

Welcome to Cortex2.0

User Documentation

	Installation

	Getting Started

	cortex

	Develop

	Custom demos

	A walkthrough a custom classifier:

	Defining losses and results

	Visualization

	Putting it together

Installation

Prerequisites

Visdom

$pip install visdom

From Source

$git clone https://github.com/rdevon/cortex2.0.git
$cd cortex2.0
$pip install .

Getting Started

Configuration

The first thing to do is to set up the config.yaml. This file is
user-specific (it got tracked at some point, so I need to fix this), and
will tell cortex everything user-specific regarding data locations,
visualation, and outputs.

$ rm -rf ~/.cortex.yml
$ cortex setup

Configuration File Example

Located at ~/.cortex.yml

torchvision_data_path: /data/milatmp1/hjelmdev/data/
data_paths: {
 Imagenet-12: /data/lisa/data/ImageNet2012_jpeg, CelebA: /tmp/hjelmdev/CelebA}viz: {
 font: /usr/share/fonts/truetype/liberation/LiberationSerif-Regular.ttf, server: 'http://132.204.26.180'}
out_path: /data/milatmp1/hjelmdev/outs/

These are as follows:

	torchvision_data_path: the path to all torchvision-specific
datasets (details can be found in torchvision.datasets)

	data_paths: user-specified custom datasets. Currently, only support
is for image folders (a la imagenet), but other dataset types (e.g.,
text) are planned in the near-future.

	vis: visdom specific arguments.

	
out_path: Out path for experiment outputs

Usage

cortex –help

Built-ins

	setup

	Setup cortex configuration.

	GAN

	Generative adversarial network.

	VAE

	Variational autoencoder.

	AdversarialAutoencoder

	Adversarial Autoencoder.

	ALI

	Adversarially learned inference.

	ImageClassification

	Basic image classifier.

	GAN_MINE

	GAN + MINE.

Options

	-h, --help

	show this help message and exit

	-o OUT_PATH, --out_path OUT_PATH

	Output path directory. All model results will go
here. If a new directory, a new one will be
created, as long as parent exists.

	-n NAME, --name NAME

	Name of the experiment. If given, base name of
output directory will be –name. If not given,
name will be the base name of the –out_path

	-r RELOAD, --reload RELOAD

	Path to model to reload.

	-M LOAD_MODELS, --load_models LOAD_MODELS

	Path to model to reload. Does not load args, info,
etc

	-m META, --meta META

	TODO

	-c CONFIG_FILE, --config_file CONFIG_FILE

	Configuration yaml file. See exps/ for examples

	-k, --clean

	Cleans the output directory. This cannot be undone!

	-v VERBOSITY, --verbosity VERBOSITY

	Verbosity of the logging. (0, 1, 2)

	-d DEVICE, --device DEVICE

	TODO

Usage Example

To run an experiment.

cortex GAN --d.source CIFAR10 --d.copy_to_local

Custom models

It is possible to run experiments with custom models made with Pytorch under the Cortex framework. For doing so, the model has to
be added to the demos folder under the root of the project. You can have a look to the given demo autoencoder and classifier already
implemented. The main difference is that, rather than registering the plugins, the run function of main.py has to be called. For example,

if __name__ == '__main__':
classifier = MyClassifier()
run(model=classifier)

To run an experiment with a custom model.

python my_model.py --d.source <Dataset> --d.copy_to_local

cortex

	cortex package
	Subpackages

	Submodules

	cortex.main module

	cortex.plugins module

	Module contents

cortex package

Subpackages

Submodules

cortex.main module

cortex.plugins module

Module contents

Develop

Documentation

Make sure that the cortex package is installed and configured. For development purpose, if you are
making changes to documentation, for example modifications inside docstrings or changes in some .rst
files

Building Documentation

To build the documentation, the docs.py script under the root of the project is facilitating the process.
Before making a Pull Request to the remote repository, you should run the script.

$ python docs.py

Serving Documentation Locally

If you want to have a look at your changes before making a Pull Request on GitHub, it is possible to
serve locally the generated html files.

$ cd docs/build/html
$ python -m http.server 8000 --bind 127.0.0.1

Custom demos

While cortex has built-in functionality, but it is meant to meant to be
used with your own modules. An example of making a model that works with
cortex can be found at:
https://github.com/rdevon/cortex/blob/master/demos/demo_classifier.py
and https://github.com/rdevon/cortex/blob/master/demos/demo_custom_ae.py

Documentation on the API can be found here:
https://github.com/rdevon/cortex/blob/master/cortex/plugins.py

For instance, the demo autoencoder can be used as:

python cortex/demos/demo_custom_ae.py --help

A walkthrough a custom classifier:

Let’s look a little more closely at the autoencoder demo above to see
what’s going on. cortex relies on using and overriding methods of
plugins classes.

First, let’s look at the methods, build, routine, and
visualize. These are special methods for the plugin that can be
overridden to change the behavior of your model for your needs.

The signature of these functions look like:

def build(self, dim_z=64, dim_encoder_out=64):
 ...

def routine(self, inputs, targets, ae_criterion=F.mse_loss):
 ...

def visualize(self, inputs, targets):
 ...

Each of these functions have arguments and keyword arguments. Note that
the keyword arguments showed up in the help in the above example. This
is part of the functionality of cortex: it manages your hyperparameters
to these functions, organizes them, and provides command line control
automatically. Even the docstrings are used in the command line, so
other users can get the usage docs directly from there.

The arguments are data, which are to be manipulated as needed in those
methods. These are for the most part handled automatically, but all of
these methods can be used as normal functions as well.

Building models

The build function takes the hyperparameters and sets networks.

class Autoencoder(nn.Module):
 def __init__(self, encoder, decoder):
 super(Autoencoder, self).__init__()
 self.encoder = encoder
 self.decoder = decoder

 def forward(self, x, nonlinearity=None):
 encoded = self.encoder(x)
 decoded = self.decoder(encoded)
 return decoded

...

 def build(self, dim_z=64, dim_encoder_out=64):
 encoder = nn.Sequential(
 nn.Linear(28, 256),
 nn.ReLU(True),
 nn.Linear(256, 28),
 nn.ReLU(True))
 decoder = nn.Sequential(
 nn.Linear(28, 256),
 nn.ReLU(True),
 nn.Linear(256, 28),
 nn.Sigmoid())
 self.nets.ae = Autoencoder(encoder, decoder)

All that’s being done here is the hyperparameters are being used to
create an instance of an nn.Module subclass, which is being added to
the set of “nets”. Note that they keyword ae is very important, as
this is going to be how you retrieve your nets and define their losses
farther down.

Also note that cortex only currently supports nn.Module subclasses
from Pytorch.

Defining losses and results

Adding losses and results from your model is easy, just compute your
graph given you models and data, then add the losses and results by
setting those members:

def routine(self, inputs, targets, ae_criterion=F.mse_loss):
 encoded = self.nets.ae.encoder(inputs)
 outputs = self.nets.ae.decoder(encoded)
 r_loss = ae_criterion(
 outputs, inputs, size_average=False) / inputs.size(0)
 self.losses.ae = r_loss

Additional results can be added similarly. For instance, in the demo
classifier:

def routine(self, inputs, targets, criterion=nn.CrossEntropyLoss()):
 ...
 classifier = self.nets.classifier

 outputs = classifier(inputs)
 predicted = torch.max(F.log_softmax(outputs, dim=1).data, 1)[1]

 loss = criterion(outputs, targets)
 correct = 100. * predicted.eq(
 targets.data).cpu().sum() / targets.size(0)

 self.losses.classifier = loss
 self.results.accuracy = correct

Visualization

Cortex allows for visualization using visdom, and this can be defined in
a similar way as above:

def visualize(self, images, inputs, targets):
 predicted = self.predict(inputs)
 self.add_image(images.data, labels=(targets.data, predicted.data),
 name='gt_pred')

See the ModelPlugin API for more more details.

Putting it together

Finally, we can specify default arguments:

defaults = dict(
 data=dict(
 batch_size=dict(train=64, test=64), inputs=dict(inputs='images')),
 optimizer=dict(optimizer='Adam', learning_rate=1e-4),
 train=dict(save_on_lowest='losses.ae'))

and then add cortex.main.run to __main__:

if __name__ == '__main__':
 autoencoder = AE()
 run(model=autoencoder)

And that’s it. cortex also allows for lower-level functions to be
overridden (e.g., train_step, eval_step, train_loop, etc) with more
customizability coming soon. For more examples of usage, see the
built-in models:
https://github.com/rdevon/cortex/tree/master/cortex/built_ins/models

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Cortex2.0

 		
 Installation

 		
 Prerequisites

 		
 Visdom

 		
 From Source

 		
 Getting Started

 		
 Configuration

 		
 Configuration File Example

 		
 Usage

 		
 Built-ins

 		
 Options

 		
 Usage Example

 		
 Custom models

 		
 cortex

 		
 cortex package

 		
 Subpackages

 		
 Submodules

 		
 cortex.main module

 		
 cortex.plugins module

 		
 Module contents

 		
 Develop

 		
 Documentation

 		
 Building Documentation

 		
 Serving Documentation Locally

 		
 Custom demos

 		
 A walkthrough a custom classifier:

 		
 Building models

 		
 Defining losses and results

 		
 Visualization

 		
 Putting it together

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

