

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Cornice 2.0.1 documentation

Cornice: A REST framework for Pyramid

Cornice provides helpers to build & document REST-ish Web Services
with Pyramid, with decent default behaviors. It takes care of following the
HTTP specification in an automated way where possible.

We designed and implemented cornice in a really simple way, so
it is easy to use and you can get started in a matter of minutes.

Show me some code!

A full Cornice WGSI application looks like this (this example is taken from
the demoapp project [https://github.com/Cornices/examples]):

from collections import defaultdict

from pyramid.httpexceptions import HTTPForbidden
from pyramid.view import view_config

from cornice import Service

user_info = Service(name='users',
 path='/{username}/info',
 description='Get and set user data.')

_USERS = defaultdict(dict)

@user_info.get()
def get_info(request):
 """Returns the public information about a **user**.

 If the user does not exists, returns an empty dataset.
 """
 username = request.matchdict['username']
 return _USERS[username]

@user_info.post()
def set_info(request):
 """Set the public information for a **user**.

 You have to be that user, and *authenticated*.

 Returns *True* or *False*.
 """
 username = request.authenticated_userid
 if request.matchdict["username"] != username:
 raise HTTPForbidden()
 _USERS[username] = request.json_body
 return {'success': True}

@view_config(route_name="whoami", permission="authenticated", renderer="json")
def whoami(request):
 """View returning the authenticated user's credentials."""
 username = request.authenticated_userid
 principals = request.effective_principals
 return {"username": username, "principals": principals}

What Cornice will do for you here is:

	automatically raise a 405 if a DELETE or a PUT is called on
/{username}/info

	provide a validation framework that will return a nice JSON structure
in Bad Request 400 responses explaining what’s wrong.

	provide an acceptable Content-Type whenever you send an HTTP “Accept”
header to it, resulting in a 406 Not Acceptable with the list of acceptable ones
if it can’t answer.

Please follow up with Exhaustive features list to get the picture.

Documentation content

	QuickStart for people in a hurry

	Full tutorial
	Design

	Setting up the development environment

	Defining the services

	The Client

	Defining services
	Imperatively

	Custom error handler

	CORS

	Route factory support

	Defining resources
	Imperatively

	Validators and filters

	Registered routes

	Route factory support

	Validation features
	Disabling or adding filters/validators

	Dealing with errors

	Validators

	Media type validation

	Managing ACLs

	Filters

	Schema validation
	Using Colander

	Using formencode

	See also

	Testing
	Running tests

	Testing cornice services

	Exhaustive features list
	Validation

	URL prefix

	CORS

	Cornice API
	Service

	Resource

	Errors

	Cornice internals
	The Service class

	Registering the definitions into the Pyramid routing system

	Frequently Asked Questions (FAQ)
	Cornice registers exception handlers, how do I deal with it?

	Upgrading
	1.X to 2.X

Contribution & Feedback

Cornice is a project initiated at Mozilla Services, where we build Web
Services for features like Firefox Sync. All of what we do is built with open
source, and this is one brick of our stack.

We welcome Contributors and Feedback!

	Developers Mailing List: https://mail.mozilla.org/listinfo/services-dev

	Repository: https://github.com/mozilla-services/cornice

 Copyright 2011-2016, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 2.0.1 documentation

QuickStart for people in a hurry

You are in a hurry, so we’ll assume you are familiar with Pip ;)

To use Cornice, install it:

$ pip install cornice

To start from scratch, you can use a Cookiecutter [https://cookiecutter.readthedocs.io] project template:

$ pip install cookiecutter
$ cookiecutter gh:Cornices/cookiecutter-cornice
...

The template creates a working Cornice application.

Note

If you’re familiar with Pyramid and just want to add cornice to an already
existing project, you’ll just need to include cornice in your project:

config.include("cornice")

You can then start poking at the views.py file.

For example, let’s define a service where you can GET and POST a value
at /values/{value}, where value is an ascii value representing the
name of the value.

The views module can look like this:

from cornice import Service

_VALUES = {}

values = Service(name='foo',
 path='/values/{value}',
 description="Cornice Demo")

@values.get()
def get_value(request):
 """Returns the value.
 """
 key = request.matchdict['value']
 return _VALUES.get(key)

@values.post()
def set_value(request):
 """Set the value.

 Returns *True* or *False*.
 """
 key = request.matchdict['value']
 try:
 # json_body is JSON-decoded variant of the request body
 _VALUES[key] = request.json_body
 except ValueError:
 return False
 return True

Note

By default, Cornice uses a Json renderer.

Run your Cornice application with:

$ pserve project.ini --reload

Set a key-value using Curl:

$ curl -X POST http://localhost:6543/values/foo -d '{"a": 1}'

Check out what is stored in a foo value at http://localhost:6543/values/foo

 Copyright 2011-2016, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 2.0.1 documentation

Full tutorial

Let’s create a full working application with Cornice. We want to
create a light messaging service.

You can find its whole source code at https://github.com/Cornices/examples/blob/master/messaging

Features:

	users can register to the service

	users can list all registered users

	users can send messages

	users can retrieve the latest messages

	messages have three fields: sender, content, color (red or black)

	adding a message is done through authentication

Limitations:

	there’s a single channel for all messages.

	if a user with the same name is already registered,
he cannot register.

	all messages and users are kept in memory.

Design

The application provides two services:

	users, at /users: where you can list all users or register a new one

	messages, at /: where you can read the messages or add new ones

On the server, the data is kept in memory.

We’ll provide a single CLI client in Python, using Curses.

Setting up the development environment

Make sure you have virtualenv (see http://pypi.python.org/pypi/virtualenv).

Create a new directory and a virtualenv in it:

$ mkdir messaging
$ cd messaging
$ virtualenv --no-site-packages .

Once you have it, install Cornice in it with Pip:

$ bin/pip install cornice

We provide a Cookiecutter [https://cookiecutter.readthedocs.io] template you
can use to create a new application:

$ bin/pip install cookiecutter
$ bin/cookiecutter gh:Cornices/cookiecutter-cornice
repo_name [myapp]: messaging
project_title [My Cornice application.]: Cornice tutorial

Once your application is generated, go there and call develop against it:

$ cd messaging
$../bin/python setup.py develop
...

The application can now be launched via embedded Pyramid pserve, it provides a default “Hello”
service check:

$../bin/pserve messaging.ini
Starting server in PID 7618.
serving on 0.0.0.0:6543 view at http://127.0.0.1:6543

Once the application is running, visit http://127.0.0.1:6543 in your browser and make sure you get:

{'Hello': 'World'}

You should also get the same results calling the URL via Curl:

$ curl -i http://0.0.0.0:6543/

This will result:

HTTP/1.1 200 OK
Content-Length: 18
Content-Type: application/json; charset=UTF-8
Date: Tue, 12 May 2015 13:23:32 GMT
Server: waitress

{"Hello": "World"}

Defining the services

Let’s open the file in messaging/views.py, it contains all the Services:

from cornice import Service

hello = Service(name='hello', path='/', description="Simplest app")

@hello.get()
def get_info(request):
 """Returns Hello in JSON."""
 return {'Hello': 'World'}

Users management

We’re going to get rid of the Hello service, and change this file in order
to add our first service - the users management

from cornice import Service

_USERS = {}

users = Service(name='users', path='/users', description="User registration")

@users.get(validators=valid_token)
def get_users(request):
 """Returns a list of all users."""
 return {'users': _USERS.keys()}

@users.post(validators=unique)
def create_user(request):
 """Adds a new user."""
 user = request.validated['user']
 _USERS[user['name']] = user['token']
 return {'token': '%s-%s' % (user['name'], user['token'])}

@users.delete(validators=valid_token)
def delete_user(request):
 """Removes the user."""
 name = request.validated['user']
 del _USERS[name]
 return {'Goodbye': name}

What we have here is 3 methods on /users:

	GET: returns the list of users names – the keys of _USERS

	POST: adds a new user and returns a unique token

	DELETE: removes the user.

Remarks:

	POST uses the unique validator to make sure that the user
name is not already taken. That validator is also in charge of
generating a unique token associated with the user.

	GET users the valid_token to verify that a X-Messaging-Token
header is provided in the request, with a valid token. That also identifies
the user.

	DELETE also identifies the user then removes it.

Validators are filling the request.validated mapping, the service can
then use.

import os
import binascii

from pyramid.httpexceptions import HTTPUnauthorized
from cornice import Service

def _create_token():
 return binascii.b2a_hex(os.urandom(20))

def valid_token(request):
 header = 'X-Messaging-Token'
 htoken = request.headers.get(header)
 if htoken is None:
 raise HTTPUnauthorized()
 try:
 user, token = htoken.split('-', 1)
 except ValueError:
 raise HTTPUnauthorized()

 valid = user in _USERS and _USERS[user] == token
 if not valid:
 raise HTTPUnauthorized()

 request.validated['user'] = user

def unique(request):
 name = request.body
 if name in _USERS:
 request.errors.add('url', 'name', 'This user exists!')
 else:
 user = {'name': name, 'token': _create_token()}
 request.validated['user'] = user

When the validator finds errors, it adds them to the request.errors
mapping, and that will return a 400 with the errors.

Let’s try our application so far with CURL:

$ curl http://localhost:6543/users
{"status": 401, "message": "Unauthorized"}

$ curl -X POST http://localhost:6543/users -d 'tarek'
{"token": "tarek-a15fa2ea620aac8aad3e1b97a64200ed77dc7524"}

$ curl http://localhost:6543/users -H "X-Messaging-Token:tarek-a15fa2ea620aac8aad3e1b97a64200ed77dc7524"
{"users": ["tarek"]}

$ curl -X DELETE http://localhost:6543/users -H "X-Messaging-Token:tarek-a15fa2ea620aac8aad3e1b97a64200ed77dc7524"
{"Goodbye": "tarek"}

Messages management

Now that we have users, let’s post and get messages. This is done via two very
simple functions we’re adding in the views.py file:

_MESSAGES = []

messages = Service(name='messages', path='/', description="Messages")

@messages.get()
def get_messages(request):
 """Returns the 5 latest messages"""
 return _MESSAGES[:5]

@messages.post(validators=(valid_token, valid_message))
def post_message(request):
 """Adds a message"""
 _MESSAGES.insert(0, request.validated['message'])
 return {'status': 'added'}

The first one simply returns the five first messages in a list, and the second
one inserts a new message in the beginning of the list.

The POST uses two validators:

	valid_token(): the function we used previously that makes sure the
user is registered

	valid_message(): a function that looks at the message provided in the
POST body, and puts it in the validated dict.

Here’s the valid_message() function:

import json

def valid_message(request):
 try:
 message = json.loads(request.body)
 except ValueError:
 request.errors.add('body', 'message', 'Not valid JSON')
 return

 # make sure we have the fields we want
 if 'text' not in message:
 request.errors.add('body', 'text', 'Missing text')
 return

 if 'color' in message and message['color'] not in ('red', 'black'):
 request.errors.add('body', 'color', 'only red and black supported')
 elif 'color' not in message:
 message['color'] = 'black'

 message['user'] = request.validated['user']
 request.validated['message'] = message

This function extracts the json body, then checks that it contains a text key
at least. It adds a color or use the one that was provided,
and reuse the user name provided by the previous validator
with the token control.

The Client

A simple client to use against our service can do three things:

	let the user register a name

	poll for the latest messages

	let the user send a message !

Without going into great details, there’s a Python CLI against messaging
that uses Curses.

See https://github.com/Cornices/examples/blob/master/messaging/messaging/client.py

 Copyright 2011-2016, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 2.0.1 documentation

Defining services

As mentioned in the QuickStart for people in a hurry and Full tutorial, services are defined
this way:

from cornice import Service

flush = Service(name='flush',
 description='Clear database content',
 path='/__flush__')

@flush.post()
def flush_post(request):
 return {"Done": True}

See cornice.service.Service for an exhaustive list of options.

Imperatively

Here is an example of how to define cornice services in an imperative way:

def flush_post(request):
 return {"Done": True}

flush = Service(name='flush',
 description='Clear database content',
 path='/__flush__')

flush.add_view("POST", flush_post, **kwargs):

def includeme(config):
 config.add_cornice_service(flush)
 # or
 config.scan("PATH_TO_THIS_MODULE")

Custom error handler

from pyramid.httpexceptions import HTTPBadRequest

def my_error_handler(request):
 first_error = request.errors[0]
 body = {'description': first_error['description']}

 response = HTTPBadRequest()
 response.body = json.dumps(body).encode("utf-8")
 response.content_type = 'application/json'
 return response

flush = Service(name='flush',
 path='/__flush__',
 error_handler=my_error_handler)

CORS

When enabling CORS, Cornice will take automatically define OPTIONS views
and appropriate headers validation.

flush = Service(name='flush',
 description='Clear database content',
 path='/__flush__',
 cors_origins=('*',),
 cors_max_age=3600)

There are also a number of parameters that are related to the support of
CORS (Cross Origin Resource Sharing). You can read the CORS specification
at http://www.w3.org/TR/cors/ and see the exhaustive list of options in Cornice.

See also

https://blog.mozilla.org/services/2013/02/04/implementing-cross-origin-resource-sharing-cors-for-cornice/

Route factory support

When defining a service, you can provide a route factory [http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/urldispatch.html#route-factories],
just like when defining a pyramid route.

For example:

flush = Service(name='flush', path='/__flush__', factory=user_factory)

 Copyright 2011-2016, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 2.0.1 documentation

Defining resources

Cornice is also able to handle REST “resources” for you. You can declare
a class with some put, post, get etc. methods (the HTTP verbs) and they will be
registered as handlers for the appropriate methods / services.

Here is how you can register a resource:

from cornice.resource import resource

_USERS = {1: {'name': 'gawel'}, 2: {'name': 'tarek'}}

@resource(collection_path='/users', path='/users/{id}')
class User(object):

 def __init__(self, request):
 self.request = request

 def collection_get(self):
 return {'users': _USERS.keys()}

 def get(self):
 return _USERS.get(int(self.request.matchdict['id']))

 def collection_post(self):
 print(self.request.json_body)
 _USERS[len(_USERS) + 1] = self.request.json_body
 return True

Imperatively

Here is an example of how to define cornice resources in an imperative way:

from cornice import resource

class User(object):

 def __init__(self, request):
 self.request = request

 def collection_get(self):
 return {'users': _USERS.keys()}

 def get(self):
 return _USERS.get(int(self.request.matchdict['id']))

resource.add_view(User.get, renderer='json')
user_resource = resource.add_resource(User, collection_path='/users', path='/users/{id}')

def includeme(config):
 config.add_cornice_resource(user_resource)
 # or
 config.scan("PATH_TO_THIS_MODULE")

As you can see, you can define methods for the collection (it will use the
path argument of the class decorator. When defining collection_* methods, the
path defined in the collection_path will be used.

Validators and filters

You also can register validators and filters that are defined in your
@resource decorated class, like this:

from cornice.resource import resource, view

@resource(path='/users/{id}')
class User(object):

 def __init__(self, request):
 self.request = request

 @view(validators=('validate_req',))
 def get(self):
 # return the list of users

 def validate_req(self, request):
 # validate the request

Registered routes

Cornice uses a default convention for the names of the routes it registers.

When defining resources, the pattern used is collection_<service_name> (it
prepends collection_ to the service name) for the collection service.

Route factory support

When defining a resource, you can provide a route factory [http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/urldispatch.html#route-factories],
just like when defining a pyramid route. Cornice will then pass its result
into the __init__ of your service.

For example:

@resource(path='/users', factory=user_factory)
class User(object):

 def __init__(self, request, context=None):
 self.request = request
 self.user = context

 Copyright 2011-2016, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 2.0.1 documentation

Validation features

Cornice provides a way to control the request before it’s passed to the
code. A validator is a simple callable that gets the request object and
some keywords arguments, and fills request.errors in case the request
isn’t valid.

Validators can also convert values and saves them so they can be reused
by the code. This is done by filling the request.validated dictionary.

Once the request had been sent to the view, you can filter the results using so
called filters. This document describe both concepts, and how to deal with
them.

Disabling or adding filters/validators

Some validators and filters are activated by default, for all the services. In
case you want to disable them, or if you

You can register a filter for all the services by tweaking the DEFAULT_FILTER
parameter:

from cornice.validators import DEFAULT_FILTERS

def includeme(config):
 DEFAULT_FILTERS.append(your_callable)

(this also works for validators)

You also can add or remove filters and validators for a particular service. To
do that, you need to define its default_validators and default_filters
class parameters.

Dealing with errors

When validating inputs using the different validation mechanisms (described in
this document), Cornice can return errors. In case it returns errors, it will
do so in JSON by default.

The default returned JSON object is a dictionary of the following form:

{
 'status': 'error',
 'errors': errors
}

With errors being a JSON dictionary with the keys “location”, “name” and
“description”.

	location is the location of the error. It can be “querystring”, “header”
or “body”

	name is the eventual name of the value that caused problems

	description is a description of the problem encountered.

You can override the default JSON error handler for a view with your own
callable. The following function, for instance, returns the error response
with an XML document as its payload:

def xml_error(request):
 errors = request.errors
 lines = ['<errors>']
 for error in errors:
 lines.append('<error>'
 '<location>%(location)s</location>'
 '<type>%(name)s</type>'
 '<message>%(description)s</message>'
 '</error>' % error)
 lines.append('</errors>')
 return HTTPBadRequest(body=''.join(lines),
 content_type='application/xml')

Configure your views by passing your handler as error_handler:

@service.post(validators=my_validator, error_handler=xml_error)
def post(request):
 return {'OK': 1}

Validators

Cornice provide a simple mechanism to let you validate incoming requests
before they are processed by your views.

Validation using custom callables

Let’s take an example: we want to make sure the incoming request has an
X-Verified header. If not, we want the server to return a 400:

from cornice import Service

foo = Service(name='foo', path='/foo')

def has_paid(request, **kwargs):
 if not 'X-Verified' in request.headers:
 request.errors.add('header', 'X-Verified', 'You need to provide a token')

@foo.get(validators=has_paid)
def get_value(request):
 """Returns the value.
 """
 return 'Hello'

Notice that you can chain the validators by passing a sequence
to the validators option.

Changing the status code from validators

You also can change the status code returned from your validators. Here is an
example of this:

def user_exists(request):
 if not request.POST['userid'] in userids:
 request.errors.add('body', 'userid', 'The user id does not exist')
 request.errors.status = 404

Doing validation and filtering at class level

If you want to use class methods to do validation, you can do so by passing the
klass parameter to the hook_view or @method decorators, plus a string
representing the name of the method you want to invoke on validation.

Take care, though, because this only works if the class you are using has an
__init__ method which takes a request as the first argument.

This means something like this:

class MyClass(object):
 def __init__(self, request):
 self.request = request

 def validate_it(self, request, **kw):
 # pseudo-code validation logic
 if whatever is wrong:
 request.errors.add('body', description="Something is wrong")

@service.get(klass=MyClass, validators=('validate_it',))
def view(request):
 return "ok"

Media type validation

There are two flavors of media/content type validations Cornice can apply to services:

	Content negotiation checks if Cornice is able to respond with an appropriate
response body content type requested by the client sending an Accept header.
Otherwise it will croak with a 406 Not Acceptable.

	Request media type validation will match the Content-Type request header
designating the request body content type against a list of allowed content types.
When failing on that, it will croak with a 415 Unsupported Media Type.

Content negotiation

Validate the Accept header in http requests
against a defined or computed list of internet media types.
Otherwise, signal 406 Not Acceptable to the client.

Basics

By passing the accept argument to the service definition decorator,
we define the media types we can generate http response bodies for:

@service.get(accept="text/html")
def foo(request):
 return 'Foo'

When doing this, Cornice automatically deals with egress content negotiation for you.

If services don’t render one of the appropriate response body formats asked
for by the requests HTTP Accept header, Cornice will respond with a http
status of 406 Not Acceptable.

The accept argument can either be a string or a list of accepted values
made of internet media type(s) or a callable returning the same.

Using callables

When a callable is specified, it is called before the
request is passed to the destination function, with the request object as
an argument.

The callable obtains the request object and returns a list or a single scalar
value of accepted media types:

def _accept(request):
 # interact with request if needed
 return ("text/xml", "text/json")

@service.get(accept=_accept)
def foo(request):
 return 'Foo'

See also

https://developer.mozilla.org/en-US/docs/HTTP/Content_negotiation

Error responses

When requests are rejected, an appropriate error response
is sent to the client using the configured error_handler.
To give the service consumer a hint about the valid internet
media types to use for the Accept header,
the error response contains a list of allowed types.

When using the default json error_handler, the response might look like this:

{
 'status': 'error',
 'errors': [
 {
 'location': 'header',
 'name': 'Accept',
 'description': 'Accept header should be one of ["text/xml", "text/json"]'
 }
]
}

Request media type

Validate the Content-Type header in http requests
against a defined or computed list of internet media types.
Otherwise, signal 415 Unsupported Media Type to the client.

Basics

By passing the content_type argument to the service definition decorator,
we define the media types we accept as http request bodies:

@service.post(content_type="application/json")
def foo(request):
 return 'Foo'

All requests sending a different internet media type
using the HTTP Content-Type header will be rejected
with a http status of 415 Unsupported Media Type.

The content_type argument can either be a string or a list of accepted values
made of internet media type(s) or a callable returning the same.

Using callables

When a callable is specified, it is called before the
request is passed to the destination function, with the request object as
an argument.

The callable obtains the request object and returns a list or a single scalar
value of accepted media types:

def _content_type(request):
 # interact with request if needed
 return ("text/xml", "application/json")

@service.post(content_type=_content_type)
def foo(request):
 return 'Foo'

The match is done against the plain internet media type string without
additional parameters like charset=utf-8 or the like.

See also

WebOb documentation: Return the content type, but leaving off any parameters [http://docs.webob.org/en/latest/api/request.html#webob.request.BaseRequest.content_type]

Error responses

When requests are rejected, an appropriate error response
is sent to the client using the configured error_handler.
To give the service consumer a hint about the valid internet
media types to use for the Content-Type header,
the error response contains a list of allowed types.

When using the default json error_handler, the response might look like this:

{
 'status': 'error',
 'errors': [
 {
 'location': 'header',
 'name': 'Content-Type',
 'description': 'Content-Type header should be one of ["text/xml", "application/json"]'
 }
]
}

Managing ACLs

You can also specify a way to deal with ACLs: pass in a function that takes
a request and returns an ACL, and that ACL will be applied to all views
in the service:

foo = Service(name='foo', path='/foo', acl=_check_acls)

Filters

Cornice can also filter the response returned by your views. This can be
useful if you want to add some behaviour once a response has been issued.

Here is how to define a validator for a service:

foo = Service(name='foo', path='/foo', filters=your_callable)

You can just add the filter for a specific method:

@foo.get(filters=your_callable)
def foo_get(request):
 """some description of the validator for documentation reasons"""
 pass

In case you would like to register a filter for all the services but one, you
can use the exclude parameter. It works either on services or on methods:

@foo.get(exclude=your_callable)

 Copyright 2011-2016, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 2.0.1 documentation

Schema validation

Validating requests data using a schema is a powerful pattern.

As you would do for a database table, you define some fields and
their type, and make sure that incoming requests comply.

There are many schema libraries in the Python ecosystem you can
use. The most known ones are Colander & formencode.

You can do schema validation using either those libraries or either
custom code.

Using a schema is done in 2 steps:

1/ linking a schema to your service definition
2/ implement a validator that uses the schema to verify the request

Here’s a dummy example:

def my_validator(request, **kwargs):
 schema = kwargs['schema']
 # do something with the schema

schema = {'id': int, 'name': str}

@service.post(schema=schema, validators=(my_validator,))
def post(request):
 return {'OK': 1}

Cornice will call my_validator with the incoming request, and will
provide the schema in the keywords.

Using Colander

Colander (http://docs.pylonsproject.org/projects/colander/en/latest/) is a
validation framework from the Pylons project that can be used with Cornice’s
validation hook to control a request and deserialize its content into
objects.

Cornice provides a helper to ease Colander integration.

To describe a schema, using Colander and Cornice, here is how you can do:

import colander

from cornice import Service
from cornice.validators import colander_body_validator

class SignupSchema(colander.MappingSchema):
 username = colander.SchemaNode(colander.String())

@signup.post(schema=SignupSchema, validators=(colander_body_validator,))
def signup_post(request):
 username = request.validated['username']
 return {'success': True}

Dynamic schemas

If you want to do specific things with the schema at validation step,
like having a schema per request method, you can provide whatever
you want as the schema key and built a custom validator.

Example:

def dynamic_schema(request):
 if request.method == 'POST':
 schema = foo_schema
 elif request.method == 'PUT':
 schema = bar_schema
 return schema

def my_validator(request, **kwargs):
 kwargs['schema'] = dynamic_schema(request)
 return colander_body_validator(request, **kwargs)

@service.post(validators=(my_validator,))
def post(request):
 return request.validated

Multiple request attributes

If you have complex use-cases where data has to be validated accross several locations
of the request (like querystring, body etc.), Cornice provides a validator that
takes an additionnal level of mapping for body, querystring, path or headers
instead of the former location attribute on schema fields.

The request.validated hences reflects this additional level.

from cornice.validators import colander_validator

class Querystring(colander.MappingSchema):
 referrer = colander.SchemaNode(colander.String(), missing=colander.drop)

class Payload(colander.MappingSchema):
 username = colander.SchemaNode(colander.String())

class SignupSchema(colander.MappingSchema):
 body = Payload()
 querystring = Querystring()

signup = cornice.Service()

@signup.post(schema=SignupSchema, validators=(colander_validator,))
def signup_post(request):
 username = request.validated['body']['username']
 referrer = request.validated['querystring']['referrer']
 return {'success': True}

This allows to have validation at the schema level that validates data from several
places on the request:

class SignupSchema(colander.MappingSchema):
 body = Payload()
 querystring = Querystring()

 def deserialize(self, cstruct=colander.null):
 appstruct = super(SignupSchema, self).deserialize(cstruct)
 username = appstruct['body']['username']
 referrer = appstruct['querystring'].get('referrer')
 if username == referred:
 self.raise_invalid('Referrer cannot be the same as username')
 return appstruct

Cornice provides built-in support for JSON and HTML forms
(application/x-www-form-urlencoded) input validation using the provided
colander validators.

If you need to validate other input formats, such as XML, you need to
implement your own deserializer and pass it to the service.

The general pattern in this case is:

from cornice.validators import colander_body_validator

def my_deserializer(request):
 return extract_data_somehow(request)

@service.post(schema=MySchema,
 deserializer=my_deserializer,
 validators=(colander_body_validator,))
def post(request):
 return {'OK': 1}

Using formencode

FormEncode (http://www.formencode.org/en/latest/index.html) is yet another
validation system that can be used with Cornice.

For example, if you want to make sure the optional query option max
is an integer, and convert it, you can use FormEncode in a Cornice validator
like this:

from formencode import validators

from cornice import Service
from cornice.validators import extract_cstruct

foo = Service(name='foo', path='/foo')

def form_validator(request, **kwargs):
 data = extract_cstruct(request)
 validator = validators.Int()
 try:
 max = data['querystring'].get('max')
 request.validated['max'] = validator.to_python(max)
 except formencode.Invalid, e:
 request.errors.add('querystring', 'max', e.message)

@foo.get(validators=(form_validator,))
def get_value(request):
 """Returns the value.
 """
 return {'posted': request.validated}

See also

Several libraries exist in the wild to validate data in Python and that can easily
be plugged with Cornice.

	JSONSchema (https://pypi.python.org/pypi/jsonschema)

	Cerberus (https://pypi.python.org/pypi/Cerberus)

	marshmallow (https://pypi.python.org/pypi/marshmallow)

 Copyright 2011-2016, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 2.0.1 documentation

Testing

Running tests

To run all tests in all Python environments configured in tox.ini,
just setup tox and run it inside the toplevel project directory:

tox

To run a single test inside a specific Python environment, do e.g.:

tox -e py27 tests/test_validation.py:TestServiceDefinition.test_content_type_missing

or:

tox -e py27 tests.test_validation:TestServiceDefinition.test_content_type_missing

Testing cornice services

Testing is nice and useful. Some folks even said it helped saving kittens. And
childs. Here is how you can test your Cornice’s applications.

Let’s suppose you have this service definition:

from pyramid.config import Configurator

from cornice import Service

service = Service(name="service", path="/service")

def has_payed(request, **kwargs):
 if not 'paid' in request.GET:
 request.errors.add('body', 'paid', 'You must pay!')

@service.get(validators=(has_payed,))
def get1(request):
 return {"test": "succeeded"}

def includeme(config):
 config.include("cornice")
 config.scan("absolute.path.to.this.service")

def main(global_config, **settings):
 config = Configurator(settings={})
 config.include(includeme)
 return config.make_wsgi_app()

We have done three things here:

	setup a service, using the Service class and define our services with it

	register the app and cornice to pyramid in the includeme function

	define a main function to be used in tests

To test this service, we will use webtest, and the TestApp class:

from webtest import TestApp
import unittest

from yourapp import main

class TestYourApp(unittest.TestCase):

 def test_case(self):
 app = TestApp(main({}))
 app.get('/service', status=400)

 Copyright 2011-2016, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 2.0.1 documentation

Exhaustive features list

As you may have noticed, Cornice does some validation for you. This document
aims at documenting all those behaviours so you are not surprised if Cornice
does it for you without noticing.

Validation

Errors

When validating contents, Cornice will automatically throw a 400 error if the
data is invalid. Along with the 400 error, the body will contain a JSON dict
which can be parsed to know more about the problems encountered.

Method not allowed

In cornice, one path equals one service. If you call a path with the wrong
method, a 405 Method Not Allowed error will be thrown (and not a 404), like
specified in the HTTP specification.

Authorization

Authorization can be done using the acl parameter. If the authentication or
the authorization fails at this stage, a 401 or 403 error is returned,
depending on the cases.

Content negotiation

This relates to response body internet media types aka. egress content types.

Each method can specify a list of internet media types it can respond with.
Per default, text/html is assumed. In the case the client requests an
invalid media type via Accept header, cornice will return a
406 Not Acceptable with an error message containing the list of available
response content types for the particular URI and method.

Request media type

This relates to request body internet media types aka. ingress content types.

Each method can specify a list of internet media types it accepts as request
body format. Per default, any media type is allowed. In the case the client
sends a request with an invalid Content-Type header, cornice will return a
415 Unsupported Media Type with an error message containing the list of available
request content types for the particular URI and method.

Warning when returning JSON lists

JSON lists are subject to security threats, as defined
in this document [http://haacked.com/archive/2009/06/25/json-hijacking.aspx].
In case you return a javascript list, a warning will be thrown. It will not
however prevent you from returning the array.

This behaviour can be disabled if needed (it can be removed from the list of
default filters)

URL prefix

It is possible to set a prefix for all your routes. For instance, if you want to
prefix all your URIs by /v1/.

config.route_prefix = 'v2'
config.include("cornice")

CORS

Cornice can add CORS (Cross Origin Resource Sharing) support to your services.
When enabled, it will define the appropriate views (OPTIONS methods)
and validators (headers etc.).

See more details...

 Copyright 2011-2016, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 2.0.1 documentation

Cornice API

Service

This document describes the methods proposed by cornice. It is
automatically generated from the source code.

Resource

Errors

 Copyright 2011-2016, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 2.0.1 documentation

Cornice internals

Internally, Cornice doesn’t do a lot of magic. The logic is mainly split in two
different locations: the services.py module and the pyramid_hook.py module.

That’s important to understand what they are doing in order to add new features
or tweak the existing ones.

The Service class

The cornice.service.Service class is a container for all the definition
information for a particular service. That’s what you use when you use the
Cornice decorators for instance, by doing things like
@myservice.get(**kwargs). Under the hood, all the information you’re passing
to the service is stored in this class. Into other things you will find there:

	the name of the registered service.

	the path the service is available at.

	the description of the service, if any.

	the defined_methods for the current service. This is a list of strings. It
shouldn’t contain more than one time the same item.

That’s for the basic things. The last interesting part is what we call the
“definitions”. When you add a view to the service with the add_view method,
it populates the definitions list, like this:

self.definitions.append((method, view, args))

where method is the HTTP verb, view is the python callable and args are
the arguments that are registered with this definition. It doesn’t look this
important, but this last argument is actually the most important one. It is a
python dict containing the filters, validators, content types etc.

There is one thing I didn’t talk about yet: how we are getting the arguments
from the service class. There is a handy get_arguments method, which returns
the arguments from another list of given arguments. The goal is to fallback on
instance-level arguments or class-level arguments if no arguments are provided
at the add_view level. For instance, let’s say I have a default service which
renders to XML. I set its renderer in the class to “XML”.

When I register the information with cornice.service.Service.add_view(),
renderer='XML' will be added automatically in the kwargs dict.

Registering the definitions into the Pyramid routing system

Okay, so once you added the services definition using the Service class, you
might need to actually register the right routes into pyramid. The
cornice.pyramidhook module takes care of this for you.

What it does is that it checks all the services registered and call some
functions of the pyramid framework on your behalf.

What’s interesting here is that this mechanism is not really tied to pyramid.
for instance, we are doing the same thing in cornice_sphinx [https://github.com/Cornices/cornice.ext.sphinx]
to generate the documentation: use the APIs that are exposed in the Service class
and do something from it.

To keep close to the flexibility of Pyramid’s routing system, a traverse
argument can be provided on service creation. It will be passed to the route
declaration. This way you can combine URL Dispatch and traversal to build an
hybrid application.

 Copyright 2011-2016, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Cornice 2.0.1 documentation

Frequently Asked Questions (FAQ)

Here is a list of frequently asked questions related to Cornice.

Cornice registers exception handlers, how do I deal with it?

Cornice registers its own exception handlers so it’s able to behave the right
way in some edge cases (it’s mostly done for CORS support).

Sometimes, you will need to register your own exception handlers, and Cornice
might get on your way.

You can disable the exception handling by using the handle_exceptions
setting in your configuration file or in your main app:

config.add_settings(handle_exceptions=False)

 Copyright 2011-2016, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Cornice 2.0.1 documentation

Upgrading

1.X to 2.X

Project template

We now rely on Cookiecutter [https://cookiecutter.readthedocs.io] instead of
the deprecated Pyramid scaffolding feature:

$ cookiecutter gh:Cornices/cookiecutter-cornice

Sphinx documentation

The Sphinx extension now lives in a separate package, that must be installed:

pip install cornice_sphinx

Before in your docs/conf.py:

Now:

Validators

Validators now receive the kwargs of the related service definition.

Before:

def has_payed(request):
 if 'paid' not in request.GET:
 request.errors.add('body', 'paid', 'You must pay!')

Now:

def has_payed(request, **kwargs):
 free_access = kwargs.get('free_access')
 if not free_access and 'paid' not in request.GET:
 request.errors.add('body', 'paid', 'You must pay!')

Colander validation

Colander schema validation now requires an explicit validator on the service
view definition.

Before:

class SignupSchema(colander.MappingSchema):
 username = colander.SchemaNode(colander.String())

@signup.post(schema=SignupSchema)
def signup_post(request):
 username = request.validated['username']
 return {'success': True}

Now:

from cornice.validators import colander_body_validator

class SignupSchema(colander.MappingSchema):
 username = colander.SchemaNode(colander.String())

@signup.post(schema=SignupSchema, validators=(colander_body_validator,))
def signup_postt(request):
 username = request.validated['username']
 return {'success': True}

This makes declarations a bit more verbose, but decorrelates Cornice from Colander.
Now any validation library can be used.

Important

Some of the validation messages may have changed from version 1.2.
For example Invalid escape sequence becomes Invalid \\uXXXX escape.

Complex Colander validation

If you have complex use-cases where data has to be validated accross several locations
of the request (like querystring, body etc.), Cornice provides a validator that
takes an additionnal level of mapping for body, querystring, path or headers
instead of the former location attribute on schema fields.

The request.validated hences reflects this additional level.

Before:

class SignupSchema(colander.MappingSchema):
 username = colander.SchemaNode(colander.String(), location='body')
 referrer = colander.SchemaNode(colander.String(), location='querystring',
 missing=colander.drop)

@signup.post(schema=SignupSchema)
def signup_post(request):
 username = request.validated['username']
 referrer = request.validated['referrer']
 return {'success': True}

Now:

from cornice.validators import colander_validator

class Querystring(colander.MappingSchema):
 referrer = colander.SchemaNode(colander.String(), missing=colander.drop)

class Payload(colander.MappingSchema):
 username = colander.SchemaNode(colander.String())

class SignupSchema(colander.MappingSchema):
 body = Payload()
 querystring = Querystring()

signup = cornice.Service()

@signup.post(schema=SignupSchema, validators=(colander_validator,))
def signup_post(request):
 username = request.validated['body']['username']
 referrer = request.validated['querystring']['referrer']
 return {'success': True}

This now allows to have validation at the schema level that validates data from several
locations:

class SignupSchema(colander.MappingSchema):
 body = Payload()
 querystring = Querystring()

 def deserialize(self, cstruct=colander.null):
 appstruct = super(SignupSchema, self).deserialize(cstruct)
 username = appstruct['body']['username']
 referrer = appstruct['querystring'].get('referrer')
 if username == referred:
 self.raise_invalid('Referrer cannot be the same as username')
 return appstruct

Error handler

	The error_handler callback of services now receives a request object instead of errors.

Before:

def xml_error(errors):
 request = errors.request
 ...

Now:

def xml_error(request):
 errors = request.errors
 ...

Deserializers

The support of config.add_deserializer() and config.registry.cornice_deserializers
was dropped.

Deserializers are still defined via the same API:

def dummy_deserializer(request):
 if request.headers.get("Content-Type") == "text/dummy":
 values = request.body.decode().split(',')
 return dict(zip(['foo', 'bar', 'yeah'], values))
 request.errors.add(location='body', description='Unsupported content')

@myservice.post(schema=FooBarSchema,
 deserializer=dummy_deserializer,
 validators=(my_validator,))

But now, instead of using the application registry, the deserializer is
accessed via the validator kwargs:

def my_validator(request, deserializer=None, **kwargs):
 if deserializer is None:
 deserializer = extract_json_data
 data = deserializer(request)
 ...

Note

The built-in colander_validator supports custom deserializers and defaults
to the built-in JSON deserializer.

Note

The attributes registry.cornice_deserializers and request.deserializer
are not set anymore.

Services schemas introspection

The schema argument of services is now treated as service kwarg.
The service.schemas_for() method was dropped as well as the service.schemas
property.

Before:

schema = service.schemas_for(method="POST")

Now:

schema = [kwargs['schema'] for method, view, kwargs in service.definitions
 if method == "POST"][0]

 Copyright 2011-2016, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Cornice 2.0.1 documentation

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 cornice	

 	
 	
 cornice.service	

 Copyright 2011-2016, Mozilla Services.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Cornice 2.0.1 documentation

Index

 C

C

 	

 	cornice.service (module)

 Copyright 2011-2016, Mozilla Services.
 Created using Sphinx 1.3.5.

 _themes/mozilla/README.html

 Navigation

 		
 index

 		
 modules |

 		Cornice 2.0.1 documentation »

Mozilla sphinx’s theme

This is a version of Mozilla’s sandstone theme, for the Sphinx documentation
engine. [http://sphinx.pocoo.org].

Here is how I use it

To use it, you need to clone it somewhere in your Sphinx’s architecture:

$ cd docs/source && mkdir _themes
$ git clone https://github.com/ametaireau/mozilla-sphinx-theme.git _themes/mozilla

and to configure Sphinx to use it. In your conf.py file:

html_theme_path = ['_themes']
html_theme = 'mozilla'

Take care and remove the pygments_style configuration, as it may not be of
the better taste with the mozilla’s theme.

Any contributions are of course welcome!

 © Copyright 2011-2016, Mozilla Services.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/up.png

_static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Cornice 2.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011-2016, Mozilla Services.
 Created using Sphinx 1.3.5.

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

