
Binder Documentation
Release 0.1

Sergey Lyskov

Apr 12, 2024

Contents

1 About this project 3
1.1 Core features . 3
1.2 Goodies . 4

2 Installation 5
2.1 Requirements . 5
2.2 Building . 5

3 Installation with pre-installed LLVM 7
3.1 Requirements . 7
3.2 Building . 8
3.3 Using binder built with pre-installed LLVM . 8
3.4 With Docker . 9
3.5 Building Statically (Linux only) . 9

4 The Basics 11
4.1 Principles . 11

5 Configuration 13
5.1 Command line options . 13
5.2 Config file options . 14

6 Binder Limitations 19
6.1 External Operators . 19
6.2 Ignored Operators . 20
6.3 Miscellaneous . 20

7 Examples 21
7.1 Basic outline . 21
7.2 Simple struct . 21

8 Debugging and troubleshooting 27
8.1 Inconsistencies . 27
8.2 Build failures . 27

9 Testing 31

10 Indices and tables 33

i

ii

Binder Documentation, Release 0.1

Contents:

Contents 1

Binder Documentation, Release 0.1

2 Contents

CHAPTER 1

About this project

Binder is a tool for automatic generation of Python bindings for C++11 projects using Pybind11 and Clang LibTooling
libraries. That is, Binder, takes a C++ project and compiles it into objects and functions that are all usable within
Python. Binder is different from prior tools in that it handles special features new in C++11.

Initially Binder was developed to create PyRosetta - Python bindings for Rosetta project. Using such rather large C++
code base (Rosetta have ~3M SLOC of C++11 code) allowed to develop fully automated solution capable of bindings
almost any C++11 code without need of human intervention.

1.1 Core features

Automatically determine which types/functions could be bound and generate bindings for the following C++ code:

• functions

• enums

• C++ classes and structs, including:

• read/write access to public data members, including static data members

• class member functions including static functions

• class inner enums

• class operators

• automatically determine which template classes should be instantiated and generate bindings for it

• generate single shared library which on Python-import act as collection of Python modules representing hierar-
chy of C++ namespaces

• generated bindings for both Python-2.6+ and Python-3+

3

https://github.com/pybind/pybind11
http://clang.llvm.org/docs/LibTooling.html
http://www.pyrosetta.org/
https://www.rosettacommons.org/

Binder Documentation, Release 0.1

1.2 Goodies

Bindings generation is guided through config file which allows to configure:

• bindings for which namespace/type/function bindings should be generated

• default return policy for functions returning pointer, lvalue and rvalue references

• additional includes which should be added to generated code

• includes which should be ignored in generated codes

• specify custom bindings functions for type/template

• specify add-on bindings functions which will be called after automatic bindings was generated

4 Chapter 1. About this project

CHAPTER 2

Installation

Binder is written in C++11 and must be built before use. This page describes the steps for the build process. Please
note that installation require up to ~2.6+ Gb of free disk space.

2.1 Requirements

The following tools need to be present in order to build and use Binder

• CMake, https://cmake.org - static compilation requires version 3.13 or above, see below

• Pybind11, RosettaCommons fork: https://github.com/RosettaCommons/pybind11

• [optional] Ninja (or you can use make by omitting -G Ninja command below)

Binder has experimental support for being statically compiled on CentOS8, which additionally requires:

• libclang-static-build: https://github.com/deech/libclang-static-build

• CMake version 3.13 or above

Go to Building Statically (Linux only) for the build process. Also note a caveat to static compilation: the version of
libclang that Binder is compiled against may not be compatible with the header files on the system Binder where is
run.

2.2 Building

The steps below are encoded in binder/build.py and binder/build-and-run-tests.py files so for default install you can
just run build-and-run-tests.py script directly. This section describes how to build a dynamically-linked binder
executable. To statically compile binder, see Building Statically (Linux only).

1. To build Binder execute the following command sequence in shell (replace $HOME/prefix and $HOME/
binder with your paths):

5

https://cmake.org
https://github.com/RosettaCommons/pybind11
https://github.com/deech/libclang-static-build

Binder Documentation, Release 0.1

clone Binder
cd $HOME
git clone https://github.com/RosettaCommons/binder.git

Create build dir
mkdir $HOME/prefix && cd $HOME/prefix

Clone LLVM
git clone https://github.com/llvm/llvm-project.git llvm && cd llvm
git checkout llvmorg-6.0.1

Create symlink pointing to binder/src dir
ln -s $HOME/binder/source $HOME/prefix/llvm/clang-tools-extra/binder

Create ``llvm/tools/clang/tools/extra/CMakeLists.txt`` file with content: ``add_
→˓subdirectory(binder)``
echo 'add_subdirectory(binder)' > $HOME/prefix/llvm/clang-tools-extra/CMakeLists.txt

Build Binder
mkdir $HOME/prefix/build && cd $HOME/prefix/build
cmake -G Ninja -DCMAKE_BUILD_TYPE=Release -DLLVM_ENABLE_EH=1 -DLLVM_ENABLE_RTTI=ON ../
→˓llvm && ninja

At this point, if all above steps is successful, binder should be at
$HOME/prefix/build/bin/binder

6 Chapter 2. Installation

CHAPTER 3

Installation with pre-installed LLVM

3.1 Requirements

The basic dependencies for this type of installation are very similar to these described above and include:

• CMake, version 3.4.3 or higher from https://cmake.org

• C++ compiler with c++11 support, e.g. gcc from https://gcc.gnu.org/

• make or Ninja

• llvm with development packages (headers)

• clang with development packages (headers)

The installation process of the required packages varies from system to system. On the
RHEL7/RHEL8/Fedora22+/Ubuntu18+ systems binder can be compiled with the llvm, clang and dependent
packages available for these systems from their default repositories

For RHEL7/RHEL8/Fedora22+:

• To install the needed packages run as root

yum install clang clang-devel llvm-devel llvm-static clang-libs

• If a newer or specific version of the llvm/clang is needed, it can be installed as root

yum install clang8.0 clang8.0-devel llvm8.0-devel llvm8.0-static clang8.0-libs

to obtain a specific version (8.0 in this case).

• If the option above is not sufficient, or the available packages are outdated, for the CentOS/RHEL/Fedora
and compatible systems the llvm-toolset-7.0 toolset (or later) from https://www.softwarecollections.org/en/scls/
rhscl/llvm-toolset-7.0/ provides LLVM of version 7.0. To install it run as root

yum install llvm-toolset-7.0*

Then the compilation can be performed using the following shell

7

https://cmake.org
https://gcc.gnu.org/
https://www.softwarecollections.org/en/scls/rhscl/llvm-toolset-7.0/
https://www.softwarecollections.org/en/scls/rhscl/llvm-toolset-7.0/

Binder Documentation, Release 0.1

scl enable llvm-toolset-7.0 bash

• Please note that binder requires cmake of version 3, therefore for some older systems package cmake3 should
be installed and used instead of cmake.

yum install cmake3

For Ubuntu18+ run, an example for LLVM/Clang 10:

sudo apt-get update
sudo apt-get -y install clang-10 llvm-10 libclang-10-dev llvm-10-dev
sudo apt-get -y install cmake make gcc g++

For MacOSX:

Make sure the XCode is installed. If needed, install cmake, python and other utilities, e.g. using home-
brew:

brew install wget coreutils xz pybind11 cmake

Note: the pybind11 version from https://github.com/RosettaCommons/pybind11 should be preffered , but
pybind11 version from homebrew might work as well.

Download and install the llvm+clang from the official site, e.g. using wget and add the location of llvm
config to the $PATH:

3.2 Building

To build binder run

cmake CMakeLists.txt -DCMAKE_INSTALL_PREFIX:PATH=/home/user/whereiwanttohaveit/
make
ctest
make install

To perform the build with a specific version of LLVM, the location of LLVM and CLANG directories should be set
simultaneously via the location of their cmake configurations, i.e.

cmake CMakeLists.txt -DLLVM_DIR=/usr/lib64/llvm8.0/lib/cmake/llvm -DClang_DIR=/usr/
→˓lib64/llvm8.0/lib/cmake/clang

Alternatively, the location of the llvm-config script could be set.

cmake CMakeLists.txt -DLLVMCONFIG=/usr/lib64/llvm7.0/bin/llvm-config

As an example with Ubuntu 18.04 and llvm-10:

cmake CMakeLists.txt -DLLVM_DIR=/usr/lib/llvm-10 -DClang_DIR=/usr/lib/llvm-10

3.3 Using binder built with pre-installed LLVM

Under some circumstances (e.g. on system where the default compiller is not clang) binder might emit error mes-
sages like

8 Chapter 3. Installation with pre-installed LLVM

https://github.com/RosettaCommons/pybind11

Binder Documentation, Release 0.1

/usr/lib/gcc/x86_64-redhat-linux/10/../../../../include/c++/10/bits/cxxabi_init_
→˓exception.h:38:10: fatal error: 'stddef.h' file not found
#include <stddef.h>

^~~~~~~~~~
1 error generated.

and similar, see https://clang.llvm.org/docs/FAQ.html. To fix this issue, binder should be pointed to the location of
the appropriate clang includes. This can be archived using the clang options that are passed to binder after -- flag,
e.g.

binder ...binder...options... -- -x c++ ...other...options... -iwithsysroot/where/
→˓the/directory/with/includes/is/

See https://clang.llvm.org/docs/ClangCommandLineReference.html for details. If binder was build with some
older versions of LLVM, one could also set the location of the headers with the C_INCLUDE_PATH and
CPLUS_INCLUDE_PATH environment variables, e.g.

export CPLUS_INCLUDE_PATH=/where/the/directory/with/includes/is/

3.4 With Docker

An example Dockerfile for building binder can be found in the binder repository linked here: https://github.com/
RosettaCommons/binder/examples

3.5 Building Statically (Linux only)

The first step in the static build is to build the libclang statically following the instructions from https://github.
com/deech/libclang-static-build. For this quite a recent version of cmake is needed (3.13+). If the version of cmake
form the used distribution is too old (e.g. as in the CentOS8) a precompilled package from the CMake site from
https://cmake.org/ can be used instead.

The static build requires some other static libraries to be present in the system. For the CentOS8 install
libstdc++-static and ncurses-compat-libs runnign as root:

sudo yum install libstdc++-static ncurses-compat-libs

Set the environment variable LIBCLANG_STATIC_BUILD_DIR to the path of libclang-static-build. Then build
binder with the following procedure:

cmake CMakeLists.txt -DSTATIC=on -DLLVMCONFIG="${LIBCLANG_STATIC_BUILD_DIR}/build/_
→˓deps/libclang_prebuilt-src/bin/llvm-config" -DLLVM_LIBRARY_DIR="${LIBCLANG_STATIC_
→˓BUILD_DIR}/lib" -DCMAKE_INSTALL_PREFIX:PATH=/home/user/whereiwanttohaveit/

make
ctest
make install

3.4. With Docker 9

https://clang.llvm.org/docs/FAQ.html
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://github.com/RosettaCommons/binder/examples
https://github.com/RosettaCommons/binder/examples
https://github.com/deech/libclang-static-build
https://github.com/deech/libclang-static-build
https://cmake.org/

Binder Documentation, Release 0.1

10 Chapter 3. Installation with pre-installed LLVM

CHAPTER 4

The Basics

In this section we describe basic Binder usage.

4.1 Principles

In order to create shared library that will provide bindings to C++ code we need to:

1. Gather data about what classes/functions are available and acquire in-depth information of class heritage, mem-
ber functions and standalone functions type signatures.

2. Generate bindings code

3. Compile code into shared library

Binder is tool that aims to automate steps 1 and 2.

4.1.1 Preparing the input file

In order to feed Binder information about our underlying C++ code we need to create special C++ include file that
in turn includes all header files from our project. For example: suppose that our C++ project contain the following
header files: frutes/apple.hpp, frutes/orange.hpp and vegetables/tomato.hpp. In this case our special include file should
contain something like this:

#include <frutes/apple.hpp>
#include <frutes/orange.hpp>
#include <vegetables/tomato.hpp>

Note: Make sure to specify complete-relative-to-project-root path to includes and use #include <file> and
avoid using #include "file" form. That way Binder will be able to determine correct include paths for each
include which is essential for generating correct include sets on step 2. To bulk-convert quote-includes to angle-
bracker-include please see https://github.com/shakfu/header_utils project.

11

https://github.com/shakfu/header_utils

Binder Documentation, Release 0.1

For small projects such file could be simply typed by-hands and for large project it might be more practical to use a
scripts to do so.

4.1.2 Running the Binder

After the input file is ready the next step is to run Binder. Assuming that our include file containing all headers from
the project is named as all_includes.hpp it could be done as:

binder --root-module my_project --prefix $HOME/my_project/bindings/source \
--bind my_root_namespace \
all_includes.hpp \
-- -std=c++11 -I$HOME/my_project/include -I$HOME/extra/some_libs \
-DMY_PROJECT_DEFINE -DNDEBUG

Note that we have to specify project-wide include path so Binder could find includes specifies in all_includes.
hpp as well as path to any additional C++ include headers that is used in project.

Most big project will probably require fine tunning of bindings generation process. This can be done by creating Binder
config file and specifying it when calling Binder as --config my_project.config. For detailed reference of
config file options please see Configuration.

4.1.3 Compiling generated code

If all goes well and Binder finished its run without error the path specified by --prefix option should contain
generated source code and auxiliary files:

<root_module_name>.sources list of generated source files

<root_module_name>.cpp main file for binding code

<root_module_name>.modules file containing the list of Python modules that were generated

12 Chapter 4. The Basics

CHAPTER 5

Configuration

Binder provides two ways to supply configuration options: command-line and config file.

5.1 Command line options

--root-module specify name of generated Python root module. This name is also used as prefix for various
Binder output files. Typically the following files will be generated: <root-module>.cpp, <root-module>.
sources, <root-module>.modules.

--max-file-size specify maximum file size in bytes exceeding which Binder will split generated sources into
multiple files.

--prefix name/path prefix for generated files.

--bind list of namespaces that need to binded. Works in conjunction with similar config file directives.

--skip list of namespaces that should be skipped. Works in conjunction with similar config file directives.

--config specify config file to use.

--single-file if specified instruct Binder to put generated sources into single large file. This might be useful for
small projects.

--flat if specified instruct Binder to write generate code files into single directory. Generated files will be named
as <root-module>.cpp, <root-module>_1.cpp, <root-module>_2.cpp, . . . etc.

--skip-line-number if specified prevents Binder from writing the line numbers in the comments to the generated
code.

--bind-class-template-specialization specify if class-template-specialization should be bound by-
default

--suppress-errors if the generated bindings codes are correct but there are some fatal errors from clang and
you want to get rid of them. This situation can happen when you would like to generate binding codes for a small part
of a huge project and the you cannot include all the required header files with -I to the command.

13

Binder Documentation, Release 0.1

--include-pybind11-stl “if specified bindings for STL classes in <pybind11/stl.h>will be used instead
of generating custom STL bindings. Note, STL bindings may be overkill and have potential preformance implications
if data does not need to be copied between C++ and python. For more information, see pybind11 STL documenta-
tion.

--annotate-includes [debug] if specified Binder will comment each include with type name which trigger it
inclusion.

--trace [debug] if specified instruct Binder to add extra debug output before binding each type. This might be
useful when debugging generated code that produce seg-faults during python import.

5.2 Config file options

Config file is text file containing either comment-line (starts with #) or directive line started with either + or - signs
followed by a directive’s name and optional parameters. Some directives will accept only the + while others could be
used with both prefixes.

5.2.1 Config file directives:

• namespace, specify if functions/classes/enums from particular namespace should be bound. Could be used
with both + and - prefixes. This directive works recursively so for example if you specify +namespace root
and later -namespace root::a then all objects in root will be bound with exception of root::a and its
descendants.

-namespace boost
+namespace utility

• enum, specify if particular enum should be bound. Purpose of this directive is to allow developer to cherry-pick
particular enum from otherwise binded/skipped namespaces and mark it for binding/skipping.

-enum utility::pointer::State
+enum protocols::CDR_Type

• class, specify if particular class/struct should be bound. Purpose of this directive is to allow developer to
cherry-pick particular class from otherwise binded/skipped namespaces and mark it for binding/skipping.

-class utility::pointer::ReferenceCount
-class std::__weak_ptr

• field, specify if a particular field should be bound.

-field MyClass::some_field

• python_builtin, specify if particular class/struct should be considered a python builtin and assume existing
bindings for it already exist. The purpose of this directive is to allow developer to allow developers to toggle if
bindings for types like std::optional or pybind11::dict should be generated, or if binder should as-
sume such bindings already exist somewhere else. Alternatively, a developer could declare a type as not-builtin if
they would prefer to force binder to generate bindings for it. Note that removing a builtin (-python_builtin
abc) always overrides everything else (such as adding a builtin via +python_builtin abc).

-python_builtin std::less
+python_builtin std::vector

14 Chapter 5. Configuration

https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html
https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html

Binder Documentation, Release 0.1

• function, specify if particular function should be bound. This could be used for both template and normal
function.

-function ObjexxFCL::FArray<std::string>::operator-=
-function core::id::swap

• include, directive to control C++ include directives. Force Binder to either skip adding particular include
into generated source files (- prefix) or force Binder to always add some include files into each generated
file. Normally Binder could automatically determine which C++ header files is needed in order to specify
type/functions but in some cases it might be useful to be able to control this process. For example forcing
some includes is particularly useful when you want to provide custom-binder-functions with either +binder
or +add_on_binder directives.

-include <boost/format/internals.hpp>
+include <python/PyRosetta/binder/stl_binders.hpp>

• include_for_class, directive to control C++ include directives on a per-class basis. Force Binder to add
particular include into generated source files when a given target class is present. This allows the inclusion of
custom binding code, which may then be referenced with either +binder or +add_on_binder directives.

+include_for_class example::class <example/class_binding.hpp>

• include_for_namespace, directive to control C++ include directives on a per-namespace basis. Force
Binder to add particular include into generated source files when generating bindings for specified names-
pace. This allows the inclusion of custom binding code, which may then be referenced with either +binder,
+add_on_binder, binder_for_namespace or add_on_binder_for_namespace directives.

+include_for_namespace aaaa::bbbb <aaaa/bbbb/namespace_binding.hpp>

• binder, specify custom binding function for particular concrete or template class. In the example below all
specializations of template std::vector will be handled by binder::vector_binder function. For template
classes binder function should be a template function taking the same number of types as original type and
having the following type signature: pybind11 module, then std::string for each template argument provided.
So for std::vector it will be:

template <typename T, class Allocator>
vector_binder(pybind11::module &m, std::string const &name, std::string const & /
→˓*allocator name*/) {...}

• +add_on_binder, similar to binder: specify custom binding function for class/struct that will be called
after Binder generated code bound it. This allow developer to create extra bindings for particular type (bind
special Python methods, operators, etc.) The expected type signature of specified function should be void
f(pybind11::class_<T, std::shared_ptr<T> > &)

+binder std::vector my_binders::vector_binder
+binder std::map my_binders::map_binder

+add_on_binder numeric::xyzVector rosetta_binders::xyzVector_add_on_binder

• +binder_for_namespace, similar to binder: specify custom binding function for namespace. Call to
specified function will be generated _instead_ of generating bindings for namaspace. Where expected type
signature of specified function should be void f(pybind11::module &)

+binder_for_namespace aaaa binder_for_namespace_aaaa

• +add_on_binder_for_namespace, similar to add_on_binder: specify custom binding function for
namespace that will be called before Binder generated code bound it. This allow developer to create extra

5.2. Config file options 15

Binder Documentation, Release 0.1

bindings for particular namespace.

+add_on_binder_for_namespace aaaa::bbbb binder_for_namespace_aaaa_bbbb

• default_static_pointer_return_value_policy, specify return value policy for static functions
returning pointer to objects. Default is pybind11::return_value_policy::automatic.

• default_static_lvalue_reference_return_value_policy, specify return value policy for
static functions returning l-value reference. Default is pybind11::return_value_policy::automatic.

• default_static_rvalue_reference_return_value_policy, specify return value policy for
static functions returning r-value reference. Default is pybind11::return_value_policy::automatic.

• default_member_pointer_return_value_policy, specify return value policy for member func-
tions returning pointer to objects. Default is pybind11::return_value_policy::automatic.

• default_member_lvalue_reference_return_value_policy, specify return value policy for
member functions returning l-value reference. Default is pybind11::return_value_policy::automatic.

• default_member_rvalue_reference_return_value_policy, specify return value policy for
member functions returning r-value reference. Default is pybind11::return_value_policy::automatic.

• default_call_guard, optionally specify a call guard applied to all function definitions. See pybind11
documentation. Default None.

+default_member_pointer_return_value_policy pybind11::return_value_
→˓policy::reference
+default_member_lvalue_reference_return_value_policy pybind11::return_value_
→˓policy::reference_internal
+default_member_rvalue_reference_return_value_policy pybind11::return_value_
→˓policy::move
+default_call_guard pybind11::gil_scoped_release

• +custom_shared: specify a custom shared pointer class that Binder should use instead of
std::shared_ptr.

• module_local_namespace: use to add (or remove) the extra argument module_local to the pybind11
classes and enum of a namespace. This option can be used for all the namaspaces of a given project using
+module_local_namespace @all_namespaces.

+module_local_namespace @all_namespaces
-module_local_namespace std

• trampoline_member_function_binder: use to specify a custom trampoline member function defined
by the user in a given header file

+include_for_class aaa::A <T81.custom_trampoline_with_args.include>
+trampoline_member_function_binder aaa::A::foo myFoo

• +prefix_for_static_member_functions: specify name prefix to use for static member functions,
could be useful as workaround Pybind11 limitation restricting having both virtual and static member functions
having the same name

• smart_holder: use to specify that a class requires the usage of the progressive mode of the pybind11
smart_holder branch (https://github.com/pybind/pybind11/tree/smart_holder). As discussed in https://github.
com/pybind/pybind11/blob/smart_holder/README_smart_holder.rst, the smart_holder branch is a strict su-
perset of the pybind11 master branch that supports safely passing trampoline objects back to C++: associated
Python objects are automatically kept alive for the lifetime of the smart-pointer. This config file directive has
been added to fulfil https://github.com/RosettaCommons/binder/issues/263.

16 Chapter 5. Configuration

https://pybind11.readthedocs.io/en/stable/advanced/functions.html#call-guard
https://pybind11.readthedocs.io/en/stable/advanced/functions.html#call-guard
https://github.com/pybind/pybind11/tree/smart_holder
https://github.com/pybind/pybind11/blob/smart_holder/README_smart_holder.rst
https://github.com/pybind/pybind11/blob/smart_holder/README_smart_holder.rst
https://github.com/RosettaCommons/binder/issues/263

Binder Documentation, Release 0.1

+smart_holder example::class

• pybind11_include_file: use to specify which header file of pybind11 should be included. The header
pybind11/pybind11.h is used by default.

+pybind11_include_file pybind11/smart_holder.h

5.2. Config file options 17

Binder Documentation, Release 0.1

18 Chapter 5. Configuration

CHAPTER 6

Binder Limitations

This section lists some of binder’s more prominent limitations.

6.1 External Operators

Unlike C++, which allows operators to be defined outside of classes and redefined across different namespaces, python
requires operators be member functions and thus lacks the ability to choose which overload to use based on context. In
line with this, binder will only bind (most) C++ operators if they are member functions (i.e. they cannot be defined
externally).

These operators include, but are not necessarily limited to:

operator~ (__invert__)

operator+ (__add__)
operator- (__sub__)
operator* (__mul__)
operator/ (__div__)
operator% (__mod__)

operator& (__and__)
operator| (__or__)
operator^ (__xor__)
operator<< (__lshift__)
operator>> (__rshift__)

operator+= (__iadd__)
operator-= (__isub__)
operator*= (__imul__)
operator/= (__idiv__)
operator%= (__imod__)

operator&= (__iand__)

(continues on next page)

19

Binder Documentation, Release 0.1

(continued from previous page)

operator|= (__ior__)
operator^= (__ixor__)
operator<<= (__ilshift__)
operator>>= (__irshift__)

operator() (__call__)
operator== (__eq__)
operator!= (__ne__)
operator[] (__getitem__)
operator= (assign)
operator++ (plus_plus)
operator-- (minus_minus)

6.2 Ignored Operators

The following operators will be ignored by binder:

// Logical
&&
||

// Cast to T
explicit operator T()
operator T()

// Misc
,
new
new[]
delete
delete[]

6.3 Miscellaneous

1. User defined literals operator"" _foo end up being named as operator_foo.

20 Chapter 6. Binder Limitations

CHAPTER 7

Examples

This section is to talk about examples of how you would use binder.

Notes: - All python code should be run in the directory with the generated .so file.

7.1 Basic outline

These examples follow this general workflow:

1. Make a file that includes all #include lines

• They must use <> not ""

2. Generate bindings with binder

• Set the namespace(s) to bind with the flag --bind

3. Compile the cpp files into objects separately

4. Link all generated objects into one file with the suffix .so

5. Try importing into python!

7.2 Simple struct

There are three examples of how to build bindings in the example_struct folder.

• make_bindings_via_cmake.py

• make_bindings_via_bash.sh

• make_bindings_via_bash_and_stl.sh

Their names are self explanatory, but I would highly recommend that for your own applications that you follow the
python & cmake workflow.

21

Binder Documentation, Release 0.1

Each script’s final running lines also imports the test_struct module and prints a variable or two of it to prove
that it is working.

This example/tutorial will walk you through the step-by-step of both via_bash scripts, because they will help you
better understand what needs to be done to generate bindings. Upon understanding the more manual bash method,
the cmake code should make much more sense.

The rest of “Simple struct” will also take you through generating pybind11 stl bindings (like making bindings for
std::vector -> python list) and how to use binder’s bindings for std::vector to access std::vector objects without
converting them to python lists. This allows us to benefit from the speed of C++!

7.2.1 Building bindings basics

Using the g++/bash example we will go through how to generate bindings for this simple struct.

#include <string>
#include <vector>

namespace testers {
struct test_my_struct {

int an_int;
std::string a_string;
std::vector<int> a_vector;
float a_float;

test_my_struct() {
an_int = 27;
a_string = "TEST_STRING";
a_vector = std::vector<int>{1,2,3,4,5};
a_float = 88.88;

}

void
increment_int() {

++an_int;
}

void
add_float() {

a_float += 22.22;
}

void
append_vec() {

a_vector.push_back(a_vector.back()+1);
}

};
}

1. First we have to generate a file that combines all of the #includes our project.

• Remember, all #includes must use <>

grep -rh "#include" include/* | sort -u > all_bash_includes.hpp

2. Next we have to generate the bindings via binder

22 Chapter 7. Examples

Binder Documentation, Release 0.1

$PWD/../../build/llvm-4.0.0/build_4.0.0*/bin/binder \
--root-module test_struct \
--prefix $PWD/bash_bindings/ \
--bind testers \
all_bash_includes.hpp \
-- -std=c++11 -I$PWD/include \
-DNDEBUG

A skeleton of this would be:

$PWD/../../build/llvm-4.0.0/build_4.0.0*/bin/binder \
--root-module ${my_python_module_name} \
--prefix ${where_i_want_to_build_this} \
--bind ${my_namespaces_to_build} \
${my_all_includes_file} \
-- -std=c++11 -I${any_directores_to_include_for_compiler} \
-DNDEBUG

3. Now that we have build bindings, we have to compile our bindings into object files.

First go into the directory where we build the bindings (set by --prefix) and then run the command:

pybase=`which python3`
g++ \

-O3 \
-I${pybase::-12}/include/python3.6m -I$PWD/../../../build/pybind11/include -I$PWD/..

→˓/include \
-I$PWD/../../../source -shared \
-std=c++11 -c test_struct.cpp \
-o test_struct.o -fPIC

NOTE ^^ Your python directory may be different slightly, you can find out yours using the shell command:

python -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())"

Again, a skeleton of this command would be:

pybase=`which python3`
g++ \

-O3 \
-I${my_python_include_directory} -I${pybind11_include_directory} -I${my_project_

→˓directory} \
-I${binder_source_directory} -shared \
-std=c++11 -c ${bindings_code_to_build_object_file_from} \
-o ${output_object_file_name} -fPIC

4. Do this again for the other generated .cpp file

• All .cpp files to compile are located in the .sources file.

5. Link together all of the compiled object files

g++ -o test_struct.so -shared test_struct/test_struct.o test_struct.o

6. Try running via python

python3 -c "import sys; sys.path.append('.'); import test_struct; f = test_struct.
→˓testers.test_my_struct(); print(f.an_int)"

7.2. Simple struct 23

Binder Documentation, Release 0.1

This should yeild: 27

7.2.2 Binding STL via pybind11

You may notice how ever that this will still fail:

python3 -c "import sys; sys.path.append('.'); import test_struct; f = test_struct.
→˓testers.test_my_struct(); print(f.a_float); f.add_float(); print(f.a_float);
→˓print(f.a_vector)"

This fails because python does not understand how to interact with the std library classes like std::vector. You
can get around this by remaking your bindings with this config file. However, you must note that when you are
returning vectors into your python environment, or pushing lists to the c++ side, there is a performance penalty when
pybind11 converts from python list[] -> std::vector, and vice-versa. This can be a problem when dealing
with larger lists/vectors.

If performance is critical, it is advised that most work is done via c++, and you just use python as the “glue”. For
example, the following command does not fail, because python never has to “see” the std::vector and all of the work
is done in the C++ layer.

python3 -c "import sys; sys.path.append('.'); import test_struct; f = test_struct.
→˓testers.test_my_struct(); print(f.a_float); f.add_float(); print(f.a_float); f.
→˓append_vec()"

But before you discount this approach completely, give it a try! It may still yeild performance improvements!

You can do this by adding a config file, and altering your binder compile command to read the config command like
this:

my_config_file.cfg

+include <pybind11/stl.h>

New binder compile command

pybase=`which python3`
$PWD/../../build/llvm-4.0.0/build_4.0.0*/bin/binder \
--root-module test_struct \
--prefix $PWD/bash_bindings/ \
--bind testers --config my_config_file.cfg \
all_bash_includes.hpp \
-- -std=c++11 -I$PWD/include -I$PWD/../../../build/pybind11/include -I${pybase::-12}

→˓/include/python3.6m \
-DNDEBUG

As an example of how the pybind11 bindings work, try running the command:

python3 -c "import sys; sys.path.append('.'); import test_struct; f = test_struct.
→˓testers.test_my_struct(); print(f.a_float); f.add_float(); print(f.a_float);
→˓print(f.a_vector)"

This will now run and print [1, 2, 3, 4, 5] at the end!

7.2.3 Binding STL via Binder

Binder allows us to add another layer so that we can interact directly with std::vector‘ for improved performance. This
is sort of a hybrid between the above pybind11 implementation, and full on c++ code. There are a few things that have

24 Chapter 7. Examples

Binder Documentation, Release 0.1

to be changed though, before this will work.

changes to allow for binder bindings

1. We must add a function that returns the std::vector<> type of interest.

• std::vector bindings will be optimized out unless we add this function

std::vector<int>
get_a_vector() {

return a_vector;
}

2. We must make a config file that tells binder to build the vector bindings

• you can also move the --bind commandline flags here by using the format +namespace {what to
bind}.

+include <stl_binders.hpp>
+namespace testers
+binder std::vector binder::vector_binder

Now if we run the following command

python3 -c "import sys; sys.path.append('.'); import test_struct; f = test_struct.
→˓testers.test_my_struct(); print(f.a_float); f.add_float(); print(f.a_float);
→˓print(f.a_vector)"

this will print vector_int[1, 2, 3, 4, 5] at the end!, you can see, that unlike how pybind11 returns a python
list, we have a statically typed list that can only take ints (much like c++).

in case you were curious, if you try to append a float to this list by using a command like f.a_vector.
append(22.22). You will see an error that looks similar to this:

Traceback (most recent call last):
File "<string>", line 1, in <module>

TypeError: append(): incompatible function arguments. The following argument types
→˓are supported:

1. (self: test_struct.std.vector_int, x: int) -> None

Invoked with: vector_int[1, 2, 3, 4, 5], 22.22

7.2. Simple struct 25

Binder Documentation, Release 0.1

26 Chapter 7. Examples

CHAPTER 8

Debugging and troubleshooting

This section is dedicated to the description of problems that might appear while creating the python bindings with
binder and the ways to avoid them.

Below are some helpful tips that might help to make the bindings.

8.1 Inconsistencies

Binder moves down the all_includes_file file sequentially, sometimes ending up with errors. This is almost
always caused by the all_includes_file being different between runs. The order should not be important, but
nail it down to at least be consistent, and then move on to the next step.

8.2 Build failures

Even when the bindings were generated successfully, there might be compilation errors when building the modules
from the generated sources. Quite often the errors are caused by the implementation of the C++ standard library, when
the headers of the standard library include each other, or include implementation-specific headers. Many cases like
that are already handled in the functions from the source/types.cpp file, using the knowledge of the existing
STL implementations. However some cases might still be missing, e.g. for the newest or not wide-spread versions of
STL. An example of debugging for these cases is described below.

On systems with GNU STL, the compilation errors for the cases not handled by the source/types.cpp, would
manifest itself with an abundance of long and cryptic messages

For instance, the compilation could fail with the following error messages:

FAILED: CMakeFiles/statvec.dir/std/complex.o
In file included from std/complex.cpp:1:0:
/usr/include/c++/7/bits/stl_construct.h: In function 'void std::_Destroy(_
→˓ForwardIterator, _ForwardIterator)':

long and cryptic error message

27

Binder Documentation, Release 0.1

The ways to handle this error:

1. Rebuild bindings adding the flag --annotate-includes which will provide much more information on
the binded classes.

2. Since the includes from the bits directory should not appear in the generated code, one can grep for bits in
the generated codes, i.e. grep -r "bits" cmake_bindings/* could yield:

cmake_bindings/std/complex.cpp:#include <bits/stl_construct.h> // std::_Construct
cmake_bindings/std/complex.cpp:#include <bits/stl_construct.h> // std::_Destroy
cmake_bindings/std/complex.cpp:#include <bits/stl_construct.h> // std::_Destroy_
→˓aux
cmake_bindings/std/complex.cpp:#include <bits/stl_construct.h> // std::_Destroy_
→˓aux<true>::__destroy
cmake_bindings/std/complex.cpp:#include <bits/stl_construct.h> // std::_Destroy_n_
→˓aux
cmake_bindings/std/complex.cpp:#include <bits/stl_uninitialized.h> // std::__
→˓uninitialized_copy
cmake_bindings/std/complex.cpp:#include <bits/stl_uninitialized.h> // std::__
→˓uninitialized_copy<false>::__uninit_copy
cmake_bindings/std/complex.cpp:#include <bits/stl_uninitialized.h> // std::__
→˓uninitialized_copy<true>::__uninit_copy
cmake_bindings/std/complex.cpp:#include <bits/stl_uninitialized.h> // std::__
→˓uninitialized_copy_a
cmake_bindings/std/complex.cpp:#include <bits/stl_uninitialized.h> // std::__
→˓uninitialized_default_1
cmake_bindings/std/complex.cpp:#include <bits/stl_uninitialized.h> // std::__
→˓uninitialized_default_n
cmake_bindings/std/complex.cpp:#include <bits/stl_uninitialized.h> // std::__
→˓uninitialized_default_n_1
cmake_bindings/std/complex.cpp:#include <bits/stl_uninitialized.h> // std::__
→˓uninitialized_default_n_1<false>::__uninit_default_n
cmake_bindings/std/complex.cpp:#include <bits/stl_uninitialized.h> // std::__
→˓uninitialized_default_n_1<true>::__uninit_default_n
cmake_bindings/std/complex.cpp:#include <bits/stl_uninitialized.h> // std::__
→˓uninitialized_default_n_a
cmake_bindings/std/complex.cpp:#include <bits/stl_uninitialized.h> // std::__
→˓uninitialized_default_novalue_1
cmake_bindings/std/complex.cpp:#include <bits/stl_uninitialized.h> // std::__
→˓uninitialized_default_novalue_n_1
cmake_bindings/std/complex.cpp:#include <bits/stl_uninitialized.h> // std::__
→˓uninitialized_fill
cmake_bindings/std/complex.cpp:#include <bits/stl_uninitialized.h> // std::__
→˓uninitialized_fill_n
cmake_bindings/std/complex.cpp:#include <bits/stl_uninitialized.h> // std::__
→˓uninitialized_move_if_noexcept_a
cmake_bindings/std/complex.cpp:#include <bits/stl_uninitialized.h> //
→˓std::uninitialized_copy

The important information in the output is the std:: types/functions without the leading underscores. Those
are STL-implementation independent types/functions that should be defined elsewhere, not in the headers from
the bits directory. In this particular example, the function of interest is std::uninitialized_copy.

A quick search in the C++ documentation at https://en.cppreference.com or other resources tells that this func-
tion is defined in the <memory> header. Therefore, this information should be hardcoded into the binder.

3. The internal binder function that handles the STL library mappings is located in source/types.
cpp:add_relevant_include_for_decl. Briefly, the function has a map with the STL headers and
the types those contain. That should look similar to this:

28 Chapter 8. Debugging and troubleshooting

https://en.cppreference.com

Binder Documentation, Release 0.1

{ "<algorithm>", {"std::move_backward", "std::iter_swap", "std::min"} },
{ "<exception>", {"std::nested_exception"} }

If there is a need to make a simple change, like in our case, the map for the <memory> can be added like this:

{ "<algorithm>", {"std::move_backward", "std::iter_swap", "std::min"} },
{ "<exception>", {"std::nested_exception"} },
{ "<memory>", {"std::uninitialized_copy"} },

In addition to that, to ensure a better portability, some of the implementation-specific headers are replaced in
binder with the standard ones. The map that holds the replacements is located in the source/types.cpp
file as well. It should look similar to this:

static vector< std::pair<string, string> > const include_map = {
make_pair("<bits/ios_base.h>", "<ios>"),
make_pair("<bits/istream.tcc>", "<istream>"),
make_pair("<bits/ostream.tcc>", "<ostream>"),
make_pair("<bits/postypes.h>", "<ios>"),

4. After the changes are done, the binder executable should be recompilled and re-used to create the desired bind-
ings. In some cases, many iterations of the described procedure will be needed till all the STL types/functions
will be mapped to the correct includes.

If this fixes your problem please let us know, or make a pull request!

8.2. Build failures 29

Binder Documentation, Release 0.1

30 Chapter 8. Debugging and troubleshooting

CHAPTER 9

Testing

This section describes the testing suite for binder. The testing suite has two implementations, both using
the same set of tests located in the test subdirectory. The first implementation is located inside the script
build-and-run-tests.py and is designed to be used for the builds inside the LLVM source tree. This im-
plementation is briefly described above. The second implementation uses cmake/ctest and is used in the CI with
the external LLVM installation. To configure this testing suite, use

cmake ... -DBINDER_ENABLE_TEST=ON ...

Multiple python versions can be and should be used in parallel. The versions are set as a comma-separated list
passed by the BINDER_TEST_PYTHON_VERSIONS option. The default list is 0,2,3. The Python version “0”
corresponds to a “plain diff” of the output vs. reference. The versions of Python2/Python3 will be the first versions
found by cmake, see https://cmake.org/cmake/help/latest/module/FindPython.html and https://cmake.org/cmake/help/
latest/module/FindPython3.html for your cmake version. To use specific python versions one can use the following

cmake -DBINDER_TEST_PYTHON_VERSIONS=0,2.7.15,3.8.0,3.7.0 ...

The generated codes will be compiled and loaded using the corresponding interpreter. With an option
-DBINDER_MOCK_TEST=ON one can mock the code generation by binder. In this case the reference codes will
be used in the python tests.

31

https://cmake.org/cmake/help/latest/module/FindPython.html
https://cmake.org/cmake/help/latest/module/FindPython3.html
https://cmake.org/cmake/help/latest/module/FindPython3.html

Binder Documentation, Release 0.1

32 Chapter 9. Testing

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

33

	About this project
	Core features
	Goodies

	Installation
	Requirements
	Building

	Installation with pre-installed LLVM
	Requirements
	Building
	Using binder built with pre-installed LLVM
	With Docker
	Building Statically (Linux only)

	The Basics
	Principles

	Configuration
	Command line options
	Config file options

	Binder Limitations
	External Operators
	Ignored Operators
	Miscellaneous

	Examples
	Basic outline
	Simple struct

	Debugging and troubleshooting
	Inconsistencies
	Build failures

	Testing
	Indices and tables

