

Welcome to coworker’s documentation!

Contents:

	coworker

	Quick Start Tutorial

	Links & Contact Info

API Documentation

	Coworker

Indices and tables

	Index

	Module Index

	Search Page

coworker

Generic worker that performs concurrent tasks using coroutine.

Quick Start Tutorial

Define how a task is performed and create the worker:

from coworker import Coworker

class SquareWorker(Coworker):
 async def do_task(self, task):
 return task * task

worker = SquareWorker(max_concurrency=5) # Only 5 tasks will run concurrently
 # As do_task is fast, 35,000 tasks can be done in 1 second.

To run in the background forever and add tasks:

import asyncio

async def background_worker_example():
 # Start worker / Run in background
 asyncio.ensure_future(worker.start())

 # Mulitiple tasks
 tasks = list(range(100))
 results = await asyncio.gather(*worker.add_tasks(tasks))
 print(results) # results = [0, 1, 4, 9, ...]

 # Single task
 result = await worker.add_tasks(2)
 print(result) # result = 4

 # Stop worker
 await worker.stop()

Run async usage example
asyncio.get_event_loop().run_until_complete(background_worker_example())

To run for a list of tasks and stop worker when finished:

task_futures = asyncio.get_event_loop().run_until_complete(worker.start([1, 2, 3]))
print([t.result() for t in task_futures]) # [1, 4, 9]

Links & Contact Info

Documentation: http://coworker.readthedocs.org

PyPI Package: https://pypi.python.org/pypi/coworker

GitHub Source: https://github.com/maxzheng/coworker

Report Issues/Bugs: https://github.com/maxzheng/coworker/issues

Connect: https://www.linkedin.com/in/maxzheng

Contact: maxzheng.os @t gmail.com

Coworker

	
class coworker.Coworker(max_concurrency=10, sliding_window=True)

	Generic worker to perform concurrent tasks using coroutine IO loop.

Initialize worker

	Parameters

	
	max_concurrency (int) – How many tasks can be done at the same time. Defaults to 10.

	sliding_window (bool) – Start a task as soon as there is an available slot based on concurrency instead of
waiting for all concurrent tasks to be completed first.

	
add_tasks(tasks)

	Add task(s) to queue

	Parameters

	tasks (object|list) – A single or list of task(s) to add to the queue.

	Returns

	If a single task is given, then returns a single task future that will contain result from
self.do_task(). If a list of tasks is given, then a list of task futures, one for each task.

Note that if hash(task) is the same as another/existing task,
the same future will be returned, and the task is only performed once.
If it is desired to perform the same task multiple times / distinctly, then the task
will need to be wrapped in another object that has a unique hash.

	
available_slots

	Number of available slots to do tasks based on concurrency and window settings

	
cancel_task(task)

	Cancel a task

	
do_task(task)

	Perform the task. Sub-class should override this to do something more meaningful.

	
idle

	Worker has nothing to do and is doing nothing

	
on_finish()

	Invoked after worker completes all tasks before exiting worker. Subclass should override if needed.

	
on_finish_task(task, result)

	”
Invoked after the task is completed. Subclass should override if needed.

	Parameters

	
	task – Task that was finished

	result – Return value from self.do_task(task)()

	
on_start()

	Invoked before worker starts. Subclass should override if needed.

	
on_start_task(task)

	Invoked before starting the task. Subclass should override if needed.

	Parameters

	task – Task that will start

	
start(tasks=None)

	Start the worker.

	Parameters

	tasks (list) – List of tasks to do. If provided, worker will exit immediately after all tasks
are done. If that’s not desired, use self.add_task() instead.

	Returns

	List of futures for each task in the same order.

	
stop()

	Stop the worker by canceling all tasks and then wait for worker to finish.

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 coworker	

Index

 A
 | C
 | D
 | I
 | O
 | S

A

 	
 	add_tasks() (coworker.Coworker method)

 	
 	available_slots (coworker.Coworker attribute)

C

 	
 	cancel_task() (coworker.Coworker method)

 	
 	Coworker (class in coworker)

 	coworker (module)

D

 	
 	do_task() (coworker.Coworker method)

I

 	
 	idle (coworker.Coworker attribute)

O

 	
 	on_finish() (coworker.Coworker method)

 	on_finish_task() (coworker.Coworker method)

 	
 	on_start() (coworker.Coworker method)

 	on_start_task() (coworker.Coworker method)

S

 	
 	start() (coworker.Coworker method)

 	
 	stop() (coworker.Coworker method)

Version 1.0.1

	Update setup

Version 1.0.0

	Update doc

Version 0.0.4

	Switch to use future instead of sleep to wait for new tasks

Version 0.0.3

	Remove API doc as autodoc is not working

Version 0.0.2

	Initial checkin

	Initial checkin

	Initial commit

 nav.xhtml

 Table of Contents

 		
 Welcome to coworker’s documentation!

 		
 coworker

 		
 Quick Start Tutorial

 		
 Links & Contact Info

 		
 Coworker

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

