
C.R.A.SSH - Cisco Remote Automation
via SSH Documentation

Release 02

Nick Bettison

February 25, 2017





Contents

1 Why crassh? 3
1.1 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contents: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Python Module Index 11

i



ii



C.R.A.SSH - Cisco Remote Automation via SSH Documentation, Release 02

C.R.A.SSH (crassh) stands for Cisco Remote Automation via SSH, it is a python script for automating commands on
Cisco devices.

Crassh can be used by network administrators to quickly run the same command(s) on multiple devices, or it can be
imported as a module by developers as part of a wider Cisco/Python project.

Contents 1



C.R.A.SSH - Cisco Remote Automation via SSH Documentation, Release 02

2 Contents



CHAPTER 1

Why crassh?

I’ve called the tool Cisco Remote Automation via SSH, or C.R.A.SSH for short. The name is in homage to S.H.I.E.L.D
because I really wanted the name to sound like “crash” as a way of reminding users that if you are not careful this
script is a car-crash-waiting-to-happen!

Disclaimer

The word Cisco is used as a description because this script should work with any Cisco IOS device. Cisco is a
registered trademark of Cisco Systems Inc; this script is not associated, endorsed, supported or affiliated in any way
with Cisco and none of these are implied.

Contents:

Installing C.R.A.SSH

Crassh can be installed in two ways, either as a standalone script for users or via pip for developers.

Standalone installations are intended for Network Administrators

Developer installations are intended for those who want crassh imported into their own python scripts or wish the
script to fall under package (version) management.

Standalone Installation

You’ll need both python and Paramiko, once you have both of those just download crassh.py direct from github and
save it somewhere ( like $HOME/bin ), e.g:

curl -k -o crassh https://raw.githubusercontent.com/linickx/crassh/master/crassh.py
chmod +x crassh

Developer (PIP) Installation

Crassh has been published on PyPi: https://pypi.python.org/pypi/CraSSH

If your system supports pip (with Internet access) then crassh can be installed with:

3

http://en.wikipedia.org/wiki/S.H.I.E.L.D.
https://github.com/paramiko/paramiko
https://raw.githubusercontent.com/linickx/crassh/master/crassh.py
https://pypi.python.org/pypi/CraSSH


C.R.A.SSH - Cisco Remote Automation via SSH Documentation, Release 02

pip install crassh

The PIP installation will solve the dependencies and will make the command crassh available in your $PATH and
make crassh available for import within your own python scripts.

Dependencies

If you are not using pip then Paramiko will need to be manually installed:

Paramiko on Linux

For debian/ubuntu boxes:

sudo apt-get install python-paramiko

For redhat/fedora boxes:

sudo yum install python-paramiko

Paramiko on OS X

For apples, get homebrew setup and then:

brew install python
pip install paramiko

Paramiko on Windows

For windohz boxes, it’s a bit more complicated.

• Download and install Visual Studio C++ 2008 Express Edition ( do not install SQL )

• Install Python 2.7.8 – Select the correct MSI for your architecture

• Download get-pip.py ( Don’t use Internet Explorer it will mangle the file; _use Firefox_ to download. )

• Open an Administrator command prompt and run:

c:\Python27\python.exe get-pip.py

• From the same admin prompt, run:

C:\Program Files\Microsoft Visual Studio 9.0\Common7\Tools\vsvars32.bat

• that’s for 32bit machines. . . or for 64bit machines, run:

C:\Program Files (x86)\Microsoft Visual Studio 9.0\Common7\Tools\vsvars64.bat

• From the same admin prompt, run:

c:\Python27\Scripts\pip install paramiko

4 Chapter 1. Why crassh?

http://download.microsoft.com/download/A/5/4/A54BADB6-9C3F-478D-8657-93B3FC9FE62D/vcsetup.exe
https://www.python.org/download/releases/2.7.8/
https://bootstrap.pypa.io/get-pip.py


C.R.A.SSH - Cisco Remote Automation via SSH Documentation, Release 02

User Guide

The following documentation is intended for Network Administrators. Crassh provides a way of automating com-
mands on Cisco IOS devcies, that being either lots of commands on one device, one command on lots or devices, or a
combination of both.

No Python, programming or scripting knowledge is required to run crassh, it is simply a command line tool that you
run on your local PC/Laptop

My personal blog contains a tutorial here on how to use crassh in standalone mode which is a subset of the documen-
tation found here.

Assuming that you have performed a standalone installation, the script would be run from the current directory and is
quite straight forward, ./crassh.

If you have installed crassh via pip, the crassh command should be available without the ./

Crassh has a version specific built in help with -h, e.g

linickx:crassh nick$ ./crassh -h

Nick's Cisco Remote Automation via Secure Shell - Script, or C.R.A.SSH for short!

Usage: ./crassh -s switches.txt -c commands.txt -p -w -t 45 -e
-s supply a text file of switch hostnames or IP addresses [optional]"
-c supply a text file of commands to run on switches [optional]"
-w write the output to a file [optional | Default: True]"
-p print the output to the screen [optional | Default: False]"
-pw is supported, will print the output to screen and write the output to file! [optional]"
-t set a command timeout in seconds [optional | Default: 60]"
-T set a connection timeout in seconds [optional | Default: 10]
-X disable \"do no harm\" [optional]"
-Q disable \"quit on failure\" [optional]"
-e set an enable password [optional]"
-d set a delay between commands [optional]"
-A set an Authentication file for SSH credentials [optional]
-U set a Username for SSH Authentication [optional]
-P set a Password for SSH Authentication [optional]
-B set a BACKUP Username for SSH Authentication [optional]
-b set a BACKUP Password for SSH Authentication [optional]
-E set a BACKUP ENABLE Password [optional]

Version: 2.6

linickx:crassh nick$

Input files

The -s option allows you to feed in a switch file, i.e. a list of devices to connect to, the format is a simple plain text
file (*.txt), one device per line, (either IP addresses or resolvable names is fine) eg:

192.168.1.72
coreswitch.domain.local
accessswitch1.domain.local

The -c option allows you to run multiple commands; same format as before, a simple plain text file (*.txt), one
command per line. For example:

1.2. Contents: 5

http://www.linickx.com
http://www.linickx.com/3980/automating-cisco-commands-with-c-r-a-ssh


C.R.A.SSH - Cisco Remote Automation via SSH Documentation, Release 02

show ver
show log

You can even make config changes:

conf t
interface GigabitEthernet1/9
description *** UNUSED ***

If you want to mix config commands with show commands then you need to include exits , e.g:

show run int g1/9
conf t
interface GigabitEthernet1/9
description *** UNUSED ***
exit
exit
show run int g1/9

Authentication

By default crassh will prompt for username and password credentials; -U can be used to supply a username as a
CLI option, -P can be used to supply a password. Please take note that ‘‘-P‘‘ may expose your password in the
command line history

crassh will look for and read a ~/.crasshrc file; currently the file supports two colon separated variables
username and password:

username: nick
password: mysecretpass

STORING YOUR PASSWORD IN PLAIN TEXT IN ‘‘~/.crasshrc‘‘ IS A SECURITY RISK Please appropriately
secure your system; crassh will perform a basic file permission check.

The -A option can be used to specify different authentication files, for example -A
/var/secrets/router_credentials.txt

Backup Credentials

If the TACACS (ACS) server does not respond or the environment has a mixture of central & local credentials the -B
option can be used to supply a backup username. -b can be used to supply a backup password and -E used for a
backup enable password.

Do no Harm

crassh has a very basic safe mode, i.e. to stop users reloading all their switches on the network at once; if that is
something you really really want to do then -X is what you need!

Print Vs Write

By default, crassh will write it’s output to a file, in the format hostname-YearMonthDate-HourMinuteSecond. If you
suppy the -p option, crassh will output to screen instead. If you want to Print and Write, use -pw

6 Chapter 1. Why crassh?



C.R.A.SSH - Cisco Remote Automation via SSH Documentation, Release 02

Quit on Failure

crassh by default will stop in it’s tracks (quit/exit) if there is a connectivity failure to a device, this is to stop invalid
credentials hammering a list of devices and potentially locking out TACACS accounts. BUT this also means that if
there is network error (i.e. TCP/IP connectivity issue) then crassh will also stop, the -Q option can be used to disable
Quit on Failure

Execution Timeout

Let’s say you run a command that take a long time, say a million pings, crassh will wait for 60 seconds for the
command to complete and then bail and move on to the next command - this should be fine for most commands. If
you do actually want to send a million pings, then use the -t option to extend the timeout ( i.e how long crassh will
wait )

Developer Guide

Crassh is supplied as a Python module which developers can include in their own scripts. Crassh is a Paramiko wrapper
specifically designed for talking to Cisco IOS devices and routers.

Developers/Coders are reminded not to reinvent the wheel, crassh (as a standalone script) can already read commands
from a file and execute them on either one device or many devices (i.e. read list of devices from a file), tasks such as
backing up the network estate do not require any additional scripts/development.

Where crassh as a module is valuable is doing something other than executing commands and printing/storing the
result.

An example of doing something is writing an auditing script; the following example is taken from my personal blog
where crassh can be used in a script to look for the insecure SNMP community public.

#!/usr/bin/env python
# coding=utf-8

import crassh

# Variables
routers = ["10.159.83.135", "10.159.83.136"]
username = "nick"
password = "nick"

# Loop
for device in routers:

try:
hostname = crassh.connect(device, username, password)

output = crassh.send_command("show run | inc snmp-server community", hostname)
crassh.disconnect()

# Split the output by spaces so we can search the response
words = output.split()

# Look for "public" in the output
for x in words:

if x == "public":
print("DANGER: Public SNMP Community set on %s [%s]" % (hostname, device))

1.2. Contents: 7

http://www.linickx.com/pip-install-crassh
http://www.linickx.com


C.R.A.SSH - Cisco Remote Automation via SSH Documentation, Release 02

except:
pass # If connect fails, move onto next router in the list.

C.R.A.SSH (crassh) autodoc

The autodoc automagically documents all of the functions from the source code.

Python script to automate running commands on switches. Cisco Remote Automation via Secure Shell... or
C.R.A.SSH for short!

crassh.connect(device=‘127.0.0.1’, username=’cisco’, password=’cisco’, enable=False, en-
able_password=’cisco’, sysexit=False, timeout=10)

Connect and get Hostname of Cisco Device

This function wraps up paramiko and returns the hostname of the Cisco device. The function creates two
global variables remote_conn_pre and remote_conn which are the paramiko objects for direct manipu-
lation if necessary.

Args: device (str): IP Address or Fully Qualifed Domain Name of Device

username (str): Username for SSH Authentication

password (str): Password for SSH Authentication

enable (bool): Is enable going to be needed?

enable_password (str): The enable password

sysexit (bool): Should the connecton exit the script on failure?

Returns: str. The hostname of the device

Example:

>>> hostname = connect("10.10.10.10", "nick", "cisco")
>>> print(hostname)
r1

REF:

• https://pynet.twb-tech.com/blog/python/paramiko-ssh-part1.html

• http://yenonn.blogspot.co.uk/2013/10/python-in-action-paramiko-handling-ssh.html

crassh.disconnect()
Disconnect an SSH Session

Crassh wrapper for paramiko disconnect

No Argumanets, disconnects the current global variable remote_conn_pre

crassh.do_no_harm(command)
Check Commands for dangerous things

Args: command (str): The Command you wish to run on the device.

Returns: Nothing

This function will sys.exit() if an evil command is found

>>> crassh.do_no_harm("show ver")
>>>

8 Chapter 1. Why crassh?

https://github.com/linickx/crassh/
https://pynet.twb-tech.com/blog/python/paramiko-ssh-part1.html
http://yenonn.blogspot.co.uk/2013/10/python-in-action-paramiko-handling-ssh.html


C.R.A.SSH - Cisco Remote Automation via SSH Documentation, Release 02

So, good commands just pass through with no response... maybe I should oneday make it a True/False kind of
thing.

crassh.isgroupreadable(filepath)
Checks if a file is Group readable

Args: filepath (str): Full path to file

Returns: bool. True/False

Example:

>>> print(str(isgroupreadable("file.txt")))
True

REF: http://stackoverflow.com/questions/1861836/checking-file-permissions-in-linux-with-python

crassh.isotherreadable(filepath)
Checks if a file is Other readable

Args: filepath (str): Full path to file

Returns: bool. True/False

Example:

>>> print(str(isotherreadable("file.txt")))
True

crassh.main()
Main Code Block

This is the main script that Network Administrators will run.

No Argumanets. Input is used for missing CLI Switches.

crassh.print_help(exitcode=0)
Prints the Help for the CLI tool

Args: exit (int): Exit Code

Returns: None

When called this function will sys.exit()

crassh.readauthfile(filepath)
Read C.R.A.SSH Authentication File

The file format is a simple, one entry per line, colon separated affair:

username: nick
password: cisco

Args: filepath (str): Full path to file

Returns: tuple. username and password

Example:

>>> username, password = readauthfile("~/.crasshrc")
>>> print(username)
nick
>>> print(password)
cisco

1.2. Contents: 9

http://stackoverflow.com/questions/1861836/checking-file-permissions-in-linux-with-python


C.R.A.SSH - Cisco Remote Automation via SSH Documentation, Release 02

crassh.readtxtfile(filepath)
Read lines of a text file into an array Each line is stripped of whitepace.

Args: filepath (str): Full path to file

Returns: array. Contents of file

Example:

>>> print(readtxtfile("./routers.txt"))
1.1.1.1
1.1.1.2
1.1.1.3

crassh.send_command(command=’show ver’, hostname=’Switch’, bail_timeout=60)
Sending commands to a switch, router, device, whatever!

Args: command (str): The Command you wish to run on the device.

hostname (str): The hostname of the device (expected in the prompt).

bail_timeout (int): How long to wait for command to finish before giving up.

Returns: str. A text blob from the device, including line breaks.

REF: http://blog.timmattison.com/archives/2014/06/25/automating-cisco-switch-interactions/

10 Chapter 1. Why crassh?

http://blog.timmattison.com/archives/2014/06/25/automating-cisco-switch-interactions/


Python Module Index

c
crassh, 8

11



C.R.A.SSH - Cisco Remote Automation via SSH Documentation, Release 02

12 Python Module Index



Index

C
connect() (in module crassh), 8
crassh (module), 8

D
disconnect() (in module crassh), 8
do_no_harm() (in module crassh), 8

I
isgroupreadable() (in module crassh), 9
isotherreadable() (in module crassh), 9

M
main() (in module crassh), 9

P
print_help() (in module crassh), 9

R
readauthfile() (in module crassh), 9
readtxtfile() (in module crassh), 9

S
send_command() (in module crassh), 10

13


	Why crassh?
	Disclaimer
	Contents:

	Python Module Index

