted to the CREAM CE via
the WMS, the CeRequirements attribute is instead filled by the WMS, considering the JDL Requirements
expression and the value of the CeForwardParameters attribute in the WMS configuration file.

For example, if in the user JDL there is :

Requirements= "other.GlueHostMainMemoryRAMSize > 100 && other.
—GlueCEImplementationName==\"CREAM\"";

and if the WMS configuration file there is:

CeForwardParameters = {"GlueHostMainMemoryVirtualSize","GlueHostMainMemoryRAMSize",
—"GlueCEPolicyMaxCPUTime"};

in the JDL sent by the WMS to CREAM there will be:

CeRequirements= "other.GlueHostMainMemoryRAMSize > 100";

The CERequirements expression received by CREAM is then forwarded to BLAH. Basically BLAH
manages the CERequirements expression setting some environment variables, which are available
and can be properly used by the /usr/libexec/xxx_local_submit_attributes.sh script
(e.g. /usr/libexec/pbs_local_submit_attributes.sh for PBS/Torque, /usr/libexec/
1sf_local_submit_attributes. sh for LSF). This script must be properly created by the site admin.

For example, considering the following CeRequirements expression:

CeRequirements="other.GlueHostMainMemoryRAMSize > 100 && other.GlueCEStateWaitingJdobs
<10 && \

other.GlueCEImplementationName==\"CREAM\" && other.GlueHostProcessorClockSpeed >=
—2800 && \

(Member (\"FDTD\", other.GlueHostApplicationSoftwareRuntimeEnvironment))";

the following settings will be available in SUSR_LOCATION/libexec/xxx_local_submit_attributes.
sh:

GlueHostMainMemoryRAMSize_Min='100"
GlueCEStateWaitingJobs_Max="10"
GlueCEImplementationName='CREAM'
GlueHostProcessorClockSpeed _Min='2800"
GlueHostApplicationSoftwareRuntimeEnvironment=""FDTD"'

where the value for SUSR_LOCATION in a standard installation of a CREAM CE is “/usr”. What is printed by the
/usr/libexec/xxx_local_submit_attributes. sh scriptis automatically added to the submit command
file. For example if the JDL CeRequirements expression is:

4.2. Use specific functionality of the CREAM CE 35

JDL_Guide.html

CREAMguide Documentation, Release0.1

CeRequirements = " (Member (\"FDTD\", other.
—GlueHostApplicationSoftwareRuntimeEnvironment))";

and the =/usr/libexec/pbs_local_submit_attributes.sh= is:

#!/bin/sh

if ["Sother.GlueHostApplicationSoftwareRuntimeEnvironment" == "FDTD"]; then
echo "#PBS -1 software=FDTD"
fi

then the PBS submit file that will be used will include:

PBS directives:
#PBS -S /bin/bash
#PBS —o /dev/null
#PBS —-e /dev/null
#PBS -1 software=FDTD

where the line:

’#PBS -1 software=FDTD

is set viathe /usr/libexec/pbs_local_submit_attributes. sh script.

Please note that there are no differences if in CeRequirement s expresssion there is e.g.

’CeRequirements = other.xyz==\"ABC\"
or:
’CeRequirements = "xyz==\"ABC\"";

In both cases in /usr/libexec/xxx_local_submit_attributes.sh the variable xyz will be set. As
shown above, having x>a or x>=a doesn’t make any difference in the setting of the environment variable x in the
/usr/libexec/xxx_local_submit_attributes. sh script. It will be in both cases:

’x_Min:'a’

Starting with BLAH v. 1.18 it is possible to forward to the batch system also other attributes not included in the
CeRequiments JDL attribute. This can be done adding in =/etc/blah.config= the line:

’blah_pass_all_submit_attributes:yes

In this way the xxx_local_submit_attributes. sh will see the following environment variables set:
 gridType
* x509UserProxyFQAN
* uniquejobid
* queue
e ceid

* VirtualOrganisation

36 Chapter 4. CREAM User’s Guide

CREAMuide Documentation, Release0.1

ClientJobld
x509UserProxySubject

It is also possible to specify that only some attributes must be forwarded in the batch system settinginblah.config

e.g.

blah_pass_submit_attributes[0]="x509UserProxySubject"
blah_pass_submit_attributes[1]="x509UserProxyFQAN"

4.3

CREAM job states

Here below is provided a brief description of the meaning of each possible state a CREAM job can enter:

REGISTERED: the job has been registered but it has not been started yet.

PENDING the job has been started, but it has still to be submitted to the LRMS abstraction layer module (i.e.
BLAH).

IDLE: the job is idle in the Local Resource Management System (LRMS).
RUNNING: the job wrapper, which “encompasses”; the user job, is running in the LRMS.

REALLY-RUNNING: the actual user job (the one specified as Executable in the job JDL) is running in the
LRMS.

HELD: the job is held (suspended) in the LRMS.

CANCELLED: the job has been cancelled.

DONE-OK: the job has successfully been executed.

DONE-FAILED: the job has been executed, but some errors occurred.

ABORTED: errors occurred during the “management”; of the job, e.g. the submission to the LRMS abstraction
layer software (BLAH) failed.

UNKNOWN: the job is an unknown status.

The following figure shows the possible job states transitions:

4.3. CREAM job states 37

CREAMguide Documentation, Release0.1

LRMS assigns LRMS ID

LRMS exgcutes the job

Done—Failed

[
JobRegister
Registered
JobStart
Job submission unsuccesfull Pending
________ JobSuspeng————— 7 !
Idle '
JobResume :
|
LRMS executes JW
JobSuspend :
Running |
JobResume I
|
JobSuspend :
Really Running | !
JobResume :
Job terminates Job terminates
succesfullyy with errors
Aborted ‘ Cancelled Done-OK

O

38

Chapter 4. CREAM User’s Guide

CHAPTER B

CREAM JDL Guide

5.1 Introduction

The Job Description Language (JDL) is a high-level, user-oriented language based on Condor classified advertisements
(classads) for describing jobs to be submitted to the CREAM CE service. Being the JDL an extensible language the
user is allowed to use whatever attribute for the description of a request without incurring in errors from the JDL
parser. However, only a certain set of attributes, that we will refer as “supported attributes”’; from now on, is taken into
account by the CREAM CE service.

Some of the attributes in the JDL are mandatory. If the user does not specify them, CREAM cannot handle the request.
For the other attributes the system may find a default value if they are necessary for processing the request.

Before starting with the detailed attribute description please note that a request description is composed by entries that
are strings having the format

attribute = expression;

and are terminated by the semicolon character. The whole description has to be included between square brackets, i.e.
[<job descr.>]. The termination with the semicolon is not mandatory for the last attribute before the closing
square bracket].

Attribute expressions can span several lines provided the semicolon is put only at the end of the whole expression.
Comments must have a sharp character (#) or a double slash (/) at the beginning of each line. Comments spanning
multiple lines can be specified enclosing the text between “/*” and “*/”.

Please note that since CREAM exposes a publicly available WSDL interface, no assumption is made in the document
(unless explicitly specified) about the client tool used to submit the JDL description of the job.

5.2 Request and Job Types

5.2.1 Type

This a string representing the type of the request described by the JDL, e.g.:

39

CREAMguide Documentation, Release0.1

Type = "Job";

For the time being the only possible value is: Job The value for this attribute is case insensitive. If this attribute is not

specified in the JDL description, the default value (“Job”) will be considered.

5.3 Job Attributes Description

This section reports the detailed description of the JDL attributes that can be specified for describing Job requests. A

sub-section for each attribute is provided.

5.3.1 JobType

This a string representing the type of the job described by the JDL, e.g.:

JobType = "Normal";

At least for the time being the only possible value is: Normal. This attribute only makes sense when the Type attribute
equals to “Job”. The value for this attribute is case insensitive. If not specified in the JDL, it will be set to “Normal”

Mandatory: No
Default: Normal

5.3.2 Executable

This is a string representing the executable/command name. The user can specify an executable that lies already on
the remote CE and in this case the absolute path, possibly including environment variables referring to this file should

be specified, e.g.:

’Executable = "usr/local/java/j2sdk1.4.0_01/bin/java";
or:
’Executable = "SJAVA_HOME/bin/Jjava";

The other possibility is to provide either an executable located on a remote gridFTP server accessible by the user
(HTTPS servers are also supported but this requires to have the GridSite =htcp= client command installed on the
WN). In both cases the executable file will be staged from the original location to the Computing Element WN. In
both cases only the file name has to be specified as executable. The URI of the executable should be then listed in the

InputSandbox attribute expression to make it be transferred. E.g. respectively:

Executable = "cms_sim.exe";

InputSandbox = {"file:///home/edguser/sim/cms_sim.exe", ...};

Or:

Executable = "cms_sim.exe";

InputSandbox = {"gsiftp://neo.datamat.it:5678/tmp/cms_sim.exe", ...};

Also descriptions as follows:

Executable = "cms_sim.exe";
InputSandbox = {"/home/edguser/sim/cms_sim.exe", ... };

40 Chapter 5

. CREAM JDL Guide

CREAMuide Documentation, Release0.1

are accepted and interpreted as in the first case, i.e. the executable file is available on the local file system.

It is important to remark that if the job needs for the execution some command line arguments, they have to be specified
through the =Arguments= attribute. This attribute is mandatory.

Mandatory: Yes

5.3.3 Arguments

This is a string containing all the job command line arguments. E.g. an executable sum that has to be started as:

$ sum N1 N2 -out result.out

is described by:
Executable = "sum";
Arguments = "N1 N2 -out result.out";

If you want to specify a quoted string inside the Arguments then you have to escape quotes with the \ character. E.g.
when describing a job like:

$ grep -i "my name" x.txt

you will have to specify:

Executable = "/bin/grep";
Arguments = "-i \"my name\" x.txt";

Analogously, if the job takes as argument a string containing a special character (e.g. the job is the tail command
issued on a file whose name contains the ampersand character, say filel&file2), since on the shell line you would have
to write:

$ tail —-f filel\s&file2

in the JDL youRSQUOII have to write:

Executable = "/usr/bin/tail";
Arguments = "-f filel\\\&«file2";

i.e. a\ for each special character. In general, special characters such as:

are only allowed if specified inside a quoted string or preceded by triple . The character cannot be specified in the
JDL.

Some other guidelines for the management of special characters:
« If the arguments string contains one or more spaces, the string must be specified in single quotes

« If the arguments string contains single quotes, then the string must be specified in double quotes (which must
be escaped)

* If the arguments string contains spaces and single quotes, then the string must be specified in double quotes
(which must be escaped)

* the number of the backquote characters must be an even number

Some examples:

5.3. Job Attributes Description 41

CREAMguide Documentation, Release0.1

Arguments = "\"Problematic character is: '\" " ;

"

Arguments = "-o '/DC=ch/DC=cern/OU=0Organic Units/OU=Users/CN=romanov/CN=427293/
—CN=Vladimir Romanovskiy' \"It's sunny \""

Arguments = "-o \"'option'\"";

Mandatory: No
Default: No

5.3.4 Stdinput

This is a string representing the standard input of the job. . This means that the job is run as follows:

’$ executable < <standard input file>

It can be an absolute path possibly including environment variables (wild cards are instead not allowed), i.e. it is
already available on the CE, e.g.

’StdInput = "/var/tpm/jobInput";

or just a file name, e.g.

’StdInput = "myjobInput";

and this means that file needs to be made available on the WN where the job is run. Therefore the standard input file
has to be added to the InputSandbox file list so that it will be downloaded on the WN. The same rules described for
the Executable attribute apply to StdInput.

Mandatory: No
Default: No

5.3.5 StdOutput

This is a string representing the file name where the standard output of the job is saved. The user can specify either a
file name or a relative path (with respect to the job working directory on the WN), e.g.:

StdOutput = "myjobOutput";

StdOutput = "eventl/myjobOutput";

Wild cards are not allowed. The value specified for StdError can be the same as the one for StdOutput: this means that
the two standard streams of the job are saved in the same file. The user can choose to have this file staged automatically
on a GridFTP server specifying a URI for that file in the OutputSandbox attribute expression. E.g.:

StdOutput = "myjobOutput";
OutputSandbox = {
"gsiftp://fox.infn.it:5678/home/gftp/myjobOutput",

bi

indicates that my jobOutput when the job has completed its execution has to be transferred on gsiftp://fox.
infn.it:5678 inthe /home/gftp directory.

42 Chapter 5. CREAM JDL Guide

CREAMuide Documentation, Release0.1

Mandatory: No
Default: No

5.3.6 StdError

This is a string representing the file name where the standard error of the job is saved. The user can specify either a
file name or a relative path (with respect to the job working directory on the WN), e.g.:

StdError = "myjobError";

StdError = "eventl/myJjobError";

Wild cards are not allowed. The value specified for StdError can be the same as the one for StdOutput: this means that
the two standard streams of the job are saved in the same file. The user can choose to have this file staged automatically
on a GridFTP server specifying a URI for that file in the OutputSandboxDestURI attribute expression The same rules
as for the StdOutput apply to StdError.

Mandatory: No
Default: No

5.3.7 InputSandbox

This is a string or a list of strings identifying the list of files available on the file system of the client (UI) machine
and/or on an accessible gridFTP server (HTTPS servers are also supported but this requires to have the GridSite htcp
client command installed on the WN) needed by the job for running. These files hence have to be transferred to the
WN before the job is started. Wildcards and environment variables are admitted in the specification of this attribute
only if the submission takes place through a client able to resolve them locally before passing the JDL to the CREAM
service (e.g. this is the case for the CREAM CLI). Admitted wildcard patterns are the ones supported by the Linux glob
function. One can remove the special meaning of the characters: ‘?°, “*’, and ‘[* by preceding them by a backslash.

File names can be provided as URI on a gridFTP/HTTPS server, simple file names, absolute paths and relative paths
with respect to the current Ul working directory. The InputSandbox file list cannot contain two or more files having
the same name (even if in different paths) as when transferred in the job’s working directory on the WN they would
overwrite each other. This attribute can also be used to accomplish executable and standard input staging to the CE
where job execution takes place as explained above. The InputSandbox attribute meaning is strictly coupled with the
value of the InputSandboxBaseURI defined in the following that specifies a common location on a gridFTP/HTTPS
server where files in the InputSandbox not specified as URI are located.

Support for file transfer from gridftp servers running using user credentials instead of host credentials is also provided1.
In this case the distinguish name of such user credentials must be specified in the URI using:

?DN=<distinguish name>

as shown in the example below.

Here below follows an example of InputSandbox setting:

InputSandbox = {

"/tmp/ns.log",

"mytest.exe",

"myscript.sh",

"data/eventl.txt",
"gsiftp://neo.datamat.it:5678/home/fpacini/cms_sim.exe ",
"file:///tmp/myconft",

(continues on next page)

5.3. Job Attributes Description 43

CREAMguide Documentation, Release0.1

(continued from previous page)

"gsiftp://lxsgaravatto.pd.infn.it:47320/etc/fstab?DN=/C=IT/O=INFN/OU=Personal_,
—Certificate/L=Padova/CN=Massimo Sgaravatto"

}i

InputSandboxBaseURI = "gsiftp://matrix.datamat.it:5432/tmp";

It means that:
e /tmp/ns.log is located on the Ul machine local file system

e mytest.exe , myscript.sh and data/eventl.txt are available on gsiftp://matrix.
datamat.it:5432 inthe /tmp directory

* /tmp/myconf is located on the user local file system (explicitly specified using the file:// prefix)

e /etc/fstabisavailableongsiftp://lxsgaravatto.pd.infn.it:47320 which is a gridftp server
running using user credentials (with the specified distinguish name)

If the InputSandboxBaseURI is not specified than also mytest .exe, myscript.sh and data/eventl.txt
would be interpreted as located on the user local file system.

Mandatory: No
Default: No

5.3.8 InputSandboxBaseURI

This is a string representing the URI on a gridFTP server (HTTPS servers are also supported but this requires to have
the GridSite htcp client command installed on the WN) where the InputSandbox files that have been specified as simple
file names and absolute/relative paths are available for being transferred on the WN before the job is started. E.g.

InputSandbox = {
"data/eventl.txt",

}i
InputSandboxBaseURI = "gsiftp://matrix.datamat.it:5432/tmp";

makes CREAM consider

"gsiftp://matrix.datamat.it:5432/tmp/data/eventl.txt"

for the transfer on the WN.

Support for file transfer from gridftp servers running using user credentials instead of host credentials is also provided1.
In this case the distinguish name of such user credentials must be specified in the URI using:

?DN=<distinguish name>

as shown in the example below. E.g.

InputSandbox = {

"data/event2.txt",

}i
InputSandboxBaseURI = "gsiftp://lxsgaravatto.pd.infn.it:47320/tmp?DN=/C=IT/O=INEFN/
—0U=Personal Certificate/L=Padova/CN=Massimo Sgaravatto";

44 Chapter 5. CREAM JDL Guide

file://

CREAMuide Documentation, Release0.1

makes CREAM consider

"gsiftp://lxsgaravatto.pd.infn.it:47320/tmp/data/event2.txt"

for the transfer on the WN, where that gridftp server has been started using user credentials (with the specified distin-
guish name)

Mandatory: No
Default: No

5.3.9 OutputSandbox

This is a string or a list of strings identifying the list of files generated by the job on the WN at runtime, which the user
wants to save. This attribute can be combined with the OutputSandboxDestURI or the OutputSandboxBaseDestURI to
have, upon job completion, the output directly copied to specified locations running a gridFTP server (HTTPS servers
are also supported but this requires to have the GridSite htcp client command installed on the WN). Wildcards are
admitted in the specification of this attribute only if the OutputSandboxBaseDestURI attribute is used along with the
OutputSandbox attribute. Admitted wildcard patterns are the ones supported by the Linux glob function. One can
remove the special meaning of the characters: ‘? ‘, “*’ and ‘[‘ by preceding them by a backslash.

File names can be provided as simple file names or relative paths with respect to the current working directory on the
executing WN. The OutputSandbox file list should not contain two or more files having the same name (even if in
different paths).

Mandatory: No
Default: No

5.3.10 OutputSandboxDestURI

This is a string or a list of strings representing the URI(s) on a gridFTP/HTTPS server where the files listed in the
OutputSandbox attribute have to be transferred at job completion. The OutputSandboxDestURI list contains for each
of the files specified in the OutputSandbox list the URI (including the file name) where it has to be transferred at job
completion. Support for file transfer to gridftp servers running using user credentials instead of host credentials is also
providedl. In this case the distinguish name of such user credentials must be specified in the URI using:

?DN=<distinguish name>

as shown in the example below. E.g.

OutputSandbox = {
"myjobOutput",
"runl/eventl",
"run2/event2",

}i

OutputSandboxDestURI = {
"gsiftp://matrix.datamat.it:5432/tmp/myjobOutput ",
"gsiftp://grid003.ct.infn.it:6789/home/cms/eventl",
"gsiftp://lxsgaravatto.pd.infn.it:47320/tmp/event2?DN=/C=IT/O=INFN/
OU=Personal Certificate/L=Padova/CN=Massimo Sgaravatto"

bi

makes CREAM transfer respectively:

* myjobOutput onmatrix.datamat. it in the directory /tmp

5.3. Job Attributes Description 45

CREAMguide Documentation, Release0.1

* eventl ongrid003.ct.infn. it in the directory /home/cms

* event2on lxsgaravatto.pd.infn. it (gridftp server running using user credentials, with the specified
distinguish name) in the directory /tmp

Specifying the URI gsiftp://localhost, the OutputSandboxFile is saved in the gridftp server of the CREAM
CE, as shown in the following example:

OutputSandbox = {

"filel",

"file2",

}i

OutputSandboxDestURI = {
"gsiftp://localhost/filel",
"gsiftp://grid003.ct.infn.it:6789/home/cms/file2"
}i

In the above example £ilel is saved on the gridftp server of the CREAM CE, while file?2 is saved on grid003.
ct.infn.it (directory /home/cms). The OutputSandboxDestURI list must have the same cardinality as the
OutputSandbox list, otherwise the JDL will be considered as invalid. Note that the file name specified in the Output-
Sandbox can be different from the corresponding destination file name specified in the OutputSandboxBaseDestURI.
The OutputSandboxDestURI attribute and the OutputSandboxBaseDestURI cannot be specified together in the same
JDL. One (and only one) among the OutputSandboxDestURI and OutputSandboxBaseDestURI attributes must be
specified if the OutputSandbox attribute has been specified

Mandatory: No
Default: No

5.3.11 OutputSandboxBaseDestURI

The OutputSandboxBaseDestURI attribute is a string representing the base URI on a gridFTP server, i.e. a directory
on the server, where the files listed in the OutputSandbox attribute have to be transferred at job completion. HTTPS
servers are also supported but this requires to have the GridSite htcp client command installed on the WN. All the
OutputSandbox files are transferred to the location specified by the URI with the same names (only names in a flat
directory) as the ones specified in the OutputSandbox. E.g.:

OutputSandbox = {

"myjobOutput",

"runl/eventl",

}i

OutputSandboxBaseDestURI = "gsiftp://matrix.datamat.it:5432/tmp";

makes CREAM transfer both files in the /tmp directory of the gridFTP server matrix.datamat.it (note that
eventl will goin /tmp and notin /tmp/runl).

Support for file transfer to gridftp servers running using user credentials instead of host credentials is also provided1.
In this case the distinguish name of such user credentials must be specified in the URI using:

?DN=<distinguish name>

as shown in the example below. E.g.

OutputSandbox = {
"myjobOutput",
"runl/eventl",

(continues on next page)

46 Chapter 5. CREAM JDL Guide

CREAMuide Documentation, Release0.1

(continued from previous page)

bi
OutputSandboxBaseDestURI = "gsiftp://lxsgaravatto.pd.infn.it:47320/tmp?DN=/C=IT/
—0=INFN/OU=Personal Certificate/L=Padova/CN=Massimo Sgaravatto";

makes CREAM transfer both files in the /tmp directory of the gridFTP server 1xsgaravatto.pd.infn.it
(running using user credentials, with the specified distinguish name).

Specifying the URI =gsiftp://localhost=, the OutputSandboxFile is saved in the gridftp server of the CREAM CE, as
shown in the following example:

OutputSandbox = {

"filel",

"file2",

}i

OutputSandboxBaseDestURI = "gsiftp://localhost";

In the above example filel and file2 are saved on the gridftp server of the CREAM CE. The OutputSand-
boxBaseDestURI attribute and the OutputSandboxDestURI cannot be specified together in the same JDL. One (and
only one) among the OutputSandboxDestURI and OutputSandboxBaseDestURI attributes must be specified if the
OutputSandbox attribute has been specified.

Mandatory: No
Default: No

5.3.12 Prologue

The Prologue attribute is a string representing the executable/script name of the prologue. The prologue is an exe-
cutable run within the CREAM job wrapper before the user job is started. It can be used for purposes ranging from
application-specific checks that the job environment has been correctly set on the WN to actions like data transfers,
database updates or MPI pre script. If the prologue fails the job wrapper terminates. The rules for specification of the
Prologue attributes and its relationship with the InputSandbox attribute are exactly the same already described for the
Executable attribute.

Mandatory: No
Default: No

5.3.13 PrologueArguments

The Prologue Arguments attribute is a string containing all the prologue executable command line arguments. All the
rules reported in the description of the Arguments attribute also apply to the Prologue Arguments attribute.

Mandatory: No
Default: No

5.3.14 Epilogue

The Epilogue attribute is a string representing the executable/script name of the epilogue. The epilogue is an exe-
cutable/script run within the CREAM job wrapper after the user job completion. It can be used for purposes ranging
from application-specific checks that the job performed correctly to actions like data transfers, database updates or
MPI post script. The rules for specification of the Epilogue attributes and its relationship with the InputSandbox
attribute are exactly the same already described for the Executable attribute.

5.3. Job Attributes Description 47

CREAMguide Documentation, Release0.1

Mandatory: No
Default: No

5.3.15 EpilogueArguments

The EpilogueArguments attribute is a string containing all the epilogue executable command line arguments. All the
rules reported in the description of the Arguments attribute also apply to the Epilogue Arguments attribute.
Mandatory: No

Default: No

5.3.16 Environment
This is a list of string representing environment settings that have to be performed on the execution machine and are

needed by the job to run properly. The JobWrapper on the Worker Node performs these settings just before the job is
started. Each item of the list is an equality ' VAR_NAME=VAR_VALUE'. E.g.:

Environment = {
"JOB_LOG_FILE=/tmp/myjob.log",
"ORACLE_SID=edg_rdbms_1",
"JAVABIN=/usr/local/java"

}i

Mandatory: No
Default: No

5.3.17 PerusalFileEnable

The PerusalFileEnable attribute is a Boolean attribute that allows enabling the job file perusal support in CREAM. File
perusal can be used when jobs are submitted to CREAM by the WMS, but it is possible to use this functionality also
for jobs submitted directly to CREAM. When this attribute is set to true, i.e.

PerusalFileEnable = true;

the user can inspect, while the job is running, the files generated by the job on the WN. This is achieved by uploading
on a location specified by the attribute PerusalFilesDestURI, at regular time intervals, chunks of the files (specified by
the attribute PerusalListFileURI) generated by the job on the WN. The PerusalFileEnable attribute is not mandatory.
If not specified in the JDL it is assumed to be set to false.

Mandatory: No
Default: False

5.3.18 PerusalTimelnterval
The PerusalTimelnterval attribute is a positive integer representing the difference in seconds between two subsequent

saving (and upload on the location specified by the attribute PerusalFilesDestURI) of the job files generated by the job
on the WN. Specifying e.g.

PerusalTimeInterval = 10;

48 Chapter 5. CREAM JDL Guide

CREAMuide Documentation, Release0.1

makes the CREAM JobWrapper save the job files specified through the attribute PerusalListFileURI each 10 seconds
and upload them on location specified by the attribute PerusalFilesDestURI, so that they can be inspected by the user.

Mandatory: No (unless PerusalFileEnable is true)

Default: No

5.3.19 PerusalFilesDestURI

The PerusalFilesDestURI attribute is a string representing the URI of the location on a gridFTP or HTTPS server
(HTTPS servers are also supported but this requires to have the GridSite htcp command installed on the WN) where
the chunks of files generated by the running job on the WN and specified through the attribute PerusalListFileURI
have to be copied. E.g.

PerusalFilesDestURI = gsiftp://ghemon.cnaf.infn.it/home/glite/peek

Mandatory: No (unless PerusalFileEnable is true)
Default: No

5.3.20 PerusalListFileURI

The PerusalListFileURI attribute is a string representing the URI of the file on a gridFTP server, containing the list of
files (one for each line), that must be saved and uploaded on the location specified by the attribute PerusalFilesDestURI
at regular time intervals. E.g.

PerusalListFileURI = "gsiftp://ghemon.cnaf.infn.it/peek/files2peek";

Mandatory: No (unless PerusalFileEnable is true)
Default: No

5.3.21 BatchSystem

This is a string representing the Local Resource Management System (LRMS), that is the batch system type (e.g. LSE,
PBS, etc.) of the target CREAM CE. Here below follows an example for this attribute:

BatchSystem = "pbs";

This attributes is mandatory but can be omitted if the CREAM CLI is used, since it retrieves this attribute from the
CEID and automatically fills the JDL.

Mandatory: Yes
Default: No

5.3.22 QueueName

This is a string representing the queue name in the Local Resource Management System (LRMS) where the job has to
be submitted on the target CREAM CE. Here below follows an example for this attribute:

QueueName = "long";

5.3. Job Attributes Description 49

CREAMguide Documentation, Release0.1

. This attributes is mandatory but can be omitted if the CREAM CLI is used, since it retrieves this attribute from the
CEID and automatically fills the JDL.

Mandatory: Yes
Default: No

5.3.23 CPUNumber

The CpuNumber attribute is an integer greater than 0 specifying the number of CPUs needed. This attribute can be
used in particular for MPI jobs. Please note that this attributes allows allocating the specified number of CPUs. Then
it is up to the job using them to run the job (e.g. via mpistart). An example of the JDL setting is:

CpuNumber = 5;

Mandatory: No
Default: 1

5.3.24 SMPGranularity

The SMPGranularity attribute is an integer greater than 0 specifying the number of cores any host involved in the
allocation has to dedicate to the considered job. This attribute canRSQUOLt be specified along with the Hostnumber
attribute when WholeNodes is false.

Mandatory: No
Default: No

5.3.25 GPUNumber

The GPUNumber attribute is an integer greater than O specifying the number of accelerator devices (CUDA) required
for executing the current job.

Mandatory: No

Default: No

5.3.26 GPUModel

The GPUModel attribute is a string containing the model of the accelerator device (CUDA) as declared by the vendor.
Mandatory: No
Default: No

5.3.27 WholeNodes

The WholeNodes attribute is a boolean that indicates whether whole nodes should be used exclusively or not.
Mandatory: No
Default: False

50 Chapter 5. CREAM JDL Guide

CREAMuide Documentation, Release0.1

5.3.28 HostNumber

HostNumber is an integer indicating the number of nodes the user wishes to obtain for his job. This attribute can’t
be specified along with the SMPGranularity attribute when WholeNodes is false. Please note that HostNumber
shouldn’t be greater than CpuNumber

Mandatory: No
Default: No

5.3.29 CERequirements

The CERequirements attribute is a Boolean ClassAd expression that uses C-like operators. It represents job require-
ments on resources. Properly configuring the BLAH software, it is possible to instruct the Local Resource Manage-
ment System to select the most appropriate Worker Node to run the considered job. The CERequirements expression
can contain attributes that describe the CE which are prefixed with other .. This is an example of CERequirements
expression:

CERequirements = "other.GlueCEPolicyMaxCPUTime >= 100 && other.
—GlueHostMainMemoryRAMSize > 2000";

The CERequirements attribute can be used when jobs are submitted directly to a CREAM based CE, while for jobs
submitted to a CREAM based CE via the WMS, the CERequirements expression is automatically filled by the WMS
considering the user’s Requirements expression, and the value of the CeForwardParameters attribute in the
WMS configuration file.

For further details refer to the User guide.
Mandatory: No
Default: No

5.3.30 MWVersion

The MWversion attribute is a string whose value is given to the environment value EDG_MW_VERSION, defined for
the job immediately when it arrives on the WN (i.e. it is not defined in the job wrapper). There can be hooks on the
WN which detect this (before any /etc/profile.d scripts are run) and set up the appropriate environment for a
job.

Mandatory: No
Default: No

5.3.31 OutputData

This attribute allows the user to ask for the automatic upload and registration to the Replica Catalog of datasets
produced by the job on the WN. Through this attribute it is possible to indicate for each output file the LFN (Logical
File Name) to be used for registration and the SE (Storage Element) on which the file has to be uploaded. The
OutputData attribute is not mandatory.

OutputData is a list of classads where each classad contains the following three attributes:
* QutputFile
* StorageElement

* LogicalFileName

5.3. Job Attributes Description 51

User_Guide.html#forward-of-requirements-to-the-batch-system

CREAMguide Documentation, Release0.1

These three attributes are only admitted if members of one of the classads composing OutputData. They cannot be
specified independently in the job JDL. Here below follows an example of the !OutputData attribute:

OutputData = {
[

OutputFile = "dataset_1l.out ";
LogicalFileName = "1fn:/test/resultl";
JI
[
OutputFile = "dataset_2.out ";
StorageElement = "se0Ol.cnaf.infn.it";
1,
]
OutputFile = "cms/dataset_3.out";
StorageElement = "se(Ol2.to.infn.it";
LogicalFileName = "l1fn:/cms/outfilel";
JI
[
OutputFile = "dataset_4.out ";

}i

If the attribute OutputData is found in the JDL then the JobWrapper at the end of the job calls the Data Management
service that copies the file from the WN onto the specified SE and registers it with the given LFN. If the specified LFN
is already in use, the DM service registers the file with a newly generated identifier GUID (Grid Unique Identifier).
During this process the JobWrapper creates a file (named DSUpload_<jobid>.out) with the results of the opera-
tion. In case of submission to CREAM through the WMS this file is put automatically in the OutputSandbox attribute
list by the UI (and can then be retrieved by the user with the glite-wms—job-output command). If instead the
job was submitted directly to the CE, the file is put in the OSB directory of the CE node (and therefore can then be
retrieved by the user with the glite—-ce—job-output command) unless the Output SandboxBaseDestURI
attribute has been used (in this latter case the specified location is used to store the DSUpload_<jobid>.out file).

Mandatory: No
Default: No

5.3.32 OutputFile

This is a string attribute representing the name of the output file, generated by the job on the WN, which has to be
utomatically uploaded and registered by the WMS. Wildcards are not admitted in the specification of this attribute.
File names can be provided as simple file names, absolute paths or relative paths with respect to the current working
directory.

Mandatory: Yes (only if OutputData has been specified)
Default: No

5.3.33 StorageElement

This is a string representing the URI of the Storage Element where the output file specified in the corresponding
OutputFile attribute has to be uploaded by the WMS.

Mandatory: No

Default: No

52 Chapter 5. CREAM JDL Guide

CREAMuide Documentation, Release0.1

5.3.34 LogicalFileName

This is a string representing the logical file name (LFN) the user wants to associate to the output file when registering it
to the Replica Catalogue. The specified name has to be prefixed by “Ifn:” (lowercase). If this attribute is not specified
then the corresponding output file is registered with a GUID that is assigned automatically by the Data Management
services.

Mandatory: No
Default: No (If not specified a GUID is assigned by DM services)

5.4 JDL Examples

Simple examples of JDL describing different types of jobs and requests are reported in this section.

5.4.1 Example 1

Type = "job";

JobType = "normal";

Executable = "/sw/command";

Arguments = "60";

StdOutput = "sim.out";

StdError = "sim.err";

OutputSandbox = { "sim.err", "sim.out" };
OutputSandboxBaseDestURI = "gsiftp://sel.pd.infn.it:5432/tmp";

InputSandbox = {
"file:///home/user/filel",
"gsiftp:///sel.pd.infn.it:1234/data/file2",
"/home/user/file3", "filed"

}i

InputSandboxBaseURI = "gsiftp://se2.cern.ch:5678/tmp";

With this JDL a “normal” (batch) job will be submitted. Besides the specification of the executable (already available
in the file system of the executing node, since not listed in the InputSandbox), and of the standard output/error files, it
is specified that the files filel, file2, file3, file4 will have to be staged on the executing node:

e filel and £ile3 will be copied from the client (UI) file system

e file2 will be copied from the specified GridFTP server (gsiftp:///sel.pd.infn.it:1234/data/
file2)

e filed will be copied from the GridFTP server specified as InputSandboxBaseURI (gsiftp://se2.cern.
ch:5678/tmp)

It is also specified that the file sim.err and sim. out (specified as OutputSandbox) must be automatically uploaded
intogsiftp://sel.pd.infn.it:5432/tmp when job completes its execution.

5.4.2 Example 2

Type = "job";
JobType = "normal";

(continues on next page)

5.4. JDL Examples 53

CREAMguide Documentation, Release0.1

(continued from previous page)

Executable = "script.sh";

Arguments = "60";
StdOutput = "sim.out";
StdInput = "sim.inp";
StdError = "sim.err";

OutputSandbox = {
"sim.err",
"sim.out"
}i
OutputSandboxDestURI = {
"gsiftp://matrix.datamat.it:5432/tmp/sim.erxr",
"gsiftp://grid003.ct.infn.it:6789/home/cms/sim.out",
}i
InputSandbox = {
"file:///home/user/filel",
"gsiftp:///sel.pd.infn.it:1234/data/file2",
"/home/user/file3",
"filed",
"script.sh",
"sim.inp"

}i

This JDL is very similar to the previous one. The only differences are the following:

* The executable and the standard input files have been included in the InputSandbox, and therefore they will be
staged in the executing node

* Instead of specifying the URL to be used for all the files of the OutputSandbox, it is specified (via the attribute
OutputSandboxDestURI) an URI for each file that have to be uploaded (the files listed as OutputSandbox)

¢ The attribute InputSandBoxBaseURI hasnRSQUOt been specified, so the files filed, script.shand sim.
inp will be copied from the file system of the client (UI) machine.

54 Chapter 5. CREAM JDL Guide

CHAPTER O

BLAH User’s Guide

6.1 BLAH Introduction

BLAHPD is a light component accepting commands according to the BLAH (Batch Local Ascii Helper) protocol to
manage jobs on different Local Resources Management Systems (LRMS). The BLAH service provides a minimal,
pragmatically designed common interface for job submission and control to a set of batch systems. Interaction with
BLAH is achieved via text commands whose syntax and semantics is described below. Interaction with each one of
the various supported batch system is achieved via customized scripts (the existing scripts are all Bourne shell scripts)
that take care of executing the following functions:

* job submit
* job hold

* job resume
* job status

* job cancel

6.2 BLAH Portability

The purpose of this writeup is to:
¢ describe the assumptions that are currently made on the minimal functionality that batch systems must provide;

¢ describe the details of the command line arguments that are passed to each one of the five scripts that implement
the fuctionality described above for a specific batch system;

* provide guidelines for porting of the existing scripts, especially the submit script for which helper shell functions
were defined.

As the universe of different batch systems that need to be supported is very small, the most efficient way to get help
beyond the information collected in these notes is to interact with the BLAH developers directly via the e-mail address

55

CREAMguide Documentation, Release0.1

blah-help @mi.infn.it The string XXX, in the following text, is meant to be replaced with the name of the specific batch
system being interfaced (pbs, Isf, condor, etc.).

BLAH assumes that batch systems are capable to

* Identify jobs for subsequent operations via a unique, constant identifier that is returned at the time of job sub-
mission.

* Transfer and optionally rename a configurable set of files from a given location on the submit node to the initial
working directory on the selected worker node before the job execution starts.

* Transfer and optionally rename a configurable set of files from the initial working directory of job on the worker
node that is selected for execution to a given location on the submit node.

* Provide status of currently running jobs via an appropriate command.
* Provide a historical track of jobs that were accepted and ran in the past via one or more log files.

BLAH can use the optional batch system functionality of holding (suspend) and resuming jobs via appropriate com-
mands.

BLAH doesn’t require batch systems to be able to renew X509 proxies and/or transfer files to and from the worker
node while the job is being executed. Proxy renewal is taken care of by a proxy renewal daemon that runs at the side
of the running job and receives delegations of refreshed proxies during the lifetime of the job.

6.3 The supported batch systems

At the time of writing BLAH supports the following batch systems: LSF, PBS/Torque, SGE, Condor and just recently
SLURM. In order to enable BLAH to interact with the selected batch system, it must be configured properly by setting
few parameters on its configuration file which is located by default at /etc/blah.config. The file contains a list
of parameters and their own default value is well defined for a standard setup of BLAH. Their customization is even
possible if needed. For example to enable the support of SLURM is need just a specific parameter slurm_binpath
which informs BLAH about the location where the SLURM executables are located (i.e. scontrol and sacct).

6.3.1 XXX_submit.sh script

Submit a new job request to the batch system.

NOTE: most of the functionality for parsing and handling the submit script arguments is provided by a set of shell
functions that are described further below (see SUBMIT SCRIPT HELPER FUNCTIONS). The argument description
is provided for reference only. SYNOPSIS:

XXX_submit.sh -c¢ <command> —-gq <queue>[-1 <stdin_file>]

[-0 <stdout_file>] [-e <stderr_file>] [-x <x509%userproxy>]

[-v <environment> | -V <environment>] [-s <YES | no>]

[-d <YES | no>] [-w <workdir>] [-n <number_of_ MPI_nodes>]

[-r <YES | no>] [-p <proxyrenew_poll_interval>]

[-1 <minimum_left_lifetime_proxy>] [-J <jobid_in_caller>]

[-T <location_temp_of_dir>] [-I <list_input_of_additional_files>]
[-O <list_of_additional_files_output>]

[-R <list_of_remap_file_output_rules>] [-C <ce_file_requirements>]
[7

— command_arguments]

Any argument after ‘— will be passed to the user job (“command”).

The command line switches have the following meaning (switches listed in alphabetical order):

56 Chapter 6. BLAH User’s Guide

mailto:blah-help@mi.infn.it

CREAMuide Documentation, Release0.1

e [-C <ce_file_requirements>]: When this argument is present, the local script
XXX _local_submit_attributes.sh is called, and its output is pasted to the batch system submit file. The
XXX _local_submit_attributes.sh script is called after sourcing the contents of the ‘CE requirements file’ first.
This file is composed by the BLAH main daemon and sets shell variables that specify attribute bounds derived
from the CERequirements attribute in the BLAH submit command. Example format for the ‘CE requirements
file’:

GlueHostMainMemoryRAMSize _Min=1000
GlueCEPolicyMaxCPUTime _Max=30

* [-c command]: (shell) command to be executed as a batch job.

* [-d <YES | no>]: Debug option. If set to ‘yes’, it causes the submit file to be sent to /dev/tty, and no actual
submission to the batch system.

* [-e <stderr_file>]: Location of the local file that should receive the job STDERR upon job termination.

e [-I <list_input_of_additional_files>]: points to an optional, temporary file containing a list
of additional files (one per line) that need to be transferred from the submission node to the initial working
directory on the worker node. This temp file is removed by the submit script.

e [-1 <stdin_file>]: Location of a local file to be transferred to the worker node and connected to the
STDIN of the job.

* [-J <jobid_in_caller>]: String for unique identification of the job by the calling layer. As this string
is unique, it is used to name the submit script, that will be created as ‘cream_jobID’.

e [-1 <minimum_left_lifetime_proxy>]: Minimum remaining lifetime of the user proxy (expressed
in seconds) before the proxy renewal damon will kill the user job. Defaults to 180 seconds, or 3 minutes.

* [-n <number_of_MPI_nodes>]: Number of MPI nodes to be reserved for the job, in case this feature is
supported by the underlying batch system.

e [-O <list_of_additional_files_output>]: points to an optional, temporary file containing a list
of additional files (one per line) that need to be transferred from the working directory on the worker node back
to the submit node. This temp file is removed by the submit script. The -R arguments can be used to establish
file name remapping.

* [-0 <stdout file>]: Location of the local file that should receive the job STDOUT upon job termination.

* [-p <proxyrenew_poll_interval>]: time interval (expressed in seconds) between attempts of the
proxy renewal daemon to check that the use process is still alive. Defaults to 60 seconds.

* [-g <gueue_name>]: Batch system queue to run the job in.

e [-R <list_of_remap_file_output_rules>]: Points to a file containing a list of names is trans-
ferred from the worker node to the submit (local) node. The list file will be deleted by the submit script.

e [-r <YES | no>]: Disables the entire BLAH proxy renewal machinery when set to ‘no’. Defaults to ‘yes’
if missing.

e [-T <location_temp_of_dir>]: sets the directory location for storing temporary files.

e [-v <environment> | -V <environment>]: Environment variables to be set for the user job. Two
formats are possible:

— semicolon-separated assignments -v “ENV 1=vall;ENV2=val2;...”
— space-separated assignments -V “ENV1=vall ENV2=val2 ...”

* [-x <x509userproxy>]: Location of the initial X509 user proxy to associate with the job. This file is
initially transferred with the job, then (optionally, see -r) renewed via proxy delegation.

* [-w <workdir>]: Directory location pre-pended to relative file paths and used as CWD by the submit script.

6.3. The supported batch systems 57

CREAMguide Documentation, Release0.1

RETURN VALUE: Termination code is zero on success, nonzero on error. Job identifier, with the identifier string
‘BLAHP_JOBID_PREFIX’ is returned on STDOUT on success. The job identifier must start with the batch system
name followed by a slash (XXX/id).

SUBMIT SCRIPT HELPER FUNCTIONS: A set of shell functions was written to ease the parsing and handling of the
submit script options. They allow to write a submit script along the following template:

#!/bin/bash
1. Source definition of helper functions.
“dirname $0° /blah_common_submit_functions.sh

2. Parse the submit options, that are used to set
a list of bls_opt_XYZ shell variables.
bls_parse_submit_options $@

3. Set up temporary files. Set a variable with the name of

an environment variable that holds the batch system job ID
at runtime.

bls_setup_all_files

bls_job_id_for_renewal=XXX_JOBID

4. Start writing the submit script to $bls_tmp_file

cat > $bls_tmp_file << end_of_preamble
#!/bin/bash

PBS job wrapper generated by “basename $0°
on " /bin/date’

proxy_string = $bls_opt_proxy_string
proxy_local_file = $bls_proxy_local_file
Etc. Etc. Etc.

end_of_preamble

e

5. Handle script local customisations according to -C option
as appropriate for the batch system at hand.
if [! -z S$Sbls_opt_reqg file] ; then
echo \#\!/bin/sh >> ${bls_opt_req file}-temp_req script
cat $bls_opt_req file >> ${bls_opt_req file}-temp_req script
echo "source ${GLITE_LOCATION:-/opt/glite}/bin/XXX_local_submit_attributes.sh" >> $§
—{bls_opt_req file}-temp_req script
chmod +x ${bls_opt_req_file}-temp_req script
${bls_opt_req file}-temp_req_script >> $bls_tmp_file 2> /dev/null
rm —-f ${bls_opt_req file}-temp_req_script
rm -f $bls_opt_req file
fi

6. Add specific directives to select queue ($bls_opt_gueue) and

MPI node request (Sbls_opt_mpinodes)

7. Add directives to transfer and rename input and output files.
These are stored as

$bls_inputsand_local_0...$bls_inputsand_local_n-1

Sbls_inputsand_remote_0...$bls_inputsand_remote_n-1

$bls_outputsand_local_0...S$bls_outputsand_local_n-1

$bls_outputsand_remote_0...$bls_outputsand_remote_n-1

#

Two shell functions can help here.

a:

bls_fl_subst_and_accumulate inputsand "Q@F_REMOTE/Q@F_LOCAL" "sep"

(continues on next page)

58 Chapter 6. BLAH User’s Guide

CREAMuide Documentation, Release0.1

(continued from previous page)

bls_f1l_subst_and_accumulate outputsand "@@F_REMOTE/@Q@F_LOCAL" "sep"
fill $bls_f1l_subst_and_accumulate_result with a list of "sep"
separated strings formatted as shown in the second argument.

The submit node full file path is substituted to @@F_LOCAL

and the worker node path relative to the initial working dir

is substituted to QR@F_REMOTE.

bls_fl_subst_and_dump inputsand "QQ@F_LOCAL>QQRF_REMOTE" S$bls_tmp_file
bls_f1l_subst_and_dump outputsand "Q@F_LOCAL<@QRF_REMOTE" $bls_tmp_file
append to $bls_tmp_file a line for each input and output file,

where Q@F_REMOTE and Q@F_LOCAL are substituted as above.

SHE o S o 3 S o S o 3 e

8. Append job wrapper as a shell script to $bls_tmp_file
bls_add_job_wrapper

9. Send the submit file $bls_tmp_file to the batch system and
try making sure it doesn't get lost.

10. Echo to STDOUT the unique Jjob ID to be used by subsequent scripts
(with BLAHP_JOBID_PREFIX) and wrap up. The Jjob ID must be

properly understood by subsequent commands.

echo "BLAHP_JOBID_PREFIXXXX?$jobID"

bls_wrap_up_submit

exit S$retcode

6.3.2 XXX _hold.sh script

Suspend the execution of a job.

SYNOPSIS:

XXX_hold.sh <job identifier>

The job identifier must be the same string returned by the submit script (without the leading
BLAHP_JOBID_PREFIX). Any leading part up to the first slash ‘/> will be ignored by the script.

RETURN VALUE: Termination code is zero on success, NOnzero on error.

6.3.3 XXX_resume.sh script

Resume the execution of a (previously suspended) job.

SYNOPSIS:

XXX_resume.sh <job identifier>

The job identifier must be the same string returned by the submit script (without the leading
BLAHP_JOBID_PREFIX). Any leading part up to the first slash ‘/> will be ignored by the script.

RETURN VALUE: Termination code is zero on success, Nonzero on error.

6.3.4 XXX _status.sh script

Get current status of a job.

6.3. The supported batch systems 59

CREAMguide Documentation, Release0.1

SYNOPSIS:

XXX_status.sh [-w] [-n] <job identifier>

The job identifier must be the same string returned by the submit script (without
BLAHP_JOBID_PREFIX). Any leading part up to the first slash ‘/ will be ignored by the script.

the leading

e [-n]: Option specific to the CREAM caller. Return the port used by the BLParser (see description below) to

communicate with the CREAM service

e [-w]: Return the worker node where a job is running as an attribute of the output classad (WorkerNode

="host.domain’)

RETURN VALUE: The script must return a string-formatted classad (see http://www.cs.wisc.edu/condor/classad/

refman/ for the complete reference on classad syntax) containing at least the following attributes:

BatchjobId = <jobId without the leading batch system name>

* JobStatus = <status_code>

possible value for the status code are 1 = IDLE, 2 = RUNNING, 3 = REMOVED, 4 = COMPLETED, 5 = HELD

* ExitCode = <code>

|

only for COMPLETED jobs
Example of status script results:

* job queued

’[BatchjobId = "26526.atlfarm006.mi.infn.it"; JobStatus = 1]

* job completed

’[ExitCode = 0; BatchjobId = "26526.atlfarm006.mi.infn.it"; JobStatus =

4

]

6.3.5 XXX_cancel.sh script

Remove a job from the batch system queue.

SYNOPSIS:

XXX_cancel.sh <job identifier>

The job identifier must be the same string returned by the submit script (without
BLAHP_JOBID_PREFIX). Any leading part up to the first slash ¢/ will be ignored by the script.

RETURN VALUE: Termination code is zero on success, Nonzero on error.

6.4 BLAH forward requirements to the local batch system

the leading

The user can set some requirements to be forwarded to the local batch system, by using the attribute
CERequirements, as defined above, in the blah_ job_submit command. This can be achieved both with direct
submission to the CREAM CE and with submission to the CE via the WMS, as explained in the following:

e direct submission to CREAM -> the attributes to be forwarded are specified in the .jdl CERequirements

attribute and are the ones of the GlueSchema in use

60 Chapter 6. BLAH User’s Guide

http://www.cs.wisc.edu/condor/classad/refman/
http://www.cs.wisc.edu/condor/classad/refman/

CREAMuide Documentation, Release0.1

* submission to a CE via WMS -> the CERequirements attribute for blah_job_submit is filled taking into
account the value of the job JDL Requirements expression and what is specified as CeForwardParameters in the
WMS conf file (workloadmanager section). Also in this case the parameters to be forwarded are chosen from
the GlueSchema in use

6.5 BLAH Commands syntax and semantics

6.5.1 BLAH Commands

The following list of commands represents the set of commands required for interaction with the BLAHP
server, interfacing to a given Local Resource Management system. This is based on the minimum set of com-
mands used in the original GAHP (v1.0.0) specification removing commands that are specific to the opera-
tion of the GRAM protocol (INITIALIZE_FROM_FILE, GASS_SERVER_INIT, GRAM_CALLBACK_ALLOW,
GRAM_JOB_CALLBACK_REGISTER, GRAM_PING). The JOB_SIGNAL command may be initially left unim-
plemented for some of the batch systems (and in that case will return an error E state and will not be returned by
COMMANDS).

* BLAH_JOB_CANCEL
« BLAH_JOB_SIGNAL
« BLAH_JOB_HOLD
* BLAH_JOB_REFRESH_PROXY
* BLAH_JOB_RESUME
« BLAH_JOB_STATUS
* BLAH_JOB_STATUS_ALL
* BLAH_JOB_STATUS_SELECT
« BLAH_JOB_SUBMIT
« BLAH_SET GLEXEC_DN
* BLAH_SET GLEXEC_OFF
* COMMANDS
¢« CACHE_PROXY_FROM_FILE
* QUIT
* RESULTS
* USE_CACHED_PROXY
*« UNCACHE_PROXY
* VERSION
Optionally, the following two commands may also be implemented:
* ASYNC_MODE_ON
*« ASYNC_MODE_OFF

6.5. BLAH Commands syntax and semantics 61

CREAMguide Documentation, Release0.1

6.5.2 BLAHP Commands structure

Conventions and Terms used

Below are definitions for the terms used in the sections to follow:
* <CRLF>The characters carriage return and line feed (in that order), or solely the line feed character.
e <SP>The space character.
* line A sequence of ASCII characters ending with a <SP>
* Request Line A request for action on the part of the BLAHP server.
* Return Line A line immediately returned by the BLAHP server upon receiving a Request Line.

e Result Line A line sent by the BLAHP server in response to a RESULTS request, which communicates the
results of a previous asynchronous command Request.

* S: and R: In the Example sections for the commands below, the prefix “S: ” is used to signify what the client
sends to the BLAHP server. The prefix “R: ” is used to signify what the client receives from the BLAHP server.
Note that the “S: ” or “R: ” should not actually be sent or received.

Commands structure

BLAHP commands consist of three parts:
* Request Line
* Return Line
* Result Line
Each of these “Lines” consists of a variable length character string ending with the character sequence <CRLF>.

A Request Line is a request from the client for action on the part of the BLAHP server. Each Request Line consists of a
command code followed by argument field(s). Command codes are a string of alphabetic characters. Upper and lower
case alphabetic characters are to be treated identically with respect to command codes. Thus, any of the following
may represent the blah_job_submit command:

* blah_job_submit
¢ Blah_Job_Submit
* blAh_joB_suBMit
« BLAH_JOB_SUBMIT
In contrast, the argument fields of a Request Line are case sensitive.

The Return Line is always generated by the server as an immediate response to a Request Line. The first character of
a Return Line will contain one the following characters:

e S - for Success
¢ F - for Failure
* E - for a syntax or parse Error

Any Request Line which contains an unrecognized or unsupported command, or a command with an insufficient
number of arguments, will generate an “E” response.

The Result Line is used to support commands that would otherwise block. Any BLAHP command which may require
the implementation to block on network communication require a “request id” as part of the Request Line. For such

62 Chapter 6. BLAH User’s Guide

CREAMuide Documentation, Release0.1

commands, the Result Line just communicates if the request has been successfully parsed and queued for service by
the BLAHP server. At this point, the BLAHP server would typically dispatch a new thread to actually service the
request. Once the request has completed, the dispatched thread should create a Result Line and enqueue it until the
client issues a RESULT command.

Transparency

Arguments on a particular Line (be it Request, Return, or Result) are typically separated by a <SP>. In the event that
a string argument needs to contain a <SP> within the string itself, it may be escaped by placing a backslash (“") in
front of the <SP> character. Thus, the character sequence “\ ” (no quotes) must not be treated as a separator between
arguments, but instead as a space character within a string argument.

Sequence of Events

Upon startup, the BLAHP server should output to stdout a banner string which is identical to the output from the
VERSION command without the beginning “S ” sequence (see example below). Next, the BLAHP server should wait
for a complete Request Line from the client (e.g. stdin). The server is to take no action until a Request Line sequence
is received.

Example:

R: $GahpVersion: x.y.z Feb 31 2004 INFN\ Blahpd $

S: COMMANDS

R: S COMMANDS BLAH_JOB_CANCEL BLAH_JOB_SIGNAL BLAH_JOB_STATUS BLAH_JOB_SUBMIT |
—COMMANDS QUIT RESULTS VERSION

S: VERSION

R: S $GahpVersion: x.y.z Feb 31 2004 INFN\ Blahpd $

(other commands)
S: QUIT
R: S

6.5.3 BLAH Commands syntax

This section contains the syntax for the Request, Return, and Result line for each of the following commands:

* COMMANDS: List all the commands from this protocol specification which are implemented by this BLAHP
server.

Request Line: COMMANDS <CRLF>
Return Line: S <SP> <COMMAND 1> <SP> <COMMAND 2> <SP> ... <CRLF>
Result Line: None.

e VERSION: Return the version string for this BLAHP. The version string follows a specified format (see below).
Ideally, the version entire version string, including the starting and ending dollar sign ($) delimiters, should be a
literal string in the text of the BLAHP server executable. This way, the Unix/RCS “ident” command can produce
the version string. The version returned should correspond to the version of the protocol supported.

Request Line: VERSION <CRLF>

Return Line: S <SP> $GahpVesion: <SP> <major>.<minor>.<subminor> <SP> <build-month> <SP> <build-
day-of-month> <SP> <build-year> <SP> <general-descrip> <SP>$ <CRLF>

— major.minor.subminor = for this version of the protocol, use version 1.0.0.

6.5. BLAH Commands syntax and semantics 63

CREAMguide Documentation, Release0.1

— build-month = string with the month abbreviation when this BLAHP server was built or released. Permitted
Values are: G‘Jan’7’ C‘Feb37’ 4‘Mar79, ‘AAprQ” ‘GMay7,’ iéJuHQ” ‘GJu177’ ‘GAug93’ “Sep”’ “Oct”, “NOV”’ and ‘LDeC’7.

— build-day-of-month = day of the month when BLAHP server was built or released; an integer between 1
and 31 inclusive.

— build-year = four digit integer specifying the year in which the BLAHP server was built or released.
— general-descrip = a string identifying a particular BLAHP server implementation.
Result Line: None.

Example:

S: VERSION R: S $GahpVersion: x.y.z Feb 31 2004 INEN\ Blahpd $

* QUIT: Free any/all system resources (close all sockets, etc) and terminate as quickly as possible.
Request Line: QUIT <CRLF>
Return Line: S <CRLF>
Immediately afterwards, the command pipe should be closed and the BLAHP server should terminate.
Result Line: None.

* RESULTS: Display all of the Result Lines which have been queued since the last RESULTS command was
issued. Upon success, the first return line specifies the number of subsequent Result Lines which will be dis-
played. Then each result line appears (one per line) — each starts with the request ID which corresponds to
the request ID supplied when the corresponding command was submitted. The exact format of the Result Line
varies based upon which corresponding Request command was issued.

IMPORTANT: Result Lines must be displayed in the exact order in which they were queued!!! In other words,
the Result Lines displayed must be sorted in the order by which they were placed into the BLAHP’s result line
queue, from earliest to most recent.

Request Line: RESULTS <crlf>

Return Line(s): S <SP><num-of-subsequent-result-lines> <CRLF><reqid> <SP> ... <CRLF> <reqid> <SP>
. <CRLF>...

reqid = integer Request ID, set to the value specified in the corresponding Request Line.
Result Line: None.

Example:

S: RESULTS
R: S 1
R: 100 O

e ASYNC_MODE_ON: Enable Asynchronous notification when the BLAHP server has results pending for a client.
This is most useful for clients that do not want to periodically poll the BLAHP server with a RESULTS com-
mand. When asynchronous notification mode is active, the GAHP server will print out an R (without the quotes)
on column one when the ‘RESULTS’ command would return one or more lines. The R is printed only once
between successive RESULTS commands. The R is also guaranteed to only appear in between atomic return
lines; the R will not interrupt another command’s output.

If there are already pending results when the asynchronous results available mode is activated, no indication
of the presence of those results will be given. A GAHP server is permitted to only consider changes to it’s
result queue for additions after the ASYNC_MODE_ON command has successfully completed. GAHP clients
should issue a RESULTS command immediately after enabling asynchronous notification, to ensure that any

64

Chapter 6. BLAH User’s Guide

CREAMuide Documentation, Release0.1

results that may have been added to the queue during the processing of the ASYNC_MODE_ON command are
accounted for.

Request Line: ASYNC_MODE_ON <CRLF>

Return Line: S <CRLF> Immediately afterwards, the client should be prepared to handle an R <CRLF> appear-
ing in the output of the GAHP server.

Result Line: None.

Example:

ASYNC_MODE_ON

S

BLAH_JOB_CANCEL 00001 123.bbg.mi.infn.it
S

BLAH_JOB_CANCEL 00002 124.bbg.mi.infn.it
S

R

RESULTS

S 2
00001
00002
00002
00002
00002
00002
00002
00002
00002
00002
00002
00002
00002
00002
00002
00002
00002

jzele e R VR VR < B S B S S VI < B < B S S B VI B < B S e S L O T e B 0o B S B O T S O

O O O O OO OO OO0 oo oo oo

Note that you are NOT guaranteed that the R will not appear between the dispatching of a command and the
return line(s) of that command; the GAHP server only guarantees that the R will not interrupt an in-progress
return. The following is also a legal example:

S: ASYNC_MODE_ON

R: S

S: BLAH_JOB_CANCEL 00001 123.bbg.mi.infn.it
R: S

S: BLAH_JOB_CANCEL 00002 124.bbg.mi.infn.it
R: R

R: S

S: RESULTS

R: S 2

R: 00001 O

R: 00002 O

ASYNC_MODE_OFF: Disable asynchronous results-available notification. In this mode, the only way to dis-
cover available results is to poll with the RESULTS command. This mode is the default. Asynchronous mode
can be enabled with the ASYNC_MODE_ON command.

Request Line: ASYNC_MODE_OFF <CRLF>

6.5.

BLAH Commands syntax and semantics 65

CREAMguide Documentation, Release0.1

Return Line: S <CRLF>
Results Line: None

Example:

S: ASYNC_MODE_OFF
R: S

6.5.4 BLAH_JOB_SUBMIT

Submit a job request to a specified queue (specified in the submit classad). This will cause the job to be submitted to
the batch system.

Request Line: BLAH_JOB_SUBMIT <SP> <reqid> <SP> <submit classad> <CRLF>
* reqid = non-zero integer Request ID

* submit classad = valid submit description for the job, in string representation. See paragraph 3.0 for a description
of the format. Here’s a list of supported attributes with a brief description.

— “Cmd”: Full path of the executable in the local filesystem

— “Args”: List of individual arguments (no ‘/bin/sh’ convention on argument separation, but separate argu-
ments) for the executable

— “In”: Full path in the local filesystem where the standard input for the executable is found

— “Out”: Full path in the local filesystem where the standard output of the executable will be stored (at job
completion).

— “Err”: Full path in the local filesystem where the standard error of the executable will be stored (at job
completion).

— “X509UserProxy”: Full path wherethe proxy certificate is stored.

— “Env”: Semicolon-separated list of environment variables of the form:

<parameter> = <value>

— “Stagecmd”: Sets if the executable of the job must be copied on the WorkerNode: can be “TRUE” or
“FALSE”.

— “Queue”: Queue in the local batch system where the job must be enqueued.
— “Gridtype”: String indicating the underlying local batch system (currently “pbs” and “Isf”” supported).
— “uniquejobid”: unique name identifier for the final job to be submitted to the local batch system.

— “NodeNumber”: number of nodes to be reserved for an MPI job. It gets translated into the LRMS command
gsub “-1 nodes=<n>" for pbs or into “-n <n>" for Isf. For Condor this attribute is not supported, therefore
it gets ignored.

— “CERequirements”: string containing the requirements to be forwarded to the local batch system

— “TransferInput = filel file2.file...”: comma-delimited list of all the files to be transferred into the working
directory for the job before the job is started. Only the transfer of files is available. The transfer of
subdirectories is not supported.

— “TransferOutput = filel,file2,file...”: an explicit list of output files to be transferred back from the tempo-
rary working directory on the execute machine to the submit machine (where BLAHPD is running). Only
the standard output and standard error files, are transferred back by default if requested.

66 Chapter 6. BLAH User’s Guide

CREAMuide Documentation, Release0.1

— “TransferOutputRemaps = namel=newnamel;name2=newname2;name=newname...”: This attribute
specifies the name (and optionally the complete path) to use when downloading output files from the
completed job. Note that the mappings are separated by semicolons. Normally, output files are transferred
back to the initial working directory with the same name they had in the execution directory. This gives
you the option to save them with a different path or name. If you specify a relative path, the final path will
be relative to the job’s initial working directory (the directory specified in the ‘Iwd’ attribute, or, if this is
missing, the current working directory of BLAHPD)

Return Line:

<result> <CRLF>

* result = the character “S” (no quotes) for successful submission of the request (meaning that the request is now
pending), or an “E” for error on the parse of the request or its arguments (e.g. an unrecognized or unsupported
command, or for missing or malformed arguments).

Result Lines: <reqid> <sp> <result-code> <sp> <error-string> <sp> <job_local_id> <crlf>
* reqid = integer Request ID, set to the value specified in the corresponding Request Line.
* result-code = integer equal to 0 on success, or an error code
* error-string = description of error

* job_local_id = on success, a string representing a unique identifier for the job. This identifier must not be bound
to this BLAHP server, but instead must be allowed to be used in subsequent BLAHP server instantiations. For
instance, the job_local_id must be implemented in such a fashion that the following sequence of events by the
caller must be permissible:

step a: issue a BLAH_JOB_SUBMIT command

step b: read the job_local_id in the result line

step c: store the job_local_id persistently

step d: subsequently kill and restart the BLAHP server process

step e: issue a BLAH_JOB_CANCEL command, passing it the stored job_local_id value obtained in step
(b).

Example:

S: BLAH_JOB_SUBMIT 2 [\ Cmd\ =\ "/usr/bin/test.sh";\ Args\ =\ "'X=3:Y=2'";
\ Env\ =\ "VAR1=56568";\ In\ =\ "/dev/null";\ Out\ =\ "/home/StdOutput";
\ Err\ =\ "/home/error";\ x509userproxy\ =\ "/home/123.proxy";\ Stagecmd
\ =\ TRUE;\ Queue\ =\ "short";\ GridTIype\ =\ "pbs";\ 1'

R: S

S: RESULTS

R: 2 0 No\ error pbs/20051012/2957

6.5.5 BLAH_JOB_CANCEL

This function removes an IDLE job request, or kill all processes associated with a RUNNING job, releasing any
associated resources.

Request Line: BLAH_JOB_CANCEL <sp> <reqid> <sp> <job_local_id> <CRLF>
* reqid = non-zero integer Request ID
¢ job_local_id = job_local_id (as returned from BLAH_JOB_SUBMIT) of the job to be canceled.

Return Line: <result> <crlf>

6.5. BLAH Commands syntax and semantics 67

CREAMguide Documentation, Release0.1

* result = the character “S” (no quotes) for successful submission of the request (meaning that the request is now
pending), or an “E” for error on the parse of the request or its arguments (e.g. an unrecognized or unsupported
command, or for missing or malformed arguments).

Result Line: <reqid> <sp> <result-code> <sp> <error-string> <CRLF>
* reqid = integer Request ID, set to the value specified in the corresponding Request Line.
* result-code = integer equal to 0 on success, or an error code
* error-string = description of error

Example:

S: BLAH_JOB_CANCEL 1 pbs/20051012/2957.grid001.mi.infn.it
R: S

R: R

S: RESULTS

R: S 1

R: 1 0 No\ error

6.5.6 BLAH_JOB_STATUS

Query and report the current status of a submitted job.
Request Line: BLAH_JOB_STATUS <sp> <reqid> <sp> <job_local_id> <CRLF>

* reqid = non-zero integer Request ID

* job_local_id = job_local_id (as returned from BLAH_JOB_SUBMIT) of the job whose status is desired.
Return Line: <result> <CRLF>

* result = the character “S” (no quotes) for successful submission of the request (meaning that the request is now
pending), or an “E” for error on the parse of the request or its arguments (e.g. an unrecognized or unsupported
command, or for missing or malformed arguments).

Result Line: <reqid> <sp> <result-code> <sp> <error-string> <sp> <job_status> <sp> <result-classad> <CRLF>
* reqid = integer Request ID, set to the value specified in the corresponding Request Line.
* result-code = integer equal to 0 on success, or an error code
* error-string = description of error

* job_status = if the result_code is O (success), then job_status is set to an integer based upon the status of the job
as follows:

1 IDLE (job is waiting on the batch system queue)

2 RUNNING (job is executing on a worker node)

3 REMOVED (job was successfully cancelled)

4 COMPLETED (job completed its execution on the batch system)

5 HELD (job execution is suspended; job is still in the batch system queue)

* result-classad = Aggregate information about the job status. The classad format can vary with the local batch
system. Typically, the following attributes are defined:

— JobStatus : job status - same codes as described above

— Batchjobld : Job ID as known to the local batch system

68 Chapter 6. BLAH User’s Guide

CREAMuide Documentation, Release0.1

— ExitCode : Termination code - only for finished jobs
— ExitReason : Exit reason, if available - only for finished jobs
— WorkerNode : When available, FQDN of the worker node - only for running jobs

Example:

: BLAH_JOB_STATUS 1 pbs/20051012/2958.grid001.mi.infn.1it

: S

: R

: RESULTS

: S 1
1 0 No\ Error 2 [\ BatchjobId\ =\ "2958.grid001l.mi.infn.it";
\ JobStatus\ =\ 2;\ WorkerNode\ =\ "\ grid00l.mi.infn.it"\]

S
R
R
S
R
R

6.5.7 BLAH_JOB_STATUS_ALL

This command is only available if the BLAH local job registry file is configured in the BLAH config file (job_registry
attribute) and supported by the active batch system. Query and report the current status of all jobs managed by the
BLAH server.

Request Line: BLAH_JOB_STATUS_ALL <sp> <reqid> <CRLF>
* reqid = non-zero integer Request ID
Return Line: <result> <CRLF>

* result = the character “S” (no quotes) for successful submission of the request (meaning that the request is now
pending), or an “E” for error on the parse of the request or its arguments (e.g. an unrecognized or unsupported
command, or for missing or malformed arguments).

Result Line: <reqid> <sp> <result-code> <sp> <error-string> <sp> <result-classad> <CRLF>
* reqid = integer Request ID, set to the value specified in the corresponding Request Line.
* result-code = integer equal to 0 on success, or an error code
* error-string = description of error

e result-classad = List of classads containing aggregate information about the job status. In addition to the at-
tributes defined for the output of the BLAH_JOB_STATUS command, as the status info comes from a local
cache, the following attributes may also be present:

— BlahJobld: Job ID as known to the BLAH layer. Typically a decorated form of BatchJobld
— CreateTime: Seconds since the Unix epoch at the time the first job info was inserted into the cache.

— ModifiedTime: Seconds since the Unix epoch when the most recent modification of the job info occurred.

6.5.8 BLAH_JOB_STATUS_SELECT

This command is only available if the BLAH local job registry file is configured in the BLAH config file (job_registry
attribute) and supported by the active batch system. Query and report the current status of all jobs managed by the
BLAH server.

Request Line: BLAH_JOB_STATUS_SELECT <sp> <reqid> <sp> <selection expression> <CRLF>
* reqid = non-zero integer Request ID

* selection expression = Classad expression defining select requirements on the returned job ads (e.g.: JobStatus
==2).

6.5. BLAH Commands syntax and semantics 69

CREAMguide Documentation, Release0.1

Return Line: <result> <crlf>

* result = the character “S” (no quotes) for successful submission of the request (meaning that the request is now
pending), or an “E” for error on the parse of the request or its arguments (e.g. an unrecognized or unsupported
command, or for missing or malformed arguments).

Result Line: <reqid> <sp> <result-code> <sp> <error-string> <sp> <result-classad> <CRLF>
* reqid = integer Request ID, set to the value specified in the corresponding Request Line.
* result-code = integer equal to O on success, or an error code
* error-string = description of error

* result-classad = List of classads containing aggregate information about the status of the jobs that satisfy the
selection requirement. The format is the same as for the BLAH_JOB_STATUS_ALL command.

6.5.9 BLAH_JOB_SIGNAL

Send a signal (if possible) to a specified job. This has to be in the RUNNING status.

Request Line: BLAH_JOB_SIGNAL <sp> <reqid> <sp> <job_local_id> <sp> <signal> <CRLF>
* reqid = non-zero integer Request ID
* job_local_id = job_local_id (as returned from BLAH_JOB_SUBMIT) of the job whose status is desired.
* signal = an integer with the signal to send

Return Line:<result> <CRLF>

* result = the character “S” (no quotes) for successful submission of the request (meaning that the request is now
pending), or an “E” for error on the parse of the request or its arguments (e.g. an unrecognized or unsupported
command, or for missing or malformed arguments).

Result Line: <reqid> <sp> <result-code> <sp> <error-string> <sp> <job_status> <CRLF>
* reqid = integer Request ID, set to the value specified in the corresponding Request Line.
* result-code = integer equal to O on success, or an error code
e error-string = description of error

* job_status = if the result_code is O (success), then job_status is set to an integer based upon the status of the job
as follows (compare above):

- 1L.IDLE

— 2. RUNNING

- 3. REMOVED
- 4. COMPLETED
- 5. HELD

6.5.10 BLAH_JOB_REFRESH_PROXY

Renew the proxy of an already submitted job. The job has to be in IDLE, RUNNING or HELD status.
Request Line: BLAH_JOB_REFRESH_PROXY <sp> <reqid> <sp> <job_local_id> <sp> <proxy_file> <CRLF>
* reqid = non-zero integer Request ID

* job_local_id =job_local_id (as returned from BLAH_JOB_SUBMIT) of the job whose proxy has to be renewed.

70 Chapter 6. BLAH User’s Guide

CREAMuide Documentation, Release0.1

* proxy_file = path to the fresh proxy file.
Return Line: <result> <CRLF>

* result = the character “S” (no quotes) for successful submission of the request (meaning that the request is now
pending), or an “E” for error on the parse of the request or its arguments (e.g. an unrecognized or unsupported
command, or for missing or malformed arguments).

Result Line: <reqid> <sp> <result-code> <sp> <error-string> <crlf>
* reqid = integer Request ID, set to the value specified in the corresponding Request Line.
* result-code = integer equal to O on success, or an error code
* error-string = description of error

Example:

S: BLAH_JOB_REFRESH 1 123.proxy
R: S

R: R

S: RESULTS

R: S 1

R

1 0 No\ Error

6.5.11 BLAH_JOB_HOLD

This function always puts an IDLE job request in a HELD status. If the job is already running RUNNING it can be
HELD too, depending whether the underlying batch system supports this feature.

Request Line: BLAH_JOB_HOLD <sp> <reqid> <sp> <job_local_id> <crlf>

* reqid = non-zero integer Request ID

* job_local_id = job_local_id (as returned from BLAH_JOB_SUBMIT) of the job to be canceled.
Return Line: <result> <crlf>

¢ result = the character “S” (no quotes) for successful submission of the request (meaning that the request is now
pending), or an “E” for error on the parse of the request or its arguments (e.g. an unrecognized or unsupported
command, or for missing or malformed arguments).

Result Line: <reqid> <sp> <result-code> <sp> <error-string> <crlf>
* reqid = integer Request ID, set to the value specified in the corresponding Request Line.
* result-code = integer equal to O on success, or an error code
* error-string = description of error

Example:

S: BLAH_JOB_HOLD 1 pbs/20051012/2957.grid001.mi.infn.it
R: S

R: R

S: RESULTS
R: S 1

R: 1 0 No\ error

6.5. BLAH Commands syntax and semantics 71

CREAMguide Documentation, Release0.1

6.5.12 BLAH_JOB_RESUME

This function puts an HELD job request in the status it was before the holding action.
Request Line: BLAH_JOB_RESUME <sp> <reqid> <sp> <job_local_id> <crlf>

* reqid = non-zero integer Request ID

* job_local_id = job_local_id (as returned from BLAH_JOB_SUBMIT) of the job to be canceled.
Return Line: <result> <crlf>

* result = the character “S” (no quotes) for successful submission of the request (meaning that the request is now
pending), or an “E” for error on the parse of the request or its arguments (e.g. an unrecognized or unsupported
command, or for missing or malformed arguments).

Result Line: <reqid> <sp> <result-code> <sp> <error-string> <crlf>
* reqid = integer Request ID, set to the value specified in the corresponding Request Line.
* result-code = integer equal to O on success, or an error code
* error-string = description of error

Example:

S: BLAH_JOB_RESUME 1 pbs/20051012/2957.grid001.mi.infn.it
R: S

R: R

S: RESULTS

R: S 1

R: 1 0 No\ error

6.5.13 BLAH_SET_GLEXEC_DN

This function enables local user mapping via GLEXEC for all subsequent actions. The call is synchronous and the
effect is immediate.

Request Line: BLAH_SET_GLEXEC_DN <sp> <user_proxy> <sp> <ssl_client_certificate> <sp> <not_limited>
<crlf>

* user_proxy Path to a valid GSI proxy file. This will be optionally (when not_limited == 0) turned into a limited
(delegated) proxy and be made available via GLEXEC to the user job. (The delegated proxy path is set in the
GLEXEC_SOURCE_PROXY enviroment variable prior to the GLEXEC call).

* ssl_client_certificate Path to a valid GSI proxy file. Can be the same as user_proxy. This is the client cer-
tificate that is used for access to GLEXEC and local user mapping (it is set in the GLEXEC_CLIENT_CERT
environment variable prior to the GLEXEC call).

 not_limited If this argument is set to a numeric value not equal to zero, the supplied proxy will not be limited
(delegated).

Return Line: one of the following
* S <sp> <action description> <crlf> - in case of success
 F <crlf> - in case of failure

Result Line: None.

Example:

72 Chapter 6. BLAH User’s Guide

CREAMuide Documentation, Release0.1

S: BLAH_SET_GLEXEC_DN /path/test.proxy /path/test.proxy 0
R: S Glexec\ mode\ on

6.5.14 BLAH_SET_GLEXEC_OFF

This command unconditionally disables user mapping via GLEXEC for all subsequent actions. The call is synchronous
and the effect is immediate.

Request Line: BLAH_SET_GLEXEC_OFF <crlf>

* reqid = integer Request ID, set to the value specified in the corresponding Request Line.
Return Line: one of the following

* S <sp> <action-description> <crlf> - in case of success

* F <crlf> - in case of failure
Result Line: None.

Example:

S: BLAH_SET_GLEXEC_OFF
R: S Glexec\ mode\ off

6.5.15 CACHE_PROXY_FROM_FILE

This command is only available if enable_glexec_from_condor is set to ‘yes’ in the BLAHPD config file. Read a
GSI proxy from a specified file, and store it under the specified symbolic name. Unlike other GAHPs, and because
this function is only used to trigger GLEXEC access which requires access to a proxy file, BLAH does not read and
cache the proxy contents but only the file name. Changes to the file will affect the use of the stored proxy. The proxy
name caching is lost when the BLAHP server terminates. The intent of this command is to allow the BLAHP server
to capture and use different proxy files for different jobs. Other commands (e.g. by USE_CACHED_PROXY) may
later be reference the given cached proxy file by its symbolic name. USE_CACHED_PROXY has the side effect of
enabling GLEXEC.

Request Line: CACHE_PROXY_FROM_FILE <sp> <id> <sp> <path-to-local-proxy-file> <crlf>
* <id> = a symbolic name which will be used to reference the given proxy.

* <path-to-local-proxy-file> = a fully-qualified pathname to a file local to the BLAHP server which contains a
valid GSI proxied certificate.

Return Line: one of the following:
* S <sp> <action-description> <crlf>
* F <sp> <error-string> <crlf>Upon success, use the “S” version; if not recognized, use the “F” version.
— error-string = brief string description of the error, appropriate for reporting to a human end-user.
Result Line:None.

Example:

S: CACHE_PROXY_FROM_FILE 1 /path/test.proxy
R: S Proxy\ cached

6.5. BLAH Commands syntax and semantics 73

CREAMguide Documentation, Release0.1

6.5.16 USE_CACHED_PROXY

This command is only available if enable_glexec_from_condor is set to ‘yes’ in the BLAHPD config file. Sets the
proxy previously cached under the specified name, as the “active” proxy. Enable user mapping via GLEXEC for all
subsequent actions. The active proxy will be used for GLEXEC user mapping, it will remain active until it is changed
via the next invocation of USE_CACHED_PROXY. The proxy must have been previously cached (under the specified
name) using CACHE_PROXY_FROM_FILE command. This command allows the BLAHP server to simultaneously
act on behalf of two or more jobs that require

Request Line: USE_CACHED_PROXY <sp> <id> <crlf> <id> = the symbolic name of the proxy to use
Return Line: One of the following:
* S <sp> <action-description> <crlf>
* F <sp> <error-string> <crlf> Upon success, use the “S” version; if not recognized, use the “F” version.
— error-string = brief string description of the error, appropriate for reporting to a human end-user.
Result Line: None.

Example:

S: USE_CACHED_PROXY 1
R: S Glexec\ proxy\ set\ to\ /path/test.proxy\ (dir\ IWGRP\ bit\ already\ on)

6.6 BLParser

To obtain efficient access and prompt update to the current status of BLAH active jobs, a ‘log parser’ daemon was
developed for LSF and PBS. The submit and status scripts can make optional use of the batch log parser to increase
their efficiency.

Here’s a description of the semantics of the batch log parser (BLParser).

The BLParser listens on a network socket and replies to a set of mandatory and a set of optional queries (optional
queries can be used for info and debug).

Here is the list of mandatory queries and their replies:
* BLAHJOB/<blahjob-id> <lrms-jobid>

* <date-yyyymmdd>/<Ilrms-jobid> a classad like this:

[
BatchJobId=<lrms-jobid>
Workernode=<workernode>
JobStatus=<jobstatus>
LRMSSubmissionTime=<submission time>
LRMSStartRunningTime=<start time>
LRMSCompletedTime=<finish time>
ExitReason=<exitreason>
ExitCode=<exit code>

] /pr_removal

where pr_removal is a flag that told the status script if the proxy file has to be removed (when job is killed or
finished) or not.

* CREAMPORT => port where cream can connect to the parser.

74 Chapter 6. BLAH User’s Guide

CREAMuide Documentation, Release0.1

e TEST => print Y<Irmsname> (e.g. YLSF YPBS). This query is used to know if a parser is active. This is useful
when in config file is specified more than one parser to try: if the first does not reply to the TEST query the next
one is tried.

These are optional queries and their replies:
e HELP => print command list

VERSION => print version

* TOTAL => print total number of jobs cached in the parser

LISTALL => print jobid of all jobs cached in the parser
LISTF[/<first-n-jobid>] => print first n jobid

LISTL[/<last-n-jobid>] => print last n jobid

The BLParser includes an option to notify to a client (typically the CREAM service) every state change in CREAM-
managed jobs. CREAM sends to the parser a string like this:

’STARTNOTIFY/<datefyyyymmdd>

atfer that string the parser sends back to cream every state change for cream job since the date contained in the string
with lines like this:

’NTFDATE/<classad>

where <classad> is a classad like the one sent in reply to <date-yyyymmdd>/<lrms-jobid> query.

After that parser will sent to cream every new state change for cream jobs. Cream can change the default prefix
(cream_) used to identify tracked jobs among all other jobs with this command:

CREAMFILTER/<creamfilter>

where <creamfilter> should be a string like crXXX_ (XXX can be any character [a-z],[A-Z],[0-9]). This command
has to sent before STARTNOTIFY.

There is a startup script for the BLParser that reads all the parameters from a config file. It is possible to set the debug
level, the debug log file, the log file location; it is also possible to start different parsers listening on different ports
with the same startup script.

6.7 New Parser Scenario

The old BLParser is now splitted in two different daemons:
* BUpdater (that is specific for each batch system:there are BUpdaterLSF, BUpdaterPBS and BUpdaterCondor)
* BNotifier that is the same for all batch systems.

Both daemons are now automatically launched and controlled by the blahpd daemon so there is no need for a startup
script. The main differences between this approach and the old one are that the daemons run as non privileged user
and that the informations about jobs are collected using the batch system native command (as bhist, bjobs, gstat...)
and are saved in a db file on disk called job registry. These informations are asynchronously notified to CREAM by
BNotifier daemon.

It is possible to configure some parameter in the blah.config file:

e _bupdater_path_ and _bnotifier_path_: if this is set to the bupdater (or bnotifier) complete path (e.g.
/opt/glite/bin/BUpdaterLSF) blahpd takes care of starting and periodically check the status of the daemon. If it
is not set the daemons should be started by hand.

6.7. New Parser Scenario 75

CREAMguide Documentation, Release0.1

_bupdater_pidfile_ and _bnotifier_pidfile_: this are used to check the daemons status by blahpd (e.g.
/var/tmp/bupdater.pid).

_job_registry_: is the complete path to the job registry location (/var/tmp/job_registry.db).
_bupdater_debug_level_: set the debug level (1,2,3)

_bupdater_debug_logfile_: set the location of the debug log file
_async_notification_host_: hostname where the notification should be sent
_async_notification_port_: port where to send notifications

_purge_interval_: how old (in seconds) a job registry entry has to be before it is purged.

_finalstate_query_interval_: the query that search for finished jobs is executed every finalstate_query_interval
seconds (default:30)

_alldone_interval_: after that interval an unseen job is set as done (status = 4) and exitstatus = -1 (default:600)
_bupdater_loop_interval_: the updater main lop is executed every bupdater_loop_interval seconds (default:5)

_blah_graceful_kill_mappable_cmd_: Command to use when terminating processes via a user mapping tool
(glexec or SUDO). Default is /bin/kill

_blah_graceful_kill_timeout_: Total number of seconds a parent process will wait for a child to terminate after
sending it the first termination (SIGTERM) signal. During this time, and until the child process terminates,
the parent will send SIGTERM to che child once a second before blah_graceful_kill_timeout/2 seconds have
elapsed, then it will send SIGKILL once a second. Defaults to 20 seconds.

_blah_children_restart_interval_: Mininum time in seconds that has to elapse before blahpd tries restarting one
of the children processes it controls. Defaults to 150 seconds.

_blah_require_proxy_on_submit_: Set to boolean ‘true’ to generate an error when the X509Proxy attribute is
missing from the job description in the BLAH_JOB_SUBMIT command. Set to boolean ‘false’ if job submis-
sion without a valid proxy is allowed. Defaults to ‘false’.

_blah_enable_glexec_from_condor_: Set to boolean ‘true’ to make blahpd recognize the following three com-
mands: CACHE_PROXY_FROM_FILE, USE_CACHED_PROXY, UNCACHE_PROXY. User mapping via
GLEXEC will be automatically enabled when the USE_CACHED_PROXY command is received. This is to
allow user switching via glexec based on the active proxy for a given user, as cached by the Condor gridmanager.
Defaults to ‘false’.

_blah_disable_wn_proxy_renewal_: When set to boolean ‘true’, use of the BPRclient/server tool to delegate or
send renewed X509 proxies to a job executing node will be entirely disabled. Defaults to ‘false’.

_blah_delegate_renewed_proxies_: When set to boolean ‘true’, X509 proxies sent to job worker nodes via the
BPReclient/server tool will be delegated instead of being copied over the wire. Defaults to ‘false’ as many Globus
tools (including gridftp) will reject access when a limited -and- delegated proxy is presented.

_blah_graceful_kill_glexecable_cmd_format_

6.8 BLAH Accounting

Log records are written in a daily file specified as

<prefix>-YYYMMDD

where <prefix> is specified in blah.config:

76

Chapter 6. BLAH User’s Guide

CREAMuide Documentation, Release0.1

’BLAHPD_ACCOUNTING_INFO_LOG:/var/log/accounting/blahp.log

The format of the record is:

’"<field>:<value>" [<SP> "<field>=<value>" ...] <LF>

thus all values are assumed to have no double quotes inside.
The fields are:
¢ timestamp: record creation date (~ Irms submission time)
* userDN: user’s certificate distinguished name
* userFQAN: user’s certificate Fully Qualified Attribute Names (i.e. VO and roles) repeated, one per FQAN
¢ ceID: Computing Element’s ID as appearing in the Glue schema
* job1ID: the Grid job ID (i.e. the one returned to the user by the CE)
e 1rmsID: the ID of the job in the batch system
* localUser: numeric uid of the local account mapped to the remote user
e clientId: ajob identifier (arbirtary string) provided by the CE at submission time

Accounting can be disabled in BLAH by commenting out the BLAHPD_ACCOUNTING_INFO_LOG line in
blah.config.

6.8. BLAH Accounting 77

CREAMguideDocumentation, Release0.1

78 Chapter 6. BLAH User’s Guide

CHAPTER /

CREAM monitoring

The CREAM CE site is monitored with the Nagios framework and a set of specific probes. The service can be tested
with job submission through WMS or with direct submittion (i.e. using CREAM CLI). The probes developed for
the CREAM service must be installed on a User Interface because they use the cream-cli commands to monitor the
CREAM ce.

7.1

Requirements

The required packages for the CREAM CE probes are:

python (version 2.7 or greater)
python-ldap

python-suds (version 0.3.5 or greater)
openssl (version 0.9.8e-12 or greater)
nagios-submit-conf (version 0.2 or greater)

python-GridMon (version 1.1.10)

About the last two rpms they can be install using the EGI repository

7.2

CREAM-CE direct job submission metrics and WN probes

The following metrics are a restructured version of the existing ones and provide a better approach for probing a
CREAM CE and its WNs:

cream_serviceInfo.py - get CREAM CE service info
cream_allowedSubmission.py - check if the submission to the selected CREAM CE is allowed
cream_jobSubmit .py - submit a job directly to the selected CREAM CE

79

http://repository.egi.eu/sw/production/sam/1/repofiles/sam.repo
https://wiki.italiangrid.it/twiki/bin/view/CREAM/DjsCreamProbe

CREAMguide Documentation, Release0.1

* cream_JjobOutput .py - submit a job directly to the selected CREAM CE and retrieve the output-sandbox
* WN-softver probe - check middleware version on WN (via cream_jobOutput.py)
* WN-csh probe - check if WN has csh (via cream_jobOutput.py)

All of them have been implemented in python and are based on the cream-clicommands. They share the same logic
structure and provide useful information about their version, usage (i.e. help) including the options list and their
meaning, according to the guide Probes Development. For example:

$./cream_serviceInfo.py
Usage: cream_servicelInfo.py [options]

cream_serviceInfo.py: error: Specify either option -u URL or option —-H HOSTNAME (and -
—p PORT) or read the help (-h)

$./cream_serviceInfo.py --help
Usage: cream_servicelInfo.py [options]

Options:
—--version show program's version number and exit
-h, —--help show this help message and exit

-H HOSTNAME, --hostname=HOSTNAME
The hostname of the CREAM service.
-p PORT, —-port=PORT The port of the service. [default: none]
-x PROXY, —--proxy=PROXY
The proxy path
-t TIMEOUT, --timeout=TIMEOUT

Probe execution time limit. [default:
120 sec]
-v, ——-verbose verbose mode [default: False]
-u URL, --url=URL The status endpoint URL of the service. Example:

https://<host>[:<port>]

$./cream_serviceInfo.py —--version
cream_serviceInfo v.1.1

The interaction with the CREAM CE requires the use of a valid VOMS proxy expressed by the X509_USER_PROXY
env variable or through the ——proxy option. All metrics check the existence of the proxy file and calculate the time
left. In case of error, the related error message will be thrown:

$./cream_serviceInfo.py --hostname cream—41.pd.infn.it —--port 8443 —--proxy /tmp/
—x509up_ul0 --verbose
Proxy file not found or not readable

The verbose mode (-—verbose) could be enabled to each metric. It provides several details about the probe execu-
tion itself by highlighting the internal commands:

$./cream_serviceInfo.py -—-hostname prod-ce-0l.pd.infn.it --port 8443 -x /tmp/x509%up_
—u733 —-verbose

executing command: /usr/bin/voms-proxy-info -timeleft

invoking service info

executing command: /usr/bin/glite-ce-service-info prod-ce-0l.pd.infn.it:8443

CREAM serviceInfo OK: Service Version = [1.16.4 - EMI version: 3.15.0-1.el6]

In case of mistakes on the selected options or on their values, the probe tries to explain what is wrong. For example
the cream_servicelnfo doesn’t support the ——queue option:

80 Chapter 7. CREAM monitoring

User_Guide.html#cream-command-line-interface-guide
https://tomtools.cern.ch/confluence/display/SAMDOC/Probes+Development

CREAMuide Documentation, Release0.1

$./cream_serviceInfo.py --hostname prod-ce-0l.pd.infn.it --port 8443 --queue,
—creamtestl -x /tmp/x509up_u733 —--verbose
Usage: cream_servicelInfo.py [options]

cream_serviceInfo.py: error: no such option: —--queue

In case of the errors in interacting with the CREAM CE, useful details will be provided about the failure:

$./cream_allowedSubmission.py —-url https://prod-ce-01.pd.infn.it:8443 -x /tmp/
—x509up_u733

command '/usr/bin/glite-ce-allowed-submission cream-43.pd.infn.it:8443' failed: |,
—return_code=1

details: ['2019-12-13 15:59:57,085 FATAL - Received NULL fault; the error is due to_
—another cause: FaultString=[connection error] - FaultCode=[SOAP-ENV:Client] -
—FaultSubCode=[SOAP-ENV:Client] - FaultDetail=[Connection refused]\n']

Sources are available in github

7.2.1 cream_servicelnfo.py

The servicelnfo.py retrieves information about the status of the CREAM CE. The help shows how the probe must be
invoked:

$./cream_serviceInfo.py -—help
Usage: cream_servicelInfo.py [options]

Options:
—--version show program's version number and exit
-h, —--help show this help message and exit

—-H HOSTNAME, --hostname=HOSTNAME
The hostname of the CREAM service.
-p PORT, —-port=PORT The port of the service. [default: none]
-x PROXY, —--proxy=PROXY
The proxy path
-t TIMEOUT, --timeout=TIMEOUT

Probe execution time limit. [default:
120 sec]
-v, ——-verbose verbose mode [default: False]
-u URL, --url=URL The status endpoint URL of the service. Example:

https://<host>[:<port>]

In order to get information about the CREAM service on the host https://prod-ce-01.pd.infn.it:8443, use the following
command:

$./cream_serviceInfo.py —--url https://prod-ce-0l.pd.infn.it:8443 -x /tmp/x509%up_u733
CREAM serviceInfo OK: Service Version = [1.16.4 - EMI version: 3.15.0-1.el6]

or similary:

$./cream_serviceInfo.py --hostname prod-ce-0l.pd.infn.it --port 8443 -x /tmp/x50%up_
—u733
CREAM serviceInfo OK: Service Version = [1.16.4 - EMI version: 3.15.0-1.el6]

7.2. CREAM-CE direct job submission metrics and WN probes 81

https://github.com/italiangrid/cream-nagios/tree/master/src
https://prod-ce-01.pd.infn.it:8443

CREAMguide Documentation, Release0.1

7.2.2 cream_allowedSubmission.py

This is a simple metric which checks if the submission to the selected CREAM CE is allowed. Its usage is analogous
to the above metric:

$./cream_allowedSubmission.py —--help
Usage: cream_allowedSubmission.py [options]

Options:
—--version show program's version number and exit
-h, —--help show this help message and exit

—-H HOSTNAME, --hostname=HOSTNAME
The hostname of the CREAM service.
-p PORT, —-port=PORT The port of the service. [default: none]
-x PROXY, —--proxy=PROXY
The proxy path
-t TIMEOUT, --timeout=TIMEOUT

Probe execution time limit. [default:
120 sec]
-v, ——-verbose verbose mode [default: False]
-u URL, —-url=URL The status endpoint URL of the service. Example:

https://<host>[:<port>]

Notice: the use of the ——ur1 option is equivalent to specify both the options: ——hostname and ——port:

$./cream_allowedSubmission.py —--hostname prod-ce-0l.pd.infn.it —--port 8443 -x /tmp/
—x509up_u733
CREAM allowedSubmission OK: the job submission is ENABLED

$./cream_allowedSubmission.py —-url https://prod-ce-01.pd.infn.it:8443 -x /tmp/
—x509up_u733
CREAM allowedSubmission OK: the job submission is ENABLED

The verbose mode highlights the internal commands:

$./cream_allowedSubmission.py —-url https://prod-ce-01.pd.infn.it:8443 -x /tmp/
—x509up_u733 —-verbose

executing command: /usr/bin/voms-proxy-info -timeleft

invoking allowedSubmission

executing command: /usr/bin/glite-ce-allowed-submission prod-ce-0l.pd.infn.it:8443
CREAM allowedSubmission OK: the job submission is ENABLED

7.2.3 cream_jobSubmit.py

This metric submits a job directly to the selected CREAM CE and waits until the job termination by providing the
final status. Finally the job is purged. This probe does not test the output-sandbox retrieval.

$./cream_jobSubmit.py —-help
Usage: cream_jobSubmit.py [options]

Options:
--version show program's version number and exit
-h, --help show this help message and exit

—-H HOSTNAME, --hostname=HOSTNAME
The hostname of the CREAM service.
-p PORT, —--port=PORT The port of the service. [default: none]

(continues on next page)

82 Chapter 7. CREAM monitoring

CREAMuide Documentation, Release0.1

(continued from previous page)

-x PROXY, —--proxy=PROXY
The proxy path
-t TIMEOUT, --timeout=TIMEOUT

Probe execution time limit. [default:
120 sec]
-v, ——-verbose verbose mode [default: False]
-u URL, --url=URL The status endpoint URL of the service. Example:
https://<host>[:<port>]/cream—-<lrms>-<queue>
-1 LRMS, --lrms=LRMS The LRMS name (e.g.: 'lsf', 'pbs' etc)
—-gq QUEUE, --queue=QUEUE
The queue name (e.g.: 'creamtest')
-3 JDL, --3jd1=JDL The 3jdl path

The ——url (—u) directive must be used to target the probe to a specific CREAM CE identified by its identifier
(i.e. CREAM CE ID). Alternatively is it possible to specify the CREAM CE identifier by using the ~——hostname ,
—-—port, ——1lrms and ——queue options which are mutually exclusive with respect to the ——ur1 option. Consider
the JDL file hostname.jdl with the following content:

$ cat ./hostname.jdl
[

Type="Job";
JobType="Normal";

Executable = "/bin/hostname";
Arguments = "-s";

StdOutput = "std.out";
StdError = "std.err";

OutputSandbox = {"std.out","std.err"};
OutputSandboxBaseDestUri="gsiftp://localhost";
1

If verbose mode is disabled, the output should look like this:

$./cream_jobSubmit.py —--url https://prod-ce-01l.pd.infn.it:8443/cream-1lsf-grid -x /
—tmp/x509up_u733 --jdl ./hostname. jdl
CREAM JobSubmit OK [DONE-OK]

Notice: the use of the ——uxr1 option is equivalent to specify both the options: ~——hostname, ——port —-1rms and
—queue:

$./cream_jobSubmit.py —--hostname prod-ce-0l.pd.infn.it —--port 8443 --lrms 1lsf —--—
—queue grid -x /tmp/x509up_u733 --jdl ./hostname.jdl
CREAM JobSubmit OK [DONE-OK]

If the verbose mode is enabled, the output of the above command should be like this:

$./cream_jobSubmit.py —--hostname prod-ce-0l.pd.infn.it —--port 8443 --lrms 1lsf -—
—queue grid -x /tmp/x509up_u733 --jdl ./hostname.jdl --verbose

executing command: /usr/bin/voms-proxy-info -timeleft

executing command: /usr/bin/glite-ce-job-submit -d -a -r prod-ce-0l.pd.infn.it:8443/
—cream-1lsf-grid ./hostname. jdl

['2019-12-13 13:54:33,247 DEBUG - Using certificate proxy file [/tmp/x509%9up_u733]\n"',
5'2019-12-13 13:54:33,279 DEBUG - VO from certificate=[enmr.eu]\n', '2019-12-13
—13:54:33,279 WARN - No configuration file suitable for loading. Using built-in,
—configuration\n', '2019-12-13 13:54:33,279 DEBUG - Logfile is [/tmp/glite_cream_cli_
—logs/glite-ce—job-submit_CREAM_zangrand_20191213-135433.1og]\n', '2019-12-13

—13:54:33,282 INFO - certUtil::generateUniquelID() - Generated DelegationID:

[12815a52a7643101712199d87ae5896fd6718b3a]l\n', '2019-12-13 13:54:36,175 DERUG =

. .)) continu s(nlﬁéxtpage)

—Registering to [https://prod-ce-01l.pd.infn.it:8443/ce- cream/serv1ces/c EAM JDL=
—StdOutput = "std.out"; BatchSystem = "lsf"; QueueName = "grid"; Executable = "/bln/
7.2.°CREKM:CE"ditect 0B Submigsisn metrics and WN prébes " "ormal”s
%OutputSandboxBaseDestUrl = "gsiftp://localhost"; OutputSandbox = { "std.out", "std.
—err" }; StdError = "std.err"] - JDL File=[./hostname.jdl]\n', '2019-12-13 13:54:36,

—634 DEBUG — Will invoke JobStart for JobID [CREAM067861520]\n', 'https://prod-ce-01.
—pd.infn.it:8443/CREAM067861520\n"]

CREAMguide Documentation, Release0.1

(continued from previous page)

job id: https://prod-ce-01.pd.infn.it:8443/CREAM067861520

invoking jobStatus

executing command: /usr/bin/glite-ce-job-status https://prod-ce-01l.pd.infn.it:8443/
—+CREAM067861520

['\n', "sxx*xxx JobID=[https://prod-ce-01.pd.infn.it:8443/CREAM067861520]\n",
—'"\tStatus = [DONE-OK]\n', '\tExitCode = [0]\n', '"\n', "\n']

exitCode= ExitCode = [0]

job status: DONE-OK

invoking jobPurge

executing command: /usr/bin/glite-ce-job-purge —--noint https://prod-ce-01.pd.infn.
—1t:8443/CREAM067861520

CREAM JobSubmit OK [DONE-OK]

7.2.4 cream_jobOutput.py

This metric extends the cream_jobSubmit.py functionality by retrieving the job’s output-sandbox. Both the
stage-in and stage-out phases are both performed automatically by the CE. In particular the stage-out needs the
OutputSandboxBaseDestUri="gsiftp://localhost" setin the JDL. Finally the job is purged.

$./cream_jobOutput.py —-help
Usage: cream_jobOutput.py [options]

Options:
—-—-version show program's version number and exit
-h, —--help show this help message and exit

-H HOSTNAME, --hostname=HOSTNAME
The hostname of the CREAM service.
-p PORT, —-port=PORT The port of the service. [default: none]
-x PROXY, —--proxy=PROXY
The proxy path
-t TIMEOUT, --timeout=TIMEOUT

Probe execution time limit. [default:
120 sec]
-v, ——-verbose verbose mode [default: False]
-u URL, —--url=URL The status endpoint URL of the service. Example:
https://<host>[:<port>]/cream—-<lrms>-<queue>
-1 LRMS, --lrms=LRMS The LRMS name (e.g.: 'lsf', 'pbs' etc)
—-gq QUEUE, --queue=QUEUE
The queue name (e.g.: 'creamtest')
-j JbL, --jdl=JDL The jdl path
-d DIR, —--dir=DIR The output sandbox path

The options are the same as cream_jobSubmit.py except for ——dir. Such option allows the user to specify the path
where the output-sandbox has to be stored temporarily. The default value is /var/lib/argo-monitoring/eu.
egi.CREAMCE. Consider the JDL file hostname.jdl with the following content:

$ cat ./hostname.jdl
[

Type="Job";
JobType="Normal";

Executable = "/bin/hostname";
Arguments = "-s";

StdOutput = "std.out";
StdError = "std.err";

(continues on next page)

84 Chapter 7. CREAM monitoring

CREAMuide Documentation, Release0.1

(continued from previous page)

OutputSandbox = {"std.out","std.err"};
OutputSandboxBaseDestUri="gsiftp://localhost";
1

If verbose mode is disabled, the output should look like this:

$./cream_jobOutput.py —-hostname prod-ce-0l.pd.infn.it —--port 8443 —--lrms 1lsf —-—
—queue grid -x /tmp/x509up_u733 —--dir /tmp --jdl ./hostname.jdl
CREAM JobOutput OK | retrieved outputSandbox: ['std.err',K 'std.out']

%x% std.err *x*x%

%x% std.out **x*x%
prod-wn-038

Notice: the use of the ——dir and the output-sandbox content returned in the output message.

If the verbose mode is enabled, the output of the above command should be like this:

$./cream_jobOutput.py —-hostname prod-ce-0l.pd.infn.it —--port 8443 --lrms lsf -—
—queue grid -x /tmp/x509up_u733 —--dir /tmp —--jdl ./hostname.jdl —--verbose

executing command: /usr/bin/voms-proxy-info -timeleft

executing command: /usr/bin/glite-ce-job-submit -d -a -r prod-ce-0l.pd.infn.it:8443/
—cream-1lsf-grid ./hostname. jdl

['2019-12-13 14:02:55,478 DEBUG - Using certificate proxy file [/tmp/x509%9up_u733]\n"',
—'2019-12-13 14:02:55,519 DEBUG - VO from certificate=[enmr.eu]\n', '2019-12-13
—14:02:55,520 WARN - No configuration file suitable for loading. Using built-in_
—configuration\n', '2019-12-13 14:02:55,520 DEBUG - Logfile is [/tmp/glite_cream_cli_
—logs/glite-ce—job-submit_CREAM_zangrand_20191213-140255.1og]\n', '2019-12-13
14:02:55,523 INFO - certUtil::generateUniqueID() - Generated DelegationID:

— [b6b895d69f7e£0d438db82930476a2£d149d0501]1\n", '2019-12-13 14:02:57,610 DEBUG -,
—Registering to [https://prod-ce-01.pd.infn.it:8443/ce-cream/services/CREAM2] JDL=[

—StdOutput = "std.out"; BatchSystem = "1lsf"; QueueName = "grid"; Executable = "/bin/
—hostname"; Type = "Job"; Arguments = "-s"; JobType = "Normal";
—OutputSandboxBaseDestUri = "gsiftp://localhost"; OutputSandbox = { "std.out","std.
—err" }; StdError = "std.err"] - JDL File=[./hostname.jdl]\n', '2019-12-13 14:02:58,

—271 DEBUG - Will invoke JobStart for JobID [CREAM160637101]\n', 'https://prod-ce-01.
—pd.infn.it:8443/CREAM160637101\n"]

job id: https://prod-ce-01.pd.infn.it:8443/CREAM160637101

invoking jobStatus

executing command: /usr/bin/glite-ce-job-status https://prod-ce-01l.pd.infn.it:8443/
—CREAM160637101

['\n', "sxx*xxx JobID=[https://prod-ce-01.pd.infn.it:8443/CREAM160637101]\n",

< '"\tStatus = [IDLE]\n', '"\n', '\n']

job status: IDLE

invoking jobStatus

executing command: /usr/bin/glite-ce-job-status https://prod-ce-01l.pd.infn.it:8443/
—CREAM160637101

['\n', "sxx*xxx JobID=[https://prod-ce-01.pd.infn.it:8443/CREAM160637101]\n",
—'"\tStatus = [DONE-OK]\n', '\tExitCode = [0]\n', '\n', '"\n']

exitCode= ExitCode = [0]

job status: DONE-OK

invoking getOutputSandbox

executing command: /usr/bin/glite-ce-job-output —--noint --dir /tmp https://prod-ce-01.
—pd.infn.it:8443/CREAM160637101

(continues on next page)

7.2. CREAM-CE direct job submission metrics and WN probes 85

CREAMguide Documentation, Release0.1

(continued from previous page)

output sandbox dir: /tmp/prod-ce-0l.pd.infn.it_8443_CREAM160637101

invoking jobPurge

executing command: /usr/bin/glite-ce-job-purge —--noint https://prod-ce-01l.pd.infn.
—~1t:8443/CREAM160637101

CREAM JobOutput OK | retrieved outputSandbox: ['std.err', 'std.out']

*xx*x* Std.err **#*x%

xx Std.out ***x
prod-wn-038

7.2.5 WN-softver probe

This probe checks the middleware version on a WN managed by the CREAM-CE. It makes use of cream_jobOutput.py
in the following way:

$./cream_jobOutput.py —-url https://prod-ce-01.pd.infn.it:8443/cream-1sf-grid -x /
—tmp/x509up_u733 —--dir /tmp -j ./WN-softver.jdl
CREAM JobOutput OK | retrieved outputSandbox: ['std.err', 'std.out']

**x%* sStd.err x*xx*

**x%* sSstd.out **xx*
prod-wn-014 has EMI 3.15.0-1.el6

where

$ cat WN-softver.jdl
[

Type="Job";
JobType="Normal";

Executable = "WN-softver.sh";
#Arguments = "a b c";
StdOutput = "std.out";
StdError = "std.err";

InputSandbox = {"WN-softver.sh"};
OutputSandbox = {"std.out","std.err"};
OutputSandboxBaseDestUri="gsiftp://localhost";
1

and WN-softver.sh is attached.

The verbose option enabled gives the following output:

$./cream_jobOutput.py —--url https://prod-ce-01l.pd.infn.it:8443/cream-lsf-grid -x /
—tmp/x509up_u733 —--dir /tmp -j ./WN-softver.jdl --verbose

executing command: /usr/bin/voms-proxy-info -timeleft

executing command: /usr/bin/glite-ce-job-submit -d -a -r prod-ce-0l.pd.infn.it:8443/
—cream-lsf-grid ./WN-softver.jdl

['2019-12-13 14:06:25,768 DEBUG - Using certificate proxy file [/tmp/x509%9up_u733]\n"',
+'2019-12-13 14:06:25,804 DEBUG - VO from certificate=[enmr.eu]l\n', '2019-12-13
—14:06:25,805 WARN — No configuration file suitable for loading. Using built-in_
—configuration\n', '2019-12-13 14:06:25,805 DEBUG - Logfile is [/tmp/glite_cream_cli_

—~logs/glite-ce—job-submit CREAM zangrand 20191213-140625.1og]l\n" '2019-12-13
—14:06:25,805 DEBUG - Processing file [/users/cms/zangrand/cream—-nagios %gg%gsynwxymga
—WN-softver.sh] .A\n', '2019-12-13 14:06:25,805 DEBUG - Inserting mangled,
%InputSandbox in JDL: [{"/users/cms/zangrand/cream- naglos_%ﬁ%ﬁéﬁ$/WﬂﬁYﬁ6nﬁbring
—J]...\n', '2019-12-13 14:06:25,806 INFO - certUtil::generateUniquelD() - Generated,

—DelegationID: [7f0ac5ec8a7deefallf207c0b341fcel568£5282]\n', '2019- 12 13 14:06:27,
—612 DEBUG - Registering to [https://prod-ce-01l.pd.infn.it:8443/ce-cream/services/
—CREAM2] JDL=[StdOutput = "std.out"; BatchSystem = "1lsf"; QueueName = "grid";

https://wiki.italiangrid.it/twiki/pub/CREAM/DjsCreamProbeNew/WN-softver.sh

CREAMuide Documentation, Release0.1

(continued from previous page)

job id: https://prod-ce-01.pd.infn.it:8443/CREAM608273414

invoking jobStatus

executing command: /usr/bin/glite-ce-job-status https://prod-ce-01l.pd.infn.it:8443/
—+CREAM608273414

['\n', "sxx*xxx JobID=[https://prod-ce-01.pd.infn.it:8443/CREAM608273414]\n",
—'"\tStatus = [REALLY-RUNNING]\n', '\n', '\n']

job status: REALLY-RUNNING

invoking jobStatus

executing command: /usr/bin/glite-ce-job-status https://prod-ce-01l.pd.infn.it:8443/
—+CREAM608273414

['"\n', "s«xx*xxx JobID=[https://prod-ce-01.pd.infn.it:8443/CREAM608273414]\n",
—'"\tStatus = [DONE-OK]\n', '\tExitCode = [0]\n', '"\n', "\n']

exitCode= ExitCode = [0]

job status: DONE-OK

invoking getOutputSandbox

executing command: /usr/bin/glite-ce—-job-output —--noint —--dir /tmp https://prod-ce-01.
—pd.infn.it:8443/CREAM608273414

output sandbox dir: /tmp/prod-ce-01.pd.infn.it_8443_CREAM608273414

invoking jobPurge

executing command: /usr/bin/glite-ce-job-purge —--noint https://prod-ce-01.pd.infn.
1t :8443/CREAM608273414

CREAM JobOutput OK | retrieved outputSandbox: ['std.err', 'std.out']

*xxk std.err x*xx

*xx*x* Std.out ***x
prod-wn-014 has EMI 3.15.0-1.el6

7.2.6 WN-csh probe

This probe checks that csh is there on a WN managed by the CREAM-CE. It makes use of cream_jobOutput.py in the
following way:

$./cream_jobOutput.py —--url https://prod-ce-0l.pd.infn.it:8443/cream-1lsf-grid -x /
—tmp/x509up_u733 —--dir /tmp -j ./WN-csh.jdl
CREAM JobOutput OK | retrieved outputSandbox: ['std.err', 'std.out']

*x*x* std.err x*x+*x

x%x std.out ***x%
prod-wn-016 has csh

where

$ cat WN-csh.jdl
[

Type="Job";
JobType="Normal";

Executable = "WN-csh.sh";
#Arguments = "a b c";
StdOutput = "std.out";
StdError = "std.err";

(continues on next page)

7.2. CREAM-CE direct job submission metrics and WN probes 87

CREAMguide Documentation, Release0.1

(continued from previous page)

InputSandbox = {"WN-csh.sh"};
OutputSandbox = {"std.out","std.err"};
OutputSandboxBaseDestUri="gsiftp://localhost";

]

and WN-csh.sh is attached.

7.2.7 Deployment example

In a Nagios server version 3.5.0 testing instance, we deployed the files needed to execute the probes described above
in the following directories:

$ 1s -1 /usr/libexec/argo-monitoring/probes/eu.egi.CREAMCE/

total 48

—-rwxr—-xr-x 1 root
—-rwxr—-xr—-x 1 root
—rwxr—-xr-x 1 root
—-rwxr—-xr-x 1 root
drwxr—-xr—-x 2 root

root
root
root
root
root

1361
2972
2972
1416
4096

Jan
Jan
Jan
Jan
Jan

30
31
31
31
31

16:
12:
12:
12:
11:

58
42
42
42
34

cream_allowedSubmission.py
cream_jobOutput.py
cream_JjobSubmit.py
cream_serviceInfo.py
cream_cli

and

$ 1s -1 /etc/nagios/plugins/eu.egi.

total 16

-rw—-r——-r—-— 1 root
-rw-r—-—-r—— 1 root
-rw-r——-r—— 1 root
—-rwxr—-xr-x 1 root
-rw-r—-—-r—— 1 root
—rwxr-xr-x 1 root

root
root
root
root
root
root

213
129
292
603
300
1144

Jan
Jan
Jan
Jan
Jan
Jan

29
30
31
31
31
31

CREAMCE/

14
16:
11:
11:
11:
11:

126

21
34
34
34
34

hostname. jdl
sleep.jdl
WN-csh.jdl
WN-csh.sh
WN-softver.jdl
WN-softver.sh

and defined the new services adding in the file /etc/nagios/objects/services.cfg the following lines:

define service(
use
host_name

service_description
check_command
—probes/eu.egi.CREAMCE/cream_allowedSubmission.py!60!-x /tmp/x509up_u733 -p 8443
normal_check_interval
retry_check_interval
max_check_attempts
obsess_over_service

}

define service(
use
host_name

service_description
check_command
—probes/eu.egi.CREAMCE/cream_serviceInfo.py!60!-x /tmp/x50%9up_u733 —-p 8443
normal_check_interval
retry_check_interval
max_check_attempts
obsess_over_service

1

P
e

n

6

3
2
0

1
p

e
n

6

3
2
0

ocal-service

rod-ce-01l.pd.infn.it
u.egi.CREAMCE-AllowedSubmission
cg_check_native!/usr/libexec/argo-monitoring/

ocal-service

rod-ce-0l.pd.infn.it
u.egil.CREAMCE-ServicelInfo
cg_check_native!/usr/libexec/argo-monitoring/

(continues on next page)

88

Chapter 7. CREAM monitoring

https://wiki.italiangrid.it/twiki/pub/CREAM/DjsCreamProbeNew/WN-csh.sh

CREAMuide Documentation, Release0.1

(continued from previous page)

define service(
use
host_name
service_description
check_command
—probes/eu.egi.CREAMCE/cream_jobSubmit.
-q creamtestl -3j /etc/nagios/plugins/eu.
normal_check_interval
retry_check_interval
max_check_attempts
obsess_over_service
}
define service(
use
host_name
service_description
check_command
—probes/eu.egi.CREAMCE/cream_jobOutput.
-g creamtestl -j /etc/nagios/plugins/eu.
normal_check_interval
retry_check_interval
max_check_attempts
obsess_over_service
}
define service(
use
host_name
service_description
check_command
—probes/eu.egi.CREAMCE/cream_jobOutput.
-q creamtestl -j /etc/nagios/plugins/eu.
normal_check_interval
retry_check_interval
max_check_attempts
obsess_over_service

local-service

prod-ce-01.pd.infn.it

eu.egi.CREAMCE-JobSubmit
ncg_check_native!/usr/libexec/argo-monitoring/
py!60!-x /tmp/x509%up_u733 -p 8443 -1 1lsf
egi.CREAMCE/hostname. jdl

6

3
2
0

local-service

prod-ce-0l.pd.infn.it
eu.egi.CREAMCE.WN-Softver
ncg_check_native!/usr/libexec/argo-monitoring/
py!60!-x /tmp/x509%up_u733 -p 8443 -1 1lsf
egi.CREAMCE/WN-softver. jdl

6

3
2
0

local-service

prod-ce-0l.pd.infn.it

eu.egi.CREAMCE.WN-Csh
ncg_check_native!/usr/libexec/argo-monitoring/
py!60!-x /tmp/x509%up_u733 -p 8443 -1 1lsf
egi.CREAMCE/WN-csh. jdl

6

3
2
0

The check_command ncg_check_native was defined in the file /etc/nagios/objects/commands.cfg as be-

low:

define command({
command_name
command_line

ncg_check_native
SARG1S$S —H SHOSTNAMES -t $ARG2S$ SARG3S

7.2. CREAM-CE direct job submission metrics and WN probes 89

CREAMguideDocumentation, Release0.1

90 Chapter 7. CREAM monitoring

CHAPTER 8

Releases

8.1

Release 1.16.7

The current release of the CREAM service is fully compatible with the latest version of Bouncycastle, CAnL and
VOMS published in EPEL.

The fixed issues are:

The list of packages for the CREAM services on CentOS 7 is the following:

GGUS-Ticket-ID: #106384
GGUS-Ticket-1D: #122974
GGUS-Ticket-ID: #124404
GGUS-Ticket-ID: #127020
GGUS-Ticket-ID: #133522
GGUS-Ticket-ID: #136074

Package Version | Arch

BLAH 1.22.3-1 | x86_64
BLAH-debuginfo 1.22.3-1 | x86_64
glite-ce-common-java 1.16.5-2 | noarch
glite-ce-common-java-doc 1.16.5-2 | noarch
glite-ce-cream 1.16.5-5 | noarch
glite-ce-cream-api-java 1.16.6-3 | noarch
glite-ce-cream-core 1.16.5-5 | noarch
glite-ce-cream-utils 1.3.7-1 x86_64
info-dynamic-scheduler-slurm | 1.0.5-1 noarch

The list of packages for the CREAM services on Scientific Linux 6 is the following:

91

https://ggus.eu/index.php?mode=ticket_info&ticket_id=106384
https://ggus.eu/index.php?mode=ticket_info&ticket_id=122974
https://ggus.eu/index.php?mode=ticket_info&ticket_id=124404
https://ggus.eu/index.php?mode=ticket_info&ticket_id=127020
https://ggus.eu/index.php?mode=ticket_info&ticket_id=133522
https://ggus.eu/index.php?mode=ticket_info&ticket_id=136074

CREAMguide Documentation, Release0.1

Package Version | Arch

canl-java-tomcat 0.1.19-2 | noarch
glite-ce-blahp 1.22.3-1 | x86_64
glite-ce-blahp-debuginfo 1.22.3-1 | x86_64
glite-ce-common-java 1.16.5-2 | noarch
glite-ce-common-java-doc 1.16.5-2 | noarch
glite-ce-cream 1.16.5-5 | noarch
glite-ce-cream-api-java 1.16.6-3 | noarch
glite-ce-cream-core 1.16.5-5 | noarch
glite-ce-cream-utils 1.3.7-1 x86_64
info-dynamic-scheduler-1sf 2.3.8-1 noarch
info-dynamic-scheduler-Isf-btools 2.3.8-1 noarch
info-dynamic-scheduler-slurm 1.0.5-1 noarch
lcg-info-dynamic-scheduler-condor | 1.1-1 noarch
lcg-info-dynamic-scheduler-pbs 24.6-1 noarch

The basic requirement for the installation is UMD 4.7.1. The java application requires Java SE 8 (OpenJDK 1.8.0 or
later). The installation and configuration of the CREAM CE site is certified with the puppet module version 0.1.1 or
greater. YAIM is no more supported on Scientific Linux 6 and its usage must be considered at “your own risk”.

The update process on Scientific Linux 6 requires the following additional steps:

» After the update it is necessary to remove the packages bouncycastle-mail and bouncycastle (version 1.46).

* Any broken link in ~var/lib/tomcat6/webapps/ce-cream/WEB-INF/lib and /usr/share/tomcat6/lib must be manu-

If YAIM is used for the configuration it is necessary to create a symbolic link from /usr/share/java/bcprov-1.58. jar
into /usr/share/java/bcprov.jar and re-running the configurator.

8.2 Release 1.16.6

The changes delivered with this release are:

* Support for CentOS 7

* Support for accelerator devices (NVidia GPUs, MIC)
e Implementation of GLUE 2.1 v.0.4 (Draft)

The list of packages for the CREAM services is the following:

92

Chapter 8. Releases

https://forge.puppet.com/infnpd/creamce

CREAMuide Documentation, Release0.1

The list of packages for the CREAM clients is the following:

Package Version Arch
BLAH 1.22.2-1 x86_64
BLAH-debuginfo 1.22.2-1 x86_64
axis2 1.6.4-2.emi | noarch
canl-java-tomcat 0.2.1-1 noarch
condor-classads-blah-patch 0.0.1-1 x86_64
dynsched-generic 2.5.5-2 noarch
glite-ce-common-java 1.16.5-1 noarch
glite-ce-common-java-doc 1.16.5-1 noarch
glite-ce-cream 1.16.5-3 noarch
glite-ce-cream-api-java 1.16.6-2 noarch
glite-ce-cream-core 1.16.5-3 noarch
glite-ce-cream-utils 1.3.6-2 x86_64
glite-ce-wsdl 1.15.1-1 noarch
glite-info-dynamic-ge 7.2.0-29.1 noarch
glite-jdl-api-java 3.3.2-3 noarch
glite-jdl-api-java-doc 3.3.2-3 noarch
info-dynamic-scheduler-1sf 2.3.8-3 noarch
info-dynamic-scheduler-1sf-btools 2.3.8-3 noarch
info-dynamic-scheduler-slurm 1.0.4-1 noarch
jclassads 2.4.0-3 noarch
kill-stale-ftp 1.0.1-1 noarch
lcg-info-dynamic-scheduler-condor | 1.1-1 noarch
lcg-info-dynamic-scheduler-pbs 2.4.6-1 noarch
Package Version | Arch
glite-ce-cream-cli 1.15.4-1 | x86_64
glite-ce-cream-client-api-c 1.15.5-1 | x86_64
glite-ce-cream-client-devel 1.15.5-1 | x86_64
glite-jdl-api-cpp 3.44-1 x86_64
glite-jdl-api-cpp-devel 3.4.4-1 x86_64
glite-jdl-api-cpp-doc 3.44-1 x86_64
glite-wms-utils-classad 3.4.3-1 x86_64
glite-wms-utils-classad-devel 3.4.3-1 x86_64
glite-wms-utils-exception 3.4.3-1 x86_64
glite-wms-utils-exception-devel | 3.4.3-1 x86_64
logdcpp 1.0.13-1 | x86_64
log4cpp-devel 1.0.13-1 | x86_64

The installation and configuration of the CREAM CE site is certified with the puppet module version 0.0.16 or greater.

The supported batch systems are:

Batch system | Version
TORQUE 4.2.10
SLURM 16.05.10
Htcondor 8.6.3
LSF 7.0
GridEngine 6.2

8.2. Release 1.16.6

93

https://forge.puppet.com/infnpd/creamce

CREAMguide Documentation, Release0.1

The fixed issues are:
* GGUS-Ticket-ID: #106384
* GGUS-Ticket-1D: #122974
* GGUS-Ticket-1D: #124034
* GGUS-Ticket-1D: #124404
* GGUS-Ticket-1D: #127020
The known issues are:
e The CREAM UI requires classads libraries up to version 8.4.11, it does not work with versions 8.6.*
* GridEngine is partially supported, the infoprovider does not publish informationa about acceleratore devices.
* The puppet agent may report parsing errors.

 If HTCondor is the batch system adopted, the HTCondor services on the computing element must be restarted
after the installation of the CREAM service.

94 Chapter 8. Releases

https://ggus.eu/index.php?mode=ticket_info&ticket_id=106384
https://ggus.eu/index.php?mode=ticket_info&ticket_id=122974
https://ggus.eu/index.php?mode=ticket_info&ticket_id=124034
https://ggus.eu/index.php?mode=ticket_info&ticket_id=124404
https://ggus.eu/index.php?mode=ticket_info&ticket_id=127020

CHAPTER 9

Indices and tables

* genindex

¢ modindex

95

	CREAM Functional Description
	CREAM installation
	Requirements
	Installation
	Example

	Puppet Configuration
	CREAM service parameters
	CREAM Database
	BLAH
	CREAM information system
	CREAM security and accounting
	CREAM with TORQUE
	CREAM with SLURM
	CREAM with HTCondor
	Experimental features

	CREAM User’s Guide
	CREAM Command Line Interface Guide
	Use specific functionality of the CREAM CE
	CREAM job states

	CREAM JDL Guide
	Introduction
	Request and Job Types
	Job Attributes Description
	JDL Examples

	BLAH User’s Guide
	BLAH Introduction
	BLAH Portability
	The supported batch systems
	BLAH forward requirements to the local batch system
	BLAH Commands syntax and semantics
	BLParser
	New Parser Scenario
	BLAH Accounting

	CREAM monitoring
	Requirements
	CREAM-CE direct job submission metrics and WN probes

	Releases
	Release 1.16.7
	Release 1.16.6

	Indices and tables

