
corpkit documentation
Release 2.3.8

Daniel McDonald

January 23, 2017

API

1 Creating projects and building corpora 5

2 Interrogating corpora 9

3 Concordancing 17

4 Editing results 21

5 Visualising results 25

6 Using language models 31

7 Managing projects 33

8 Overview 37

9 Setup 41

10 Making projects and corpora 43

11 Interrogating corpora 45

12 Concordancing 47

13 Annotating your corpus 49

14 Editing results 51

15 Plotting 53

16 Settings and management 55

17 Corpus classes 57

18 Interrogation classes 65

19 Functions 75

20 Wordlists 77

i

ii

corpkit documentation, Release 2.3.8

corpkit is a Python-based tool for doing more sophisticated corpus linguistics. It exists as a graphical interface, a
Python API, and a natural language interpreter. The API and interpreter are documented here.

With corpkit, you can create parsed, structured and metadata-annotated corpora, and then search them for complex
lexicogrammatical patterns. Search results can be quickly edited, sorted and visualised, saved and loaded within
projects, or exported to formats that can be handled by other tools. In fact, you can easily work with any dataset
in CONLL U format, including the freely available, multilingual Universal Dependencies Treebanks.

Concordancing is extended to allow the user to query and display grammatical features alongside tokens. Key-
wording can be restricted to certain word classes or positions within the clause. If your corpus contains multiple
documents or subcorpora, you can identify keywords in each, compared to the corpus as a whole.

corpkit leverages Stanford CoreNLP, NLTK and pattern for the linguistic heavy lifting, and pandas and matplotlib
for storing, editing and visualising interrogation results. Multiprocessing is available via joblib, and Python 2 and
3 are both supported.

API example

Here’s a basic workflow, using a corpus of news articles published between 1987 and 2014, structured like this:

./data/NYT:

---1987
| ---NYT-1987-01-01-01.txt
| ---NYT-1987-01-02-01.txt
| ...
|
---1988
| ---NYT-1988-01-01-01.txt
| ---NYT-1988-01-02-01.txt
| ...
...

Below, this corpus is made into a Corpus object, parsed with Stanford CoreNLP, and interrogated for a lexi-
cogrammatical feature. Absolute frequencies are turned into relative frequencies, and results sorted by trajectory.
The edited data is then plotted.

>>> from corpkit import *
>>> from corpkit.dictionaries import processes

parse corpus of NYT articles containing annual subcorpora
>>> unparsed = Corpus('data/NYT')
>>> parsed = unparsed.parse()

query: nominal nsubjs that have verbal process as governor lemma
>>> crit = {F: r'^nsubj$',
... GL: processes.verbal.lemmata,
... P: r'^N'}

interrogate corpus, outputting lemma forms
>>> sayers = parsed.interrogate(crit, show=L)
>>> sayers.quickview(10)

0: official (n=4348)
1: expert (n=2057)
2: analyst (n=1369)
3: report (n=1103)
4: company (n=1070)
5: which (n=1043)
6: researcher (n=987)
7: study (n=901)
8: critic (n=826)
9: person (n=802)

get relative frequency and sort by increasing
>>> rel_say = sayers.edit('%', SELF, sort_by='increase')

plot via matplotlib, using tex if possible

API 1

http://universaldependencies.org/format.html
https://github.com/UniversalDependencies
http://stanfordnlp.github.io/CoreNLP/
http://www.nltk.org/
http://www.clips.ua.ac.be/pages/pattern-en/
http://pandas.pydata.org/
http://matplotlib.org/
http://pythonhosted.org/joblib/

corpkit documentation, Release 2.3.8

>>> rel_say.visualise('Sayers, increasing', kind='area',
... y_label='Percentage of all sayers')

Output:

Installation

Via pip:

$ pip install corpkit

via Git:

$ git clone https://www.github.com/interrogator/corpkit
$ cd corpkit
$ python setup.py install

Parsing and interrogation of parse trees will also require Stanford CoreNLP. corpkit can download and install it
for you automatically.

Graphical interface

Much of corpkit’s command line functionality is also available in the corpkit GUI. After installation, it can be
started from the command line with:

$ python -m corpkit.gui

If you’re working on a project from within Python, you can open it graphically with:

>>> from corpkit import gui
>>> gui()

Alternatively, the GUI is available (alongside documentation) as a standalone OSX app here.

Interpreter

corpkit also has its own interpreter, a bit like the Corpus Workbench. You can open it with:

2 API

http://interrogator.github.io/corpkit/
http://cwb.sourceforge.net/

corpkit documentation, Release 2.3.8

$ corpkit
or, alternatively:
$ python -m corpkit.env

And then start working with natural language commands:

> set junglebook as corpus
> parse junglebook with outname as jb
> set jb as corpus
> search corpus for governor-lemma matching processes:verbal showing pos and lemma
> calculate result as percentage of self
> plot result as line chart with title as 'Example figure'

From the interpreter, you can enter ipython, jupyter notebook or gui to switch between interfaces,
preserving the local namespace and data where possible.

Information about the syntax is available at the Overview.

API 3

corpkit documentation, Release 2.3.8

4 API

CHAPTER 1

Creating projects and building corpora

Doing corpus linguistics involves building and interrogating corpora, and exploring interrogation results.
corpkit helps with all of these things. This page will explain how to create a new project and build a cor-
pus.

• Creating a new project
• Adding a corpus
• Creating a Corpus object
• Pre-processing the data
• Manipulating a parsed corpus
• Counting key features

1.1 Creating a new project

The simplest way to begin using corpkit is to import it and to create a new project. Projects are simply folders
containing subfolders where corpora, saved results, images and dictionaries will be stored. The simplest way is to
do it is to use the new_project command in bash, passing in the name you’d like for the project as the only
argument:

$ new_project psyc
move there:
$ cd psyc
now, enter python and begin ...

Or, from Python:

>>> import corpkit
>>> corpkit.new_project('psyc')
move there:
>>> import os
>>> os.chdir('psyc')
>>> os.listdir('.')

['data',
'dictionaries',
'exported',
'images',
'logs',
'saved_concordances',
'saved_interrogations']

5

corpkit documentation, Release 2.3.8

1.2 Adding a corpus

Now that we have a project, we need to add some plain-text data to the data folder. At the very least, this is simply
a text file. Better than this is a folder containing a number of text files. Best, however, is a folder containing
subfolders, with each subfolder containing one or more text files. These subfolders represent subcorpora.

You can add your corpus to the data folder from the command line, or using Finder/Explorer if you prefer.

$ cp -R /Users/me/Documents/transcripts ./data

Or, in Python, using shutil:

>>> import shutil
>>> shutil.copytree('/Users/me/Documents/transcripts', './data')

If you’ve been using bash so far, this is the moment when you’d enter Python and import corpkit.

1.3 Creating a Corpus object

Once we have a corpus of text files, we need to turn it into a Corpus object.

>>> from corpkit import Corpus
you can leave out the 'data' if it's in there
>>> unparsed = Corpus('data/transcripts')
>>> unparsed
<corpkit.corpus.Corpus instance: transcripts; 13 subcorpora>

1.4 Pre-processing the data

A Corpus object can only be interrogated if tokenisation or parsing has been performed. For this,
corpkit.corpus.Corpus objects have tokenise() and parse() methods. Tokenising is faster, sim-
pler, and will work for more languages. As shown below, you can also elect to POS tag and lemmatise the data:

> corpus = unparsed.tokenise(postags=True, lemmatisation=True)
switch either to false to disable---but lemmatisation requires pos

Parsing relies on Stanford CoreNLP’s parser, and therefore, you must have the parser and Java installed. corpkit
will look around in your PATH for the parser, but you can also pass in its location manually with (e.g.)
corenlppath=’users/you/corenlp’. If it can’t be found, you’ll be asked if you want to download
and install it automatically. Parsing has sensible defaults, and can be run with:

>>> corpus = unparsed.parse()

Note: Remember that parsing is a computationally intensive task, and can take a long time!

corpkit can also work with speaker IDs. If lines in your file contain capitalised alphanumeric names, followed
by a colon (as per the example below), these IDs can be stripped out and turned into metadata features in the
parsed dataset.

JOHN: Why did they change the signs above all the bins?
SPEAKER23: I know why. But I'm not telling.

To use this option, use the speaker_segmentation keyword argument:

>>> corpus = unparsed.parse(speaker_segmentation=True)

Tokenising or parsing creates a corpus that is structurally identical to the original, but with annotations in CONLL-
U formatted files in place of the original .txt files. When parsing, there are also methods for multiprocessing,
memory allocation and so on:

6 Chapter 1. Creating projects and building corpora

corpkit documentation, Release 2.3.8

parse() argument Type Purpose
corenlppath str Path to CoreNLP

operations str List of annotations
copula_head bool Make copula head of dependency parse
speaker_segmentation bool Do speaker segmentation
memory_mb int Amount of memory to allocate
multiprocess int/bool Process in n parallel jobs
outname str Custom name for parsed corpus

You can run parsing operations from the command line:

$ parse mycorpus --multiprocess 4 --outname MyData

1.5 Manipulating a parsed corpus

Once you have a parsed corpus, you’re ready to analyse it. corpkit.corpus.Corpus objects can be navi-
gated in a number of ways. CoreNLP XML is used to navigte the internal structure of CONLL-U files within the
corpus.

>>> corpus[:3] # access first three subcorpora
>>> corpus.subcorpora.chapter1 # access subcorpus called chapter1
>>> f = corpus[5][20] # access 21st file in 6th subcorpus
>>> f.document.sentences[0].parse_string # get parse tree for first sentence
>>> f.document.sentences.tokens[0].word # get first word

1.6 Counting key features

Before constructing your own queries, you may want to use some predefined attributes for counting key features
in the corpus.

>>> corpus.features

Output:

S Characters Tokens Words Closed class Open class Clauses Sentences Unmod. declarative Passives Mental processes Relational processes Mod. declarative Interrogative Verbal processes Imperative Open interrogative Closed interrogative
01 4380658 1258606 1092113 643779 614827 277103 68267 35981 16842 11570 11082 3691 5012 2962 615 787 813
02 3185042 922243 800046 471883 450360 209448 51575 26149 10324 8952 8407 3103 3407 2578 540 547 461
03 3157277 917822 795517 471578 446244 209990 51860 26383 9711 9163 8590 3438 3392 2572 583 556 452
04 3261922 948272 820193 486065 462207 216739 53995 27073 9697 9553 9037 3770 3702 2665 652 669 530
05 3164919 921098 796430 473446 447652 210165 52227 26137 9543 8958 8663 3622 3523 2738 633 571 467
06 3187420 928350 797652 480843 447507 209895 52171 25096 8917 9011 8820 3913 3637 2722 686 553 480
07 3080956 900110 771319 466254 433856 202868 50071 24077 8618 8616 8547 3623 3343 2676 615 515 434
08 3356241 972652 833135 502913 469739 218382 52637 25285 9921 9230 9562 3963 3497 2831 692 603 442
09 2908221 840803 725108 434839 405964 191851 47050 21807 8354 8413 8720 3876 3147 2582 675 554 455
10 2868652 815101 708918 421403 393698 185677 43474 20763 8640 8067 8947 4333 3181 2727 584 596 424

This can take a while, as it counts a number of complex features. Once it’s done, however, it saves automatically,
so you don’t need to do it again. There are also postags, wordclasses and lexicon attributes, which
behave similarly:

>>> corpus.postags
>>> corpus.wordclasses
>>> corpus.lexicon

These results can be useful when generating relative frequencies later on. Right now, however, you’re probably
interested in searching the corpus yourself, however. Hit Next to learn about that.

1.5. Manipulating a parsed corpus 7

http://nlp.stanford.edu/index.shtml

corpkit documentation, Release 2.3.8

8 Chapter 1. Creating projects and building corpora

CHAPTER 2

Interrogating corpora

Once you’ve built a corpus, you can search it for linguistic phenomena. This is done with the interrogate()
method.

• Introduction
• Search types
• Grammatical searching
• Excluding results
• What to show
• Working with trees
• Tree show values
• Working with dependencies
• Working with metadata
• Working with coreferences
• Multiprocessing
• N-grams
• Collocation
• Saving interrogations
• Exporting interrogations
• Other options

2.1 Introduction

Interrogations can be performed on any corpkit.corpus.Corpus object, but also,
on corpkit.corpus.Subcorpus objects, corpkit.corpus.File objects and
corpkit.corpus.Datalist objects (slices of Corpus objects). You can search plaintext corpora,
tokenised corpora or fully parsed corpora using the same method. We’ll focus on parsed corpora in this guide.

>>> from corpkit import *
words matching 'woman', 'women', 'man', 'men'
>>> query = {W: r'/(^wo)m.n/'}
interrogate corpus
>>> corpus.interrogate(query)
interrogate parts of corpus
>>> corpus[2:4].interrogate(query)
>>> corpus.files[:10].interrogate(query)
if you have a subcorpus called 'abstract':
>>> corpus.subcorpora.abstract.interrogate(query)

Corpus interrogations will output a corpkit.interrogation.Interrogation object, which stores a
DataFrame of results, a Series of totals, a dict of values used in the query, and, optionally, a set of concordance
lines. Let’s search for proper nouns in The Great Gatsby and see what we get:

9

corpkit documentation, Release 2.3.8

>>> corp = Corpus('gatsby-parsed')
turn on concordancing:
>>> propnoun = corp.interrogate({P: '^NNP'}, do_concordancing=True)
>>> propnoun.results

gatsby tom daisy mr. wilson jordan new baker york miss
chapter1 12 32 29 4 0 2 10 21 6 19
chapter2 1 30 6 8 26 0 6 0 6 0
chapter3 28 0 1 8 0 22 5 6 5 1
chapter4 38 10 15 25 1 9 5 8 4 7
chapter5 36 3 26 4 0 0 1 1 1 1
chapter6 37 21 19 11 0 1 4 0 3 4
chapter7 63 87 60 9 27 35 9 2 5 1
chapter8 21 3 19 1 19 1 0 1 0 0
chapter9 27 5 9 14 4 3 4 1 4 1

>>> propnoun.totals

chapter1 232
chapter2 252
chapter3 171
chapter4 428
chapter5 128
chapter6 219
chapter7 438
chapter8 139
chapter9 208
dtype: int64

>>> propnoun.query

{'case_sensitive': False,
'corpus': 'gatsby-parsed',
'dep_type': 'collapsed-ccprocessed-dependencies',
'do_concordancing': True,
'exclude': False,
'excludemode': 'any',
'files_as_subcorpora': True,
'gramsize': 1,
...}

>>> propnoun.concordance # (sample)

54 chapter1 They had spent a year in france for no particular reason and then d
55 chapter1 n't believe it I had no sight into daisy 's heart but i felt that tom would
56 chapter1 into Daisy 's heart but I felt that tom would drift on forever seeking a li
57 chapter1 This was a permanent move said daisy over the telephone but i did n't be
58 chapter1 windy evening I drove over to East egg to see two old friends whom i scarc
59 chapter1 warm windy evening I drove over to east egg to see two old friends whom i s
60 chapter1 d a cheerful red and white Georgian colonial mansion overlooking the bay
61 chapter1 pen to the warm windy afternoon and tom buchanan in riding clothes was stan
62 chapter1 to the warm windy afternoon and Tom buchanan in riding clothes was standing with

Cool, eh? We’ll focus on what to do with these attributes later. Right now, we need to learn how to generate them.

2.2 Search types

Parsed corpora contain many different kinds of things we might like to search. There are word forms, lemma
forms, POS tags, word classes, indices, and constituency and (three different) dependency grammar annotations.
For this reason, the search query is a dict object passed to the interrogate() method, whose keys specify
what to search, and whose values specify a query. The simplest ones are given in the table below.

Note: Single capital letter variables in code examples represent lowercase strings (W = ’w’). These variables
are made available by doing from corpkit import *. They are used here for readability.

10 Chapter 2. Interrogating corpora

corpkit documentation, Release 2.3.8

Search Gloss
W Word
L Lemma
F Function
P POS tag
X Word class
E NER tag
A Distance from root
I Index in sentence
S Sentence index
R Coref representative

Because it comes first, and because it’s always needed, you can pass it in like an argument, rather than a keyword
argument.

get variants of the verb 'be'
>>> corpus.interrogate({L: 'be'})
get words in 'nsubj' position
>>> corpus.interrogate({F: 'nsubj'})

Multiple key/value pairs can be supplied. By default, all must match for the result to be counted, though this can
be changed with searchmode=ANY or searchmode=ALL:

>>> goverb = {P: r'^v', L: r'^go'}
get all variants of 'go' as verb
>>> corpus.interrogate(goverb, searchmode=ALL)
get all verbs and any word starting with 'go':
>>> corpus.interrogate(goverb, searchmode=ANY)

2.3 Grammatical searching

In the examples above, we match attributes of tokens. The great thing about parsed data, is that we can search for
relationships between words. So, other possible search keys are:

Search Gloss
G Governor
D Dependent
H Coreference head
T Syntax tree
A1 Token 1 place to left
Z1 Token 1 place to right

>>> q = {G: r'^b'}
return any token with governor word starting with 'b'
>>> corpus.interrogate(q)

Governor, Dependent and Left/Right can be combined with the earlier table, allowing a large array of search types:

Match Governor Dependent Coref head Left/right
Word W G D H A1/Z1
Lemma L GL DL HL A1L/Z1L
Function F GF DF HF A1F/Z1F
POS tag P GP DP HP A1P/Z1P
Word class X GX DX HX A1X/Z1X
Distance from root A GA DA HA A1A/Z1A
Index I GI DI HI A1I/Z1I
Sentence index S GS DS HS A1S/Z1S

Syntax tree searching can’t be combined with other options. We’ll return to them in a minute, however.

2.3. Grammatical searching 11

corpkit documentation, Release 2.3.8

2.4 Excluding results

You may also wish to exclude particular phenomena from the results. The exclude argument takes a dict
in the same form a search. By default, if any key/value pair in the exclude argument matches, it will be
excluded. This is controlled by excludemode=ANY or excludemode=ALL.

>>> from corpkit.dictionaries import wordlists
get any noun, but exclude closed class words
>>> corpus.interrogate({P: r'^n'}, exclude={W: wordlists.closedclass})
when there's only one search criterion, you can also write:
>>> corpus.interrogate(P, r'^n', exclude={W: wordlists.closedclass})

In many cases, rather than using exclude, you could also remove results later, during editing.

2.5 What to show

Up till now, all searches have simply returned words. The final major argument of the interrogate method is
show, which dictates what is returned from a search. Words are the default value. You can use any of the search
values as a show value. show can be either a single string or a list of strings. If a list is provided, each value is
returned with forward slashes as delimiters.

>>> example = corpus.interrogate({W: r'fr?iends?'}, show=[W, L, P])
>>> list(example.results)

['friend/friend/nn', 'friends/friend/nns', 'fiend/fiend/nn', 'fiends/fiend/nns', ...]

Unigrams are generated by default. To get n-grams, pass in an n value as gramsize:

>>> example = corpus.interrogate({W: r'wom[ae]n]'}, show=N, gramsize=2)
>>> list(example.results)

['a/woman', 'the/woman', 'the/women', 'women/are', ...]

So, this leaves us with a huge array of possible things to show, all of which can be combined if need be:

Match Governor Dependent Coref Head 1L position 1R position
Word W G D H A1 Z1
Lemma L GL DL HL A1L Z1L
Function F GF DF HF A1F Z1F
POS tag P GP DP HP A1P Z1P
Word class X GX DX HX A1X Z1X
Distance from root A GA DA HA A1A Z1R
Index I GI DI HI A1I Z1I
Sentence index S GS DS HS A1S Z1S

One further extra show value is ’c’ (count), which simply counts occurrences of a phenomenon. Rather than
returning a DataFrame of results, it will result in a single Series. It cannot be combined with other values.

2.6 Working with trees

If you have elected to search trees, by default, searching will be done with Java, using Tregex. If you don’t have
Java, or if you pass in tgrep=True, searching will the more limited Tgrep2 syntax. Here, we’ll concentrate on
Tregex.

Tregex is a language for searching syntax trees like this one:

To write a Tregex query, you specify words and/or tags you want to match, in combination with operators that
link them together. First, let’s understand the Tregex syntax.

12 Chapter 2. Interrogating corpora

corpkit documentation, Release 2.3.8

To match any adjective, you can simply write:

JJ

with JJ representing adjective as per the Penn Treebank tagset. If you want to get NPs containing adjectives, you
might use:

NP < JJ

where < means with a child/immediately below. These operators can be reversed: If we wanted to show the
adjectives within NPs only, we could use:

JJ > NP

It’s good to remember that the output will always be the left-most part of your query.

If you only want to match Subject NPs, you can use bracketting, and the $ operator, which means sister/directly
to the left/right of :

JJ > (NP $ VP)

In this way, you build more complex queries, which can extent all the way from a sentence’s root to particular
tokens. The query below, for example, finds adjectives modifying book:

JJ > (NP <<# /book/)

Notice that here, we have a different kind of operator. The << operator means that the node on the right does not
need to be a child, but can be a descendant. the # means head—that is, in SFL, it matches the Thing in a Nominal
Group.

If we wanted to also match magazine or newspaper, there are a few different approaches. One way would be to
use | as an operator meaning or:

JJ > (NP (<<# /book/ | <<# /magazine/ | <<# /newspaper/))

This can be cumbersome, however. Instead, we could use a regular expression:

JJ > (NP <<# /^(book|newspaper|magazine)s*$/)

Though it is beyond the scope of this guide to teach Regular Expressions, it is important to note that Regular
Expressions are extremely powerful ways of searching text, and are invaluable for any linguist interested in digital
datasets.

Detailed documentation for Tregex usage (with more complex queries and operators) can be found here.

2.7 Tree show values

Though you can use the same Tregex query for tree searches, the output changes depending on what you select as
the show value. For the following sentence:

These are prosperous times.

you could write a query:

r'JJ < __'

Which would return:

Show Gloss Output
W Word prosperous
T Tree (JJ prosperous)
p POS tag JJ
C Count 1 (added to total)

2.7. Tree show values 13

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
http://nlp.stanford.edu/~manning/courses/ling289/Tregex.htm

corpkit documentation, Release 2.3.8

2.8 Working with dependencies

When working with dependencies, you can use any of the long list of search and show values. It’s possible to
construct very elaborate queries:

>>> from corpkit.dictionaries import process_types, roles
nominal nsubj with verbal process as governor
>>> crit = {F: r'^nsubj$',
... GL: processes.verbal.lemmata,
... GF: roles.event,
... P: r'^N'}
interrogate corpus, outputting the nsubj lemma
>>> sayers = parsed.interrogate(crit, show=L)

2.9 Working with metadata

If you’ve used speaker segmentation and/or metadata addition when building your corpus, you can tell the
interrogate() method to use these values as subcorpora, or restrict searches to particular values. The code
below will limit searches to sentences spoken by Jason and Martin, or exclude them from the search:

>>> corpus.interrogate(query, just_metadata={'speaker': ['JASON', 'MARTIN']})
>>> corpus.interrogate(query, skip_metadata={'speaker': ['JASON', 'MARTIN']})

If you wanted to compare Jason and Martin’s contributions in the corpus as a whole, you could treat them as
subcorpora:

>>> corpus.interrogate(query, subcorpora='speaker',
... just_metadata={'speaker': ['JASON', 'MARTIN']})

The method above, however, will make an interrogation with two subcorpora, ‘JASON’ AND MARTIN. You can
pass a list in as the subcorpora keyword argument to generate a multiindex:

>>> corpus.interrogate(query, subcorpora=['folder', 'speaker'],
just_metadata={'speaker': ['JASON', 'MARTIN']})

2.10 Working with coreferences

One major challenge in corpus linguistics is the fact that pronouns stand in for other words. Parsing provides
coreference resolution, which maps pronouns to the things they denote. You can enable this kind of parsing by
specifying the dcoref annotator:

>>> corpus = Corpus('example.txt')
>>> ops = 'tokenize,ssplit,pos,lemma,parse,ner,dcoref'
>>> parsed = corpus.interrogate(operations=ops)
print a plaintext representation of the parsed corpus
>>> print(parsed.plain)

0. Clinton supported the independence of Kosovo
1. He authorized the use of force.

If you have done this, you can use coref=True while interrogating to allow coreferent forms to be counted along-
side query matches. For example, if you wanted to find all the processes Clinton is engaged in, you could do:

>>> from corpkit.dictionaries import roles
>>> query = {W: 'clinton', GF: roles.process}
>>> res = parsed.interrogate(query, show=L, coref=True)
>>> res.results.columns

This matches both Clinton and he, and thus gives us:

14 Chapter 2. Interrogating corpora

corpkit documentation, Release 2.3.8

['support', 'authorize']

2.11 Multiprocessing

Interrogating the corpus can be slow. To speed it up, you can pass an integer as the multiprocess keyword
argument, which tells the interrogate() method how many processes to create.

>>> corpus.interrogate({T: r'__ > MD'}, multiprocess=4)

Note: Too many parallel processes may slow your computer down. If you pass in multiprocessing=True,
the number of processes will equal the number of cores on your machine. This is usually a fairly sensible number.

2.12 N-grams

N-gramming can be generated by making gramsize > 1:

>>> corpus.interrogate({W: 'father'}, show='L', gramsize=3)

2.13 Collocation

Collocations can be shown by making using window:

>>> corpus.interrogate({W: 'father'}, show='L', window=6)

2.14 Saving interrogations

>>> interro.save('savename')

Interrogation savenames will be prefaced with the name of the corpus interrogated.

You can also quicksave interrogations:

>>> corpus.interrogate(T, r'/NN.?/', save='savename')

2.15 Exporting interrogations

If you want to quickly export a result to CSV, LaTeX, etc., you can use Pandas’ DataFrame methods:

>>> print(nouns.results.to_csv())
>>> print(nouns.results.to_latex())

2.16 Other options

interrogate() takes a number of other arguments, each of which is documented in the API documentation.

If you’re done interrogating, you can head to the page on Editing results to learn how to transform raw frequency
counts into something more meaningful. Or, hit Next to learn about concordancing.

2.11. Multiprocessing 15

corpkit documentation, Release 2.3.8

16 Chapter 2. Interrogating corpora

CHAPTER 3

Concordancing

Concordancing is the task of getting an aligned list of keywords in context. Here’s a very basic example, using
Industrial Society and Its Future as a corpus:

>>> tech = corpus.concordance({W: r'techn*'})
>>> tech.format(n=10, columns=[L, M, R])

0 The continued development of technology will worsen the situation
1 vernments but the economic and technological basis of the present society
2 They want to make him study technical subjects become an executive o
3 program to acquire some petty technical skill then come to work on tim
4 rom nature are consequences of technological progress
5 n them and modern agricultural technology has made it possible for the e
6 -LRB- Also technology exacerbates the effects of cro
7 changes very rapidly owing to technological change
8 they enthusiastically support technological progress and economic growth
9 e rapid drastic changes in the technology and the economy of a society w

3.1 Generating a concordance

When using corpkit, any interrogation is also optionally a concordance. If you use the do_concordancing
keyword argument, your interrogation will have a concordance attribute containing concordance lines. Like
interrogation results, concordances are stored as Pandas DataFrames. maxconc controls the number of lines
produced.

>>> withconc = corp.interrogate({L: ['man', 'woman', 'person']},
... show=[W,P],
... do_concordancing=True,
... maxconc=500)

0 T Asian/JJ a/DT disabled/JJ person/nn or/cc a/dt woman/nn origin
1 led/JJ person/NN or/CC a/DT woman/nn originally/rb had/vbd no/d
2 woman/NN or/CC disabled/JJ person/nn but/cc a/dt minority/nn of
3 n/JJ immigrant/JJ abused/JJ woman/nn or/cc disabled/jj person/n
4 ing/VBG weak/JJ -LRB-/-LRB- women/nns -rrb-/-rrb- defeated/vbn -

If you like, you can use only_format_match=True to keep the left and right context simple:

>>> withconc = corp.interrogate({L: ['man', 'woman', 'person']},
... show=[W,P],
... only_format_match=True,
... do_concordancing=True,
... maxconc=500)

0 African an Asian a disabled person/nn or a woman originally had
1 sian a disabled person or a woman/nn originally had no derogato
2 nt abused woman or disabled person/nn but a minority of activist
3 ller Asian immigrant abused woman/nn or disabled person but a m
4 n image of being weak -LRB- women/nns -rrb- defeated -lrb- ameri

17

corpkit documentation, Release 2.3.8

If you don’t want or need the interrogation data, you can use the concordance() method:

>>> conc = corpus.concordance(T, r'/JJ.?/ > (NP <<# /man/)')

3.2 Displaying concordance lines

How concordance lines will be displayed really depends on your interpreter and environment. For the most part,
though, you’ll want to use the format() method.

>>> lines.format(kind='s',
... n=100,
... window=50,
... columns=[L, M, R])

kind=’c’/’l’/’s’ allows you to print as CSV, LaTeX, or simple string. n controls the number of results
shown. window controls how much context to show in the left and right columns. columns accepts a list of
column names to show.

Pandas’ set_option can be used to customise some visualisation defaults.

3.3 Working with concordance lines

You can edit concordance lines using the edit() method. You can use this method to keep or remove entries or
subcorpora matching regular expressions or lists. Keep in mind that because concordance lines are DataFrames,
you can use Pandas’ dedicated methods for working with text data.

get just uk variants of words with variant spellings
>>> from corpkit.dictionaries import usa_convert
>>> concs = result.concordance.edit(just_entries=usa_convert.keys())

Concordance objects can be saved just like any other corpkit object:

>>> concs.save('adj_modifying_man')

You can also easily turn them into CSV data, or into LaTeX:

pandas methods
>>> concs.to_csv()
>>> concs.to_latex()

corpkit method: csv and latex
>>> concs.format('c', window=20, n=10)
>>> concs.format('l', window=20, n=10)

3.4 The calculate method

You might have begun to notice that interrogating and concordancing aren’t really very different tasks. If we drop
the left and right context, and move the data around, we have all the data we get from an interrogation.

For this reason, you can use the calculate() method to generate an
corpus.interrogation.Interrogation object containing a frequency count of the middle col-
umn of the concordance as the results attribute.

Therefore, one method for ensuring accuracy is to:

1. Run an interrogation, using do_concordance=True

2. Remove false positives from the concordance result using edit()

3. Use the calculate() method to regenerate the overall frequencies

18 Chapter 3. Concordancing

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.set_option.html

corpkit documentation, Release 2.3.8

4. Edit, visualise or export the data

If you’d like to randomise the order of your results, you can use lines.shuffle()

3.4. The calculate method 19

corpkit documentation, Release 2.3.8

20 Chapter 3. Concordancing

CHAPTER 4

Editing results

Corpus interrogation is the task of getting frequency counts for a lexicogrammatical phenomenon in a corpus.
Simple absolute frequencies, however, are of limited use. The edit() method allows us to do complex things
with our results, including:

• Keeping or deleting results and subcorpora
• Editing result names
• Spelling normalisation
• Generating relative frequencies
• Keywording
• Sorting
• Calculating trends, P values
• Saving results
• Exporting results
• Next step

Each of these will be covered in the sections below. Keep in mind that because results are stored as DataFrames,
you can also use Pandas/Numpy/Scipy to manipulate your data in ways not covered here.

4.1 Keeping or deleting results and subcorpora

One of the simplest kinds of editing is removing or keeping results or subcorpora. This is done using keyword
arguments: skip_subcorpora, just_subcorpora, skip_entries, just_entries. The value for each can be:

1. A string (treated as a regular expression to match)

2. A list (a list of words to match)

3. An integer (treated as an index to match)

>>> criteria = r'ing$'
>>> result.edit(just_entries=criteria)

>>> criteria = ['everything', 'nothing', 'anything']
>>> result.edit(skip_entries=criteria)

>>> result.edit(just_subcorpora=['Chapter_10', 'Chapter_11'])

You can also span subcorpora, using a tuple of (first_subcorpus, second_subcorpus). This works
for numerical and non-numerical subcorpus names:

>>> just_span = result.edit(span_subcorpora=(3, 10))

21

corpkit documentation, Release 2.3.8

4.2 Editing result names

You can use the replace_names keyword argument to edit the text of each result. If you pass in a string, it is
treated as a regular expression to delete from every result:

>>> ingdel = result.edit(replace_names=r'ing$')

You can also pass in a dict with the structure of {newname: criteria}:

>>> rep = {'-ing words': r'ing$', '-ed words': r'ed$'}
>>> replaced = result.edit(replace_names=rep)

If you wanted to see how commonly words start with a particular letter, you could do something creative:

>>> from string import lowercase
>>> crit = {k.upper() + ' words': r'(?i)^%s.*' % k for k in lowercase}
>>> firstletter = result.edit(replace_names=crit, sort_by='total')

4.3 Spelling normalisation

When results are single words, you can normalise to UK/US spelling:

>>> spelled = result.edit(spelling='UK')

You can also perform this step when interrogating a corpus.

4.4 Generating relative frequencies

Because subcorpora often vary in size, it is very common to want to create relative frequency versions of results.
The best way to do this is to pass in an operation and a denominator. The operation is simply a
string denoting a mathematical operation: ‘+’, ‘-‘, ‘*’, ‘/’, ‘%’. The last two of these can be used to get relative
frequencies and percentage.

Denominator is what the result will be divided by. Quite often, you can use the string ’self’. This means, after
all other editing (deleting entries, subcorpora, etc.), use the totals of the result being edited as the denominator.
When doing no other editing operations, the two lines below are equivalent:

>>> rel = result.edit('%', 'self')
>>> rel = result.edit('%', result.totals)

The best denominator, however, may not simply be the totals for the results being edited. You may instead want
to relativise by the total number of words:

>>> rel = result.edit('%', corpus.features.Words)

Or by some other result you have generated:

>>> words_with_oo = corpus.interrogate(W, 'oo')
>>> rel = result.edit('%', words_with_oo.totals)

There is a more complex kind of relative frequency making, where a .results attribute is used as the denomi-
nator. In the example below, we calculate the percentage of the time each verb occurs as the root of the parse.

>>> verbs = corpus.interrogate(P, r'^vb', show=L)
>>> roots = corpus.interrogate(F, 'root', show=L)
>>> relv = verbs.edit('%', roots.results)

22 Chapter 4. Editing results

corpkit documentation, Release 2.3.8

4.5 Keywording

corpkit treats keywording as an editing task, rather than an interrogation task. This makes it easy to get key
nouns, or key Agents, or key grammatical features. To do keywording, use the K operation:

>>> from corpkit import *
* imports predefined global variables like K and SELF
>>> keywords = result.edit(K, SELF)

This finds out which words are key in each subcorpus, compared to the corpus as a whole. You can compare
subcorpora directly as well. Below, we compare the plays subcorpus to the novels subcorpus.

. code-block:: python

>>> from corpkit import *
>>> keywords = result.edit(K, result.ix['novels'], just_subcorpora='plays')

You could also pass in word frequency counts from some other source. A wordlist of the British National Corpus
is included:

>>> keywords = result.edit(K, 'bnc')

The default keywording metric is log-likelihood. If you’d like to use percentage difference, you can do:

>>> keywords = result.edit(K, 'bnc', keyword_measure='pd')

4.6 Sorting

You can sort results using the sort_by keyword. Possible values are:

• ‘name’ (alphabetical)

• ‘total’ (most common first)

• ‘infreq’ (inverse total)

• ‘increase’ (most increasing)

• ‘decrease’ (most decreasing)

• ‘turbulent’ (by most change)

• ‘static’ (by least change)

• ‘p’ (by p value)

• ‘slope’ (by slope)

• ‘intercept’ (by intercept)

• ‘r’ (by correlation coefficient)

• ‘stderr’ (by standard error of the estimate)

• ‘<subcorpus>’ by total in <subcorpus>

>>> inc = result.edit(sort_by='increase', keep_stats=False)

Many of these rely on Scipy’s linregress function. If you want to keep the generated statistics, use
keep_stats=True.

4.7 Calculating trends, P values

keep_stats=True will cause slopes, p values and stderr to be calculated for each result.

4.5. Keywording 23

corpkit documentation, Release 2.3.8

4.8 Saving results

You can save edited results to disk.

>>> edited.save('savename')

4.9 Exporting results

You can generate CSV data very easily using Pandas:

>>> result.results.to_csv()

4.10 Next step

Once you’ve edited data, it’s ready to visualise. Hit next to learn how to use the visualise() method.

24 Chapter 4. Editing results

CHAPTER 5

Visualising results

One thing missing in a lot of corpus linguistic tools is the ability to produce high-quality visualisations of corpus
data. corpkit uses the corpkit.interrogation.Interrogation.visualise method to do this.

• Basics
• Plot type
• Plot style
• Figure and font size
• Title and labels
• Subplots
• TeX
• Legend
• Colours
• Saving figures
• Other options
• Multiplotting

Note: Most of the keyword arguments from Pandas’ plot method are available. See their documentation for more
information.

5.1 Basics

visualise() is a method of all corpkit.interrogation.Interrogation objects. If you use from
corpkit import *, it is also monkey-patched to Pandas objects.

Note: If you’re using a Jupyter Notebook, make sure you use %matplotlib inline or %matplotlib
notebook to set the appropriate backend.

A common workflow is to interrogate a corpus, relative results, and visualise:

>>> from corpkit import *
>>> corpus = Corpus('data/P-parsed', load_saved=True)
>>> counts = corpus.interrogate({T: r'MD < __'})
>>> reldat = counts.edit('%', SELF)
>>> reldat.visualise('Modals', kind='line', num_to_plot=ALL).show()
the visualise method can also attach to the df:
>>> reldat.results.visualise(...).show()

The current behaviour of visualise() is to return the pyplot module. This allows you to edit figures further
before showing them. Therefore, there are two ways to show the figure:

25

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html

corpkit documentation, Release 2.3.8

>>> data.visualise().show()

>>> plt = data.visualise()
>>> plt.show()

5.2 Plot type

The visualise method allows line, bar, horizontal bar (barh), area, and pie charts. Those with seaborn can
also use ’heatmap’ (docs). Just pass in the type as a string with the kind keyword argument. Arguments such
as robust=True can then be used.

>>> data.visualise(kind='heatmap', robust=True, figsize=(4,12),
... x_label='Subcorpus', y_label='Event').show()

Fig. 5.1: Heatmap example

Stacked area/line plots can be made with stacked=True. You can also use filled=True to at-
tempt to make all values sum to 100. Cumulative plotting can be done with cumulative=True. Be-
low is an area plot beside an area plot where filled=True. Both use the vidiris colour scheme.

26 Chapter 5. Visualising results

https://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.heatmap.html

corpkit documentation, Release 2.3.8

5.3 Plot style

You can select from a number of styles, such as ggplot, fivethirtyeight, bmh, and classic. If
you have seaborn installed (and you should), then you can also select from seaborn styles (seaborn-paper,
seaborn-dark, etc.).

5.4 Figure and font size

You can pass in a tuple of (width, height) to control the size of the figure. You can also pass an integer as
fontsize.

5.5 Title and labels

You can label your plot with title, x_label and y_label:

>>> data.visualise('Modals', x_label='Subcorpus', y_label='Relative frequency')

5.6 Subplots

subplots=True makes a separate plot for every entry in the data. If using it, you’ll probably also want to use
layout=(rows,columns) to specify how you’d like the plots arranged.

>>> data.visualise(subplots=True, layout=(2,3)).show()

Fig. 5.2: Line charts using subplots and layout specification

5.3. Plot style 27

corpkit documentation, Release 2.3.8

5.7 TeX

If you have LaTeX installed, you can use tex=True to render text with LaTeX. By default, visualise() tries
to use LaTeX if it can.

5.8 Legend

You can turn the legend off with legend=False. Legend placement can be controlled with legend_pos,
which can be:

Margin Figure Margin
outside upper left upper left upper right outside upper right
outside center left center left center right outside center right
outside lower left lower left lower right outside lower right

The default value, ’best’, tries to find the best place automatically (without leaving the figure boundaries).

If you pass in draggable=True, you should be able to drag the legend around the figure.

5.9 Colours

You can use the colours keyword argument to pass in:

1. A colour name recognised by matplotlib

2. A hex colour string

3. A colourmap object

There is an extra argument, black_and_white, which can be set to True to make greyscale plots. Unlike
colours, it also updates line styles.

5.10 Saving figures

To save a figure to a project’s images directory, you can use the save argument.
output_format=’png’/’pdf’ can be used to change the file format.

>>> data.visualise(save='name', output_format='png')

5.11 Other options

There are a number of further keyword arguments for customising figures:

28 Chapter 5. Visualising results

corpkit documentation, Release 2.3.8

Argument Type Action
grid bool Show grid in background
rot int Rotate x axis labels n degrees
shadow bool Shadows for some parts of plot
ncol int n columns for legend entries
explode list Explode these entries in pie
partial_pie bool Allow plotting of pie slices
legend_frame bool Show frame around legend
legend_alpha float Opacity of legend
reverse_legend bool Reverse legend entry order
transpose bool Flip axes of DataFrame
logx/logy bool Log scales
show_p_val bool Try to show p value in legend
interactive bool Experimental mpld3 use

A number of these and other options for customising figures are also described in the
corpkit.interrogation.Interrogation.visualise method documentation.

5.12 Multiplotting

The corpkit.interrogation.Interrogation also comes with a
corpkit.interrogation.Interrogation.multiplot method, which can be used to show
two different kinds of chart within the same figure.

The first two arguments for the function are two dict objects, which configure the larger and smaller plots.

For the second dictionary, you may pass in a data argument, which is an
corpkit.interrogation.Interrogation or similar, and will be used as separate data for the
subplots. This is useful, for example, if you want your main plot to show absolute frequencies, and your subplots
to show relative frequencies.

There is also layout, which you can use to choose an overall grid design. You can also pass in a list of tuples if
you like, to use your own layout. Below is a complete example, focussing on objects in risk processes:

>>> from corpkit import *
>>> from corpkit.dictionaries import *
parse a collection of text files
>>> corpora = Corus('data/news')
make dependency parse query: get get 'object' of risk process
>>> query = {F: roles.participant2, GL: r'\brisk', GF: roles.process}
interrogate corpus, return lemma form, no coreference
>>> result = corpus.interrogate(query, show=[L], coref=False)
generate relative frequencies, skip closed class, and sort
>>> inc = result.edit('%', SELF,
>>> sort_by='increase',
>>> skip_entries=wordlists.closedclass)
visualise as area and line charts combined
>>> inc.multiplot({'title': 'Objects of risk processes, increasing',
>>> 'kind': 'area',
>>> 'x_label': 'Year',
>>> 'y_label': 'Percentage of all results'},
>>> {'kind': 'line'}, layout=5)

5.12. Multiplotting 29

http://mpld3.github.io/

corpkit documentation, Release 2.3.8

Fig. 5.3: multiplot example

30 Chapter 5. Visualising results

CHAPTER 6

Using language models

Warning: Language modelling is currently deprecated, while the tool is updated to use CONLL formatted
data, rather than CoreNLP XML. Sorry!

Language models are probability distributions over sequences of words. They are common in a number of natural
language processing tasks. In corpus linguistics, they can be used to judge the similarity between texts.

corpkit‘s make_language_model() method makes it very easy to generate a language model:

>>> corpus = Corpus('threads')
save as models/savename.p
>>> lm = corpus.make_language_model('savename')

One simple thing you can do with a language model is pass in a string of text:

>>> text = ("We can compare an arbitrary string against the models "\
... "created for each subcorpus, in order to find out how "\
... "similar the text is to the texts in each subcorpus... ")
get scores for each subcorpus, and the corpus as a whole
>>> lm.score(text)

01 -4.894732
04 -4.986471
02 -5.060964
03 -5.096785
05 -5.106083
07 -5.226934
06 -5.338614
08 -5.829444
09 -5.874777
10 -6.351399
Corpus -5.285553

You can also pass in corpkit.corpus.Subcorpus objects, subcorpus names or
corpkit.corpus.File instances.

6.1 Customising models

Under the hood, corpkit interrogates the corpus using some special parameters, then builds a model from the
results. This means that you can pass in arbitrary arguments for the interrogate() method:

>>> lm = corpus.make_language_model('lemma_model',
... show=L,
... just_speakers='MAHSA',
... multiprocess=2)

31

corpkit documentation, Release 2.3.8

6.2 Compare subcorpora

You can find out which subcorpora are similar using the score() method:

>>> lm.score('1996')

Or get a complete DataFrame of values using score_subcorpora():

>>> df = lm.score_subcorpora()

6.3 Advanced stuff

Note: Coming soon

32 Chapter 6. Using language models

CHAPTER 7

Managing projects

corpkit has a few other bits and pieces designed to make life easier when doing corpus linguistic work. This
includes methods for loading saved data, for working with multiple corpora at the same time, and for switching
between command line and graphical interfaces. Those things are covered here.

• Loading saved data
• Managing multiple corpora
• Using the GUI

7.1 Loading saved data

When you’re starting a new session, you probably don’t want to start totally from scratch. It’s handy to be able to
load your previous work. You can load data in a few ways.

First, you can use corpkit.load(), using the name of the filename you’d like to load. By default, corpkit
looks in the saved_interrogations directory, but you can pass in an absolute path instead if you like.

>>> import corpkit
>>> nouns = corpkit.load('nouns')

Second, you can use corpkit.loader(), which provides a list of items to load, and asks the user for input:

>>> nouns = corpkit.loader()

Third, when instantiating a Corpus object, you can add load_saved=True keyword argument to load any
saved data belonging to this corpus as an attribute.

>>> corpus = Corpus('data/psyc-parsed', load_saved=True)

A final alternative approach stores all interrogations within an corpkit.interrogation.Interrodict
object object:

>>> r = corpkit.load_all_results()

7.2 Managing multiple corpora

corpkit can handle one further level of abstraction for both Corpus and Interrogations.
corpkit.corpus.Corpora models a collection of corpkit.corpus.Corpus objects. To create
one, pass in a directory containing corpora, or a list of paths/Corpus objects:

>>> from corpkit import Corpora
>>> corpora = Corpora('data')

33

corpkit documentation, Release 2.3.8

Individual corpora can be accessed as attributes, by index, or as keys:

>>> corpora.first
>>> corpora[0]
>>> corpora['first']

You can use the interrogate() method to search them, using the same arguments as you would for
interrogate().

Interrogating these objects often returns an corpkit.interrogation.Interrodict object, which mod-
els a collection of DataFrames.

Editing can be performed with edit(). The editor will iterate over each DataFrame in turn, generally returning
another Interrodict.

Note: There is no visualise() method for Interrodict objects.

multiindex() can turn an Interrodict into a Pandas MultiIndex:

>>> multiple_res.multiindex()

collapse() will collapse one dimension of the Interrodict. You can collapse the x axis (’x’), the y axis
(’y’), or the Interrodict keys (’k’). In the example below, an Interrodict is collapsed along each axis in
turn.

>>> d = corpora.interrogate({F: 'compound', GL: r'^risk'}, show=L)
>>> d.keys()

['CHT', 'WAP', 'WSJ']

>>> d['CHT'].results

.... health cancer security credit flight safety heart
1987 87 25 28 13 7 6 4
1988 72 24 20 15 7 4 9
1989 137 61 23 10 5 5 6

>>> d.collapse(axis=Y).results

... health cancer credit security
CHT 3174 1156 566 697
WAP 2799 933 582 1127
WSJ 1812 680 2009 537

>>> d.collapse(axis=X).results

... 1987 1988 1989
CHT 384 328 464
WAP 389 355 435
WSJ 428 410 473

>>> d.collapse(axis=K).results

... health cancer credit security
1987 282 127 65 93
1988 277 100 70 107
1989 379 253 83 91

topwords() quickly shows the top results from every interrogation in the Interrodict.

>>> data.topwords(n=5)

Output:

TBT % UST % WAP % WSJ %
health 25.70 health 15.25 health 19.64 credit 9.22
security 6.48 cancer 10.85 security 7.91 health 8.31
cancer 6.19 heart 6.31 cancer 6.55 downside 5.46

34 Chapter 7. Managing projects

corpkit documentation, Release 2.3.8

flight 4.45 breast 4.29 credit 4.08 inflation 3.37
safety 3.49 security 3.94 safety 3.26 cancer 3.12

7.3 Using the GUI

corpkit is also designed to work as a GUI. It can be started in bash with:

$ python -m corpkit.gui

The GUI can understand any projects you have defined. If you open it, you can simply select your project via
Open Project and resume work in a graphical environment.

7.3. Using the GUI 35

corpkit documentation, Release 2.3.8

36 Chapter 7. Managing projects

CHAPTER 8

Overview

corpkit comes with a dedicated interpreter, which receives commands in a natural language syntax like these:

> set mydata as corpus
> search corpus for pos matching 'JJ.*'
> call result 'adjectives'
> edit adjectives by skipping subcorpora matching 'books'
> plot edited as line chart with title as 'Adjectives'

It’s a little less powerful than the full Python API, but it is easier to use, especially if you don’t know Python. You
can also switch instantly from the interpreter to the full API, so you only need the API for the really tricky stuff.

The syntax of the interpreter is based around objects, which you do things to, and commands, which are actions
performed upon the objects. The example below uses the search command on a corpus object, which produces
new objects, called result, concordance, totals and query. As you can see, very complex searches can be performed
using an English-like syntax:

> search corpus for lemma matching '^t' and pos matching 'VB' \
... excluding words matching 'try' \
... showing word and dependent-word \
... with preserve_case
> result

This shows us results for each subcorpus:

. I/think I/thought and/turned me/told and/took I/told ...
chapter1 5 3 2 2 1 3 ...
chapter2 7 2 5 3 0 2 ...
chapter3 5 5 4 4 1 0 ...
chapter4 3 7 1 0 3 1 ...
chapter5 7 7 2 1 4 2 ...
chapter6 2 0 0 2 1 0 ...
chapter7 6 2 6 1 1 3 ...
chapter8 3 1 2 2 1 1 ...
chapter9 5 7 1 4 6 3 ...

8.1 Objects

The most common objects you’ll be using are:

37

corpkit documentation, Release 2.3.8

Object Contains
corpus Dataset selected for parsing or searching
result Search output
edited Results after sorting, editing or calculating
concordance Concordance lines from search
features General linguistic features of corpus
wordclasses Distribution of word classes in corpus
postags Distribution of POS tags in corpus
lexicon Distribution of lexis in the corpus
figure Plotted data
query Values used to perform search or edit
previous Object created before last
sampled A sampled corpus
wordlists A list of wordlists for searching, editing

When you start the interpreter, these are all empty. You’ll need to run commands in order to fill them with data.
You can also create your own object names using the call command.

8.2 Commands

You do things to the objects via commands. Each command has its own syntax, designed to be as similar to natural
language as possible. Below is a table of common commands, an explanation of their purpose, and an example of
their syntax

Com-
mand

Purpose Syntax

new Make a new project new project <name>
set Set current corpus set <corpusname>
parse Parse corpus parse corpus with [options]*
search Search a corpus for linguistic feature,

generate concordance
search corpus for [feature matching pattern]* showing
[feature]* with [options]*

edit Edit results or edited results edit result by [skipping subcorpora/entries matching
pattern]* with [options]*

calcu-
late

Calculate relative frequencies, keyness,
etc.

calculate result/edited as operation of denominator

sort Sort results or concordance sort result/concordance by value
plot Visualise result or edited result plot result/edited as line chart with [options]*
show Show any object show object
anno-
tate

Add annotations to corpus based on
search results

annotate all with field as <fieldname> and value as m

unan-
notate

Delete annotation fields from corpus unannotate <fieldname> field

sample Get a random sample of subcorpora or
files from a corpus

sample 5 subcorpora of corpus

call Name an object (i.e. make a variable) call object ‘<name>’
export Export result, edited result or

concordance to string/file
export result to string/csv/latex/file <filename>

save Save data to disk save object to <filename>
load Load data from disk load object as result
store Store something in memory store object as <name>
fetch Fetch something from memory fetch <name> as object
help Get help on an object or command help command/object
history See previously entered commands history
ipython Enter IPython with objects available ipython
py Execute Python code py ‘print(“hello world”)’
! Run a line of bash shell !ls -al data

38 Chapter 8. Overview

corpkit documentation, Release 2.3.8

In square brackets with asterisks are recursive parts of the syntax, which often also accept not operators. <text>
denotes places where you can choose an identifier, filename, etc.

In the pages that follow, the syntax is provided for the most common commands. You can also type the name of
the command with no arguments into the interpreter, in order to show usage examples.

8.3 Prompt features

• You can use history, clear, ls and cd commands as you would in the shell

• You can execute arbitrary bash commands by beginning the line with an exclamation point (e.g. !rm
data/*)

• You can use semicolons to put multiple commands on a line (currently needs a space before and after the
semicolon)

• There is no piping or output redirection (yet), but you can use the export and save commands to export
results

• You can use backslashes to continue writing on the next line

• You can write scripts and pass them to the corpkit interpreter

The below is therefore a possible (but terrible) way to write code in corpkit:

> !du -h data ; set mycorp ; search corpus for words \
... matching any \
... excluding wordlists.closedclass \
... showing lemma and pos ; concordance

8.3. Prompt features 39

corpkit documentation, Release 2.3.8

40 Chapter 8. Overview

CHAPTER 9

Setup

• Dependencies
• Accessing
• The prompt

9.1 Dependencies

To use the interpreter, you’ll need corpkit installed. To use all features of the interpreter, you will also need
readline and IPython.

9.2 Accessing

With corpkit installed, you can start the interpreter in a couple of ways:

$ corpkit
or
$ python -m corpkit.env

You can start it from a Python session, too:

>>> from corpkit import env
>>> env()

9.3 The prompt

When using the interpreter, the prompt (the text to the left of where you type your command) displays the directory
you are in (with an asterisk if it does not appear to be a corpkit project) and the currently active corpus, if any:

corpkit@junglebook:no-corpus>

When you see it, corpkit is ready to accept commands!

41

corpkit documentation, Release 2.3.8

42 Chapter 9. Setup

CHAPTER 10

Making projects and corpora

The first two things you need to do when using corpkit are to create a project, and to create (and optionally parse)
a corpus. These steps can all be accomplished quickly using shell commands. They can also be done using the
interpreter, however.

Once you’re in corpkit, the command below will create a new project called iran-news, and move you into it.

> new project named iran-news

10.1 Adding a corpus

Adding a corpus simply copies it to the project’s data directory. The syntax is simple:

> add '../../my_corpus'

10.2 Parsing a corpus

To parse a text file, folder of text files, or folder of folder of text files, you first set the corpus, and then use the
parse command:

> set my_corpus as corpus
> parse corpus

10.3 Tokenising, POS tagging and lemmatising

If you don’t want/need full parses, or if you aren’t working with English, you might want to use the tokenise
method.

> set abstracts as corpus
> tokenise corpus

POS tagging and lemmatisation are switched on by default, but you could also disable them:

> tokenise corpus with postag as false and lemmatise as false

10.4 Working with metadata

Parsing/tokenising can be made way cooler when your data has some metadata in it. The metadata will be trans-
ferred over to the parsed version of the corpus, and then you can search or filter by metadata features, use metadata
values as symbolic subcorpora, or display metadata alongside concordances.

43

corpkit documentation, Release 2.3.8

Metadata should take the form of an XML tag at the end of a line, which could be a sentence or a paragraph:

I hope everyone is hanging in with this blasted heat. As we all know being hot, sticky,
stressed and irritated can bring on a mood swing super fast. So please make sure your
all takeing your meds and try to stay out of the heat. <metadata username="Emz45"
totalposts="5063" currentposts="4051" date="2011-07-13" postnum="0" threadlength="1">

Then, parse with metadata:

> parse corpus with metadata

The parser output will look something like:

sent_id 1
parse=(ROOT (S (NP (PRP I)) (VP (VBP hope) (SBAR (S (NP (NN everyone)) (VP (VBZ is) (VP (VBG hanging) (PP (IN in) (IN with) (NP (DT this) (VBN blasted) (NN heat)))))))) (. .)))
speaker=Emz45
totalposts=5063
threadlength=1
currentposts=4051
stage=10
date=2011-07-13
year=2011
postnum=0
1 1 I I PRP O 2 nsubj 0 1
1 2 hope hope VBP O 0 ROOT 1,5,11 _
1 3 everyone everyone NN O 5 nsubj 0 _
1 4 is be VBZ O 5 aux 0 _
1 5 hanging hang VBG O 2 ccomp 3,4,10 _
1 6 in in IN O 10 case 0 _
1 7 with with IN O 10 case 0 _
1 8 this this DT O 10 det 0 2
1 9 blasted blast VBN O 10 amod 0 2
1 10 heat heat NN O 5 nmod:with 6,7,8,9 2*
1 11 . . . O 2 punct 0 _

10.5 Viewing corpus data

You can interactively work with the parser output.

> get file <n> of corpus

Or, if your corpus has subcorpora:

> get subcorpus <n> of corpus
> get file <n> of sampled

This view can be surprisingly powerful: sorting by lemma, POS or dependency function can show you some
recurring lexicogrammatical patterns in a file without the need for searching.

The next page will show you how to search the corpus you’ve built, and to work with metadata if you’ve added it.

44 Chapter 10. Making projects and corpora

CHAPTER 11

Interrogating corpora

The most powerful thing about corpkit is its ability to search parsed corpora for very complex constituency,
dependency or token level features.

Before we begin, make sure you’ve set the corpus as the thing to search:

> set nyt-parsed as corpus
you could also try just typing `set` ...

Note: By default, when using the interpreter, searching also produces concordance lines. If you don’t need them,
you can use toggle conc to switch them off, or on again. This can dramatically speed up processing time.

11.1 Search examples

> search corpus ### interactive search helper
> search corpus for words matching ".*"
> search corpus for words matching "^[A-M]" showing lemma and word with case_sensitive
> search corpus for cql matching '[pos="DT"] [pos="NN"]' showing pos and word with coref
> search corpus for function matching roles.process showing dependent-lemma
> search corpus for governor-lemma matching processes.verbal showing governor-lemma, lemma
> search corpus for words matching any and not words matching wordlists.closedclass
> search corpus for trees matching '/NN.?/ >># NP'
> search corpus for pos matching NNP showing ngram-word and pos with gramsize as 3
> etc.

Under the surface, what you are doing is selecting a Corpus object to search, and then generating arguments for
the interrogate() method. These arguments, in order, are:

1. search criteria

2. exclude criteria

3. show values

4. Keyword arguments

Here is a syntax example that might help you see how the command gets parsed. Note that there are two ways of
setting exclude criteria.

> search corpus \ # select object
... for words matching 'ing$' and \ # search criterion
... not lemma matching 'being' and \ # exclude criterion
... pos matching 'NN' \ # seach criterion
... excluding words matching wordlists.closedclass \ # exclude criterion
... showing lemma and pos and function \ # show values
... with preserve_case and \ # boolean keyword arg
... not no_punct and \ # bool keyword arg
... excludemode as 'all' # keyword arg

45

corpkit documentation, Release 2.3.8

11.2 Working with metadata

By default, corpkit treats folders within your corpus as subcorpora. If you want to treat files, rather than folders,
as subcorpora, you can do:

> search corpus for words matching 'ing$' with subcorpora as files

If you have metadata in your corpus, you can use the metadata value as the subcorpora:

> search corpus for words matching 'ing$' with subcorpora as speaker

If you don’t want to keep specifying the subcorpus structure every time you search a corpus, you have a couple of
choices. First, you can set the default subcorpus value with for the session with set subcorpora. This applies
the filter globally, to whatever corpus you search:

use speaker metadata as subcorpora
> set subcorpora as speaker
ignore folders, use files as subcorpora
> set subcorpora as files

You can also define metadata filters, which skip sentences matching a metadata feature, or which keep only
sentences matching a metadata feature:

if you have a `year` metadata field, skip this decade
> set skip year as '^201'
if you want only this decade:
> set keep year as '^201'

If you want to set subcorpora and filters for a corpus, rather than globally, you can do this by passing in the values
when you select the corpus:

> set mydata-parsed as corpus with year as subcorpora and \
... just year as '^201' and skip speaker as 'chomsky'
forget filters for this corpus:
> set mydata-parsed

11.3 Sampling a corpus

Sometimes, your corpus is too big to search quickly. If this is the case, you can use the sample command to
create a randomise sample of the corpus data:

> sample 3 subcorpora of corpus
> sample 100 files of corpus

If you pass in a float, it will try to get a proportional amount of data: sample 0.33 subcorpora of
corpus will return a third of the subcorpora in the corpus.

A sampled corpus becomes an object called sampled. You can then refer to it when searching:

> search sampled for words matching '^[abcde]'

Global metadata filters and subcorpus declarations will be observed when searching this corpus as well.

46 Chapter 11. Interrogating corpora

CHAPTER 12

Concordancing

By default, every search also produces concordance lines. You can view them by typing concordance. This
opens an interactive display, which can be scrolled and searched—hit h to get help on possible commands.

12.1 Customising appearance

The first thing you might want to do is adjust how concordance lines are displayed:

hide subcorpus name, speaker name
> show concordance with columns as lmr
enlarge window
> show concordance with columns as lmr and window as 60
limit number of results to 100
> show concordance with columns as lmr and window as 60 and n as 100

The values you enter here are persistant—the window size, number of lines, etc. will remain the same until you
shut down the interpreter or provide new values.

12.2 Sorting

Sorting can be by column, or by word.

middle column, first word
> sort concordance by M1
left column, last word
> sort concordance by L1
right column, third word
> sort concordance by R3
by index (original order)
> sort concordance by index

12.3 Colouring

One nice feature is that concordances can be coloured. This can be done through either indexing or regular ex-
pression matches. Note that background can be added to colour the background instead of the foreground, and
dim/bright can be used to adjust text brightness. This means that you can code lines for multiple phenomena.
Background highlighting could mark the argument structure, foreground highlighting could mark the mood type,
and bright and dim could be used to mark exemplars or false positives.

Note: If you’re using Python 2, you may find that colouring concordance lines causes some interference with
readline, making it difficult to select or search previous commands. This is a limitation of readline in Python 2.
Use Python 3 instead!

47

corpkit documentation, Release 2.3.8

colour by index
> mark 10 blue
> mark -10 background red
> mark 10-15 cyan
> mark 15- magenta
reset all
> mark - reset

regular expression methods: specify column(s) to search
> mark m '^PRP.*' yellow
> mark r 'be(ing)' background green
> mark lm 'JJR$' dim
reset via regex
> mark m '.*' reset

You can then sort by colour with sort concordance by scheme. If you export the concordances to a file (export
concordance as csv to conc.csv), colour information will be added in additional columns.

12.4 Editing

To edit concordance lines, you can use the same syntax as you would use to edit results:

> edit concordance by skipping subcorpora matching '[123]$'
> edit concordance by keeping entries matching 'PRP'

Perhaps faster is the use of del and keep. For these, specify the column and the criteria using the same methods as
you would for colouring:

> del m matching 'this'
> keep l matching '^I\s'
> del 10-20

12.5 Recalculating results from concordance lines

If you’ve deleted some concordance lines, you can update the result object to reflect these changes with calcu-
late result from concordance.

12.6 Working with metadata

You can use show_conc_metadata when interrogating or concordancing to collect and display metadata
alongside concordance results:

> search corpus for words matching any with show_conc_metadata
> concordance

48 Chapter 12. Concordancing

CHAPTER 13

Annotating your corpus

Another thing you might like to do is add metadata or annotations to your corpus. This can be done by simply
editing corpus files, which are stored in a human-readable format. You can also automate annotation, however.

To do annotation, you first run a search command and generate a concordance. After deleting any false
positives from the concordance, you can use the annotate command to annotate each sentence for which a
concordance line exists.

annotate‘ works a lot like the ‘‘mark, keep, and del commands to begin with, but has some
special syntax at the end, which controls whether you annotate using tags, or fields and values.

13.1 Tagging sentences

The first way of annotating is to add a tag to one or more sentences:

> search corpus for pos matching NNP and word matching 'daisy'
> annotate m matching '^daisy$' with tag 'has_daisy'

You can use all to annotate every single concordance line:

> search corpus for governor-function matching nsubjpass \
... showing governor-lemma and lemma
> annotate all with tag 'passive'

If you try to run this code, you actually get a dry run, showing you what would be modified in your corpus. Once
you’re happy with it, you can do toggle annotation to turn file writing on, and then run the previous line
again (use the up arrow to get it!).

13.2 Creating fields and values

More complex than adding tags is adding fields and values. This creates a new metadata category with multiple
possible realisations. Below, we tag an sentence sentences based on their containing certain kinds of processes

> search corpus for function matching roles.process showing lemma
> mark m matching processes.verbal red
annotate by colour
> annotate red with field as process \
... and value as 'verbal'
annotate without colouring first
> annotate m matching processes.mental with field as process \
... and value as 'mental'

You can also use m as the value, which passes in the text from the middle column of the concordance.

> search corpus for pos matching NNP showing word
> annotate m matching [gatsby, daisy, tom] \
... with field as character and value as m

49

corpkit documentation, Release 2.3.8

The moment these values have been added to your text, you can do really powerful things with them. You can, for
example, use them as subcorpora, or use them as filters for the sentences being processed.

> set subcorpora as process
> set skip character as 'gatsby'
> set skip passive tag

Now, the subcorpora will be the different processes (verbal, mental and none), and any sentence annotated as
containing the gatsby character, or the passive tag, will be ignored.

13.3 Removing annotations

To remove a tag or a field across the dataset, the commands are very simple. Note that again, you need to
toggle annotation to actually alter any files.

> unannotate character field
> unannotate typo tag
> unannotate all tags

50 Chapter 13. Annotating your corpus

CHAPTER 14

Editing results

Once you have generated a result object via the search command, you can edit the result in a number of ways.
You can delete, merge or otherwise alter entries or subcorpora; you can do statistics, and you can sort results.

Editing, calculating and sorting each create a new object, called edited. This means that if you make a mistake,
you still have access to the original result object, without needing to run the search again.

14.1 The edit command

When using the edit command, the main things you’ll want to do is skip, keep, span or merge results or subcorpora.

> edit result by keeping subcorpora matching '[01234]'
> edit result by skipping entries matching wordlists.closedclass
merge has a slightly different syntax, because you need
to specify the name to merge under
> edit result by merging entries matching 'be|have' as 'aux'

Note: The syntax above works for concordance lines too, if you change result to concordance. Merging is not
possible.

14.2 Doing basic statistics

The calculate command allows you to turn the absolute frequencies into relative frequencies, keyness scores, etc.

> calculate result as percentage of self
> calculate edited as percentage of features.clauses
> calculate result as keyness of self

If you want to run more complicated operations on the results, you might like to use the ipython command to enter
an IPython session, and then manipulate the Pandas objects directly.

14.3 Sorting results

The sort command allows you to change the search result order.

Possible values are total, name, infreq, increase, decrease, static, turbulent.

> sort result by total
requires scipy
> sort edited by increase

51

corpkit documentation, Release 2.3.8

52 Chapter 14. Editing results

CHAPTER 15

Plotting

You can plot results and edited results using the plot method, which interfaces with matplotlib.

> plot edited as bar chart with title as 'Example plot' and x_label as 'Subcorpus'
> plot edited as area chart with stacked and colours as Paired
> plot edited with style as seaborn-talk # defaults to line chart

There are many possible arguments for customising the figure. The table below shows some of them.

> plot edited as bar chart with rot as 45 and logy and \
... legend_alpha as 0.8 and show_p_val and not grid

Argument Type Action
grid bool Show grid in background
rot int Rotate x axis labels n degrees
shadow bool Shadows for some parts of plot
ncol int n columns for legend entries
explode list Explode these entries in pie
partial_pie bool Allow plotting of pie slices
legend_frame bool Show frame around legend
legend_alpha float Opacity of legend
reverse_legend bool Reverse legend entry order
transpose bool Flip axes of DataFrame
logx/logy bool Log scales
show_p_val bool Try to show p value in legend

Note: If you want to set a boolean value, you can just say and value or and not value. If you like,
however, you could write it more fully as with value as true/false as well.

53

corpkit documentation, Release 2.3.8

54 Chapter 15. Plotting

CHAPTER 16

Settings and management

The interpreter can do a number of other useful things. They are outlined here.

16.1 Managing data

You should be able to store most of the objects you create in memory using the store command:

> store result as 'good_result'
> show store
> fetch 'good_result' as result

A more permanent solution is to use save and load:

> save result as 'good_result'
> ls saved_interrogations
> load 'good_result' as result

An alternative approach is to create variables using the call command:

> search corpus for words matching any
> call result anyword
> calculate anyword as percentage of self

A variable can also be a simple string, which you can then add into searches:

> call '/NN.?/ >># NP' headnoun
> search corpus for trees matching headnoun

To forget a variable, just do remove <name>.

16.2 Toggles and settings

• Using toggle interactive, You can switch between interactive mode, where results and concor-
dances are shown in a way that you can manipulate directly, and non-interactive mode, where results and
concordances are simply printed to the console.

• Using toggle conc, you can tell corpkit not to produce concordances. This can be much faster, espe-
cially when there are a lot of results.

• toggle comma will display thousands separators in results

• toggle annotation is used to switch from dry-run to actual modification of corpus files when anno-
tating

• You can set the number of decimals displayed when viewing results with set decimal to <n>

• set max_rows to <n> and set max_cols to <n> limit the amount of data loaded into results
lists. This can speed up interactive viewing.

55

corpkit documentation, Release 2.3.8

16.3 Switching to IPython

When the interpreter constrains you, you can switch to IPython with ipython. Your objects are available there
under the same name. When you’re done there, do quit to return to the corpkit interpreter.

16.4 Running scripts

You can also write and run scripts. If you make a file, participants.cki, containing:

#!/usr/bin/env corpkit

set mydata-parsed as corpus
search corpus for function matching roles.participant showing lemma
export result as csv to part.csv

You can run it from the terminal with:

corpkit participants.cki
or, directly, if there's a shebang and chmod +x:
./participants.cki

which will leave you with a CSV file at exported/part.csv. This approach can be handy if you need to pipe
stdout or stderr, or if you want to call corpkit within a shell script.

Finally, just like Python, you can use the -c flag to pass code in on the command line:

corpkit -c "set 2 ; search corpus for features ; export result as csv to feat.csv"

Note: When running a script, interactivity will automatically be switched off, and concordancing disabled if the
script does not appear to need it.

56 Chapter 16. Settings and management

CHAPTER 17

Corpus classes

Much of corpkit‘s functionality comes from the ability to work with Corpus and Corpus-like objects, which
have methods for parsing, tokenising, interrogating and concordancing.

17.1 Corpus

class corpkit.corpus.Corpus(path, **kwargs)
Bases: object

A class representing a linguistic text corpus, which contains files, optionally within subcorpus folders.

Methods for concordancing, interrogating, getting general stats, getting behaviour of particular word, etc.

Unparsed, tokenised and parsed corpora use the same class, though some methods are available only to one
or the other. Only unparsed corpora can be parsed, and only parsed/tokenised corpora can be interrogated.

subcorpora
A list-like object containing a corpus’ subcorpora.

Example

>>> corpus.subcorpora
<corpkit.corpus.Datalist instance: 12 items>

speakerlist
Lazy-loaded data.

files
A list-like object containing the files in a folder.

Example

>>> corpus.subcorpora[0].files
<corpkit.corpus.Datalist instance: 240 items>

all_filepaths
Lazy-loaded data.

conll_conform(errors=’raise’)
This removes sent index column from old corpkit data

all_files
Lazy-loaded data.

tfidf(search={‘w’: ‘any’}, show=[’w’], **kwargs)
Generate TF-IDF vector representation of corpus using interrogate method. All args and kwargs go to
interrogate().

Returns Tuple: the vectoriser and matrix

57

corpkit documentation, Release 2.3.8

features
Generate and show basic stats from the corpus, including number of sentences, clauses, process types,
etc.

Example

>>> corpus.features
.. Characters Tokens Words Closed class words Open class words Clauses
01 26873 8513 7308 4809 3704 2212
02 25844 7933 6920 4313 3620 2270
03 18376 5683 4877 3067 2616 1640
04 20066 6354 5366 3587 2767 1775

wordclasses
Lazy-loaded data.

postags
Lazy-loaded data.

lexicon
Lazy-loaded data.

configurations(search, **kwargs)
Get the overall behaviour of tokens or lemmas matching a regular expression. The search below makes
DataFrames containing the most common subjects, objects, modifiers (etc.) of ‘see’:

Parameters search (dict) – Similar to search in the interrogate() method.

Valid keys are:

• W/L match word or lemma

• F: match a semantic role (‘participant’, ‘process’ or ‘modifier’. If F not specified,
each role will be searched for.

Example

>>> see = corpus.configurations({L: 'see', F: 'process'}, show=L)
>>> see.has_subject.results.sum()

i 452
it 227
you 162
we 111
he 94

Returns corpkit.interrogation.Interrodict

interrogate(search=’w’, *args, **kwargs)
Interrogate a corpus of texts for a lexicogrammatical phenomenon.

This method iterates over the files/folders in a corpus, searching the texts, and returning a
corpkit.interrogation.Interrogation object containing the results. The main options
are search, where you specify search criteria, and show, where you specify what you want to appear
in the output.

Example

>>> corpus = Corpus('data/conversations-parsed')
show lemma form of nouns ending in 'ing'
>>> q = {W: r'ing$', P: r'^N'}
>>> data = corpus.interrogate(q, show=L)
>>> data.results

.. something anything thing feeling everything nothing morning
01 14 11 12 1 6 0 1
02 10 20 4 4 8 3 0
03 14 5 5 3 1 0 0
... ...

58 Chapter 17. Corpus classes

corpkit documentation, Release 2.3.8

Parameters search (dict) – What part of the lexicogrammar to search, and what criteria to
match. The keys are the thing to be searched, and values are the criteria. To search parse
trees, use the T key, and a Tregex query as the value. When searching dependencies, you
can use any of:

Match Governor Dependent Head
Word W G D H
Lemma L GL DL HL
Function F GF DF HF
POS tag P GP DP HP
Word class X GX DX HX
Distance from root A GA DA HA
Index I GI DI HI
Sentence index S SI SI SI

Values should be regular expressions or wordlists to match.

Example

>>> corpus.interrogate({T: r'/NN.?/ < /^t/'}) # T- nouns, via trees
>>> corpus.interrogate({W: '^t': P: r'^v'}) # T- verbs, via dependencies

Parameters

• searchmode (str – ‘any’/‘all’) – Return results matching any/all criteria

• exclude (dict – {L: ‘be’}) – The inverse of search, removing results from search

• excludemode (str – ‘any’/‘all’) – Exclude results matching any/all criteria

• query (str, dict or list) – A search query for the interrogation. This is only used when
search is a str, or when multiprocessing. When search If search is a str, the search
criteria can be passed in as ‘query, in order to allow the simpler syntax:

>>> corpus.interrogate(GL, '(think|want|feel)')

When multiprocessing, the following is possible:

>>> q = {'Nouns': r'/NN.?/', 'Verbs': r'/VB.?/'}
return an :class:`corpkit.interrogation.Interrogation` object with multiindex:
>>> corpus.interrogate(T, q)
return an :class:`corpkit.interrogation.Interrogation` object without multiindex:
>>> corpus.interrogate(T, q, show=C)

• show (str/list of strings) – What to output. If multiple strings are passed in as a list,
results will be colon-separated, in the suppled order. Possible values are the same as
those for search, plus options n-gramming and getting collocates:

Show Gloss Example
N N-gram word The women were
NL N-gram lemma The woman be
NF N-gram function det nsubj root
NP N-gram POS tag DT NNS VBN
NX N-gram word class determiner noun verb
B Collocate word The_were
BL Collocate lemma The_be
BF Collocate function det_root
BP Collocate POS tag DT_VBN
BX Collocate word class determiner_verb

• lemmatise (bool) – Force lemmatisation on results. Deprecated: instead, output
a lemma form with the ‘show‘ argument

17.1. Corpus 59

corpkit documentation, Release 2.3.8

• lemmatag (‘n’/‘v’/‘a’/‘r’/False) – When using a Tregex/Tgrep query, the tool will
attempt to determine the word class of results from the query. Passing in a str here
will tell the lemmatiser the expected POS of results to lemmatise. It only has an affect
if trees are being searched and lemmata are being shown.

• save (str) – Save result as pickle to saved_interrogations/<save> on completion

• gramsize (int) – Size of n-grams (default 1, i.e. unigrams)

• multiprocess (int/bool (bool determines automatically)) – How many parallel
processes to run

• files_as_subcorpora (bool) – (Deprecated, use subcorpora=files). Treat
each file as a subcorpus, ignoring actual subcorpora if present

• conc (bool/‘only’) – Generate a concordance while interrogating, store as .concor-
dance attribute

• coref (bool) – Also get coreferents for search matches

• tgrep (bool) – Use TGrep for tree querying. TGrep is less expressive than Tregex,
and is slower, but can work without Java. This option may be turned on internally if
Java is not found.

• subcorpora (str/list) – Use a metadata value as subcorpora. Passing a list will
create a multiindex. ‘file’ and ‘folder’/‘default’ are also possible values.

• just_metadata (dict) – One or more metadata fields and criteria to filter sentences
by. Only those matching will be kept. Criteria can be a list of words or a regular
expression. Passing {’speaker’: ’ENVER’} will search only sentences anno-
tated with speaker=ENVER.

• skip_metadata (dict) – A field and regex/list to filter sentences by. The inverse of
just_metadata.

• discard (int/float) – When returning many (i.e. millions) of results, memory
can be a problem. Setting a discard value will ignore results occurring infrequently in
a subcorpus. An int will remove any result occurring n times or fewer. A float will
remove this proportion of results (i.e. 0.1 will remove 10 per cent)

Returns A corpkit.interrogation.Interrogation object, with .query, .re-
sults, .totals attributes. If multiprocessing is invoked, result may be multiindexed.

sample(n, level=’f’)
Get a sample of the corpus

Parameters

• n (int/float) – amount of data in the the sample. If an int, get n files. if a float,
get float * 100 as a percentage of the corpus

• level (str) – sample subcorpora (s) or files (f)

Returns a Corpus object

delete_metadata()
Delete metadata for corpus. May be needed if corpus is changed

metadata
Lazy-loaded data.

parse(corenlppath=False, operations=False, copula_head=True, speaker_segmentation=False,
memory_mb=False, multiprocess=False, split_texts=400, outname=False, metadata=False,
coref=True, *args, **kwargs)

Parse an unparsed corpus, saving to disk

Parameters

60 Chapter 17. Corpus classes

corpkit documentation, Release 2.3.8

• corenlppath (str) – Folder containing corenlp jar files (use if corpkit can’t find it
automatically)

• operations (str) – Which kinds of annotations to do

• speaker_segmentation (bool) – Add speaker name to parser output if your cor-
pus is script-like

• memory_mb (int) – Amount of memory in MB for parser

• copula_head (bool) – Make copula head in dependency parse

• split_texts – Split texts longer than n lines for parser memory

• multiprocess (int) – Split parsing across n cores (for high-performance comput-
ers)

• folderise (bool) – If corpus is just files, move each into own folder

• output_format (str) – Save parser output as xml, json, conll

• outname (str) – Specify a name for the parsed corpus

• metadata (bool) – Use if you have XML tags at the end of lines contaning metadata

Example

>>> parsed = corpus.parse(speaker_segmentation=True)
>>> parsed
<corpkit.corpus.Corpus instance: speeches-parsed; 9 subcorpora>

Returns The newly created corpkit.corpus.Corpus

tokenise(postag=True, lemmatise=True, *args, **kwargs)
Tokenise a plaintext corpus, saving to disk

Parameters nltk_data_path (str) – Path to tokeniser if not found automatically

Example

>>> tok = corpus.tokenise()
>>> tok
<corpkit.corpus.Corpus instance: speeches-tokenised; 9 subcorpora>

Returns The newly created corpkit.corpus.Corpus

concordance(*args, **kwargs)
A concordance method for Tregex queries, CoreNLP dependencies, tokenised data or plaintext.

Example

>>> wv = ['want', 'need', 'feel', 'desire']
>>> corpus.concordance({L: wv, F: 'root'})

0 01 1-01.txt.conll But , so I feel like i do that for w
1 01 1-01.txt.conll I felt a little like oh , i
2 01 1-01.txt.conll he 's a difficult man I feel like his work ethic
3 01 1-01.txt.conll So I felt like i recognized li
... ...

Arguments are the same as interrogate(), plus a few extra parameters:

Parameters

• only_format_match (bool) – If True, left and right window will just be words,
regardless of what is in show

• only_unique (bool) – Return only unique lines

• maxconc (int) – Maximum number of concordance lines

17.1. Corpus 61

corpkit documentation, Release 2.3.8

Returns A corpkit.interrogation.Concordance instance, with columns show-
ing filename, subcorpus name, speaker name, left context, match and right context.

interroplot(search, **kwargs)
Interrogate, relativise, then plot, with very little customisability. A demo function.

Example

>>> corpus.interroplot(r'/NN.?/ >># NP')
<matplotlib figure>

Parameters

• search (dict) – Search as per interrogate()

• kwargs (keyword arguments) – Extra arguments to pass to visualise()

Returns None (but show a plot)

save(savename=False, **kwargs)
Save corpus instance to file. There’s not much reason to do this, really.

>>> corpus.save(filename)

Parameters savename (str) – Name for the file

Returns None

make_language_model(name, search={‘w’: ‘any’}, exclude=False, show=[’w’, ‘+1mw’],
**kwargs)

Make a language model for the corpus

Parameters

• name (str) – a name for the model

• kwargs (keyword arguments) – keyword arguments for the interrogate() method

Returns a corpkit.model.MultiModel

annotate(conclines, annotation, dry_run=True)
Annotate a corpus

Parameters

• conclines – a Concordance or DataFrame containing matches to annotate

• annotation (str/dict) – a tag or field and value

• dry_run (bool) – Show the annotations to be made, but don’t do them

Returns None

unannotate(annotation, dry_run=True)
Delete annotation from a corpus

Parameters annotation (str/dict) – a tag or field and value

Returns None

17.2 Corpora

class corpkit.corpus.Corpora(data=False, **kwargs)
Bases: corpkit.corpus.Datalist

Models a collection of Corpus objects. Methods are available for interrogating and plotting the entire
collection. This is the highest level of abstraction available.

62 Chapter 17. Corpus classes

corpkit documentation, Release 2.3.8

Parameters data (str/list) – Corpora to model. A str is interpreted as a path containing cor-
pora. A list can be a list of corpus paths or corpkit.corpus.Corpus objects.)

parse(**kwargs)
Parse multiple corpora

Parameters kwargs – Arguments to pass to the parse() method.

Returns corpkit.corpus.Corpora

features
Generate and show basic stats from the corpus, including number of sentences, clauses, process types,
etc.

Example

>>> corpus.features
.. Characters Tokens Words Closed class words Open class words Clauses
01 26873 8513 7308 4809 3704 2212
02 25844 7933 6920 4313 3620 2270
03 18376 5683 4877 3067 2616 1640
04 20066 6354 5366 3587 2767 1775

postags
Lazy-loaded data.

wordclasses
Lazy-loaded data.

lexicon
Lazy-loaded data.

17.3 Subcorpus

class corpkit.corpus.Subcorpus(path, datatype, **kwa)
Bases: corpkit.corpus.Corpus

Model a subcorpus, containing files but no subdirectories.

Methods for interrogating, concordancing and configurations are the same as
corpkit.corpus.Corpus.

17.4 File

class corpkit.corpus.File(path, dirname=False, datatype=False, **kwa)
Bases: corpkit.corpus.Corpus

Models a corpus file for reading, interrogating, concordancing.

Methods for interrogating, concordancing and configurations are the same as
corpkit.corpus.Corpus, plus methods for accessing the file contents directly as a str, or as a
Pandas DataFrame.

read(**kwargs)
Read file data. If data is pickled, unpickle first

Returns str/unpickled data

document
Return a DataFrame representation of a parsed file

trees
Lazy-loaded data.

17.3. Subcorpus 63

corpkit documentation, Release 2.3.8

plain
Lazy-loaded data.

17.5 Datalist

class corpkit.corpus.Datalist(data, **kwargs)
Bases: list

interrogate(*args, **kwargs)
Interrogate the corpus using interrogate()

concordance(*args, **kwargs)
Concordance the corpus using concordance()

configurations(search, **kwargs)
Get a configuration using configurations()

64 Chapter 17. Corpus classes

CHAPTER 18

Interrogation classes

Once you have searched a Corpus object, you’ll want to be able to edit, visualise and store results. Remember
that upon importing corpkit, any pandas.DataFrame or pandas.Series object is monkey-patched with
save, edit and visualise methods.

18.1 Interrogation

class corpkit.interrogation.Interrogation(results=None, totals=None, query=None, con-
cordance=None)

Bases: object

Stores results of a corpus interrogation, before or after editing. The main attribute, results, is a Pandas
object, which can be edited or plotted.

results = None
pandas DataFrame containing counts for each subcorpus

totals = None
pandas Series containing summed results

query = None
dict containing values that generated the result

concordance = None
pandas DataFrame containing concordance lines, if concordance lines were requested.

edit(*args, **kwargs)
Manipulate results of interrogations.

There are a few overall kinds of edit, most of which can be combined into a single function call. It’s
useful to keep in mind that many are basic wrappers around pandas operations—if you’re comfortable
with pandas syntax, it may be faster at times to use its syntax instead.

Basic mathematical operations

First, you can do basic maths on results, optionally passing in some data to serve as the denominator.
Very commonly, you’ll want to get relative frequencies:

Example

>>> data = corpus.interrogate({W: r'^t'})
>>> rel = data.edit('%', SELF)
>>> rel.results

.. to that the then ... toilet tolerant tolerate ton
01 18.50 14.65 14.44 6.20 ... 0.00 0.00 0.11 0.00
02 24.10 14.34 13.73 8.80 ... 0.00 0.00 0.00 0.00
03 17.31 18.01 9.97 7.62 ... 0.00 0.00 0.00 0.00

For the operation, there are a number of possible values, each of which is to be passed in as a str:

65

corpkit documentation, Release 2.3.8

+, -, /, *, %: self explanatory

k: calculate keywords

a: get distance metric

SELF is a very useful shorthand denominator. When used, all editing is performed on the data. The
totals are then extracted from the edited data, and used as denominator. If this is not the desired
behaviour, however, a more specific interrogation.results or interrogation.totals attribute can be used.

In the example above, SELF (or ‘self’) is equivalent to:

Example

>>> rel = data.edit('%', data.totals)

Keeping and skipping data

There are four keyword arguments that can be used to keep or skip rows or columns in the data:

•just_entries

•just_subcorpora

•skip_entries

•skip_subcorpora

Each can accept different input types:

•str: treated as regular expression to match

•list:

–of integers: indices to match

–of strings: entries/subcorpora to match

Example

>>> data.edit(just_entries=r'^fr',
... skip_entries=['free','freedom'],
... skip_subcorpora=r'[0-9]')

Merging data

There are also keyword arguments for merging entries and subcorpora:

•merge_entries

•merge_subcorpora

These take a dict, with the new name as key and the criteria as value. The criteria can be a str (regex)
or wordlist.

Example

>>> from dictionaries.wordlists import wordlists
>>> mer = {'Articles': ['the', 'an', 'a'], 'Modals': wordlists.modals}
>>> data.edit(merge_entries=mer)

Sorting

The sort_by keyword argument takes a str, which represents the way the result columns should be
ordered.

•increase: highest to lowest slope value

•decrease: lowest to highest slope value

66 Chapter 18. Interrogation classes

corpkit documentation, Release 2.3.8

•turbulent: most change in y axis values

•static: least change in y axis values

•total/most: largest number first

•infreq/least: smallest number first

•name: alphabetically

Example

>>> data.edit(sort_by='increase')

Editing text

Column labels, corresponding to individual interrogation results, can also be edited with re-
place_names.

Parameters replace_names (str/list of tuples/dict) – Edit result names, then merge du-
plicate entries

If replace_names is a string, it is treated as a regex to delete from each name. If replace_names is a
dict, the value is the regex, and the key is the replacement text. Using a list of tuples in the form (find,
replacement) allows duplicate substitution values.

Example

>>> data.edit(replace_names={r'object': r'[di]obj'})

Parameters replace_subcorpus_names (str/list of tuples/dict) – Edit subcorpus
names, then merge duplicates. The same as replace_names, but on the other axis.

Other options

There are many other miscellaneous options.

Parameters

• keep_stats (bool) – Keep/drop stats values from dataframe after sorting

• keep_top (int) – After sorting, remove all but the top keep_top results

• just_totals (bool) – Sum each column and work with sums

• threshold (int/bool) –

When using results list as dataframe 2, drop values occurring fewer than n times.
If not keywording, you can use:

‘high’: denominator total / 2500

‘medium’: denominator total / 5000

‘low’: denominator total / 10000

If keywording, there are smaller default thresholds

• span_subcorpora (tuple – (int, int2)) – If subcorpora are numerically named,
span all from int to int2, inclusive

• projection (tuple – (subcorpus_name, n)) – multiply results in subcorpus by n

• remove_above_p (bool) – Delete any result over p

• p (float) – set the p value

• revert_year (bool) – When doing linear regression on years, turn annual subcor-
pora into 1, 2 ...

18.1. Interrogation 67

corpkit documentation, Release 2.3.8

• print_info (bool) – Print stuff to console showing what’s being edited

• spelling (str – ‘US’/‘UK’) – Convert/normalise spelling:

Keywording options

If the operation is k, you’re calculating keywords. In this case, some other keyword arguments have
an effect:

Parameters keyword_measure – what measure to use to calculate keywords:

ll: log-likelihood ‘pd’: percentage difference

type keyword_measure: str

Parameters

• selfdrop (bool) – When keywording, try to remove target corpus from reference
corpus

• calc_all (bool) – When keywording, calculate words that appear in either corpus

Returns corpkit.interrogation.Interrogation

sort(way, **kwargs)

visualise(title=’‘, x_label=None, y_label=None, style=’ggplot’, figsize=(8, 4), save=False,
legend_pos=’best’, reverse_legend=’guess’, num_to_plot=7, tex=’try’,
colours=’Accent’, cumulative=False, pie_legend=True, rot=False, partial_pie=False,
show_totals=False, transparent=False, output_format=’png’, interactive=False,
black_and_white=False, show_p_val=False, indices=False, transpose=False,
**kwargs)

Visualise corpus interrogations using matplotlib.

Example

>>> data.visualise('An example plot', kind='bar', save=True)
<matplotlib figure>

Parameters

• title (str) – A title for the plot

• x_label (str) – A label for the x axis

• y_label (str) – A label for the y axis

• kind (str (‘line’/‘bar’/‘barh’/‘pie’/‘area’/‘heatmap’)) – The kind of chart to make

• style (str (‘ggplot’/’bmh’/’fivethirtyeight’/’seaborn-talk’/etc)) – Visual theme of
plot

• figsize (tuple – (int, int)) – Size of plot

• save (bool/str) – If bool, save with title as name; if str, use str as name

• legend_pos (str (‘upper right’/’outside right’/etc)) – Where to place legend

• reverse_legend (bool) – Reverse the order of the legend

• num_to_plot (int/’all’) – How many columns to plot

• tex (bool) – Use TeX to draw plot text

• colours (str) – Colourmap for lines/bars/slices

• cumulative (bool) – Plot values cumulatively

• pie_legend (bool) – Show a legend for pie chart

• partial_pie (bool) – Allow plotting of pie slices only

• show_totals (str – ‘legend’/’plot’/’both’) – Print sums in plot where possible

68 Chapter 18. Interrogation classes

corpkit documentation, Release 2.3.8

• transparent (bool) – Transparent .png background

• output_format (str – ‘png’/’pdf’) – File format for saved image

• black_and_white (bool) – Create black and white line styles

• show_p_val (bool) – Attempt to print p values in legend if contained in df

• indices (bool) – To use when plotting “distance from root”

• stacked (str) – When making bar chart, stack bars on top of one another

• filled (str) – For area and bar charts, make every column sum to 100

• legend (bool) – Show a legend

• rot (int) – Rotate x axis ticks by rot degrees

• subplots (bool) – Plot each column separately

• layout (tuple – (int, int)) – Grid shape to use when subplots is True

• interactive (list – [1, 2, 3]) – Experimental interactive options

Returns matplotlib figure

multiplot(leftdict={}, rightdict={}, **kwargs)

language_model(name, *args, **kwargs)
Make a language model from an Interrogation. This is usually done directly on a
corpkit.corpus.Corpus object with the make_language_model() method.

save(savename, savedir=’saved_interrogations’, **kwargs)
Save an interrogation as pickle to savedir.

Example

>>> o = corpus.interrogate(W, 'any')
create ./saved_interrogations/savename.p
>>> o.save('savename')

Parameters

• savename (str) – A name for the saved file

• savedir (str) – Relative path to directory in which to save file

• print_info (bool) – Show/hide stdout

Returns None

quickview(n=25)
view top n results as painlessly as possible.

Example

>>> data.quickview(n=5)
0: to (n=2227)
1: that (n=2026)
2: the (n=1302)
3: then (n=857)
4: think (n=676)

Parameters n (int) – Show top n results

Returns None

tabview(**kwargs)

18.1. Interrogation 69

corpkit documentation, Release 2.3.8

asciiplot(row_or_col_name, axis=0, colours=True, num_to_plot=100, line_length=120,
min_graph_length=50, separator_length=4, multivalue=False, human_readable=’si’,
graphsymbol=’*’, float_format=’{:, .2f}’, **kwargs)

A very quick ascii chart for result

rel(denominator=’self’, **kwargs)

keyness(measure=’ll’, denominator=’self’, **kwargs)

multiindex(indexnames=None)
Create a pandas.MultiIndex object from slash-separated results.

Example

>>> data = corpus.interrogate({W: 'st$'}, show=[L, F])
>>> data.results

.. just/advmod almost/advmod last/amod
01 79 12 6
02 105 6 7
03 86 10 1

>>> data.multiindex().results
Lemma just almost last first most
Function advmod advmod amod amod advmod
0 79 12 6 2 3
1 105 6 7 1 3
2 86 10 1 3 0

Parameters indexnames (list of strings) – provide custom names for the new index, or
leave blank to guess.

Returns corpkit.interrogation.Interrogation, with pandas.MultiIndex as

results attribute

topwords(datatype=’n’, n=10, df=False, sort=True, precision=2)
Show top n results in each corpus alongside absolute or relative frequencies.

Parameters

• datatype (str (n/k/%)) – show abs/rel frequencies, or keyness

• n (int) – number of result to show

• df (bool) – return a DataFrame

• sort (bool) – Sort results, or show as is

• precision (int) – float precision to show

Example

>>> data.topwords(n=5)
1987 % 1988 % 1989 % 1990 %
health 25.70 health 15.25 health 19.64 credit 9.22
security 6.48 cancer 10.85 security 7.91 health 8.31
cancer 6.19 heart 6.31 cancer 6.55 downside 5.46
flight 4.45 breast 4.29 credit 4.08 inflation 3.37
safety 3.49 security 3.94 safety 3.26 cancer 3.12

Returns None

perplexity()
Pythonification of the formal definition of perplexity.

input: a sequence of chances (any iterable will do) output: perplexity value.

from https://github.com/zeffii/NLP_class_notes

entropy()
entropy(pos.edit(merge_entries=mergetags, sort_by=’total’).results.T

70 Chapter 18. Interrogation classes

https://github.com/zeffii/NLP_class_notes

corpkit documentation, Release 2.3.8

shannon()

18.2 Interrodict

class corpkit.interrogation.Interrodict(data)
Bases: collections.OrderedDict

A class for interrogations that do not fit in a single-indexed DataFrame.

Individual interrogations can be looked up via dict keys, indexes or attributes:

Example

>>> out_data['WSJ'].results
>>> out_data.WSJ.results
>>> out_data[3].results

Methods for saving, editing, etc. are similar to corpkit.corpus.Interrogation. Additional meth-
ods are available for collapsing into single (multi-indexed) DataFrames.

This class is now deprecated, in favour of a multiindexed DataFrame.

edit(*args, **kwargs)
Edit each value with edit().

See edit() for possible arguments.

Returns A corpkit.interrogation.Interrodict

multiindex(indexnames=False)
Create a pandas.MultiIndex version of results.

Example

>>> d = corpora.interrogate({F: 'compound', GL: '^risk'}, show=L)
>>> d.keys()

['CHT', 'WAP', 'WSJ']
>>> d['CHT'].results

.... health cancer security credit flight safety heart
1987 87 25 28 13 7 6 4
1988 72 24 20 15 7 4 9
1989 137 61 23 10 5 5 6

>>> d.multiindex().results
... health cancer credit security downside
Corpus Subcorpus
CHT 1987 87 25 13 28 20

1988 72 24 15 20 12
1989 137 61 10 23 10

WAP 1987 83 44 8 44 10
1988 83 27 13 40 6
1989 95 77 18 25 12

WSJ 1987 52 27 33 4 21
1988 39 11 37 9 22
1989 55 47 43 9 24

Returns A corpkit.interrogation.Interrogation

save(savename, savedir=’saved_interrogations’, **kwargs)
Save an interrogation as pickle to savedir.

Parameters

• savename (str) – A name for the saved file

• savedir (str) – Relative path to directory in which to save file

• print_info (bool) – Show/hide stdout

Example

18.2. Interrodict 71

corpkit documentation, Release 2.3.8

>>> o = corpus.interrogate(W, 'any')
create ``saved_interrogations/savename.p``
>>> o.save('savename')

Returns None

collapse(axis=’y’)
Collapse Interrodict on an axis or along interrogation name.

Parameters axis (str: x/y/n) – collapse along x, y or name axis

Example

>>> d = corpora.interrogate({F: 'compound', GL: r'^risk'}, show=L)

>>> d.keys()
['CHT', 'WAP', 'WSJ']

>>> d['CHT'].results
.... health cancer security credit flight safety heart
1987 87 25 28 13 7 6 4
1988 72 24 20 15 7 4 9
1989 137 61 23 10 5 5 6

>>> d.collapse().results
... health cancer credit security
CHT 3174 1156 566 697
WAP 2799 933 582 1127
WSJ 1812 680 2009 537

>>> d.collapse(axis='x').results
... 1987 1988 1989
CHT 384 328 464
WAP 389 355 435
WSJ 428 410 473

>>> d.collapse(axis='key').results
... health cancer credit security
1987 282 127 65 93
1988 277 100 70 107
1989 379 253 83 91

Returns A corpkit.interrogation.Interrogation

topwords(datatype=’n’, n=10, df=False, sort=True, precision=2)
Show top n results in each corpus alongside absolute or relative frequencies.

Parameters

• datatype (str (n/k/%)) – show abs/rel frequencies, or keyness

• n (int) – number of result to show

• df (bool) – return a DataFrame

• sort (bool) – Sort results, or show as is

• precision (int) – float precision to show

Example

>>> data.topwords(n=5)
TBT % UST % WAP % WSJ %
health 25.70 health 15.25 health 19.64 credit 9.22
security 6.48 cancer 10.85 security 7.91 health 8.31
cancer 6.19 heart 6.31 cancer 6.55 downside 5.46
flight 4.45 breast 4.29 credit 4.08 inflation 3.37
safety 3.49 security 3.94 safety 3.26 cancer 3.12

Returns None

72 Chapter 18. Interrogation classes

corpkit documentation, Release 2.3.8

visualise(shape=’auto’, truncate=8, **kwargs)
Attempt to visualise Interrodict by using subplots

Parameters

• shape (tuple) – Layout for the subplots (e.g. (2, 2))

• truncate (int) – Only process the first n items in the
class:corpkit.interrogation.Interrodict

• kwargs (keyword arguments) – specifications to pass to plotter()

copy()

flip(truncate=30, transpose=True, repeat=False, *args, **kwargs)
Change the dimensions of corpkit.interrogation.Interrodict, making column names
into keys.

Parameters

• truncate (int/‘all’) – Get first n columns

• transpose (bool) – Flip rows and columns:

• repeat (bool) – Flip twice, to move columns into key position

• kwargs – Arguments to pass to the edit() method

Returns corpkit.interrogation.Interrodict

get_totals()
Helper function to concatenate all totals

18.3 Concordance

class corpkit.interrogation.Concordance(data)
Bases: pandas.core.frame.DataFrame

A class for concordance lines, with methods for saving, formatting and editing.

format(kind=’string’, n=100, window=35, print_it=True, columns=’all’, metadata=True,
**kwargs)

Print concordance lines nicely, to string, LaTeX or CSV

Parameters

• kind (str) – output format: string/latex/csv

• n (int/‘all’) – Print first n lines only

• window (int) – how many characters to show to left and right

• columns (list) – which columns to show

Example

>>> lines = corpus.concordance({T: r'/NN.?/ >># NP'}, show=L)
show 25 characters either side, 4 lines, just text columns
>>> lines.format(window=25, n=4, columns=[L,M,R])

0 we 're in tucson , then up north to flagst
1 e 're in tucson , then up north to flagstaff , then we we
2 tucson , then up north to flagstaff , then we went through th
3 through the grand canyon area and then phoenix and i sp

Returns None

calculate()
Make new Interrogation object from (modified) concordance lines

18.3. Concordance 73

corpkit documentation, Release 2.3.8

shuffle(inplace=False)
Shuffle concordance lines

Parameters inplace (bool) – Modify current object, or create a new one

Example

>>> lines[:4].shuffle()
3 01 1-01.txt.conll through the grand canyon area and then phoenix and i sp
1 01 1-01.txt.conll e 're in tucson , then up north to flagstaff , then we we
0 01 1-01.txt.conll we 're in tucson , then up north to flagst
2 01 1-01.txt.conll tucson , then up north to flagstaff , then we went through th

edit(*args, **kwargs)
Delete or keep rows by subcorpus or by middle column text.

>>> skipped = conc.edit(skip_entries=r'to_?match')

less(**kwargs)

74 Chapter 18. Interrogation classes

CHAPTER 19

Functions

corpkit contains a small set of standalone functions.

19.1 as_regex

corpkit.other.as_regex(lst, boundaries=’w’, case_sensitive=False, inverse=False, com-
pile=False)

Turns a wordlist into an uncompiled regular expression

Parameters

• lst (list) – A wordlist to convert

• boundaries (str -- ’word’/’line’/’space’; tuple --
(leftboundary, rightboundary)) –

• case_sensitive (bool) – Make regular expression case sensitive

• inverse (bool) – Make regular expression inverse matching

Returns regular expression as string

19.2 load

corpkit.other.load(savename, loaddir=’saved_interrogations’)
Load saved data into memory:

>>> loaded = load('interro')

will load ./saved_interrogations/interro.p as loaded

Parameters

• savename (str) – Filename with or without extension

• loaddir (str) – Relative path to the directory containg savename

• only_concs (bool) – Set to True if loading concordance lines

Returns loaded data

19.3 load_all_results

corpkit.other.load_all_results(data_dir=’saved_interrogations’, **kwargs)
Load every saved interrogation in data_dir into a dict:

75

corpkit documentation, Release 2.3.8

>>> r = load_all_results()

Parameters data_dir (str) – path to saved data

Returns dict with filenames as keys

19.4 new_project

corpkit.other.new_project(name, loc=’.’, **kwargs)
Make a new project in loc.

Parameters

• name (str) – A name for the project

• loc (str) – Relative path to directory in which project will be made

Returns None

76 Chapter 19. Functions

CHAPTER 20

Wordlists

20.1 Closed class word types

Various wordlists, mostly for subtypes of closed class words

corpkit.dictionaries.wordlists.wordlists = wordlists(pronouns=[u’all’, u’another’, u’any’, u’anybody’, u’anyone’, u’anything’, u’both’, u’each’, u’each’, u’other’, u’either’, u’everybody’, u’everyone’, u’everything’, u’few’, u’he’, u’her’, u’hers’, u’herself’, u’him’, u’himself’, u’his’, u’it’, u’i’, u’its’, u’itself’, u’many’, u’me’, u’mine’, u’more’, u’most’, u’much’, u’myself’, u’neither’, u’no’, u’one’, u’nobody’, u’none’, u’nothing’, u’one’, u’another’, u’other’, u’others’, u’ours’, u’ourselves’, u’several’, u’she’, u’some’, u’somebody’, u’someone’, u’something’, u’that’, u’their’, u’theirs’, u’them’, u’there’, u’themselves’, u’these’, u’they’, u’this’, u’those’, u’us’, u’we’, u’what’, u’whatever’, u’which’, u’whichever’, u’who’, u’whoever’, u’whom’, u’whomever’, u’whose’, u’you’, u’your’, u’yours’, u’yourself’, u’yourselves’], conjunctions=[u’though’, u’although’, u’even though’, u’while’, u’if’, u’only if’, u’unless’, u’until’, u’provided that’, u’assuming that’, u’even if’, u’in case’, u’lest’, u’than’, u’rather than’, u’whether’, u’as much as’, u’whereas’, u’after’, u’as long as’, u’as soon as’, u’before’, u’by the time’, u’now that’, u’once’, u’since’, u’till’, u’until’, u’when’, u’whenever’, u’while’, u’because’, u’since’, u’so that’, u’why’, u’that’, u’what’, u’whatever’, u’which’, u’whichever’, u’who’, u’whoever’, u’whom’, u’whomever’, u’whose’, u’how’, u’as though’, u’as if’, u’where’, u’wherever’, u’for’, u’and’, u’nor’, u’but’, u’or’, u’yet’, u’so’, u’however’], articles=[u’a’, u’an’, u’the’, u’teh’], determiners=[u’all’, u’anotha’, u’another’, u’any’, u’any-and-all’, u’atta’, u’both’, u’certain’, u’couple’, u’dat’, u’dem’, u’dis’, u’each’, u’either’, u’enough’, u’enuf’, u’enuff’, u’every’, u’few’, u’fewer’, u’fewest’, u’her’, u’hes’, u’his’, u’its’, u’last’, u’least’, u’many’, u’more’, u’most’, u’much’, u’muchee’, u’my’, u’neither’, u’nil’, u’no’, u’none’, u’other’, u’our’, u’overmuch’, u’owne’, u’plenty’, u’quodque’, u’several’, u’some’, u’such’, u’sufficient’, u’that’, u’their’, u’them’, u’these’, u’they’, u’thilk’, u’thine’, u’this’, u’those’, u’thy’, u’umpteen’, u’us’, u’various’, u’wat’, u’we’, u’what’, u’whatever’, u’which’, u’whichever’, u’yonder’, u’you’, u’your’], prepositions=[u’about’, u’above’, u’across’, u’after’, u’against’, u’along’, u’among’, u’around’, u’at’, u’before’, u’behind’, u’below’, u’beneath’, u’beside’, u’between’, u’by’, u’down’, u’during’, u’except’, u’for’, u’from’, u’front’, u’in’, u’inside’, u’instead’, u’into’, u’like’, u’near’, u’of’, u’off’, u’on’, u’onto’, u’out’, u’outside’, u’over’, u’past’, u’since’, u’through’, u’to’, u’top’, u’toward’, u’under’, u’underneath’, u’until’, u’up’, u’upon’, u’with’, u’within’, u’without’], connectors=[u’about’, u’above’, u’across’, u’after’, u’against’, u’along’, u’among’, u’around’, u’at’, u’before’, u’behind’, u’below’, u’beneath’, u’beside’, u’between’, u’by’, u’down’, u’during’, u’except’, u’for’, u’from’, u’front’, u’in’, u’inside’, u’instead’, u’into’, u’like’, u’near’, u’of’, u’off’, u’on’, u’onto’, u’out’, u’outside’, u’over’, u’past’, u’since’, u’through’, u’to’, u’top’, u’toward’, u’under’, u’underneath’, u’until’, u’up’, u’upon’, u’with’, u’within’, u’without’], modals=[u’would’, u’will’, u’can’, u’could’, u’may’, u’should’, u’might’, u’must’, u’ca’, u“‘ll”, u“‘d”, u’wo’, u’ought’, u’need’, u’shall’, u’dare’, u’shalt’], closedclass=[u“‘d”, u“‘ll”, u’a’, u’about’, u’above’, u’across’, u’after’, u’against’, u’all’, u’along’, u’although’, u’among’, u’an’, u’and’, u’anotha’, u’another’, u’any’, u’any-and-all’, u’anybody’, u’anyone’, u’anything’, u’around’, u’as if’, u’as long as’, u’as much as’, u’as soon as’, u’as though’, u’assuming that’, u’at’, u’atta’, u’because’, u’before’, u’behind’, u’below’, u’beneath’, u’beside’, u’between’, u’both’, u’but’, u’by’, u’by the time’, u’ca’, u’can’, u’certain’, u’could’, u’couple’, u’dare’, u’dat’, u’dem’, u’dis’, u’down’, u’during’, u’each’, u’either’, u’enough’, u’enuf’, u’enuff’, u’even if’, u’even though’, u’every’, u’everybody’, u’everyone’, u’everything’, u’except’, u’few’, u’fewer’, u’fewest’, u’for’, u’from’, u’front’, u’he’, u’her’, u’hers’, u’herself’, u’hes’, u’him’, u’himself’, u’his’, u’how’, u’however’, u’i’, u’if’, u’in’, u’in case’, u’inside’, u’instead’, u’into’, u’it’, u’its’, u’itself’, u’last’, u’least’, u’lest’, u’like’, u’many’, u’may’, u’me’, u’might’, u’mine’, u’more’, u’most’, u’much’, u’muchee’, u’must’, u’my’, u’myself’, u’near’, u’need’, u’neither’, u’nil’, u’no’, u’nobody’, u’none’, u’nor’, ‘not’, u’nothing’, u’now that’, u’of’, u’off’, u’on’, u’once’, u’one’, u’only if’, u’onto’, u’or’, u’other’, u’others’, u’ought’, u’our’, u’ours’, u’ourselves’, u’out’, u’outside’, u’over’, u’overmuch’, u’owne’, u’past’, u’plenty’, u’provided that’, u’quodque’, u’rather than’, u’several’, u’shall’, u’shalt’, u’she’, u’should’, u’since’, u’so’, u’so that’, u’some’, u’somebody’, u’someone’, u’something’, u’such’, u’sufficient’, u’teh’, u’than’, u’that’, u’the’, u’their’, u’theirs’, u’them’, u’themselves’, u’there’, u’these’, u’they’, u’thilk’, u’thine’, u’this’, u’those’, u’though’, u’through’, u’thy’, u’till’, u’to’, u’top’, u’toward’, u’umpteen’, u’under’, u’underneath’, u’unless’, u’until’, u’up’, u’upon’, u’us’, u’various’, u’wat’, u’we’, u’what’, u’whatever’, u’when’, u’whenever’, u’where’, u’whereas’, u’wherever’, u’whether’, u’which’, u’whichever’, u’while’, u’who’, u’whoever’, u’whom’, u’whomever’, u’whose’, u’why’, u’will’, u’with’, u’within’, u’without’, u’wo’, u’would’, u’yet’, u’yonder’, u’you’, u’your’, u’yours’, u’yourself’, u’yourselves’], stopwords=[’yeah’, ‘monday’, ‘tuesday’, ‘wednesday’, ‘thursday’, ‘friday’, ‘saturday’, ‘sunday’, ‘a’, ‘able’, ‘about’, ‘above’, ‘abst’, ‘accordance’, ‘according’, ‘accordingly’, ‘across’, ‘act’, ‘actually’, ‘added’, ‘adj’, ‘adopted’, ‘affected’, ‘affecting’, ‘affects’, ‘after’, ‘afterwards’, ‘again’, ‘against’, ‘ah’, ‘all’, ‘almost’, ‘alone’, ‘along’, ‘already’, ‘also’, ‘although’, ‘always’, ‘am’, ‘among’, ‘amongst’, ‘an’, ‘and’, ‘announce’, ‘another’, ‘any’, ‘anybody’, ‘anyhow’, ‘anymore’, ‘anyone’, ‘anything’, ‘anyway’, ‘anyways’, ‘anywhere’, ‘apparently’, ‘approximately’, ‘are’, ‘aren’, ‘arent’, ‘arise’, ‘around’, ‘as’, ‘aside’, ‘ask’, ‘asking’, ‘at’, ‘auth’, ‘available’, ‘away’, ‘awfully’, ‘b’, ‘back’, ‘be’, ‘became’, ‘because’, ‘become’, ‘becomes’, ‘becoming’, ‘been’, ‘before’, ‘beforehand’, ‘begin’, ‘beginning’, ‘beginnings’, ‘begins’, ‘behind’, ‘being’, ‘believe’, ‘below’, ‘beside’, ‘besides’, ‘between’, ‘beyond’, ‘biol’, ‘both’, ‘brief’, ‘briefly’, ‘but’, ‘by’, ‘c’, ‘ca’, ‘came’, ‘can’, ‘cannot’, ‘cant’, ‘cause’, ‘causes’, ‘certain’, ‘certainly’, ‘co’, ‘com’, ‘come’, ‘comes’, ‘contain’, ‘containing’, ‘contains’, ‘could’, ‘couldnt’, ‘d’, ‘date’, ‘did’, ‘didnt’, ‘different’, ‘do’, ‘does’, ‘doesnt’, ‘doing’, ‘done’, ‘dont’, ‘down’, ‘downwards’, ‘due’, ‘during’, ‘e’, ‘each’, ‘ed’, ‘edu’, ‘effect’, ‘eg’, ‘eight’, ‘eighty’, ‘either’, ‘else’, ‘elsewhere’, ‘end’, ‘ending’, ‘enough’, ‘especially’, ‘et’, ‘et-al’, ‘etc’, ‘even’, ‘ever’, ‘every’, ‘everybody’, ‘everyone’, ‘everything’, ‘everywhere’, ‘ex’, ‘except’, ‘f’, ‘far’, ‘few’, ‘ff’, ‘fifth’, ‘first’, ‘five’, ‘fix’, ‘followed’, ‘following’, ‘follows’, ‘for’, ‘former’, ‘formerly’, ‘forth’, ‘found’, ‘four’, ‘from’, ‘further’, ‘furthermore’, ‘going’, ‘g’, ‘gave’, ‘get’, ‘gets’, ‘getting’, ‘give’, ‘given’, ‘gives’, ‘giving’, ‘go’, ‘goes’, ‘gone’, ‘got’, ‘gotten’, ‘h’, ‘had’, ‘happens’, ‘hardly’, ‘has’, ‘hasnt’, ‘have’, ‘havent’, ‘having’, ‘he’, ‘hed’, ‘hence’, ‘her’, ‘here’, ‘hereafter’, ‘hereby’, ‘herein’, ‘heres’, ‘hereupon’, ‘hers’, ‘herself’, ‘hes’, ‘hi’, ‘hid’, ‘him’, ‘himself’, ‘his’, ‘hither’, ‘home’, ‘how’, ‘howbeit’, ‘however’, ‘hundred’, ‘i’, ‘id’, ‘ie’, ‘if’, ‘ill’, ‘im’, ‘immediate’, ‘immediately’, ‘importance’, ‘important’, ‘in’, ‘inc’, ‘indeed’, ‘index’, ‘information’, ‘instead’, ‘into’, ‘invention’, ‘inward’, ‘is’, ‘isnt’, ‘it’, ‘itd’, ‘itll’, ‘its’, ‘itself’, ‘ive’, ‘j’, ‘just’, ‘k’, ‘keep’, ‘keeps’, ‘kept’, ‘keys’, ‘kg’, ‘km’, ‘know’, ‘known’, ‘knows’, ‘l’, ‘largely’, ‘last’, ‘lately’, ‘later’, ‘latter’, ‘latterly’, ‘least’, ‘less’, ‘lest’, ‘let’, ‘lets’, ‘like’, ‘liked’, ‘likely’, ‘line’, ‘little’, ‘ll’, ‘look’, ‘looking’, ‘looks’, ‘ltd’, ‘m’, ‘made’, ‘mainly’, ‘make’, ‘makes’, ‘many’, ‘may’, ‘maybe’, ‘me’, ‘mean’, ‘means’, ‘meantime’, ‘meanwhile’, ‘merely’, ‘mg’, ‘might’, ‘million’, ‘miss’, ‘ml’, ‘more’, ‘moreover’, ‘most’, ‘mostly’, ‘mr’, ‘mrs’, ‘much’, ‘mug’, ‘must’, ‘my’, ‘myself’, ‘n’, ‘na’, ‘name’, ‘namely’, ‘nay’, ‘nd’, ‘near’, ‘nearly’, ‘necessarily’, ‘necessary’, ‘need’, ‘needs’, ‘neither’, ‘never’, ‘nevertheless’, ‘new’, ‘next’, ‘nine’, ‘ninety’, ‘no’, ‘nobody’, ‘non’, ‘none’, ‘nonetheless’, ‘noone’, ‘nor’, ‘normally’, ‘nos’, ‘not’, ‘noted’, ‘nothing’, ‘now’, ‘nowhere’, ‘o’, ‘obtain’, ‘obtained’, ‘obviously’, ‘of’, ‘off’, ‘often’, ‘oh’, ‘ok’, ‘okay’, ‘old’, ‘omitted’, ‘on’, ‘once’, ‘one’, ‘ones’, ‘only’, ‘onto’, ‘or’, ‘ord’, ‘other’, ‘others’, ‘otherwise’, ‘ought’, ‘our’, ‘ours’, ‘ourselves’, ‘out’, ‘outside’, ‘over’, ‘overall’, ‘owing’, ‘own’, ‘p’, ‘page’, ‘pages’, ‘part’, ‘particular’, ‘particularly’, ‘past’, ‘per’, ‘perhaps’, ‘placed’, ‘please’, ‘plus’, ‘poorly’, ‘possible’, ‘possibly’, ‘potentially’, ‘pp’, ‘predominantly’, ‘present’, ‘previously’, ‘primarily’, ‘probably’, ‘promptly’, ‘proud’, ‘provides’, ‘put’, ‘q’, ‘que’, ‘quickly’, ‘quite’, ‘qv’, ‘r’, ‘ran’, ‘rather’, ‘rd’, ‘re’, ‘readily’, ‘really’, ‘recent’, ‘recently’, ‘ref’, ‘refs’, ‘regarding’, ‘regardless’, ‘regards’, ‘related’, ‘relatively’, ‘research’, ‘respectively’, ‘resulted’, ‘resulting’, ‘results’, ‘right’, ‘run’, ‘s’, ‘said’, ‘same’, ‘saw’, ‘say’, ‘saying’, ‘says’, ‘sec’, ‘section’, ‘see’, ‘seeing’, ‘seem’, ‘seemed’, ‘seeming’, ‘seems’, ‘seen’, ‘self’, ‘selves’, ‘sent’, ‘seven’, ‘several’, ‘shall’, ‘she’, ‘shed’, ‘shell’, ‘shes’, ‘should’, ‘shouldnt’, ‘show’, ‘showed’, ‘shown’, ‘showns’, ‘shows’, ‘significant’, ‘significantly’, ‘similar’, ‘similarly’, ‘since’, ‘six’, ‘slightly’, ‘so’, ‘some’, ‘somebody’, ‘somehow’, ‘someone’, ‘somethan’, ‘something’, ‘sometime’, ‘sometimes’, ‘somewhat’, ‘somewhere’, ‘soon’, ‘sorry’, ‘specifically’, ‘specified’, ‘specify’, ‘specifying’, ‘state’, ‘states’, ‘still’, ‘stop’, ‘strongly’, ‘sub’, ‘substantially’, ‘successfully’, ‘such’, ‘sufficiently’, ‘suggest’, ‘sup’, ‘sure’, ‘t’, ‘take’, ‘taken’, ‘taking’, ‘tell’, ‘tends’, ‘th’, ‘than’, ‘thank’, ‘thanks’, ‘thanx’, ‘that’, ‘thatll’, ‘thats’, ‘thatve’, ‘the’, ‘their’, ‘theirs’, ‘them’, ‘themselves’, ‘then’, ‘thence’, ‘there’, ‘thereafter’, ‘thereby’, ‘thered’, ‘therefore’, ‘therein’, ‘therell’, ‘thereof’, ‘therere’, ‘theres’, ‘thereto’, ‘thereupon’, ‘thereve’, ‘these’, ‘they’, ‘theyd’, ‘theyll’, ‘theyre’, ‘theyve’, ‘think’, ‘this’, ‘those’, ‘thou’, ‘though’, ‘thoughh’, ‘thousand’, ‘throug’, ‘through’, ‘throughout’, ‘thru’, ‘thus’, ‘til’, ‘tip’, ‘to’, ‘together’, ‘too’, ‘took’, ‘toward’, ‘towards’, ‘tried’, ‘tries’, ‘truly’, ‘try’, ‘trying’, ‘ts’, ‘twice’, ‘two’, ‘u’, ‘un’, ‘under’, ‘unfortunately’, ‘unless’, ‘unlike’, ‘unlikely’, ‘until’, ‘unto’, ‘up’, ‘upon’, ‘ups’, ‘us’, ‘use’, ‘used’, ‘useful’, ‘usefully’, ‘usefulness’, ‘uses’, ‘using’, ‘usually’, ‘v’, ‘value’, ‘various’, ‘ve’, ‘very’, ‘via’, ‘viz’, ‘vol’, ‘vols’, ‘vs’, ‘w’, ‘want’, ‘wants’, ‘was’, ‘wasnt’, ‘way’, ‘we’, ‘wed’, ‘welcome’, ‘well’, ‘went’, ‘were’, ‘werent’, ‘weve’, ‘what’, ‘whatever’, ‘whatll’, ‘whats’, ‘when’, ‘whence’, ‘whenever’, ‘where’, ‘whereafter’, ‘whereas’, ‘whereby’, ‘wherein’, ‘wheres’, ‘whereupon’, ‘wherever’, ‘whether’, ‘which’, ‘while’, ‘whim’, ‘whither’, ‘who’, ‘whod’, ‘whoever’, ‘whole’, ‘wholl’, ‘whom’, ‘whomever’, ‘whos’, ‘whose’, ‘why’, ‘widely’, ‘willing’, ‘wish’, ‘with’, ‘within’, ‘without’, ‘wont’, ‘words’, ‘world’, ‘would’, ‘wouldnt’, ‘www’, ‘x’, ‘y’, ‘yes’, ‘yet’, ‘you’, ‘youd’, ‘youll’, ‘your’, ‘youre’, ‘yours’, ‘yourself’, ‘yourselves’, ‘youve’, ‘z’, ‘zero’, ‘isn’, ‘doesn’, ‘didn’, ‘couldn’, ‘mustn’, ‘shoudn’, ‘wasn’, ‘woudn’, ‘i’, ‘me’, ‘my’, ‘myself’, ‘we’, ‘our’, ‘ours’, ‘ourselves’, ‘you’, ‘your’, ‘yours’, ‘yourself’, ‘yourselves’, ‘he’, ‘him’, ‘his’, ‘himself’, ‘she’, ‘her’, ‘hers’, ‘herself’, ‘it’, ‘its’, ‘itself’, ‘they’, ‘them’, ‘their’, ‘theirs’, ‘themselves’, ‘what’, ‘which’, ‘who’, ‘whom’, ‘this’, ‘that’, ‘these’, ‘those’, ‘am’, ‘is’, ‘are’, ‘was’, ‘were’, ‘be’, ‘been’, ‘being’, ‘have’, ‘has’, ‘had’, ‘having’, ‘do’, ‘does’, ‘did’, ‘doing’, ‘a’, ‘an’, ‘the’, ‘and’, ‘but’, ‘if’, ‘or’, ‘because’, ‘as’, ‘until’, ‘while’, ‘of’, ‘at’, ‘by’, ‘for’, ‘with’, ‘about’, ‘against’, ‘between’, ‘into’, ‘through’, ‘during’, ‘before’, ‘after’, ‘above’, ‘below’, ‘to’, ‘from’, ‘up’, ‘down’, ‘in’, ‘out’, ‘on’, ‘off’, ‘over’, ‘under’, ‘again’, ‘further’, ‘then’, ‘once’, ‘here’, ‘there’, ‘when’, ‘where’, ‘why’, ‘how’, ‘all’, ‘any’, ‘both’, ‘each’, ‘few’, ‘more’, ‘most’, ‘other’, ‘some’, ‘such’, ‘no’, ‘nor’, ‘not’, ‘only’, ‘own’, ‘same’, ‘so’, ‘than’, ‘too’, ‘very’, ‘s’, ‘t’, ‘can’, ‘will’, ‘just’, ‘don’, ‘should’, ‘now’, ‘gonna’, “n’t”, ‘-lrb-‘, ‘-rrb-‘, “‘m”, “‘ll”, “‘re”, “‘s”, “‘ve”, ‘&’], titles=[u’admiral’, u’archbishop’, u’alan’, u’merrill’, u’sarah’, ‘queen’, u’king’, u’sen’, u’chancellor’, u’prime minister’, ‘cardinal’, u’bishop’, u’father’, u’hon’, u’rev’, u’reverend’, ‘pope’, u’sir’, u’doctor’, u’professor’, u’president’, ‘senator’, u’congressman’, u’congresswoman’, u’mr’, u’ms’, ‘mrs’, u’miss’, u’dr’, u’bill’, u’hillary’, u’hillary rodham’, ‘saddam’, u’osama’, u’ayatollah’, u’george’, u’george w’, ‘mitt’, u’malcolm’, u’barack’, u’ronald’, u’john’, u’john f’, ‘william’, u’al’, u’bob’], whpro=[u’who’, u’what’, u’why’, u’where’, u’when’, u’how’])
wordlists(pronouns, conjunctions, articles, determiners, prepositions, connectors, modals, closedclass, stop-
words, titles, whpro)

20.2 Systemic functional process types

Inflected verbforms for systemic process types.

corpkit.dictionaries.process_types.processes

20.3 Stopwords

A list of arbitrary stopwords.

corpkit.dictionaries.stopwords.stopwords

20.4 Systemic/dependency label conversion

Systemic-functional to dependency role translation.

corpkit.dictionaries.roles.roles = roles(actor=[’agent’, ‘agent’, ‘csubj’, ‘nsubj’], adjunct=[’(prep|nmod)(_|:).*’, ‘advcl’, ‘advmod’, ‘agent’, ‘tmod’], any=[’acl’, ‘acl(_|:)relcl’, ‘advcl’, ‘advmod’, ‘amod’, ‘appos’, ‘aux’, ‘auxpass’, ‘case’, ‘cc’, ‘cc:preconj’, ‘ccomp’, ‘compound’, ‘compound:prt’, ‘conj’, ‘cop’, ‘csubj’, ‘csubjpass’, ‘dep’, ‘det’, ‘det:predet’, ‘discourse’, ‘dislocated’, ‘dobj’, ‘expl’, ‘foreign’, ‘goeswith’, ‘iobj’, ‘list’, ‘mark’, ‘mwe’, ‘name’, ‘neg’, ‘nmod’, ‘nmod:npmod’, ‘nmod:poss’, ‘nmod:tmod’, ‘nsubj’, ‘nsubjpass’, ‘nummod’, ‘parataxis’, ‘punct’, ‘remnant’, ‘reparandum’, ‘root’, ‘vocative’, ‘xcomp’], auxiliary=[’aux’, ‘auxpass’], circumstance=[’(prep|nmod)(_|:).*’, ‘advmod’, ‘pobj’, ‘tmod’], classifier=[’compound’, ‘nn’], complement=[’acomp’, ‘dobj’, ‘iobj’], deictic=[’det’, ‘poss’, ‘possessive’, ‘preconj’, ‘predet’], epithet=[’amod’], event=[’acl’, ‘acl(_|:)relcl’, ‘advcl’, ‘ccomp’, ‘cop’, ‘root’], existential=[’expl’], finite=[’aux’], goal=[’acomp’, ‘csubjpass’, ‘dobj’, ‘iobj’, ‘nsubjpass’], modal=[’aux’, ‘auxpass’], modifier=[’acl(_|:)relcl’, ‘advmod’, ‘amod’, ‘compound’, ‘nmod.*’, ‘nn’], numerative=[’number’, ‘quantmod’], participant=[’acomp’, ‘agent’, ‘appos’, ‘csubj’, ‘csubjpass’, ‘dobj’, ‘iobj’, ‘nsubj’, ‘nsubjpass’, ‘xcomp’, ‘xsubj’], participant1=[’agent’, ‘csubj’, ‘nsubj’], participant2=[’acomp’, ‘csubjpass’, ‘dobj’, ‘iobj’, ‘nsubjpass’, ‘xcomp’], polarity=[’neg’], postmodifier=[’acl(_|:)relcl’, ‘nmod:.*’], predicator=[’ccomp’, ‘cop’, ‘root’], premodifier=[’amod’, ‘compound’, ‘nmod’, ‘nn’], process=[’acl’, ‘acl(_|:)relcl’, ‘advcl’, ‘aux’, ‘auxpass’, ‘ccomp’, ‘cop’, ‘prt’, ‘root’], qualifier=[’rcmod’, ‘vmod’], subject=[’csubj’, ‘csubjpass’, ‘nsubj’, ‘nsubjpass’], textual=[’cc’, ‘mark’, ‘ref’], thing=[’(prep|nmod)(_|:).*’, ‘agent’, ‘appos’, ‘csubj’, ‘csubjpass’, ‘dobj’, ‘iobj’, ‘nsubj’, ‘nsubjpass’, ‘pobj’, ‘tmod’])
roles(actor, adjunct, any, auxiliary, circumstance, classifier, complement, deictic, epithet, event, existen-
tial, finite, goal, modal, modifier, numerative, participant, participant1, participant2, polarity, postmodifier,
predicator, premodifier, process, qualifier, subject, textual, thing)

20.5 BNC reference corpus

BNC word frequency list.

corpkit.dictionaries.bnc.bnc

77

corpkit documentation, Release 2.3.8

20.6 Spelling conversion

A dict with U.S. English spellings as keys, U.K. spellings as values.

corpkit.dictionaries.word_transforms.usa_convert

Cite

If you’d like to cite corpkit, you can use:

McDonald, D. (2015). corpkit: a toolkit for corpus linguistics. Retrieved from
https://www.github.com/interrogator/corpkit. DOI: http://doi.org/10.5281/zenodo.28361

78 Chapter 20. Wordlists

Index

A
all_filepaths (corpkit.corpus.Corpus attribute), 57
all_files (corpkit.corpus.Corpus attribute), 57
annotate() (corpkit.corpus.Corpus method), 62
as_regex() (in module corpkit.other), 75
asciiplot() (corpkit.interrogation.Interrogation method),

69

C
calculate() (corpkit.interrogation.Concordance

method), 73
collapse() (corpkit.interrogation.Interrodict method),

72
Concordance (class in corpkit.interrogation), 73
concordance (corpkit.interrogation.Interrogation

attribute), 65
concordance() (corpkit.corpus.Corpus method), 61
concordance() (corpkit.corpus.Datalist method), 64
configurations() (corpkit.corpus.Corpus method), 58
configurations() (corpkit.corpus.Datalist method), 64
conll_conform() (corpkit.corpus.Corpus method), 57
copy() (corpkit.interrogation.Interrodict method), 73
corpkit.dictionaries.bnc.bnc (built-in variable), 77
corpkit.dictionaries.process_types.processes (built-in

variable), 77
corpkit.dictionaries.stopwords.stopwords (built-in vari-

able), 77
corpkit.dictionaries.word_transforms.usa_convert

(built-in variable), 78
Corpora (class in corpkit.corpus), 62
Corpus (class in corpkit.corpus), 57

D
Datalist (class in corpkit.corpus), 64
delete_metadata() (corpkit.corpus.Corpus method), 60
document (corpkit.corpus.File attribute), 63

E
edit() (corpkit.interrogation.Concordance method), 74
edit() (corpkit.interrogation.Interrodict method), 71
edit() (corpkit.interrogation.Interrogation method), 65
entropy() (corpkit.interrogation.Interrogation method),

70

F
features (corpkit.corpus.Corpora attribute), 63
features (corpkit.corpus.Corpus attribute), 57
File (class in corpkit.corpus), 63
files (corpkit.corpus.Corpus attribute), 57
flip() (corpkit.interrogation.Interrodict method), 73
format() (corpkit.interrogation.Concordance method),

73

G
get_totals() (corpkit.interrogation.Interrodict method),

73

I
Interrodict (class in corpkit.interrogation), 71
interrogate() (corpkit.corpus.Corpus method), 58
interrogate() (corpkit.corpus.Datalist method), 64
Interrogation (class in corpkit.interrogation), 65
interroplot() (corpkit.corpus.Corpus method), 62

K
keyness() (corpkit.interrogation.Interrogation method),

70

L
language_model() (corpkit.interrogation.Interrogation

method), 69
less() (corpkit.interrogation.Concordance method), 74
lexicon (corpkit.corpus.Corpora attribute), 63
lexicon (corpkit.corpus.Corpus attribute), 58
load() (in module corpkit.other), 75
load_all_results() (in module corpkit.other), 75

M
make_language_model() (corpkit.corpus.Corpus

method), 62
metadata (corpkit.corpus.Corpus attribute), 60
multiindex() (corpkit.interrogation.Interrodict method),

71
multiindex() (corpkit.interrogation.Interrogation

method), 70
multiplot() (corpkit.interrogation.Interrogation

method), 69

79

corpkit documentation, Release 2.3.8

N
new_project() (in module corpkit.other), 76

P
parse() (corpkit.corpus.Corpora method), 63
parse() (corpkit.corpus.Corpus method), 60
perplexity() (corpkit.interrogation.Interrogation

method), 70
plain (corpkit.corpus.File attribute), 63
postags (corpkit.corpus.Corpora attribute), 63
postags (corpkit.corpus.Corpus attribute), 58

Q
query (corpkit.interrogation.Interrogation attribute), 65
quickview() (corpkit.interrogation.Interrogation

method), 69

R
read() (corpkit.corpus.File method), 63
rel() (corpkit.interrogation.Interrogation method), 70
results (corpkit.interrogation.Interrogation attribute), 65
roles (in module corpkit.dictionaries.roles), 77

S
sample() (corpkit.corpus.Corpus method), 60
save() (corpkit.corpus.Corpus method), 62
save() (corpkit.interrogation.Interrodict method), 71
save() (corpkit.interrogation.Interrogation method), 69
shannon() (corpkit.interrogation.Interrogation method),

70
shuffle() (corpkit.interrogation.Concordance method),

73
sort() (corpkit.interrogation.Interrogation method), 68
speakerlist (corpkit.corpus.Corpus attribute), 57
subcorpora (corpkit.corpus.Corpus attribute), 57
Subcorpus (class in corpkit.corpus), 63

T
tabview() (corpkit.interrogation.Interrogation method),

69
tfidf() (corpkit.corpus.Corpus method), 57
tokenise() (corpkit.corpus.Corpus method), 61
topwords() (corpkit.interrogation.Interrodict method),

72
topwords() (corpkit.interrogation.Interrogation

method), 70
totals (corpkit.interrogation.Interrogation attribute), 65
trees (corpkit.corpus.File attribute), 63

U
unannotate() (corpkit.corpus.Corpus method), 62

V
visualise() (corpkit.interrogation.Interrodict method),

73
visualise() (corpkit.interrogation.Interrogation

method), 68

W
wordclasses (corpkit.corpus.Corpora attribute), 63
wordclasses (corpkit.corpus.Corpus attribute), 58
wordlists (in module corpkit.dictionaries.wordlists), 77

80 Index

	Creating projects and building corpora
	Interrogating corpora
	Concordancing
	Editing results
	Visualising results
	Using language models
	Managing projects
	Overview
	Setup
	Making projects and corpora
	Interrogating corpora
	Concordancing
	Annotating your corpus
	Editing results
	Plotting
	Settings and management
	Corpus classes
	Interrogation classes
	Functions
	Wordlists

