

Welcome to IOTile

IOTile is a device-to-cloud framework for building cloud connected hardware
devices. The goal of IOTile is to make it easy to build and deploy custom
Internet-connected devices, all the way from the low-level hardware and firmware
up through secure connectivity and data storage in the cloud.

CoreTools provides an extensible python based infrastructure for creating
and interacting with IOTile Devices.

Key Concepts

CoreTools is centered around creating and using IOTile Devices, which are
typically hardware devices (i.e. actual, physical IOT sensors or actuators) but
can also be virtual agents running on normal computer.

IOTile Devices are usually very small, highly customized things.

For example, an IOTile Device might be a tiny temperature sensor beacon that
just broadcasts the current temperature and runs for 10 years on a button cell
battery.

There are three main concepts that unify all IOTile Devices:

	IOTile Devices respond to external commands. CoreTools calls these commands
Remote Procedure Calls or RPCs. RPCs form the heart of how IOTile Devices
are controlled and how they work internally as well.

	IOTile Devices send data to the cloud as timestamped Readings that are
packaged into Reports. Reports can be signed and marked with unique
identifiers to make sure they are securely received by the cloud even when
transmitted over unreliable or untrusted communications channels.

	IOTile Devices are built from reusable circuit designs called Tiles. Tiles
are the heart of what makes an IOTile Device easier to build and easier to
use than normal embedded devices.

	Getting Started
	Installation Requirements

	First Steps

	Writing Scripts

	Tutorials
	Creating Your First IOTile Device

	Understanding IOTile Reports

	Serving Access to Virtual Devices

	Setting Up a Gateway

	Introduction to SensorGraph

	Deploying Sensor Graphs

	The SensorGraph Language

	Advanced SensorGraph Usage

	How CoreTools Works
	Packages in CoreTools

	How the IOTile Tool Works

	Extensibility via Entry Points

	Extending CoreTools
	Creating IOTile Plugins

	Creating Virtual Devices

	Creating New Device Adapters

	Creating Virtual Interfaces

	Creating Report Formats

	Creating Authentication Providers

	Setting an Authentication Provider as Default

	Typedargs Reference

	Building Your Own IOTile Devices
	Build Requirements

	Contributing

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

CoreTools is distributed using normal pip installable packages on PYPI. It is
recommended that you install everything in a virtual environment since CoreTools
is highly extensible and the IOTile devices you interact with may require
plugins or extensions that should not pollute your global site-packages.

Note

On Windows you may need to install Python 3.6+ since it does not come
preinstalled. Any distribution should work but CoreTools is tested using
the official Python for Windows [https://www.python.org/downloads/windows/] distribution running under PowerShell.

Installation Requirements

CoreTools is cross-platform and is tested on Mac OS, Linux and Windows. It
currently requires Python 3.6+.

Note

It is recommended to always install coretools into a virtual environment.
This allows you to separate any plugins that you may install on top of
CoreTools on a project by project basis:

pip install virtualenv
virtualenv --python=python3.8 iotile

#On Mac/Linux
source iotile/bin/activate

#On Windows Powershell
iotile/Scripts/activate.ps1

#On Windows CMD
iotile\Scripts\activate.bat

Note that virtualenv only needs to be installed once; iotile must be activated in a every new virtual enviroment.

Installing CoreTools is just a normal pip install:

pip install iotile-core iotile-test iotile-emulate iotile-transport-bled112

See also

If you plan on building your own IOTile device, you should also install
iotile-build but there are additional requirements to use iotile-build that
must be installed separately, see Build Requirements.

First Steps

The easiest way to try out your new CoreTools installation is by using the
iotile tool that is installed as a console script by iotile-core.

The iotile tool provides command line access to key parts of the IOTile API. It
allows many tasks to be performed without writing python scripts.

Note

Everything that you can do with the iotile tool, you can also do from
a python script. This makes the iotile tool an ideal way to perform
quick tasks that you could then wrap up into a script later if you find
yourself doing the same thing repeatedly.

Let’s get started by trying to talk to an IOTile device. Let’s say you have
a simple piece of IOTile based hardware and you want to connect to it and send
it commands. In this example we’re going to be using a virtual IOTile device
that doesn’t require any physical hardware but the process to talk to a real
device is exactly the same:

iotile hw --port=virtual:simple
(HardwareManager) quit

By using the iotile hw command, we’re attempting to connect to an IOTile
Device. In this case we’re telling the tool that we want to connect to a virtual
device using the virtual port. The remaining argument tells the tool which
installed virtual device we would like to load. The quit command always
quits the shell.

Like a normal shell, we can use <TAB> to see a list of supported commands:

iotile hw --port=virtual:simple
(HardwareManager)
app controller enable_broadcasting help watch_reports
back count_reports enable_streaming quit watch_scan
close debug enable_tracing reset
connect disconnect get scan
connect_direct dump_trace heartbeat watch_broadcasts

At this point, we have not connected to the simple device yet, so let’s
connect directly to it:

(HardwareManager) connect_direct 1

Since this is an example device, it has a hard-coded unique identifier of 1.
In real life, devices would have their unique identifiers set at the factory
and printed on the device.

Now that we have connected to the device, we can send it commands. Every IOTile
Device has one component that acts as a Controller and handles communication
with the external world. We can get access to this device’s controller using
the controller command:

(HardwareManager) controller
(SimpleProxy) <TAB>
back config_manager help reset tile_name tile_version
check_hardware hardware_version quit status tile_status

Notice how the prompt changes to indicate what context we’re in. When we typed
controller we moved from the HardwareManager context to the SimpleProxy
context that is a python representation (or Proxy object) for the physical controller
hardware that we are talking to.

Note

When you are talking to an IOTile device, commands that you enter are sent
to the IOTile Device as Remote Procedure Calls (RPCs) and the response from
the device is routed back to you and displayed. This means that the iotile
tool effectively becomes a REPL for your IOTile Device.

The only commands that are supported by the simple device are RPCs to query
its name, version and status, so lets try those:

(SimpleProxy) tile_name
Simple
(SimpleProxy) tile_version
[1, 0, 0]
(SimpleProxy) tile_status
configured: True
debug_mode: False
app_running: True
trapped: False
(SimpleProxy)

The results of each command are printed in the console for you. We can see
that this device is named ‘Simple’ and has version 1.0.0. It’s reporting its
status as configured and running with no errors and not currently in debug mode.

Writing Scripts

Every action you take in the iotile tool maps 1:1 to exactly one python
function or method. So it’s easy to take something that’s done in the iotile
tool and turn it into a python script. For example, lets create a script that
connects to the same device we just used in First Steps and gets its
version:

from iotile.core.hw.hwmanager import HardwareManager

with HardwareManager(port='virtual:simple') as hw:
 hw.connect_direct('1')
 con = hw.controller()
 version = con.tile_version()

 print("Tile Version: {}".format(version))

Save this script as example.py and let’s run it:

python example.py
Tile Version: (1, 0, 0)

Clearly, this code creates a hardware manager and finds the version number.
The manager is instantiated in the with-as statement. The following 3 lines
connect, gain control, and find the version respectively.

Note how every command in the script mapped to a single line in iotile and
how the arguments you passed were the same. There is always a 1:1 mapping like
this between the iotile tool and python scripts.

That’s it, you now know the basics of using CoreTools to interact with IOTile
Devices and transform iotile shell commands into python scripts.

Tutorials

These tutorials should introduce you to the major concepts you need to build
and use your own IOTile Devices. They don’t require any special hardware to
run, just a computer with CoreTools installed.

Creating Your First IOTile Device

There are two kinds of IOTile Devices, real and virtual. Real devices are physical
objects that let you either sense or control things around you. Virtual devices
are programs that act as if they are real IOTile Devices.

Virtual devices are indistinguishable from real IOTile devices, except for the
fact that you can’t actually touch them. In particular, virtual IOTile devices
interact with the rest of CoreTools the same way a real device would, so they are
particularly useful for tutorials like this one.

We’re going to make a simple virtual IOTile Device that will stream you fake temperature
data when you connect to it. It will also have one command that will send you a random
temperature value back to you whatever you call it. Then we’re going to interact with the
device as if it were a real IOTile device.

Goals

	Introduce the concept of Python Proxy Modules, that are used to wrap low-level access to
IOTile devices in a python compatible API

	Introduce Virtual Devices and show how you can use them to quickly mock up what a real
IOTile device could look like and use them with the rest of CoreTools.

	Introduce Support Packages, which are pip installable packages that contain all of the
necessary python modules to interact with an IOTile Device. They are usually produced
as part of the build process for the device.

Note

For this tutorial, you are going to need to have CoreTools installed. It’s best to create
a new virtual environment for this walkthrough so that you have a clean slate and don’t
pollute any other CoreTools installations you have with the products of this walkthrough.

Background

When you send commands to an IOTile device, the commands all take the form of remote procedure
calls (RPCs). Basically you send an ID indicating what function you want the device to execute,
followed by the arguments. The device synchronously executes the function and returns the response
back to you as if you had just invoked a function locally on your own computer.

Since IOTile devices typically contain small embedded microcontrollers, the low-level binary encoding
for how RPCs are transmitted to the device is not user-friendly, e.g. the RPCs are identified with unique
16-bit numbers rather than string names and all arguments and responses are packed into 20 byte
binary buffers.

So, instead of directly building these low-level RPC payloads and manually decoding the responses, CoreTools
wraps them inside a python class where the methods on the class take in normal python objects as
arguments, build the RPC payload and decode the response back into normal python objects. These
wrappers are called Proxy Objects and the python modules that contain them are called Python
Proxy Modules.

Every IOTile device should have at least one python proxy module that allows you to access its functionality
from python. Many IOTile devices internally consist of several distinct parts called Tiles, each of which
is independent and has its own proxy module. For now though, we won’t have to worry about multiple
proxy modules.

The goal of this tutorial is walk you through creating a proxy module. Rather than wrapping a physical
IOTile device though, we’ll wrap a virtual device so you don’t need any hardware to follow the walk through.

Getting Started

Before we can start working on our proxy module, we first need to get some boilerplate out of the way. We need
to create an IOTile component that will contain our proxy module.

Important

Pretty much everything in the IOTile world (except CoreTools itself) starts its life as an IOTile Component.
Components are like packages in npm, or distributions in PyPI. They are just directories with a
module_settings.json file that lets CoreTools know what to do with the files inside the folder.

So, let’s create an empty Component to contain our proxy module:

$ mkdir test_component
$ cd test_component
$ mkdir python
$ touch python/demo_proxy.py
$ touch module_settings.json
$ ls
module_settings.json python

Now we need to add enough information to module_settings.json to identify this folder as an IOTile component and
point out that demo_proxy.py should be treated as a proxy module. We’ll call our component demo_component and
put it in the walkthrough namespace (called a domain). These names can be anything but should be unique if you
ever want to share your component with anyone else.

Save the following to your module_settings.json file:

{
 "module_name": "demo_component",
 "modules":
 {
 "demo_component":
 {
 "version": "0.0.1",

 "products":
 {
 "python/demo_proxy.py": "proxy_module"
 },

 "domain": "walkthrough"
 }
 }
}

This is the minimum needed in a module_settings.json file to identify the component and point out that we have a proxy
module defined in python/demo_proxy.py. In more complicated components, there are many different kinds of products that
could be generated and would be listed along with the proxy module in the products section of the file.

Now that we have an IOTile component, we need to tell CoreTools about it by adding it to the Component Registry (this command
should be run from the test_component directory:

$ iotile registry add_component .
$ iotile registry list_components
walkthroughs/demo_component

Important

The Component Registry is a file maintained in each virtualenv that contains a CoreTools installation. It lists what
iotile components have been installed so that CoreTools knows to look in those directories for things like proxy modules.

Any changes you make to your Component Registry only affect your current virtual environment.

Now you have your component registered with CoreTools so we need to create a simple virtual device that it can interact with.

Creating a Virtual Device

Virtual IOTile devices are just python scripts that define a class that inherits from BaseVirtualDevice. We’re going to
create a demo device. Just like above there is a bit of boilerplate that is required for the device to support the necessary
RPC for CoreTools be able to identify its name and match it with a Proxy Module. Since the device we are creating is so
simple, we are going to derive from a convenience subclass SimpleVirtualDevice.

Create a file named demo_device.py in your current working directory with the following contents:

"""Virtual IOTile device for CoreTools Walkthrough"""

from iotile.core.hw.virtual import SimpleVirtualDevice, rpc

class DemoVirtualDevice(SimpleVirtualDevice):
 """A simple virtual IOTile device that has an RPC to read fake temperature

 Args:
 args (dict): Any arguments that you want to pass to create this device.
 """

 def __init__(self, args):
 super(DemoVirtualDevice, self).__init__(1, 'Demo01')

Note how this is just a normal python class and it has one function controller_status that is
decorated with an @rpc decorator. This decorator is how we mark what python functions in our
class are really mocking the RPCs present in a real IOTile device. For more information on the rpc
decorator, we can see its documentation below.

	
iotile.core.hw.virtual.rpc(address, rpc_id, arg_format, resp_format=None)[source]

	Decorator to denote that a function implements an RPC with the given ID and address.

The underlying function should be a member function that will take
individual parameters after the RPC payload has been decoded according
to arg_format.

Arguments to the function are decoded from the 20 byte RPC argument payload according
to arg_format, which should be a format string that can be passed to struct.unpack.

Similarly, the function being decorated should return an iterable of results that
will be encoded into a 20 byte response buffer by struct.pack using resp_format as
the format string.

The RPC will respond as if it were implemented by a tile at address address and
the 16-bit RPC id rpc_id.

	Parameters

	
	address (int [https://docs.python.org/3/library/functions.html#int]) – The address of the mock tile this RPC is for

	rpc_id (int [https://docs.python.org/3/library/functions.html#int]) – The number of the RPC

	arg_format (string) – a struct format code (without the <) for the
parameter format for this RPC. This format code may include the final
character V, which means that it expects a variable length bytearray.

	resp_format (string) – an optional format code (without the <) for
the response format for this RPC. This format code may include the final
character V, which means that it expects a variable length bytearray.

There are a couple of other things to note about our DemoVirtualDevice. We gave it a name of Demo01. All IOTile
devices have a 6 character name that is used to match the device with its associated proxy module by looking for matching
names. We also gave the device an IOTile ID of 1, which we’ll use to connect to the device.

So, let’s try to interact with our virtual device:

$ iotile hw --port=virtual:./demo_device.py
(HardwareManager) connect 1
(HardwareManager) controller
HardwareError: Could not find proxy object for tile
Additional Information:
known_names: ['Simple', 'NO APP', 'Rptdev']
name: 'Demo01'
(HardwareManager) quit
$

We told the iotile tool that we wanted to connect to an IOTile device that was virtual and implemented in the python module
./demo_device.py. We connected to it (connect 1) and tried to get a proxy object for it using the controller
command but we were told that CoreTools couldn’t find a proxy module for it.

This makes sense because we haven’t created the proxy module yet. So, lets create a basic proxy module and try again. Add the
following to demo_proxy.py (make sure this file is within the python subfolder):

from iotile.core.hw.proxy.proxy import TileBusProxyObject
from typedargs.annotate import return_type, context, param
import struct

@context("DemoProxy")
class DemoProxyObject(TileBusProxyObject):
 """A demo proxy object for the CoreTools walkthrough"""

 @classmethod
 def ModuleName(cls):
 """The 6 byte name by which CoreTools matches us with an IOTile Device"""

 return 'Demo01'

The only required function that we need to implement is the classmethod ModuleName that tells CoreTools what IOTile devices
should load this proxy module. Now let’s try to connect to our virtual device again:

$ iotile hw --port=virtual:./demo_device.py connect 1 controller
(DemoProxy) quit
$

This time CoreTools looked through the registry and found a matching proxy object (our DemoProxy object). Now we’re ready to start
adding some functions to our virtual device and wrapping them in the proxy object so we can test them out from the command line.

Adding an RPC That Returns Data

Let’s add an RPC to our virtual device name get_temperature that returns the (fake) temperature of the device. Add the following to
your demo_device.py DemoVirtualDevice class:

@rpc(8, 0x8000, "", "L")
def get_temperature(self):
 """Get the current temperature of the device in degrees kelvin

 Returns:
 list a list with a single value containing the device temperature
 """

 return [273]

This defines an RPC with id 0x8000 that returns a single 32-bit integer (the L result format) with the fixed value 273. Now we
need to add a function to our proxy object that calls this RPC.

Note

The rpc decorator, as described in the doc source above, is how we pack and unpack data types
through struct under the hood. You’ll see this later, but there are several ways to communicate
more information, as long as you fit in 20 byte payloads.

For example, you can pack something with 10s, and you pass in a length 10 string.

Add the following to your demo_proxy.py DemoProxyObject class:

@return_type("float")
def get_temperature(self):
 temp, = self.rpc(0x80, 0x00, result_format="L")
 return float(temp)

Note

The decorator on this function is what allows iotile to print the function’s return value on the command line. There is more information
about these type annotations in the section on typedargs.

Now let’s call our new RPC:

$ iotile hw --port=virtual:./demo_device.py connect 1 controller
(DemoProxy) <TAB><TAB>
back config_manager hardware_version quit status tile_status
check_hardware get_temperature help reset tile_name tile_version
(DemoProxy) get_temperature
273.0
(DemoProxy) quit
$

Internally this worked because our type annotation in DemoProxyObject told the iotile tool that this function could be called from the command
line. So when we typed get_temperature we invoked that function in DemoProxyObject. Internally it used the self.rpc function provided
by TileBusProxyObject to invoke an RPC on our virtual device, which sent back the temperature value 273 that it then returned and iotile
printed for us using the return_type type annotation to know that we wanted it to print the result as a floating point number.

If we had been talking to a physical IOTile device rather than a virtual one, nothing would be different except for the argument that we passed to
--port in HardwareManager that tells it what transport mechanism to use to send RPCs and receive their responses.

Adding a More Complex RPC

Let’s say that our device actually can store the last 5 temperature values that its recorded and has an RPC that allows us to query them all. We want
to print those values as a list. First lets implement the underlying RPC on the virtual device:

@rpc(8, 0x8001, "", "LLLLL")
def historical_temps(self):
 """Get a list of 5 temperatures from the device in degrees kelvin

 Returns:
 list a list with a single value containing the device temperature
 """

 return [273, 280, 215, 315, 300]

Then we need to add a corresponding call on the proxy object:

@return_type("list(float)")
def historical_temps(self):
 temps = self.rpc(0x80, 0x01, result_format="LLLLL")
 return [float(x) for x in temps]

Note

See how we used a complex type annotations list(float) to tell typedargs how to print our return value even though it wasn’t
a simple primitive type.

Now we can call it:

$ iotile hw --port=virtual:./demo_device.py connect 1 controller
(DemoProxy) historical_temps
273.0
280.0
215.0
315.0
300.0
(DemoProxy) quit
$

Setting Values Using an RPC

Up until now, we’ve only received information from RPCs, so lets create one that lets us set the temperature that the virtual device returns when you
call get_temperature. We’ll need to create a member variable to store the temperature and a new RPC set_temperature that sets its value. Adjust
demo_device.py to look like this:

"""Virtual IOTile device for CoreTools Walkthrough"""

from iotile.core.hw.virtual import SimpleVirtualDevice, rpc

class DemoVirtualDevice(SimpleVirtualDevice):
 """A simple virtual IOTile device that has an RPC to read fake temperature

 Args:
 args (dict): Any arguments that you want to pass to create this device.
 """

 def __init__(self, args):
 super(DemoVirtualDevice, self).__init__(1, 'Demo01')
 self.temp = 273

 @rpc(8, 0x8000, "", "L")
 def get_temperature(self):
 """Get the current temperature of the device in degrees kelvin

 Returns:
 list a list with a single value containing the device temperature
 """

 return [self.temp]

 @rpc(8, 0x8002, "L")
 def set_temperature(self, new_temp):
 """Set the current temperature of the device in degrees kelvin"""

 self.temp = new_temp
 return []

 @rpc(8, 0x8001, "", "LLLLL")
 def historical_temps(self):
 """Get a list of 5 temperatures from the device in degrees kelvin

 Returns:
 list: a list with 5 historical temperatures
 """

 return [273, 280, 215, 315, 300]

Now add a new annotated RPC wrapper to DemoProxyObject in your demo_proxy.py file:

@param("new_temp", "integer")
def set_temperature(self, new_temp):

 self.rpc(0x80, 0x02, new_temp, arg_format="L", result_format="")

Important

When you write a proxy module method that takes arguments, you need to
tell typedargs what type they are so that it can convert them to the
appropriate python types when you enter them on the command line. In this
case we’re telling typedargs that we take one parameter new_temp
that is an integer. That’s all we need to say and typedargs takes
care of interpreting our command line input into a native python integer
and passing that to set_temperature.

Alternatively, you can pack your arguments with the newer rpc method, rpc_v2:

@param("new_temp", "integer")
def set_temperature(self, new_temp):

 self.rpc_v2(0x8002, "L", "", new_temp)

Note that here, the rpc_id is combined in to one argument, and you are required to pass two arguments ahead
of your input: the arg_format (in this case, L), and the resp_format, which in this case is blank.
If you provide multiple inputs you would append an argument for each format type, for example:

self.rpc_v2(0x8888, "LLL", "", new_temp1, new_temp2, new_temp3)

Additionally, you could use @docannotate instead of @param to tell typedargs how to parse input:

@docannotate
def set_temperature(self, new_temp):
"""Sets the temperature of the virtual device.

Args:
 new_temp (int): New temperature
"""
 args = struct.pack("<L", new_temp)

 self.rpc(0x80, 0x02, args)

Let’s try out our set_temperature and get_temperature functions:

$ iotile hw --port=virtual:./demo_device.py connect 1 controller
(DemoProxy) get_temperature
273.0
(DemoProxy) set_temperature 15
(DemoProxy) get_temperature
15.0
(DemoProxy) set_temperature 275
(DemoProxy) get_temperature
275.0
(DemoProxy) quit
$

Next Steps

This concludes the tutorial on creating proxy modules. It’s a pretty simple
proxy module that we made that just sets one number but one of the core
principles of IOTile is that everything we do should be as reusable as
possible, so in future tutorials we’ll take the exact same proxy module and
virtual device and show how you can access them over MQTT from anywhere in the
world or over Bluetooth Low Energy without doing any additional work.

You may already be able to think of what you would want to do with a virtual
device running on your computer that would let you run a python function from
anywhere in the world.

Understanding IOTile Reports

All data from IOTile devices comes in the form of Reports. As the name
suggests, a Report just contains a list of data that the IOTile Device wants
to report to the cloud. This data is packed into a specific structure for
transportation to the cloud and then unpacked and inspected to make sure it
arrived correctly and originated from the IOTile Device that it claimed to
come from.

In this tutorial, we’re going to build our own reports in Python to get a
feel for how the process works and the various classes involved.

At the end we’ll talk about how you could upload a report to the cloud on
behalf of a device.

Goals

	Understand how IOTile devices report data and how they package it into
reports for transmission.

	Introduce the classes in iotile-core that represent data from IOTile
devices and their API.

	Understand the distinction between realtime data and signed Robust Reports.

Background

Before talking about how CoreTools handles data from IOTile Devices, we need to
cover how IOTile Devices generate data in the first place.

IOTile Devices are designed to produce timeseries of discrete data points.
Think of a soil moisture sensor programmed to record the water content in the
soil every 10 minutes. It produces a single data stream which is a series of
discrete soil moisture readings (i.e. single numbers) every 10 minutes.

Now think of a more complicated IOTile Device that measures soil moisture
every 10 minutes but also measures the temperature of the air every hour and
wants to report both of those numbers. Clearly, there needs to be a way to
distinguish these two data streams so that users know which numbers are
temperatures and which are moisture values.

IOTile Devices distinguish different sensor readings by using a 16-bit
Stream identifier (a Stream ID), where each different Stream corresponds
to a different type of reading.

All of the data entries in a Stream are time, value pairs, i.e a single reading
that occurred at a specific time. Most IOTile Devices timestamp their data with
1 second precision. Currently, each data value saved in a Stream must fit in
32 bits, so it can either be an integer or encoded/packed into an integer.

For example, realtime water flow measurements might report their results as 2
16 bit numbers packed together with one number representing the fractional
part of the flow and the other number representing the whole number part of the
flow (a 16.16 fixed point format).

To save space on small embedded microcontrollers, there are no explicit units
included in data sent from IOTile Devices.

Important

it us up to the user to make sure that they understand the implicit
units of the data being sent from an IOTile Device, since just bare
numbers are transmitted from the devices. The data in each Stream
must all have the same units.

Since many IOTile devices are not directly connected to the internet, they
typically save up data to transmit periodically to the cloud in the form of a
Report. A Report is simply a data packet with 1 or more readings in it
and some associated header and footer information identifying where it came
from and what it contains. Reports may be encrypted or cryptographically
signed if desired to provide data privacy and verification of origin.

Key Concepts

	Reading

	An individual time/value data entry recorded by an IOTile Device. Each
reading is timestamped and the reading value must fit in 4 bytes (32 bits).
Every reading must be associated with exactly 1 Stream.

	Stream

	A time series of Readings that all have the same units and should be
logically grouped together. Usually Streams come from a single sensor.

	Stream ID

	A 16-bit number that identifies a stream. Stream IDs are stored with each
Reading so that the device can remember what Stream that Reading is
contained in.

	Report

	A Report is a data packet containing one or more Readings from one or more
Streams that is packaged together for transmission from an IOTile Device to
a remote user, usually either a mobile phone or the cloud.

There are different report formats that can be used depending on the
communication channel constraints and the user’s desired privacy and
security levels for the data.

How CoreTools Handles Reports

Once data is received from an IOTile Device, it is decoded into an
IOTileReport subclass. All reports processed through CoreTools are
represented as subclasses of IOTileReport.

Each IOTileReport contains one or more IOTileReadings which are the way that
CoreTools represents Readings coming from an IOTile Device.

The IOTileReading class is pretty simple.

	
class iotile.core.hw.reports.IOTileReading(raw_time, stream, value, time_base=None, reading_id=None, reading_time=None)[source]

	Base class for readings streamed from IOTile device.

Each reading represents a single time/value pair sent from an IOTile Device.
Since many IOTile Devices do not have a hardware realtime clock, the timestamp
that is assigned to a reading may only be a relative interval from a fixed
event in the past, like the time the device turned on.

If the user knows the absolute time for this event they can pass it as a datetime
in time_base to turn the relative reading timestamp into an absolute datetime
accessible as reading_time.

	Parameters

	
	raw_time (int [https://docs.python.org/3/library/functions.html#int]) – the number of seconds since the device turned on
when the reading was taken

	time_base (datetime) – An optional estimate of when the device was
last turned on so that we can calculate the actual time of the
reading

	reading_time (datetime) – An optional UTC time when this event was acquired.
If combined with time_base, this value will take precedence and time_base
and raw_time will be ignored.

	reading_id (int [https://docs.python.org/3/library/functions.html#int]) – An optional unique identifier for this reading that allows
deduplication. If no reading id is passed, InvalidReadingID is used.

	stream (int [https://docs.python.org/3/library/functions.html#int]) – The stream that this reading is part of

	value (int [https://docs.python.org/3/library/functions.html#int]) – The raw reading value

	
classmethod FromDict(obj)[source]

	Create an IOTileReading from the result of a previous call to asdict().

	Parameters

	obj (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary produced by a call to IOTileReading.asdict()

	Returns

	The converted IOTileReading object.

	Return type

	IOTileReading

	
asdict()[source]

	Encode the data in this reading into a dictionary.

	Returns

	A dictionary containing the information from this reading.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

There are two major Report Formats that we are going to be using in this
tutorial. The first is the IndividualReportFormat. Individual reports
contain a single reading and are used by IOTile devices to communicate
real time data to a connected user that should not be stored persistently in the
cloud.

Important

Readings sent in Individual reports cannot be stored persistently in
iotile.cloud since they do not contain the required unique reading
identifiers to allow the cloud to deduplicate readings received from
multiple sources. They are only used for transmitting ephemeral,
realtime data.

The second major report format is the SignedListReport. Signed list reports,
as the name suggests contain a list of readings, possibly from multiple streams
and can be cryptographically signed to ensure that they came from the device
they claim to come from.

Simulating Realtime Data

Note

This section builds on the virtual device concepts we used in the first
tutorial on Creating Your First IOTile Device. If you want an explanation
for those concepts you should do that tutorial before continuing.

We’re going to create a simple virtual IOTile Device that streams realtime
data “temperature” every second. The data will just be a random number
between 32 and 100.

Just like in the first tutorial, create a class for the virtual device:

"""Virtual IOTile device for CoreTools Walkthrough."""

import random
from iotile.core.hw.virtual import SimpleVirtualDevice

class DemoVirtualDevice(SimpleVirtualDevice):
 """A simple virtual IOTile device that streams fake temperature.

 Args:
 args (dict): Any arguments that you want to pass to create this
 device.
 """

 def __init__(self, args):
 super(DemoVirtualDevice, self).__init__(1, 'Demo02')

 # Create a worker that streams our realtime data every second
 self.create_worker(self._stream_temp, 1.0)

 async def _stream_temp(self):
 """Send a fake temperature reading between 32 and 100."""

 await self.stream_realtime(0x1000, random.randint(32, 100))

Save your device file as demo_streamer.py.

This time we’ll scan for the device before connecting to it. Scanning in real life will display all of the devices you are able to connect to, as well as the unique id (uuid) of each device. You can then connect to it using the
iotile tool connect:

(iotile-virtualenv) > iotile hw --port=virtual:./demo_streamer.py
(HardwareManager) scan
 {
 "connection_string": "1",
 "expiration_time": "2017-05-26 13:06:54.800662",
 "signal_strength": 100,
 "uuid": 1
 }
(HardwareManager) connect 1
(HardwareManager) enable_streaming
(HardwareManager) count_reports
1
(HardwareManager) count_reports
2
(HardwareManager) count_reports
3
(HardwareManager) quit

Notice how we used the enable_streaming function to inform the IOTile Device
that we wanted to receive reports from it. Then we used the count_reports
function to count how many reports we had received. It should increase by one
every second when a new reading comes in.

Note

There is not currently a good way to view the contents of the reports in
the iotile shell tool. To see what the reports contain, we need to write
a python script that looks at the IOTileReport objects directly.

Now, let’s write a python script that prints out the realtime data as it comes
in:

from iotile.core.hw.hwmanager import HardwareManager
from iotile.core.hw.reports import IndividualReadingReport, IOTileReading

with HardwareManager(port='virtual:./demo_streamer.py') as hw:
 hw.connect('1')
 hw.enable_streaming()

 # hw.iter_reports() will run forever until we kill the program
 # with a control-c so make sure to catch that and cleanly exit
 # without printing an exception stacktrace.
 try:
 for report in hw.iter_reports(blocking=True):

 # Verify that the device is sending realtime data as we expect
 assert isinstance(report, IndividualReadingReport)
 assert len(report.visible_readings) == 1

 reading = report.visible_readings[0]
 assert isinstance(reading, IOTileReading)

 print("Received {}".format(reading))
 except KeyboardInterrupt:
 pass

This script uses the hw.iter_reports() function to wait forever for each new
report to come and the let you print it out. Run it inside your virtual
environment to see it print out all of the readings your device is sending.

Save it as test_script.py and then run it to make sure everything works as
expected.

You should see a new reading come once per second. You can quit the program
by sending it a Ctrl-C event:

(iotile-virtualenv) > python ./test_script.py
Received Stream 4096: 34 at 2017-05-17 16:31:46.461000
Received Stream 4096: 49 at 2017-05-17 16:31:47.522000
Received Stream 4096: 73 at 2017-05-17 16:31:48.581000
Received Stream 4096: 55 at 2017-05-17 16:31:49.646000
Received Stream 4096: 72 at 2017-05-17 16:31:50.706000
Received Stream 4096: 59 at 2017-05-17 16:31:51.763000
Received Stream 4096: 36 at 2017-05-17 16:31:52.824000

Reference Information

We introduced two new functions on HardwareManager in this tutorial:
iter_reports and enable_streaming. For reference, their API documentation
is here.

	
class iotile.core.hw.hwmanager.HardwareManager(port=None, record=None, adapter=None)[source]

	A module for managing and interacting with IOTile Hardware

This context provides tools to configure, control, debug and program
any IOTile module. Specific functionality can be implemented in dynamically
loaded proxy objects that are designed to provide access to each IOTile.

To create a HardwareManager, you need to pass a port string that describes the
method to be used to connect to the IOTile device. The method should specify the
name of the connection method optionally followed by a colon and any extra information
possibly needed to connect using that method.

	Currently implemented ports are:

	bled112
jlink
jlink:mux=ftdi
virtual:…(e.g. simple)

	
enable_streaming()[source]

	Enable streaming of report data from the connected device.

This function will create an internal queue to receive and store
reports until the user looks at them and then inform the connected
IOTile device that is should begin streaming data.

This is done by telling the underlying DeviceAdapter managing the
communication with the device that it should open the device’s
streaming interface.

There is currently no way to close the streaming interface except
by disconnecting from the device and then reconnecting to it.

	
iter_reports(blocking=False)[source]

	Iterate over reports that have been received.

If blocking is True, this iterator will never stop. Otherwise
it will iterate over all reports currently in the queue (and those
added during iteration)

	Parameters

	blocking (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to stop when there are no more readings or
block and wait for more.

Next Steps

This concludes the tutorial on understanding data from IOTile Devices. We
looked mainly at how realtime data is streamed from IOTile devices and covered
the different report formats that exist inside CoreTools.

Future tutorials will cover creating signed reports that could be uploaded to
iotile.cloud. That process is a little more involved because the cloud requires
readings that come from devices to include unique identifier information to
ensure data integrity.

Serving Access to Virtual Devices

Up till now, we have focused on understanding RPCs and realtime data streaming
from IOTile devices. We’ve used python classes as virtual devices and
interacted with them directly on your computer.

However, virtual devices are much more powerful than just tutorial usage. One
of the key foundations of IOTile and CoreTools is that every part of an IOTile
system should be testable and mockable without complicated tools.

For example, let’s say you’re building a solution for monitoring water meters.
You have an IOTile device attached to the water meter that counts how much
water has passed through the meter and provides access to that data over
Bluetooth. You also have a mobile app that connects to the water meter and
allows you to download that data and see the flow rate through the pipe in
realtime when you’re connected.

It can be challenging to properly test your mobile app across a range of
conditions because you need to trick the water meter into showing you a wide
range of ‘fake’ flow rates and historical readings on demand.

For a large piece of industrial equipment, it’s not always clear how to ‘trick’
it into giving you the data you need to test other parts of the system and while
it’s easy to generate fake data on a computer, it’s not clear how to get your
computer to serve that data over Bluetooth in the same way the water meter would
so you can properly test your mobile app.

Virtual devices fix this problem. Any IOTile device (including its wireless
connectivity) can be replaced with a Virtual Device that exactly mimics it (
or whatever portion of it we need to test).

So, we can create a simple Virtual Device to act as a stand in for the
real IOTile Device and then have our computer serve it over Bluetooth for the
mobile app to talk to. Since the Virtual Device will be running on our computer
we’ll be able to make it generate whatever data we need for testing.

Goals

	Understand key CoreTools concepts of Device Adapters and Virtual Interfaces
and how to use them to mock IOTile Devices for testing.

	Introduce the virtual_device script that serves a Virtual Device over
a Virtual Interface so that users can connect to it without running
CoreTools.

	Show how we can interact with our Virtual Device over Bluetooth from
CoreTools.

Background

For past tutorials, we’ve been using VirtualDevices just as a simple tool to
illustrate some of the concepts in IOTile Device interactions like RPCs and
streaming data without needing physical hardware. To keep things simple,
we directly embedded the virtual device inside of a HardwareManager object.

However, that’s not the only way that a VirtualDevice can be used. In a more
general sense, HardwareManager loads plugins called DeviceAdapters that
tell us how to find and communicate with IOTile Devices. In past tutorials,
we’ve implicitly been using a VirtualDeviceAdapter plugin that lets
HardwareManager talk directly to a VirtualDevice object running in the same
process as the HardwareManager.

Another way to use a VirtualDevice is to attach it to a VirtualInterface that
exposes its RPCs and Streaming interface directly over a communication channel
like Bluetooth Low Energy.

In that case the VirtualDevice ceases to be just a tutorial aid and becomes
basically a normal IOTile Device that just happens to be written in Python
rather than embedded C.

The overall picture then looks like the figure below.

[image: Stack diagram showing virtual Interfaces]

The stack that allows interacting with a Virtual IOTile Device from another
computer as if it’s a real IOTile device over a communication channel like
Bluetooth Low Energy.

Users rarely need to interact directly with a VirtualInterface object. Just
as HardwareManager finds DeviceAdapters as needed and loads them by name, there
is a script included with iotile-core called virtual_device that will take
a VirtualDevice and provide access to it over a VirtualInterface.

Key Concepts

	DeviceAdapter

	A class whose job is to translate the abstract internal CoreTools
representations of RPCs, Reports and Readings into concrete packets that
can be sent to an IOTile Device connected via some communication mechanism.
For example, the way an RPC is represented over the air will be different
for a Bluetooth Low Energy connection than it would be for an HTTPS
connection between the user and the IOTile Device. Device Adapters provide
the translation layer between internal CoreTools objects and whatever needs
to be sent/received over a communication channel. There needs to be one
DeviceAdapter for each different communication mechanism that CoreTools
supports.

	VirtualInterface

	VirtualInterfaces are python implementations of the communication stack
inside an IOTile Device that allows it to communicate with CoreTools.
For example, a Bluetooth Low Energy VirtualInterface would allow a
Virtual Device to receive RPCs over Bluetooth LE using the Bluetooth stack
built-in to your computer. The combination of a VirtualDevice and a
VirtualInterface is a complete ‘software implementation’ of an IOTile
Device.

	virtual_device

	A script included with the iotile-core package that loads in
a VirtualDevice and VirtualInterface by name and then hosts the soft IOTile
Device. This script simplifies the process of using VirtualInterfaces.

Using virtual_device

The virtual_device script is just a small program whose job is to let you
run a VirtualDevice inside of a VirtualInterface without having to write custom
python code.

VirtualInterfaces and VirtualDevices can be installed in your virtual environment
by packages during the pip install process, and you can use virtual_device to
list what installed interfaces and devices are available using the -l flag:

(iotile) > virtual_device -l
Installed Virtual Interfaces:
- awsiot
- bled112

Installed Virtual Devices:
- simple
- report_test
- realtime_test
- tracing_test
- no_app

In this case, we had the ability to serve virtual devices over AWS IOT’s MQTT
broker and locally over bluetooth using a BLED112 USB->BLE dongle. There were
5 built-in virtual devices that we had available to us as well.

In this tutorial we’ll be using the realtime_test device that can be
configured to produce realtime streaming data on demand.

Let’s see what the realtime_test device does.

	
class iotile.mock.devices.RealtimeTestDevice(args)[source]

	Mock IOTileDevice that streams and traces data periodically

This device can be configured to stream data on any streams at any interval.
It can be used for testing realtime streaming functionality of any other portion
of the IOTile stack.

If no other arguments are passed, this device defaults to producing the value 100
on stream 0x1001 every second. If a streams dictionary is passed, that overrides
this default setting.

You can also configure this device to broadcast readings without a connection on
a periodic interval as well.

If no ‘trace’ argument is passed the device defaults to tracing the phrase
‘Hello trace world. ‘ every second. If a ‘trace’ array is passed, that overrides
the default behavior.

	Parameters

	args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Any arguments that you want to pass to create this device.
Supported args are:

	iotile_id (int): The UUID used for this device. If no UUID is

	specified, the default value of 1 is used.

	streams (dict): A map of strings with hex numbers to tuples of

	(interval, value) where interval is a float that expresses
how often the stream should stream in seconds and value is
an integer that is sent as the value every interval as a
realtime reading (IndividualReadingReport). The stream id
is the key of the streams dict which should be a string
encoding of a hex number including the prefix 0x so that
it can be parsed with int(key, 0).

	broadcast (dict): A map of strings with hex numbers to tuples

	of (interval, value) where interval is a float that
expresses how often the stream should stream in seconds
and value is an integer that is sent as the value every
interval as a broadcast reading (BroadcastReport). The
stream id is the key of the streams dict which should be a
string encoding of a hex number including the prefix 0x so
that it can be parsed with int(key, 0).

Note that a device can only broadcast a single value at
once so if you specify multiple broadcast entries, only
the last one to be triggered will be visible at any given
time. For this reason, it is not useful to have multiple
broadcast values with the same interval since only one
will ever be shown.

	trace (list): A list of tuples which are (float, string) lists

	that will trace the fixed string every fixed interval
given by the first float argument in seconds.

Basically, this is just a configurable device that can simulate realtime
streaming data. Note that it takes a dictionary of parameters named args.
When using the virtual_device script, you can set these parameters by passing
a json config file using a –config flag on the command line.

Warning

For this next test to work, you will need two BLED112 USB Bluetooth dongles
attached to your computer to allow for a loopback test and you will need to
know either their device file on Mac OS and Linux or their COM port number
on Windows.

In Linux, you will need to find the dongle existing in the /dev directory. You will also need to yourself to the sudo user group with sudo usermod -a -G dialout [username].

First, create a config file named device_config.json:

{
 "interface":
 {
 "port": "<path to device file or port, dongle 1>"
 },

 "device":
 {
 "iotile_id": "0x10",
 "streams":
 {
 "0x1000": [1.0, 50],
 "0x2000": [0.5, 100]
 }
 }
}

Now, start running your virtual device using:

(iotile) > virtual_device bled112 realtime_test --config device_config.json
Starting to serve virtual IOTile device

Note

If there was an error finding the VirtualDevice realtime_test, make sure
you have a recent version of iotile-test installed using:

pip install --upgrade iotile-test

Note

To run a virtual device that hasn’t been installed, simply replace the
installed device name with the path to your virtual device. For example,
to run our “demo_streamer” device you might use:

(iotile) > virtual_device bled112 ./demo_streamer.py

Now your computer is advertising itself as an IOTile Device over bluetooth.
Either using a second computer or using a different terminal on the same
computer, we’re going to connect to the device over bluetooth:

(iotile) > iotile hw --port=bled112:<path to second dongle>
(HardwareManager) scan
{
 "connection_string": "88:6B:0F:18:34:AF",
 "expiration_time": "2017-05-18 10:36:23.491000",
 "low_voltage": false,
 "pending_data": false,
 "signal_strength": -39,
 "user_connected": false,
 "uuid": 16
}

Note how we used the port string bled112 to indicate that we wanted to
connect to the device over bluetooth. In previous tutorials, we’ve used the
virtual DeviceAdapter rather than Bluetooth Low Energy. Make sure you pass
the correct COM port or file path in the port string otherwise you will get an
error.

Now when we type scan, the results we get will be bluetooth based IOTile Devices
that are in range of our computer. Here we see the virtual device that we just
set up with UUID 0x10 (decimal 16). We see an RSSI signal strength of -39 dBm
and see that no one is currently connected to it.

So, let’s connect and see the realtime streaming data come in over Bluetooth:

(HardwareManager) connect 0x10
(HardwareManager) enable_streaming

Now look back at the virtual device terminal and you’ll see it log audit
messages telling you in detail what it’s doing:

Starting to serve virtual IOTile device
2017-05-18 10:42:40,453 [AUDIT ClientConnected] A client connected to this device
2017-05-18 10:42:40,865 [AUDIT RPCInterfaceOpened] A client opened the RPC interface on this device
2017-05-18 10:42:44,888 [AUDIT StreamingInterfaceOpened] A client opened the streaming interface on this device
2017-05-18 10:42:45,163 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:45,572 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:45,680 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:46,191 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:46,698 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:46,707 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:47,315 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:47,724 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:47,829 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:48,338 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:48,848 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:48,954 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:49,309 [AUDIT StreamingInterfaceClosed] A client closed the streaming interface on this device
2017-05-18 10:42:49,311 [AUDIT ClientDisconnected] A client disconnected from this device

These audit messages are a great way to see in detail what’s going on from the
IOTile device’s standpoint if you’re trying to debug another part of the stack.

Now let’s see how RPCs look when sent over Bluetooth. Stop the virtual_device
by sending it a Ctrl-C signal and then create a new one using the simple
device that supports RPCs:

(iotile) > virtual_device bled112 simple --config device_config.json
Starting to serve virtual IOTile device

This device has a fixed UUID of 1, so let’s connect to it:

(iotile) > iotile hw --port=bled112:<path to second bled dongle
(HardwareManager) connect 1
(HardwareManager) controller
(SimpleProxy) tile_status
configured: True
debug_mode: False
app_running: True
trapped: False

The SimplyProxy is built-in to iotile-test for testing and demo purposes.

Let’s see what the RPCs look like over bluetooth now:

2017-05-18 10:53:48,516 [AUDIT ClientConnected] A client connected to this device
2017-05-18 10:53:48,854 [AUDIT RPCInterfaceOpened] A client opened the RPC interface on this device
2017-05-18 10:53:59,391 [AUDIT RPCReceived] An RPC has been processed (id=4, address=8, payload=""), status=192, response="ffff53696d706c6501000003"
2017-05-18 10:53:59,440 [AUDIT RPCReceived] An RPC has been processed (id=4, address=8, payload=""), status=192, response="ffff53696d706c6501000003"
2017-05-18 10:54:03,661 [AUDIT RPCReceived] An RPC has been processed (id=4, address=8, payload=""), status=192, response="ffff53696d706c6501000003"

Here we see the RPC as received by the virtual device from the bluetooth stack
and the raw hex bytes sent back in response. Note that when we called
controller on the HardwareManager instance it sent two RPCs on our behalf to
ask the virtual device for its 6-byte identifier that it uses to match it to a
Proxy object. That’s how it knew that it should load the SimpleProxy object.

The tile_status command is supported by every IOTile Device (and even by each
individual tile inside composite devices) and just shows basic status
information about whether there are any issues with the device. In this case
everything’s running fine.

Scripting Actual Devices

One of the core principles of IOTile is orthogonality, which means that a given
script or command should be able to be used no matter what the IOTile Device is
and no matter how its connected to the user. In this case, we’re going to reuse
the exact same script we used before to print realtime streaming data from our
virtual device to now print the realtime data coming from our actual (soft)
device over bluetooth.

Start the realtime_test device again:

(iotile) > virtual_device bled112 realtime_test --config device_config.json
Starting to serve virtual IOTile device

Now load up your realtime stream dumping script from the last tutorial (fixing
the port to use bled112 instead of virtual (test_script.py):

from iotile.core.hw.hwmanager import HardwareManager
from iotile.core.hw.reports import IndividualReadingReport, IOTileReading

with HardwareManager(port='bled112:<path to dongle or COM port>') as hw:
 hw.connect(0x10)
 hw.enable_streaming()

 # hw.iter_reports() will run forever until we kill the program
 # with a control-c so make sure to catch that and cleanly exit
 # without printing an exception stacktrace.
 try:
 for report in hw.iter_reports(blocking=True):

 # Verify that the device is sending realtime data as we expect
 assert isinstance(report, IndividualReadingReport)
 assert len(report.visible_readings) == 1

 reading = report.visible_readings[0]
 assert isinstance(reading, IOTileReading)

 print("Received {}".format(reading))
 except KeyboardInterrupt:
 pass

Run it and see the realtime data coming from your device:

(iotile) > python ./test_script.py
Received Stream 4096: 50 at 2017-05-18 18:05:45.693000
Received Stream 8192: 100 at 2017-05-18 18:05:45.693000
Received Stream 8192: 100 at 2017-05-18 18:05:46.211000
Received Stream 4096: 50 at 2017-05-18 18:05:46.727000
Received Stream 8192: 100 at 2017-05-18 18:05:46.727000
Received Stream 8192: 100 at 2017-05-18 18:05:47.337000
Received Stream 4096: 50 at 2017-05-18 18:05:47.842000
Received Stream 8192: 100 at 2017-05-18 18:05:47.852000
Received Stream 8192: 100 at 2017-05-18 18:05:48.350000
Received Stream 4096: 50 at 2017-05-18 18:05:48.859000
Received Stream 8192: 100 at 2017-05-18 18:05:48.859000
Received Stream 8192: 100 at 2017-05-18 18:05:49.468000

If you have a physical IOTile device as well, you could now point your
script at it and have it show you the realtime sensor data coming from the
device.

Next Steps

After finishing this tutorial, you’re ready to build your own virtual IOTile
Device and allow access to it over bluetooth.

Setting Up a Gateway

You may have to pip install iotile-gateway.

Many times individual IOTile Devices are not able to directly connect to the
internet and instead talk exclusively to an intermediate gateway device. This
is usually because the devices lack the required communications hardware to
send multi-hop or IP routed transmissions. An example would be a battery
powered wireless sensor connected via Bluetooth Low Energy. BLE devices
connect to a local central device in a point-to-point fashion without a built-in
provision for connecting to the internet.

So, there’s often a need for a gateway that knows how to connect to a specific
sensor device and then serves access to that device over a different protocol,
acting as a translator between, e.g. BLE and Websockets, or BLE and MQTT.

Since all IOTile Devices implement the same basic interfaces for streaming
data and receiving RPC commands, we can make a generic gateway program that
translates requests from any supported protocol into any other supported
protocol.

This program, and the python objects behind it, is called iotile-gateway and
is provided by the iotile-gateway package in CoreTools.

Goals

	Understand how to configure iotile-gateway to translate between communication
protocols.

	Use iotile-gateway to aggregate devices across multiple communication
protocols by plugging multiple DeviceAdapters into the same gateway.

	Understand the use case for mixing physical and virtual IOTile devices in the
same gateway to allow for remote configuration of the gateway computer as
well as providing access to other IOTile Devices.

Background

In previous tutorials, we’ve seen how DeviceAdapters provide a generic way to
allow access to IOTile devices from multiple clients and how HardwareManager
allows a single client or script to discover and make a connection to a specific
IOTile Device.

We’ve also seen how we can create our own device and serve access to it using
a VirtualInterface. In this tutorial we’re going to introduce
GatewayAgents.

GatewayAgents are the direct complement to DeviceAdapters. Whereas
DeviceAdapters standardize devices that may have very different communication
protocols, GatewayAgents take those standardize devices and re-broadcast them
over a different communucation protocol. So, you could take a device connected
over Bluetooth and serve it up over Websockets, MQTT, or HTTPS.

Since there are many moving pieces in performing this kind of translation, there
needs to be a host application that provides the framework for linking
DeviceAdapters and GatewayAgents together. This program is called
iotile-gateway and is installed as a script when you pip install the
iotile-gateway package in CoreTools.

The heavy lifting is done by an asynchronous event loop managed by the
AggregatingDeviceAdapter class.

	
class iotilegateway.device.AggregatingDeviceAdapter(port=None, adapters=None, loop=<iotile.core.utilities.async_tools.event_loop.BackgroundEventLoop object>)[source]

	Aggregates multiple device adapters together.

This class aggregate all of the available devices across each
DeviceAdapter that is added to it and route connections to the appropriate
adapter as connections are requested. An API is provided to make
connections to devices, monitor events that happen on devices and remember
what devices have been seen on different adapters.

It is assumed that devices have unique identifiers so if the same device
is seen by multiple DeviceAdapters, those different instances are unified
and the best route to the device is chosen when a user tries to connect to
it. For this purpose there is an abstract notion of ‘signal_strength’
that is reported by each DeviceAdapter and used to rank which one has a
better route to a given device.

	Parameters

	loop (BackgroundEventLoop) – The background event loop that we should
use to run our adapters. Defaults to SharedLoop.

By itself, AggregatingDeviceAdapter does not allow serving access to IOTile Devices, it
just aggregates multiple DeviceAdapters together and unifies the view of the
devices that they can see.

There still needs to be a way to configure what DeviceAdapters to add to the
AggregatingDeviceAdapter and to specify what GatewayAgents should be included as well.

This is performed by the IOTileGateway class. IOTileGateway is designed
for simple integration into host applications and forms the backbone of the
iotile-gateway command line program.

	
class iotilegateway.gateway.IOTileGateway(config, loop=<iotile.core.utilities.async_tools.event_loop.BackgroundEventLoop object>)[source]

	A gateway that finds IOTile devices using device adapters and serves them using device servers.

The gateway runs in separate thread inside of a BackgroundEventLoop and
you can call the synchronous wait function to wait for it to quit. It
will loop forever unless you stop it by calling the stop() or
stop_from_signal() methods.

IOTileGateway should be thought of as a turn-key gateway object that
translates requests for IOTile Device access received from one or more
AbstractDeviceServer into commands sent to one or more
AbstractDeviceAdapters. It is a multi-device, multi-user, multi-protocol
system that can have many connections in flight at the same time, limited
only by the available resources on the computer that hosts it.

The arguments dictionary to IOTileGateway class has the same format as the json parameters
passed to the iotile-gateway script that is just a thin wrapper around this class.

	Parameters

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The configuration of the gateway. There should be two keys set:

	servers (list):

	a list of dictionaries with the name of the device server and
any arguments that should be passed to create it.

	adapters (list):

	a list of dictionaries with the device adapters to add into the gateway
and any arguments that should be use to create each one.

The overall structure of the iotile-gateway system is shown in the figure below.
You can see the different device adapters that can be used to find IOTile
Devices and the various gateway agents that allow users to access them.

[image: Stack diagram of iotile-gateway]

The structure of the iotile-gateway program that translates between
different communication protocols to allow remote control of IOTile Devices
that don’t possess long-range communications hardware.

Key Concepts

A class that takes multiple DeviceAdapters and merges all of the devices
that they can see. Requests to connect to individual devices are routed to
the appropriate DeviceAdapter based on which adapters can see that device,
what their signal strength is and whether they have the resources for an
additional connection.

	IOTileGateway

	A helper class that locates and loads DeviceAdapter and GatewayAgent plugins
and then runs a DeviceManager instance with those plugins in a separate
thread to allow for easy integration into a host application

	GatewayAgent

	A class that serves access to IOTile Devices over a communication protocol.
This class serves the opposite function as a DeviceAdapter and you would
imagine a natural pairing where each DeviceAdapter has a corresponding
GatewayAgent.

	iotile-gateway

	A cross-platform command line script that allows turning a computer into a
turn-key gateway that searches for IOTile Devices using DeviceAdapters and
then serves access to them using GatewayAgents. A JSON configuration file
lets you specify what plugins to load and how to configure them

Using iotile-gateway

The iotile-gateway program is fairly turn-key. You just need to tell it what
DeviceAdapters to load and what GatewayAgents to use. The DeviceAdapters are
configured by passing the same ‘port’ string you would use in the iotile tool.

The GatewayAgents have more configurability and take a dictionary of arguments
that are specific to each agent. In this example, we’re going to use our
venerable VirtualDeviceAdapter to connect to a virtual device and serve access
to it over Websockets.

Websockets are a bidirectional communication channel built on top of http that
is widely used in javascript web applications, so serving IOTile Devices over
web sockets is a great way to connect them to web apps.

We’ll need to create a config file with the required information (named
gateway.json):

{
 "agents":
 [
 {
 "name": "websockets",
 "args":
 {
 "port": 5120
 }
 }
],

 "adapters":
 [
 {
 "name": "virtual",
 "port": "realtime_test"
 }
]
}

Then we just run iotile-gateway and point it to our config file:

(iotile) > iotile-gateway --config=gateway.json
I-2017-05-19 14:38:18,977-gateway :94 Loading agent by name 'websockets'
I-2017-05-19 14:38:19,381-ws_agent :38 Starting Websocket Agent on port 5120
I-2017-05-19 14:38:19,388-gateway :116 Loading device adapter by name 'virtual' and port 'realtime_test'

Now (in another shell or a separate computer on the same network),
we can connect to the gateway just like we connect directly to an IOTile
Device by specifying a protocol supported by one of the gateway’s agents, in
this case websockets:

(iotile) > iotile hw --port=ws:localhost:5120/iotile/v1
(HardwareManager) scan
{
 "adapters": [
 [
 0,
 100,
 "0/1"
]
],
 "best_adapter": 0,
 "expires": "2017-05-26 13:23:46.277000",
 "signal_strength": 100,
 "uuid": 1
}

Note how there is a little more detail here than when you scan directly from
the IOTile tool. In particular we see a list of all of the DeviceAdapters that
could see the device ranked in order of signal strength and a key specifying
the best adapter to use to connect to the device.

If this were, for example, a Bluetooth device and we had two different Bluetooth
adapters connected to the computer, we would see the device twice but they
would both be merged into a single entry with the closest adapter used to
actually make the connection.

Combining Multiple Device Adapters

There is no restriction on the number of different device adapters that you
can connect to a gateway, so let’s use two virtual adapters:

{
 "agents":
 [
 {
 "name": "websockets",
 "args":
 {
 "port": 5120
 }
 }
],

 "adapters":
 [
 {
 "name": "virtual",
 "port": "realtime_test"
 },

 {
 "name": "bled112"
 }
]
}

Important

You need a BLED112 USB bluetooth dongle plugged into your computer for
this to work.

In this case, we’re going to find physical IOTile Devices over bluetooth as
well as our virtual device. This combination of physical and virtual devices
is often very useful since virtual devices can provide you a way to configure
things on the computer running the gateway program.

For example, lets say you’re deploying a gateway on a remote farm that you
are going to use to control a variety of bluetooth sensors. It would be great
if you could also control the gateway computer itself. By making a virtual
device that allows control of the gateway and connecting it to the
iotile-gateway as well as the bluetooth adapter, you’re able to introspectively
access the gateway just as easily as you can reach through it to access a
local bluetooth device:

(iotile) > iotile hw --port=ws:localhost:5120/iotile/v1
(HardwareManager) scan
{
 "adapters": [
 [
 0,
 100,
 "0/1"
]
],
 "best_adapter": 0,
 "expires": "2017-05-26 13:39:15.516000",
 "signal_strength": 100,
 "uuid": 1
}
{
 "adapters": [
 [
 1,
 -79,
 "1/C0:05:C8:DB:E5:45"
]
],
 "best_adapter": 1,
 "expires": "2017-05-19 15:00:16.032000",
 "low_voltage": false,
 "pending_data": true,
 "signal_strength": -79,
 "user_connected": false,
 "uuid": 53
}
{
 "adapters": [
 [
 1,
 -66,
 "1/D0:45:A7:7E:A9:F0"
]
],
 "best_adapter": 1,
 "expires": "2017-05-19 15:00:16.283000",
 "low_voltage": false,
 "pending_data": false,
 "signal_strength": -66,
 "user_connected": true,
 "uuid": 54
}

Here we see a number of devices that our gateway found over bluetooth as well
as our virtual device. You can connect to any device by uuid in the same manner
so you don’t have to worry about which devices are physical vs virtual.

Next Steps

After this tutorial you should be ready to set up your own IOTile Gateway that
translates devices from one communication protocol to another. You should also
be able to use what you learned in the previous tutorials to add virtual devices
to your gateway that let you control things directly connected to the gateway
computer or configure the gateway itself as if it were an IOTile Adapter.

You can read on to figure out how to configure your own physical IOTile devices
using the SensorGraph language.

Introduction to SensorGraph

Previous tutorials have covered how to create virtual IOTile devices that expose
functionality in terms of RPCs that can be called to, for example, read a sensor
or flip a switch. We’ve also seen how we can interact with those devices from
a computer using CoreTools to send commands and extract data over a variety
of communications channels.

However, we haven’t yet touched on how you could embed a program into one of
these devices so that it can be left running and autonomously collect data
or take actions.

For example, lets say you have a device that can measure the temperature of the
air in the room and you want to configure it to measure that temperature every
10 minutes and if its too hot, turn on the AC.

Basically you want a simple script that does the following:

every 10 minutes
{
 measure temperature
}

if temperature > upper_limit
{
 enable AC
}

In this tutorial we are going to cover how to write these scripts for an IOTile
device in a language called SensorGraph that makes it easy to write scripts
and verify that they work as intended before deploying them to a potentially
remote and mission critical location.

Goals

	Understand what SensorGraph is at a high level and what the major components
of the sensor graph system are.

	Be able to write and simulate SensorGraph scripts on your computer using the
iotile-sensorgraph package in CoreTools.

	Understand the major statements and blocks that make up a SensorGraph script.

Background

The way to think of an IOTile device is as a set of APIs, just like a web
service would have a set of REST APIs that you can wire together to make an
application.

Without an Application tying the APIs together the system won’t do anything, it
will just sit and wait for someone to call one of its APIs (like we did in
previous tutorials).

Most applications that we want to write on IOTile devices are fairly small and
just wire together a few APIs to collect data and then prepare it for either
remote transmission to the cloud or use it to control some local process.

There are three parts to an IOTile application:

	Configuring the device: An IOTile device is made up of several different
modules called tiles. These tiles are designed to be used in a variety of
different ways, so you may need to configure them to be in the right mode
of operation for what you want. Configuration of all tiles happens once
when the IOTile device turns on.

	Wiring tiles together to collect data: Once the IOTile device is
configured, there needs to be a script that it runs through that tells it
what RPCs to call on which tiles in order to collect data or control things.
This script could either be time driven like ‘collect data every 10 minutes’
or event driven as in ‘when this happens to this’. Combinations of time
driven and event driven actions are also possible.

	Choosing what data to report: Often times IOTile devices are designed to
send data they collect to a remote server in the cloud for further processing.
Usually you only want a subset of the data that an IOTile device generates
to be sent remotely in order to save bandwidth, power or money. So, there
needs to be some rules in place that select what data gets sent remotely.

The selected data is packaged into Reports as described in a previous
tutorial. In this section we’re talking about how the device knows what
data should go into those reports and what data is only for internal use.

The part of the IOTile device that is responsible for choosing data for
remote transmission is a Streamer. Streamers determine what data is
sent, under what conditions it is sent, how retries are handled and what
report format to use (i.e. what level of security and robustness
guarantees are required).

Normally, the data that an IOTile device generates can be divided into two
classes:

	Realtime Data: Realtime data is continually being regenerated and does not
have any long term value. It could be, for example, the current temperature
of a device that is updated once per second. There is no need to keep more
than one current temperature reading around.

	Historical Data: Other data is specifically designed to be saved in long
term storage. For example, consider using that same temperature monitoring
device to record a profile of the temperature experienced by a package along
a multi day journey around the world. You want to keep historical readings
around because the point is to have a record, not just the latest value.

Because these two types of data are so common, IOTile Devices handle them
separately. Realtime data is referred to as unbuffered data and is never
stored in a persistent memory location like flash memory. It can change very
rapidly without wearing out any persistent storage medium.

In contrast, historical data is treated as buffered data and every value
written to a data stream marked as historical data will be saved securely and
assigned a globally unique identifier so that it can be robustly transferred
to a remote server and acknowledged that it was correctly received.

So, buffered data corresponds to data that should be tracked over time and
unbuffered is for realtime data and intermediate results that will be
overwritten when new data comes in.

Only the user knows what data should be buffered vs unbuffered so part of
designing a SensorGraph is specifying how to treat each data stream that
is generated.

Key Concepts

	Tile Configuration

	A series of variable assignments that are performed on an IOTile module in
order to prepare it for operation. These configurations can do things like
set what units it reports data in or selecting what sensor is plugged into
a tile that can work with many different kinds of sensors.

	Streamer

	A task running on an IOTile Device whose job is to send some subset of the
data generated by that device to a remote server in a configurable way.
Streamers choose what data to send, when to send it, how it is packaged
and how retries are handled if an initial attempt to send the data fails.

	Buffered Data

	Data that is tracked with a unique identifier and stored securely in
long term storage. Once buffered data is generated, it will stay around
until the device is forced to overwrite it due to a lack of space or it
is successfully transferred to a remote server.

	Unbuffered Data

	Data that is ephemeral and not persistently stored. Whenever a new reading
comes in, it overwrites that last unbuffered reading in the same data
stream.

Creating Your First SensorGraph

With this background information in hand, we’re ready to try out our first
complete sensor graph in a simulator so we can see how everything works.

Important

For this tutorial you will need to make sure the iotile-sensorgraph
package is installed:

pip install -U iotile-sensorgraph

In this tutorial, we’re going to write sensor graphs by example without diving
too much into the mechanics behind it. A later tutorial will go deeper into
how everything works behind the scenes.

Let’s start with a complete simple sensor graph that just calls an RPC every
10 minutes:

every 10 minutes
{
 call 0x8000 on slot 1 => output 1;
}

Basically we’re asking the device to call the RPC with id 0x8000 on the tile
located in slot 1 once every 10 minutes and to store the output in a stream named
output 1. Save this file as simple.sgf and then you can simulate it
in the sensor graph simulator named iotile-sgrun that is installed by the
iotile-sensorgraph package:

(iotile) > iotile-sgrun simple.sgf -s 'run_time 1 hour' -w 'output 1'
(600 s) output 1: 0
(1200 s) output 1: 0
(1800 s) output 1: 0
(2400 s) output 1: 0
(3000 s) output 1: 0
(3600 s) output 1: 0

In addition to the sensor graph file that we wanted to simulate, we also passed
a stop condition (-s ‘run_time 1 hour’) that stops the simulation after 1 hour
of simulated time has passed. We also told the simulator to watch (-w) the
stream named ‘output 1’ and report whenever data was written to it.

The output showed us that a 0 was output ever 10 minutes (600 seconds) for a
total of 6 readings in 1 hour.

This is a complete sensor graph that you could program into an iotile device
and have it take data every 10 minutes forever. It’s not that interesting
of a SensorGraph though, so we’ll add some more to it later.

Mocking RPCs

In our example above, the simulator called the RPC numbered 0x8000 and stored
its result in output 1. Evidently the RPC returned a 0.

By default, all simulated RPCs return 0.

You can override this behavior by specifying an explicit return value using
the -m option to the simulation. Let’s say we want to simulate an RPC that
returns 15 rather than 0:

(iotile) > iotile-sgrun simple.sgf -s 'run_time 1 hour' -w 'output 1' -m 'slot 1:0x8000 = 15'
(600 s) output 1: 15
(1200 s) output 1: 15
(1800 s) output 1: 15
(2400 s) output 1: 15
(3000 s) output 1: 15
(3600 s) output 1: 15

Note

There is a more advanced way to use the simulator called ‘semihosting’
where the RPCs are sent to an actual iotile device to run and the response
is returned to the simulator. This lets you test your sensor graph as if
it were running on an actual device while still being able to watch any
stream and accelerate the passage of simulated time to verify that the
sensor graph behaves as you would expect over time without having to have
an actual device running for that long.

How to use semihosting will be covered in the next tutorial.

The syntax for mocking an RPC is straightforward:

-m "<slot id>:<rpc number> = <value>"

- <slot id> should be either the literal value controller or 'slot X'
where X is a number >= 1.

- <rpc number> should be the same 16 bit number in either decimal or hex
that you enter into the sensor graph to identify the RPC you want to call.

- <value> should be an integer that will simulate what the RPC returned.
It is not currently possible to change what the mocked RPC returns over
time from the command line; it always returns the same thing.

For example:

- m "controller:0x2000 = 0x50"
- m "slot 5:1500 = 12"

Adding Control to a SensorGraph

The first sensor graph above just got data via an RPC and then saved it as
a buffered output. We used an every <time> block to specify how often
we wanted the RPC called. Now we’re going to introduce the on block that
lets us inspect and act on the values we get.

Let’s say our RPC represents temperature and we want to turn on the AC when
the temperature rises above a certain temperature (say 80 degrees). We can
express that as follows:

every 10 minutes
{
 call 0x8000 on slot 1 => unbuffered 1;
}

on value(unbuffered 1) > 80
{
 # In this example, 0x9000 is the RPC that turns on the AC
 call 0x9000 on slot 2;
}

on unbuffered 1
{
 copy => output 2;
}

This sensor graph will still log the temperature every 10 minutes but also
check if its value is greater than 80 degrees and call another RPC that turns
on the AC. (Note in a real life example, you would probably want another
on block to turn off the AC as well!)

Note

See how there are two ways to use the call statement. In the first call,
we specified that we wanted to keep track of the value returned by the RPC
so we gave it a name. In the second call, we didn’t care about the return
value of the RPC so we didn’t give it an explicit name.

Internally, the sensor graph compiler automatically allocated an unused
stream for this value and we’ll see in the next tutorial how this turns
into the actual rules that could be programmed.

Adding Realtime Data Outputs

Most IOTile devices don’t have screens. However, users can walk up to them with
their phones and access their virtual screen over Bluetooth Low Energy.

When a user is standing next to an IOTile device, they probably don’t want to
wait 10 minutes to see the next data point, so there needs to be a way to
trigger faster data outputs when a user is connected to the device.

This functionality is builtin to sensor graph and can be enabled using a when
block as in the example below:

every 10 minutes
{
 call 0x8000 on slot 1 => unbuffered 1;
}

when connected to controller
{
 on connect
 {

 }

 every 1 second
 {
 call 0x8000 on slot 1 => unbuffered 10;
 call 0x8001 on slot 1 => unbuffered 11;
 }

 on disconnect
 {

 }
}

The when connected to controller block specifies actions that should
only be taken when a user is connected. The on connect and on disconnect
blocks are not required if they are unused but are included here for reference.

This sensor graph says that when a user is connected two RPCs should be made
every second and the results stored in unbuffered streams 10 and 11.

The on connect and on disconnect blocks allow you to do any required setup
or cleanup on the device that might be necessary to prepare it for high
resolution outputs and then put it back into low power autonomous mode when the
user disconnects.

Now let’s simulate this for 10 seconds:

(iotile) > iotile-sgrun simple.sgf -s 'run_time 10 seconds' -w "unbuffered 10" -w "unbuffered 1"
(iotile) >

We didn’t see any output because no user was connected and we didn’t wait 10
minutes for a reading.

So let’s wait 10 minutes to make sure the readings are happening:

(iotile) > iotile-sgrun simple.sgf -s 'run_time 10 minutes' -w "unbuffered 10" -w "unbuffered 1"
(600 s) unbuffered 1: 0

Now let’s simulate a connected user with the -c flag:

(iotile) > iotile-sgrun simple.sgf -s 'run_time 10 seconds' -w "unbuffered 10" -c

(1 s) unbuffered 10: 0
(2 s) unbuffered 10: 0
(3 s) unbuffered 10: 0
(4 s) unbuffered 10: 0
(5 s) unbuffered 10: 0
(6 s) unbuffered 10: 0
(7 s) unbuffered 10: 0
(8 s) unbuffered 10: 0
(9 s) unbuffered 10: 0
(10 s) unbuffered 10: 0

Notice how we now got realtime outputs now in the stream unbuffered 10 every
second.

Selecting Data to Stream

In the beginning of this tutorial, we laid out three jobs for a SensorGraph:

	Configuring tiles

	Wiring together RPCs into an application

	Selecting data to send remotely

We’ve focused on step 2 so far. Step 1 will be addressed in the next tutorial
so we will briefly touch on step 3 now.

As mentioned, the way to send data from an IOTile Device is referred to as
Streaming and is done by a Streamer.

When you write a sensor graph you need to explicitly say what streamers you want
to set up so that the device can be configured properly. Just like there are
two kinds of data produced by an IOTile device, there are also two kinds of
streamers: realtime and historical.

Realtime streamers report the latest value in a stream without worrying about
robustness, packaging it, or retrying the transmission if its not successful
because it’s expected that they can just send an updated value when its
available.

Historical (or Robust) streamers take much more care in signing and optionally
encrypting the data before sending it and keeping track of exactly which readings
have been acknowledged as successfully received by the cloud so that no data can
be lost. Historical data is resent until it is successfully received.

The syntax for specifying streamers is straightforward. You just specify
what data streams you want to send and whether you want to send them as realtime
or historical data:

[manual] (signed | realtime) streamer on <selector>;

The manual keyword will be covered in the next tutorial but it gives the user
more flexibility in when the streamer tries to send data. By default streamers
are “automatic”, which means they try to send data whenever it is available.

You choose whether data is realtime or historical by specifying the
keywords realtime or signed and finally you choose what data to send by
specify a Stream Selector. This can be just the name of a stream or it can
be a wildcard like all outputs.

Here are a few examples:

manual signed streamer on all outputs;
realtime streamer on unbuffered 10;

These two streamers say that we would like to report realtime data whenever it
is available on the unbuffered 10 stream and we would also like to send
all output streams as historical data that will be triggered manually.

In the next tutorial, we will cover how to trigger manual streamers from a
sensor graph.

Next Steps

Read about how to write more advanced sensor graphs as well as how to program
or test them with actual devices.

Deploying Sensor Graphs

In the last tutorial we covered the basics of how to make your own SensorGraph.
Now we are going to talk about how to program that sensor graph into an
IOTile device and how to “semihost” it so that you can test out the RPCs without
needing to fully program it into the device.

Goals

	Be able to semihost a sensor graph to test RPCs on an actual device

	Be able to program a sensor graph onto a device for autonomous operation

Background

There are two big parts to a sensor graph. The first is the actual graph
that is coordinating what RPCs to call in order to acquire data or control
something. The second is the underlying hardware that implements those RPCs.

Semihosting is running the sensor graph on your computer but delegating the
RPCs to an actual hardware device. This is useful because:

	It means you can accelerate the passage of time to uncover subtle bugs that
only manifest over a long period of operation.

	It means you have access to all of the watch infrastructure of the simulator
to see in detail what is happening in each stream. This is more difficult
once the sensor graph is actually embedded fully into a physical device.

Key Concepts

Semihosting

Running a sensor graph on your computer while dispatching the RPCs to be
run on an actual device. This device is connected to using the same
HardwareManager based methods as the previous tutorials, so the device
can be anywhere in the world or even virtual.

Semihosting a Sensor Graph

Note

In order to run the following commands successfully, make sure that you
have the iotile-test package installed in order to have the right test
virtual device:

pip install -U iotile-test

Semihosting a sensor graph is really easy. You just need to know two things:

	the port string for the DeviceAdapter that you want to use to connect to your
IOTile device. This is the same string that you use with the iotile tool
(i.e. the port string in iotile hw –port=<port string>).

	the device id of the device that you want to connect to (like 0xABCD)

Simply pass the port as a -p argument to iotile-sgrun and the device id in
a -d parameter and then simulate the sensor graph as normal. The simulator
will connect to the device using the supplied information and run all RPCs
on the device.

For example, save the following sensor graph as test.sgf:

every 10 seconds
{
 call 0x8000 on controller => unbuffered 2;
 call 0x8002 on controller => unbuffered 2;
}

on value(unbuffered 2) == 5
{
 call 0x8001 on slot 1 => output 1;
}

We’re going to semihost using a virtual device in iotile-test called
(appropriately) sg_test. The sg_test device just has two RPCs that are useful
for learning sensor graphs:

controller: 0x8000 returns a random number between 0 and 100
slot 1: 0x8001 returns the fixed integer 42

Let’s try it out:

(iotile) > iotile-sgrun test.sgf -p virtual:sg_test -d 1 -s 'run_time 1 minute' -w 'unbuffered 2'
(10 s) unbuffered 2: 80
(20 s) unbuffered 2: 59
(30 s) unbuffered 2: 25
(40 s) unbuffered 2: 45
(50 s) unbuffered 2: 24
(60 s) unbuffered 2: 1

We can also run for along time to see the random value trigger our second
sensor graph rule on unbuffered 2 == 5:

(iotile) > iotile-sgrun test.sgf -p virtual:sg_test -d 1 -s 'run_time 1 hour' -w 'output 1'
(490 s) output 1: 42
(530 s) output 1: 42
(610 s) output 1: 42
(1290 s) output 1: 42
(1810 s) output 1: 42
(2360 s) output 1: 42
(2870 s) output 1: 42

Note the random timestamps since those were the random times that RPC 0x8000
on the controller returned 5. Your results should vary.

Important

You can still mock RPCs and those will override RPCs defined in the
semihosting device. This can be useful for injecting unlikely conditions
into more complicated sensor graphs for testing.

Let’s mock RPC 0x8001 on slot 1 to return 50 rather than 42:

(iotile) > iotile-sgrun test.sgf -p virtual:sg_test -d 1 -s 'run_time 1 hour' -w 'output 1' -m "slot 1:0x8001 = 50"
(40 s) output 1: 50
(390 s) output 1: 50
(2260 s) output 1: 50
(2760 s) output 1: 50
(3250 s) output 1: 50
(3360 s) output 1: 50

Programming Into a Device

Note

Before programming a sensor graph to a device, your environment will
need its appropriate support package. In this example, we will need
the proxy image for the nrf52832:

pip install iotile-support-con-nrf52832-3

Currently the best way to program a sensor graph into an actual device is to
use a combination of the iotile-sgcompile and iotile tools. Given your
sensor graph, compile it with an output format of snippet. This produces
a list of commands that can be entered into the iotile tool to program
the sensor graph onto a device. You can just pipe this to the iotile tool
to program the sensor graph.

For example, let’s look at the snippet corresponding to the test.sgf that
we created above:

(iotile) > iotile-sgcompile test.sgf -f snippet
disable
clear
reset
add_node "(system input 2 always) => counter 1024 using copy_all_a"
add_node "(system input 3 always) => counter 1025 using copy_all_a"
add_node "(counter 1024 when count >= 1) => counter 1026 using copy_latest_a"
add_node "(counter 1026 when count == 1 && constant 1024 always) => unbuffered 2 using call_rpc"
add_node "(counter 1026 when count == 1 && constant 1025 always) => unbuffered 2 using call_rpc"
add_node "(unbuffered 2 when value == 5) => unbuffered 1024 using copy_latest_a"
add_node "(unbuffered 1024 when count == 1 && constant 1026 always) => output 1 using call_rpc"
set_constant 'constant 1024' 557056
set_constant 'constant 1025' 557058
set_constant 'constant 1026' 753665
persist
back
config_database
clear_variables
set_variable 'controller' 8192 uint32_t 1
back
reset

You can see how these are just iotile tool commands. They are meant to be
entered in the controller sensor_graph context in the iotile tool while
connected to an IOTile device.

So the easiest way to program this into a device is:

(iotile) > iotile-sgcompile test.sgf -f snippet | iotile hw --port=<port> connect <device id> controller sensor_graph

When the command terminates the new sensor graph will be programed into the
device and the device will have reset itself to start running the sensor graph.

Simulating in Realtime

If you want to simulate your sensor-graph in real time, i.e. waiting 10 minutes
for an every 10 minutes block to fire, you can do so by passing the -r
flag to the simulator.

Next Steps

You can cover more advanced sensor graph concepts in the next tutorial or
start writing and testing your own sensor graphs!

The SensorGraph Language

In this tutorial we’re going to cover the main statements that you can write in
a sensor graph and what they do.

Goals

	Understand the key statements and blocks that make up the sensor graph
language.

Background

Like most languages, there are two kinds of elements in a sensor graph:
Blocks and Statements.

Blocks are containers for statements that are used to influence how the
statements are compiled. All blocks consist of a single line that starts the
block and then zero or more statements contained in curly braces.

Statements are the actual commands that you want your IOTile device to run.
An empty block should have no effect. All statements are a single line
and end with a semicolon.

Whitespace is ignored and comments may be included anywhere by prefacing a
line with the # character. There are no C-like multiline comments.

Call Statements

The most basic statement in a sensor graph is the call statement that calls
an RPC on a tile. It’s syntax is:

call <rpc id> on <slot id> [=> <output stream>];

Important

The way to interpret a syntax definition like the one above is as follows:

	Anything in < > characters should be substituted in an actual command
with a specific value. It is just a placeholder.

	Any word or token not enclosed in < > characters must be literally
included as part of the statement. So, the keyword ‘call’ is required
to start a call statement.

	Anything in a [] is optional.

This statement calls an RPC and optionally stores the result in
<output stream>. It must be used inside of a block that allows triggering
statements like an on block or every block.

	<rpc id> should be a number.

	<slot id> should be a Slot Identifier.

	<output stream> should be Data Stream.

Copy Statements

Copy statements copy a value from an input stream to an output stream:

copy [all | count] [<input stream>] => <output stream>;

There are three ways you can copy things:

	copy all copies all readings that have not been processed yet from the input
to the output stream.

	copy just copies the latest reading, ignoring any readings that may have
been pushed before this statement triggered.

	copy count copies the number of readings currently in the input stream to
the output stream.

If an explicit input stream is given, the data is copied from that stream,
otherwise there is always an implicit trigger stream defined in every block.

Implicit streams are useful inside on blocks since the copy command would
then work with the stream data that triggered the on condition.

Trigger Statements

Trigger statements trigger the streaming of data inside manual streamers. Their
usage is:

trigger streamer <index>;

where <index> is the index of the streamer you want to trigger, i.e. the first
streamer defined is index 0, the second is index 1, etc. Trigger statements
are used to trigger manual streamer that don’t try to automatically send
data whenever it is available.

Streamer Statements

You define a streamer with a streamer statement:

[manual] [realtime] streamer on <stream selector> [with streamer <index>];

If you specify a with clause, this streamer will trigger whenever the other streamer
identifier by index triggers.

You can specify either realtime or historical streamers by specifying realtime
or nothing.

The Every Block

Every blocks run the commands inside of them every given time interval. The
syntax is:

every <time interval>
{
 <statement 1>;
 ...
 <statement N>;
}

Each statement (1 through N) will be called exactly once in order every time
interval.

	<time interval> should be a TimeInterval.

The On Block

On blocks run statements when a specific event happens. They are like if
statements in other languages. There are three possible triggers for an
on block:

on value(<stream>) <op> <reference>
{
 <statements>...
}

on count(<stream>) <op> <reference>
{
 <statements>...
}

on <named event>
{
 <statements>...
}

The first on block triggers when a comparison between the value in a stream
and a constant reference value is true.

The second on block triggers when a comparison betwen the number of readings
in a stream and a constant reference value is true.

The third on block triggers when the specific named event happens. Currently
the major named events are connect and disconnect which are defined only
inside of a when connected block.

The possible comparison operations are: <, <=, ==, >, >=.

You cannot nest another block inside of an on block.

The When Block

When blocks let you conditionally trigger statements to happen only when a
user is connected to a device. They can contain on blocks and every blocks,
which can in turn contain statements:

when connected to <slot id>
{
 on connect
 {
 <statements>
 }

 every <time interval>
 {
 <statements>
 }

 on disconnect
 {
 <statements>
 }
}

The <slot id> is the tile that the user is connected to, in case there are
multiple communications tiles in a device. This is almost always controller.

Statements inside the on connect block will run once when the user connects
and statements in on disconnect will run once when the user disconnects.

Statement inside an every block nested inside a when block will run every time
interval while a user is connected.

The Config Block

If you need to specify configuration variables for a tile, you do so with
set statements inside a config block:

config <slot id>
{
 set <variable id> to <value> as <type>;
 <more set statements>
}

Each set statement stores a value that will be sent to the tile in <slot id>
every time it powers on.

	<variable id> is a 16 bit identifier for the config variable you want to set

	<value> should be an integer

	<type> must match the type of the variable defined for the tile you are trying
to configure and be one of uint8_t, uint16_t, uint32_t

Note

Currently, knowing what config variables to set and what types they are
requires having access to a TileBus configuration file that is compiled as
part of the tile’s firmware. In the future, these will be integrated with
the SensorGraph language so that you will be able to specify config
variables by name.

Slot Identifiers

Slot identifiers, when used as part of a statement specify the tile on which
an action should be taken. Their syntax is:

controller

OR

slot <number>

Time Intervals

Time intervals can be specified down to 1 second precision in units of
seconds, minutes, hours, days, months or years:

<number> (seconds | minutes | hours | days | months | years)

The unit can either be singular second or plural seconds with the same
meaning. A month is considered to be 30 days exactly and a year is considered
to be 365 days exactly.

Stream Identifiers

Stream Identifiers specify a single stream that data can go in:

[system] (input | output | buffered | unbuffered | counter | constant) <number>

System streams are for internal use and should not be created by users but they
may be used for a variety of purposes. The number must be between 0 and 1023
(inclusive). Streams with numbers between 1024 and 2047 are allocated and
used internally by the sensor graph compiler.

The meanings of the various types of streams is covered in the next tutorial.

Stream Selectors

Stream selectors can either select a single stream or an entire class of
streams. Their syntax is:

Stream Identifier

OR

all [system] (inputs | outputs | buffered | unbuffered | counters | constants)

Next Steps

Read about advanced sensor graph topics and the low level details of how your
statements get turned into commands that IOTile devices can safely execute.

Advanced SensorGraph Usage

The last few tutorials covered the basics of how to write and simulate a sensor
graph. Now we’re going to dive deeper into how to actually program a sensor
graph into a device using the iotile tool. We’re also going to cover how to
semihost a sensor graph where it runs on your computer but executes its
RPCs on an actual IOTile device.

Goals

	Understand how to use the iotile-sgcompile program to display detailed
information on how a sensor graph works internally.

	Understand the different kinds of streams and their uses

	Understand how the sensor graph optimizer works and how to disable it
if needed.

Background

We’ve seen how the SensorGraph language lets you specify at a very high level
how an IOTile device should be wired together to create a specific application.
You can specify how data should be collected by the device, what triggers should
cause actions to be executed and what data should be sent remotely for long
term storage.

It’s not necessarily clear though, why the language is called Sensor*Graph*.
There’s nothing particularly graph-like about the language as we’ve discussed it
so far. However, the low level representation of the SensorGraph files that
you write is actually a data processing graph where DataStreams are linked
together with processing functions to create complex chains of actions that
are simultaneously powerfully expressive and also easy to verify and understand.

Conceptually a sensor graph is made up of Nodes that correspond with
processing functions. Each Node has several inputs that are each FIFOs so
multiple values can accumulate in an input and then be processed at once.
The node has a Trigger that determines when it should run its
processing function on its inputs to produce an output.

The input FIFOs are called Stream Walkers. Stream walkers are FIFOs
that are attached to a DataStream and remember the last value in that Stream
that each node has processed. You can have multiple stream walkers on the
same stream that walk that stream at a different rate. For example, say you
have a stream named ‘output 1’ that has two nodes connected to it. The first
node processes readings one at a time every time they come in so its stream
walker will always stay up to date with the latest reading. The second node,
though, could be configured to average its input every 60 readings, so its
stream walker would accumulate 60 readings before the node fires.

The key point is that whenever a reading is pushed into a stream, it is as if
a copy of the value is pushed to each stream walker
separately and those stream walkers function as independent FIFOs. So, one
could have 60 readings in it while another has 5 even though the have the
same stream name.

In this tutorial we’re going to use the iotile-sgcompile program to compile
our high level SensorGraph down into the actual graph nodes and edges that
are simulated and programmed into a physical IOTile device.

Key Concepts

	SensorGraph Node

	A node in the underlying graph of processing functions that make up a
sensor graph. Nodes have a single processing function, up to 2 inputs and
a single output. They also have a set of triggering conditions that
determine when the node triggers its processing function based on its
input conditions. When the node triggers it uses its processing function
to transform its inputs into zero or more outputs.

	Node Trigger

	A specific triggering condition that determines when a Node activates
is processing function. Triggers can be based either on the latest value
present in an input or on the number of readings accumulated in the
input Stream Walker.

	Stream Walker

	A FIFO that attaches to a DataStream and walks over its values. Walkers
keep track of where they are in a DataStream independent of all other
Stream Walkers attached to that same stream so they can walk streams at
different rates.

Seeing the Actual Graph

Consider the following sensor graph:

every 10 minutes
{
 call 0x8000 on slot 1 => unbuffered 2;
}

on value(unbuffered 2) == 5
{
 call 0x9000 on slot 2;
}

Let’s compile it using iotile-sgcompile and see the underlying graph that
is produced (save the above example as example.sgf):

(iotile) > iotile-sgcompile example.sgf -f nodes
(system input 2 always) => counter 1024 using copy_all_a
(system input 3 always) => counter 1025 using copy_all_a
(counter 1024 when count >= 60) => counter 1026 using copy_latest_a
(counter 1026 when count == 1 && constant 1024 always) => unbuffered 2 using call_rpc
(unbuffered 2 when value == 5) => unbuffered 1024 using copy_latest_a
(unbuffered 1024 when count == 1 && constant 1025 always) => unbuffered 1025 using call_rpc

First note that we called the iotile-sgcompile program, passed it our
sensor graph file and asked for the output in the ‘node’ format, which is the
generated graph.

There were 6 nodes generated in the graph. All the nodes have the same
format:

(<input 1> trigger [&&, ||] [<input 2 trigger]) => <output> using <processor>

Basically they are written as (inputs) => output where there can either be
one or two input streams and always a single output stream. The processing
function to use is also explicitly specified by name.

Let’s dissect the first node:

(system input 2 always) => counter 1024 using copy_all_a

In prose, this says:

Always, when there is a reading in the 'system input 2' stream, run the
function copy_all_a that copies it to the 'counter 1024' stream.

This node will always activate whenever new data is placed into
system input 2.

Note

system input 2 is special in that it is a 10 second tick supplied by the
sensor graph engine that is used internally to create whatever timers are
needed to run other nodes at specific intervals.

Let’s look at a more complicated node:

(counter 1026 when count == 1 && constant 1024 always) => unbuffered 2 using call_rpc

In prose, this says:

Whenever there is exactly one reading in the counter 1026 stream, run the
function call_rpc. Call_rpc uses its second input (the value in constant
1024) to determine what RPC to call on what tile. Technically there
are two triggers for this node combined with the AND function:

count(counter 1024) == 1 AND always

The always trigger is always true so the node fires whenever
count(counter 1024) == 1

Triggers can be based on the number of readings available in a stream or they
can be based on the value of the latest reading in a stream as in:

(unbuffered 2 when value == 5) => unbuffered 1024 using copy_latest_a

In prose this says:

Whenever the latest value in the `unbuffered 2` stream is equal to 5,
copy it to unbuffered 1024.

Important

When a node is triggered, it typically consumes all of the data that is
pending on all of its inputs, returning their counts back to 0 (except
for constant streams that are inexhaustible).

So if you have a node like:

(counter 1 when count >= 60) => output 1 using copy_latest_a

This will fire exactly once for every 60 readings added to counter 1
because each time it runs it will reset the count on its input StreamWalker
back to zero.

Different Kinds of Streams

There are currently 6 different classes of streams. Their only differences are
in how many past values are remembered and whether a count is kept
of how many readings have been pushed to the stream.

	Buffered Streams

	Buffered streams can be considered as normal FIFOs. All readings pushed to
a buffered stream are remembered until the device runs out of storage space
and the count of available readings corresponds with the number of readings
that have been pushed to the stream with each pop() operation returning the
next oldest reading.

	Unbuffered Streams

	Unbuffered streams only ever store 1 value. They have no space to store
historical data and they also don’t lie to you about how many readings are
available so an unbuffered stream can only ever have a count of 0 or 1
depending on whether it has data available or not.

	Counter Streams

	Counter streams are unbuffered so they only store a single reading, however,
they keep an accurate count of how many times they have been pushed to and
allow you to pop from them that many times, each time returning the same
latest value that was last pushed. Counter streams are primarily useful
for creating efficient timers but their values are typically not used, just
their counts.

	Input Streams

	Input streams are the global inputs to a sensor graph. They are the roots
of the processing graph. The only entry points for new data into a sensor
graph are inputs. They are unbuffered.

	Output Streams

	Output streams are buffered streams but stored in a different region of
persistent storage from buffered streams so that overflowing the buffered
storage region does not overflow the output storage. As the name suggests,
output streams typically represent the outputs of a device that should be
saved historically.

	Constant Streams

	Constant streams always return a constant value. They can never be
exhausted and are useful for two primary purposes. The first is to embed
constant data in a sensor graph like what RPCs to call. The second is to
create latches that are used to derive timers gated on specific events.

For example, if the user creates a when connected block that should call
an RPC every second while a user is connected to the device, internally a
constant stream is used to create a latch that is 1 when the user is
connected and 0 otherwise. This is combined with a 1 second clock to
create a derived 1 second clock that is only active when a user is
connected.

Users need to explicitly specify the types of each stream they want to allocate
since it’s not possible for the SensorGraph compiler to infer which would be
most appropriate in most cases.

Understanding the Optimizer

Since SensorGraphs allow their user to very explicitly say what should happen
as data comes into the device and what data is considered an output, the
compiler can aggressively optimize the underlying graph as long as it
guarantees that the behavior for each input is unchanged in so far as the
outputs are concerned.

The optimizer works by taking an initial sensor graph and either removing
or modifying nodes and triggers if it can prove that the resulting
configuration is identical to the initial one in terms of user visible
behavior. The optimizer makes no assumptions about what happens inside of
an RPC and just works on the sensor graph structure itself.

If you want to see what the optimizer does or need to disable it, you can
specify the –disable-optimizer flag to the sensorgraph compiler.

Next Steps

After finishing all of these tutorials you should be ready to build your
own IOTile based data gathering and control system by putting all of the
pieces we’ve covered together to fit your needs.

How CoreTools Works

CoreTools is architected to be modular in two major ways.

The first way is that it is distributed as a series of packages, so you can pick
what you need to install depending on what you want to do. If you don’t plan on
building your own firmware, there’s no reason to install iotile-build.
Everything else works perfectly without it.

The second way is that CoreTools uses plugins heavily in order to allow users
to swap in replacement functionality as needed. For example, whenever CoreTools
needs to search for a virtual IOTile Device it uses pkg_resources to look
for all entry_points in the group iotile.virtual_device. You can provide
your own virtual device by just pip installing a package that contains the
correct entry point.

Packages in CoreTools

	iotile-core

	The foundation of CoreTools, providing access to IOTile devices via
HardwareManager as well as common utilities, the typedargs annotation system
for the iotile tool and the virtual_device host program for creating
virtual IOTile devices.

	iotile-gateway

	Components for creating gateways that provide cloud access to IOTile devices
that otherwise would not have a built-in long-range communication mechanism.

	iotile_transport_bled112

	A package that provides cross-platform access to IOTile devices over Bluetooth
Smart using a specific BLE dongle (the BLED112) produced by Silicon Labs

	iotile-build

	The foundation of the IOTile build system that defines how hardware and firmware
designs are built and released.

	iotile-test

	Mocks and routines for testing CoreTools and exercising its features.

How the IOTile Tool Works

The iotile tool is a command line wrapper that provides a REPL for calling
functions and classes defined inside CoreTools or one of its installed plugins.

The tool works by parsing commands given on the command line into python functions
that can be executed. Once a function is parsed, it is called and the return value
is either printed or, if the function returns a specially decorated context
object, that object is set as the current context and used for resolving further
commands.

For example, consider the following iotile command line:

iotile hw --port=virtual:simple connect_direct 1 controller quit

The IOTile tool parses the command from left to right lazily until it has enough
information to execute a command. It starts in the root context. The root
context only has a few commands defined as seen in iotile.core.scripts.iotile_script.py:

shell = HierarchicalShell('iotile', no_rc=norc)

shell.root_add("registry", "iotile.core.dev.annotated_registry,registry")
shell.root_add('hw', "iotile.core.hw.hwmanager,HardwareManager")

shell.root_add maps a string to a python callable. In this case hw is
mapped to the HardwareManager class. Since HardwareManager is a class, it is
created and the argument port=virtual:simple is passed to __init__() as
a keyword argument (since it was passed using –port rather than as a positional
argument.

The result is an instance of the HardwareManager class, which is itself a context
so processing of the command line continues. The next portion of the command line
is connect_direct 1, which is a method defined in HardwareManager. Since 1
was a positional argument on the command line, it is passed as positional argument
to connect_direct.

	
class iotile.core.hw.hwmanager.HardwareManager(port=None, record=None, adapter=None)[source]

	A module for managing and interacting with IOTile Hardware

This context provides tools to configure, control, debug and program
any IOTile module. Specific functionality can be implemented in dynamically
loaded proxy objects that are designed to provide access to each IOTile.

To create a HardwareManager, you need to pass a port string that describes the
method to be used to connect to the IOTile device. The method should specify the
name of the connection method optionally followed by a colon and any extra information
possibly needed to connect using that method.

	Currently implemented ports are:

	bled112
jlink
jlink:mux=ftdi
virtual:…(e.g. simple)

	
connect_direct(connection_string)[source]

	Attempt to connect to a device using a connection string

	
controller(uuid=None)[source]

	Find an attached IOTile controller and attempt to connect to it.

connect_direct does not return a context so the context for executing commands
remains in the HardwareManager instance. The next chunk of the command line is
controller, which is another method of HardwareManager so that method is called
and it returns a TileBusProxyObject that is a context. Finally the quit
command is built-in to the iotile tool and quits.

So the flow is:

	–port=virtual:simple creates a HardwareManager instance

	connect_direct 1 calls a method on that instance

	controller calls a method on that instance that changes the current context

	quit terminates the shell.

To see how this works explicitly, we can execute the commands one by one and view
how the current context changes as the result of each command:

$ iotile
(root) hw --port=virtual:simple
(HardwareManager) connect_direct 1
(HardwareManager) controller
(SimpleProxy) quit

Note

The key idea to understand the iotile tools is that every command is a single
python function call and the arguments on the command line are arguments passed
to that function.

Type Conversions

Since iotile commands call the same python functions that you would invoke
directly from a python script, there needs to be some mapping between the strings
that you pass on the command line and the native python types that the API functions
accept as parameters. This mapping and conversion is then done by the typedargs
package that is part of iotile-core. See Typedargs Reference for more
details. It requires that functions you would like to call from iotile
be annotated with type information for their parameters and return value so
that typedargs can appropriately convert the types to and from strings.

For example, the method definition of __init__ in HardwareManager uses
decorators to specify the type conversion information:

@param("port", "string", desc="transport method to use in the format transport[:port[,connection_string]]")
@param("record", "path", desc="Optional file to record all RPC calls and responses made on this HardwareManager")
def __init__(self, port="none", record=None):
 ...

The @param decorators inform the iotile tool how to convert strings into the
desired type for each argument and also help build help information in the tool
itself. Functions that return information use a similar @return_type decorator
to specify how to display the information that they return, for example:

@return_type("integer")
def count_reports(self):
 ...

Note

If you pass string or str as a type to the @param decorator,
you will always receive a unicode string.

Adding Your Own Commands to the IOTile Tool

Any python package can add its own commands to the IOTile tool by registering a
pkg_resources entry point with the group name iotile.plugin. See
Extensibility via Entry Points for more information.

Extensibility via Entry Points

There are many parts of CoreTools that can be extended. For example, there are
many different ways to talk to IOTile devices, including USB, BLE, Serial, etc.
It would overly bloat CoreTools to include every possible way you could want to
talk to an IOTile device. On the other hand, many parts of CoreTools depend deeply
on the ability to talk to an IOTile device, irrespective of how it happens to be
connected.

To allow for users to swap in new functionality into CoreTools, key areas are
delegated to plugins with a few default versions included and a mechanism to
easily add others.

The plugin mechanism is based on standard Python entry_points as defined
in pkg_resources [http://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points].

Any python distribution can define an entry point with a group name. When CoreTools
needs to look for a plugin, it searches all of the installed python distributions
for entry points with the desired group name.

Warning

Because of the ability to modify CoreTools through entry points, it is important
to isolate different projects based on CoreTools from each other in their
own virtual environments. This is especially important in production settings
where careful control of the installed CoreTools plugins is essential for
safe and robust usage.

Entry points are defined in a package’s setup.py file. For example,
the iotile-core package defines a number of entry points:

setup(
 ...
 entry_points={
 'console_scripts': [
 'iotile = iotile.core.scripts.iotile_script:main',
 'virtual_device = iotile.core.scripts.virtualdev_script:main'
],
 'iotile.cmdstream': [
 'ws = iotile.core.hw.transport.websocketstream:WebSocketStream',
 'recorded = iotile.core.hw.transport.recordedstream:RecordedStream'
],
 'iotile.device_adapter': [
 'virtual = iotile.core.hw.transport.virtualadapter:VirtualDeviceAdapter'
],
 'iotile.report_format': [
 'individual = iotile.core.hw.reports.individual_format:IndividualReadingReport',
 'signed_list = iotile.core.hw.reports.signed_list_format:SignedListReport'
],
 'iotile.auth_provider': [
 'BasicAuthProvider = iotile.core.hw.auth.basic_auth_provider:BasicAuthProvider',
 'EnvAuthProvider = iotile.core.hw.auth.env_auth_provider:EnvAuthProvider',
 'ChainedAuthProvider = iotile.core.hw.auth.auth_chain:ChainedAuthProvider'
],
 'iotile.default_auth_providers': [
 'BasicAuthProvider = iotile.core.hw.auth.default_providers:DefaultBasicAuth',
 'EnvAuthProvider = iotile.core.hw.auth.default_providers:DefaultEnvAuth'
]
 })

Currently, the following entry points are used:

	iotile.plugin

	Injects a new command into the root context of the iotile tool. See Creating IOTile Plugins.

	iotile.virtual_device

	A python class that inherits from VirtualIOTileDevice and provides methods
that implement TileBus RPCs. Virtual devices can be accessed in exactly the
same way that physical IOTile devices are accessed. See Creating Virtual Devices.

	iotile.device_adapter

	Classes that allow access to an IOTile device over some kind of transport
mechanism such as USB, BLE, http, etc. See Creating New Device Adapters.

	iotile.virtual_interface

	Classes that provide access to a virtual IOTile device (i.e. one that does not
actually exist as real hardware) over some kind of transport mechanism. You
can think of virtual interfaces as the server portion of connecting to an
IOTile device, whereas device adapters are the client portion. For example,
using a BLE virtual interface, you could turn a regular computer into an IOTile
compatible device that would respond to RPCs. See Creating Virtual Interfaces.

	iotile.report_format

	Classes that provide methods for IOTile devices to package and send data to
the cloud. These are packet formats for packing, signing, and potentially
encrypting data from an IOTile device. See Creating Report Formats.

	iotile.auth_provider

	Classes that provide the ability to authenticate and/or encrypt reports
from IOTile Devices. See Creating Authentication Providers.

	iotile.default_auth_providers

	The ordered list of AuthProvider classes that are used by default to sign,
verify, encrypt or decrypt reports from IOTile devices. Packages can insert
their own AuthProvider classes into the default authentication process using
this hook. See Setting an Authentication Provider as Default.

Extending CoreTools

Adding new functionality to CoreTools usually means creating a python distribution
that defines entry_points with specific groups so that iotile-core can find them.

Creating IOTile Plugins

Creating Virtual Devices

Creating New Device Adapters

Creating Virtual Interfaces

Creating Report Formats

Creating Authentication Providers

Setting an Authentication Provider as Default

Typedargs Reference

TODO

Building Your Own IOTile Devices

TODO: Fill this in

Build Requirements

Contributing

Please see our contributing guide on github:

Contributing [https://github.com/iotile/coretools/blob/master/CONTRIBUTING.md]

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 iotile	

 	
 	
 iotile.core.hw.hwmanager	

 	
 	
 iotile.core.hw.reports	

 	
 	
 iotile.mock.devices	

 	[image: -]
 	
 iotilegateway	

 	
 	
 iotilegateway.device	

 	
 	
 iotilegateway.gateway	

Index

 A
 | E
 | F
 | H
 | I
 | R

A

 	
 	asdict() (iotile.core.hw.reports.IOTileReading method), [1]

E

 	
 	enable_streaming() (iotile.core.hw.hwmanager.HardwareManager method), [1]

F

 	
 	FromDict() (iotile.core.hw.reports.IOTileReading class method), [1]

H

 	
 	HardwareManager (class in iotile.core.hw.hwmanager), [1]

I

 	
 	iotile.core.hw.hwmanager (module), [1], [2]

 	iotile.core.hw.reports (module), [1]

 	iotile.mock.devices (module), [1]

 	
 	iotilegateway.device (module), [1]

 	iotilegateway.gateway (module), [1]

 	IOTileReading (class in iotile.core.hw.reports), [1]

 	iter_reports() (iotile.core.hw.hwmanager.HardwareManager method), [1]

R

 	
 	rpc() (in module iotile.core.hw.virtual), [1]

 All modules for which code is available

	iotile.core.hw.hwmanager

	iotile.core.hw.reports.report

	iotile.core.hw.virtual.common_types

	iotile.mock.devices.realtime_test_device

	iotilegateway.device

	iotilegateway.gateway

 Source code for iotile.core.hw.hwmanager

This file is adapted from python code released by WellDone International
under the terms of the LGPLv3. WellDone International's contact information is
info@welldone.org
http://welldone.org
#
Modifications to this file from the original created at WellDone International
are copyright Arch Systems Inc.
"""This file contains necessary functionality to manage the hardware"""

import time
import binascii
import logging
from queue import Empty
from typedargs.annotate import annotated, param, return_type, finalizer, docannotate, context

from iotile.core.dev.semver import SemanticVersion, SemanticVersionRange
from iotile.core.hw.exceptions import UnknownModuleTypeError
from iotile.core.exceptions import ArgumentError, HardwareError, ValidationError, TimeoutExpiredError, ExternalError
from iotile.core.dev.registry import ComponentRegistry
from iotile.core.hw.transport.adapterstream import AdapterStream
from iotile.core.dev.config import ConfigManager
from iotile.core.hw.debug import DebugManager
from iotile.core.utilities.linebuffer_ui import LinebufferUI
from iotile.core.utilities.gid import uuid_to_slug

from .proxy import TileBusProxyObject
from .app import IOTileApp

[docs]@context("HardwareManager")
class HardwareManager:
 """
 A module for managing and interacting with IOTile Hardware

 This context provides tools to configure, control, debug and program
 any IOTile module. Specific functionality can be implemented in dynamically
 loaded proxy objects that are designed to provide access to each IOTile.

 To create a HardwareManager, you need to pass a port string that describes the
 method to be used to connect to the IOTile device. The method should specify the
 name of the connection method optionally followed by a colon and any extra information
 possibly needed to connect using that method.

 Currently implemented ports are:
 bled112
 jlink
 jlink:mux=ftdi
 virtual:...(e.g. simple)
 """

 logger = logging.getLogger(__name__)

 @param("port", "string", desc="transport method to use in the format transport[:port]")
 @param("record", "path", desc="Optional file to record all RPC calls and responses made on this HardwareManager")
 def __init__(self, port=None, record=None, adapter=None):
 if port is None and adapter is None:
 try:
 conf = ConfigManager()
 port = conf.get('core:default-port')
 except ArgumentError:
 raise ArgumentError("No port given and no core:default-port config variable set",
 suggestion="Specify the port to use to connect to the IOTile devices")
 elif port is None:
 port = ""

 transport, _, arg = port.partition(':')

 self.transport = transport
 self.port = None
 if arg != "":
 self.port = arg

 self.stream = self._create_stream(adapter, record=record)

 self._stream_queue = None
 self._trace_queue = None
 self._broadcast_queue = None
 self._trace_data = bytearray()

 self._proxies = {'TileBusProxyObject': TileBusProxyObject}
 self._name_map = {TileBusProxyObject.ModuleName(): [TileBusProxyObject]}

 self._known_apps = {}
 self._named_apps = {}

 self._setup_proxies()
 self._setup_apps()

 def _setup_proxies(self):
 """Load in proxy module objects for all of the registered components on this system."""

 # Find all of the registered IOTile components and see if we need to add any proxies for them
 reg = ComponentRegistry()
 proxy_classes = reg.load_extensions('iotile.proxy', class_filter=TileBusProxyObject, product_name="proxy_module")

 for name, obj in proxy_classes:
 proxy_key = obj.__name__ + ':' + name

 # awu_10/01/19 - we want to add all proxies even if duplicate but diff version
 # if proxy_key in self._proxies:
 # continue

 self._proxies[proxy_key] = obj

 # Check if this object matches a specific shortened name so that we can
 # automatically match a hw module to a proxy without user intervention
 try:
 short_name = obj.ModuleName()
 if short_name in self._name_map:
 self._name_map[short_name].append(obj)
 else:
 self._name_map[short_name] = [obj]
 except Exception: # pylint: disable=broad-except;
 # We don't want this to die if someone loads a misbehaving plugin
 self.logger.exception("Error importing misbehaving proxy object %s, skipping.", obj)

 def _setup_apps(self):
 """Load in all iotile app objects for all registered or installed components on this system."""

 reg = ComponentRegistry()
 app_classes = reg.load_extensions('iotile.app', class_filter=IOTileApp, product_name="app_module")

 for _name, app in app_classes:
 try:
 matches = app.MatchInfo()
 name = app.AppName()
 for tag, ver_range, quality in matches:
 if tag not in self._known_apps:
 self._known_apps[tag] = []

 self._known_apps[tag].append((ver_range, quality, app))

 if name in self._named_apps:
 self.logger.warning("Added an app module with an existing name, overriding previous app, name=%s",
 name)

 self._named_apps[name] = app
 except Exception: #pylint: disable=broad-except;
 # We don't want this to die if someone loads a misbehaving plugin
 self.logger.exception("Error importing misbehaving app module %s, skipping.", app)

 @param("address", "integer", "positive", desc="numerical address of module to get")
 @param("basic", "bool", desc="return a basic global proxy rather than a specialized one")
 @param("force", "str", desc="Explicitly set the 6-character ID to match against")
 @param("uuid", "integer", desc="UUID of the device we would like to connect to")
 def get(self, address, basic=False, force=None, uuid=None):
 """Create a proxy object for a tile by address.

 The correct proxy object is determined by asking the tile for its
 status information and looking up the appropriate proxy in our list of
 installed proxy objects. If you want to send raw RPCs, you can get a
 basic TileBusProxyObject by passing basic=True.
 """

 if basic is True and force is not None:
 raise ArgumentError("You cannot conbine basic and force, they have opposite effects")

 if force is not None and len(force) != 6:
 raise ArgumentError("You must specify a 6 character name when using the force parameter", force=force)

 if uuid is not None:
 self.connect(uuid)

 tile = self._create_proxy('TileBusProxyObject', address)

 if basic:
 return tile

 name = tile.tile_name()
 version = tile.tile_version()

 if force is not None:
 name = force

 # Now create the appropriate proxy object based on the name and version of the tile
 tile_type = self.get_proxy(name, version)
 if tile_type is None:
 raise HardwareError("Could not find proxy object for tile", name="'{}'".format(name),
 known_names=self._name_map.keys())

 tile = tile_type(self.stream, address)
 tile._hwmanager = self

 return tile

 @docannotate
 def app(self, name=None, path=None, uuid=None):
 """Find the best IOTileApp for the device we are connected to.

 Apps are matched by looking at the app tag and version information
 specified by the connected device. If no installed app matches, an
 exception will be thrown. You can also force the matching of a
 specific app by using the name parameter.

 Args:
 name (str): Optional name of the app that you wish to load.
 path (str): Optional path to a python file containing the
 app that you wish to load.
 uuid (int): Optional uuid of device to directly connect to.
 Passing this parameter is equivalent to calling ``connect``
 before calling this method

 Returns:
 IOTileApp show-as context: The IOTileApp class that was loaded
 for this device.
 """

 if name is not None and path is not None:
 raise ArgumentError("You cannot specify both an app name and an app path", name=name, path=path)

 if uuid is not None:
 self.connect(uuid)

 # We perform all app matching by asking the device's controller for its app and os info
 tile = self._create_proxy('TileBusProxyObject', 8)
 device_id, os_info, app_info = tile.rpc(0x10, 0x08, result_format="L8xLL")

 os_tag = os_info & ((1 << 20) - 1)
 os_version_str = '%d.%d.%d' % ((os_info >> 26) & ((1 << 6) - 1), (os_info >> 20) & ((1 << 6) - 1), 0)

 app_tag = app_info & ((1 << 20) - 1)
 app_version_str = '%d.%d.%d' % ((app_info >> 26) & ((1 << 6) - 1), (app_info >> 20) & ((1 << 6) - 1), 0)

 os_version = SemanticVersion.FromString(os_version_str)
 app_version = SemanticVersion.FromString(app_version_str)

 app_class = None

 # If name includes a .py, assume that it points to python file and try to load that.
 if name is None and path is not None:
 _name, app_class = ComponentRegistry().load_extension(path, class_filter=IOTileApp, unique=True)
 elif name is not None:
 app_class = self._named_apps.get(name)
 else:
 best_match = None
 matching_tags = self._known_apps.get(app_tag, [])

 for (ver_range, quality, app) in matching_tags:
 if ver_range.check(app_version):
 if best_match is None:
 best_match = (quality, app)
 elif quality > best_match[0]:
 best_match = (quality, app)

 if best_match is not None:
 app_class = best_match[1]

 if app_class is None:
 raise HardwareError("Could not find matching application for device", app_tag=app_tag, explicit_app=name,
 installed_apps=[x for x in self._named_apps])

 app = app_class(self, (app_tag, app_version), (os_tag, os_version), device_id)
 return app

[docs] @param("uuid", "integer", desc="UUID of the device we would like to connect to")
 def controller(self, uuid=None):
 """Find an attached IOTile controller and attempt to connect to it."""

 if uuid is not None:
 self.connect(uuid)

 return self.get(8)

 @param("device_uuid", "integer", desc="UUID of the device we would like to connect to")
 @param("wait", "float", desc="Time to wait for devices to show up before connecting")
 def connect(self, device_uuid, wait=None):
 """Attempt to connect to a device by its UUID"""

 self.stream.connect(device_uuid, wait=wait)

[docs] @param("connection_string", "string", desc="opaque connection string indicating which device")
 def connect_direct(self, connection_string):
 """Attempt to connect to a device using a connection string"""

 self.stream.connect_direct(connection_string)

 @annotated
 def disconnect(self):
 """Attempt to disconnect from a device."""

 self._trace_queue = None
 self._stream_queue = None

 self.stream.disconnect()

 @param("connection_string", "string", desc="opaque connection string indicating which device")
 def debug(self, connection_string=None):
 """Prepare the device for debugging if supported.

 Some transport mechanisms support a low level debug channel that
 permits recovery and test operations such as erasing and forcibly
 reprogramming a device or dumping memory.

 If no debug operations are supported, this function will raise an
 exception.

 If you pass a connection_string to this method to force a connection
 to a device directly, it will be opened without the RPC interface
 being opened. If you need to subsequently send RPCs after performing
 the debug actions, you will need to disconnect from the device and
 reconnect normally (using ``connect`` or ``connect_direct``) first.
 """

 if connection_string is not None:
 self.stream.connect_direct(connection_string, no_rpc=True)

 self.stream.enable_debug()
 return DebugManager(self.stream)

 @return_type("bool")
 def heartbeat(self):
 """Check if we still have a connection to the DeviceAdapter."""

 result = self.stream.debug_command('heartbeat')
 return result.get('alive')

 @annotated
 def enable_broadcasting(self):
 """Enable the collection of broadcast IOTile reports.

 Broadcast reports contain tagged readings from an IOTile device
 but are sent without a connection to that device. The specific
 method that is used to broadcast the report varies by connection
 technology but it could be, e.g., a bluetooth low energy advertising
 packet.

 By default all broadcast reports are dropped unless you call
 enable_broadcasting to allocate a queue to receive them.

 There does not need to be an active connection for you to call
 enable_broadcasting.

 Once you call enable_broadcasting, it remains in effect for the
 duration of this HardwareManager object.
 """

 self._broadcast_queue = self.stream.enable_broadcasting()

[docs] @annotated
 def enable_streaming(self):
 """Enable streaming of report data from the connected device.

 This function will create an internal queue to receive and store
 reports until the user looks at them and then inform the connected
 IOTile device that is should begin streaming data.

 This is done by telling the underlying DeviceAdapter managing the
 communication with the device that it should open the device's
 streaming interface.

 There is currently no way to close the streaming interface except
 by disconnecting from the device and then reconnecting to it.
 """

 self._stream_queue = self.stream.enable_streaming()

 @annotated
 def enable_tracing(self):
 """Enable tracing of realtime debug information over this interface."""

 self._trace_queue = self.stream.enable_tracing()

 @return_type("integer")
 def count_reports(self):
 """Return the current size of the reports queue"""

 if self._stream_queue is None:
 return 0

 return self._stream_queue.qsize()

 @docannotate
 def watch_broadcasts(self, whitelist=None, blacklist=None):
 """Spawn an interactive terminal UI to watch broadcast data from devices.

 Devices are allowed to post a broadcast report containing stream data.
 This function will create a list in your console window with the latest
 broadcast value from each device in range.

 Args:
 whitelist (list(integer)): Only include devices with these listed ids.
 blacklist (list(integer)): Include every device **except** those with these
 specific ids. If combined with whitelist, whitelist wins and this
 parameter has no effect.
 """

 title = "Watching Broadcast Reports (Ctrl-C to Stop)"
 subtitle = ""
 if self.transport == 'bled112':
 reg = ConfigManager()
 if not reg.get('bled112:active-scan'):
 subtitle = "Active Scanning not active, you won't see v1 broadcasts"

 if whitelist is not None:
 whitelist = set(whitelist)

 if blacklist is not None:
 blacklist = set(blacklist)

 def _title(_items):
 return [title, subtitle]

 def _poll():
 results = [x for x in self.iter_broadcast_reports(blocking=False)]
 return results

 def _text(item):
 fmt_uuid = "%08X" % item.origin
 fmt_uuid = fmt_uuid[:4] + '-' + fmt_uuid[4:]

 reading = item.visible_readings[0]
 return "{0: <15} stream: {1: 04X} value: {2: <8}".format(fmt_uuid, reading.stream, reading.value)

 def _sort_order(item):
 return item.origin

 def _hash(item):
 uuid = item.origin
 stream_id = item.visible_readings[0].stream
 if whitelist is not None and uuid not in whitelist:
 return None

 if blacklist is not None and whitelist is None and uuid in blacklist:
 return None

 item_id = str(uuid) + "," + str(stream_id)
 return item_id

 line_ui = LinebufferUI(_poll, _hash, _text, sortkey_func=_sort_order, title=_title)
 line_ui.run()

 @docannotate
 def watch_scan(self, whitelist=None, blacklist=None, sort="id"):
 """Spawn an interactive terminal UI to watch scan results.

 This is just a fancy way of calling scan() repeatedly and
 deduplicating results per device so that each one has a static place
 on the screen.

 You can decide how you want to order the results with the sort parameter.

 If you pick "id", the default, then results will have a largely static
 order based on the UUID of each device so that there will not be too
 much screen churn.

 Args:
 whitelist (list(integer)): Only include devices with these listed ids.
 blacklist (list(integer)): Include every device **except** those with these
 specific ids. If combined with whitelist, whitelist wins and this
 parameter has no effect.
 sort (str): The specific way to sort the list on the screen. Options are
 id, signal. Defaults to id.
 """

 if whitelist is not None:
 whitelist = set(whitelist)

 if blacklist is not None:
 blacklist = set(blacklist)

 def _title(items):
 return ["Realtime Scan: %d Devices in Range" % len(items)]

 def _poll():
 return self.scan()

 def _text(item):
 fmt_uuid = "%08X" % item['uuid']
 fmt_uuid = fmt_uuid[:4] + '-' + fmt_uuid[4:]

 return "{0: <15} signal: {1: <7d} connected: {2: <8}".format(fmt_uuid, item['signal_strength'],
 str(item.get('user_connected', 'unk')))

 def _sort_order(item):
 if sort == "signal":
 return -item['signal_strength']

 return item['uuid']

 def _hash(item):
 uuid = item['uuid']
 if whitelist is not None and uuid not in whitelist:
 return None

 if blacklist is not None and whitelist is None and uuid in blacklist:
 return None

 return uuid

 line_ui = LinebufferUI(_poll, _hash, _text, sortkey_func=_sort_order, title=_title)
 line_ui.run()

 @docannotate
 def watch_reports(self, whitelist=None, blacklist=None):
 """Spawn an interactive terminal UI to watch reports once connected to a device.

 Args:
 whitelist (list(integer)): Only include streams with these listed ids.
 blacklist (list(integer)): Include every stream **except** those with these
 specific ids. If combined with whitelist, whitelist wins and this
 parameter has no effect.
 """

 if whitelist is not None:
 whitelist = set(whitelist)

 if blacklist is not None:
 blacklist = set(blacklist)

 def _title(items):
 base = "Watching Report for Device ID "
 if items:
 base = base + str(items[list(items.keys())[0]].object.origin)
 meta = "{:15s} {:4s} {:8s}".format("Last Timestamp", "Stream ID", "Stream Value")
 return [base, meta]

 def _poll():
 results = [x for x in self.iter_reports(blocking=False)]
 return results

 def _text(item):
 reading = item.visible_readings[0]
 return "{0:<15} {1:04X} value: {2:<8}".format(reading.raw_time, reading.stream, reading.value)

 def _sort_order(item):
 return item.origin

 def _hash(item):
 stream = item.visible_readings[0].stream

 if whitelist is not None and stream not in whitelist:
 return None

 if blacklist is not None and whitelist is None and stream in blacklist:
 return None

 return stream

 if not self.stream.connected:
 print("Not connected to a device. Please connect first")
 return

 if not self._stream_queue:
 print("Enable streaming to watch reports")
 return

 line_ui = LinebufferUI(_poll, _hash, _text, sortkey_func=_sort_order, title=_title)
 line_ui.run()

 @return_type("string")
 @param("encoding", "string", desc="The encoding to use to dump the trace, either 'hex' or 'raw'")
 def dump_trace(self, encoding):
 """Dump all received tracing data currently received from the device to stdout

 The data is encoded per the encoding parmeter which must be either
 the string 'hex' or 'raw'. If hex is passed, the data is printed as hex digits,
 if raw is passed, the data is printed as received from the device.
 """

 if encoding not in ['raw', 'hex']:
 raise ValidationError("Unknown encoding type specified in dump trace",
 encoding=encoding, known_encodings=['hex', 'raw'])

 if self._trace_queue is None:
 return ""

 self._accumulate_trace()

 if encoding == 'raw':
 return bytes(self._trace_data)

 return binascii.hexlify(self._trace_data).decode('utf-8')

 def wait_trace(self, size, timeout=None, drop_before=False, progress_callback=None):
 """Wait for a specific amount of tracing data to be received.

 This function is the equivalent of wait_reports for streaming data.
 It allows you to block until a specific amount of tracing data has
 been received. The optional timeout parameter allows you to stop
 waiting if you never receive enough tracing data after a specific
 amount of time.

 Args:
 size (int): The number of bytes to wait for.
 timeout (float): The maximum number of seconds to wait for
 these bytes to be received.
 drop_before (bool): Truncate all data received until now
 before waiting for size bytes.
 progress_callback (callable): An optional progress callback that
 is called periodically with updates. It should have the
 signature progress_callback(received_byte_count, total_byte_count)

 Returns:
 bytearray: The raw trace data obtained.
 """

 if drop_before:
 self._trace_data = bytearray()

 if progress_callback is None:
 progress_callback = lambda x, y: None

 if len(self._trace_data) >= size:
 progress_callback(size, size)

 data = self._trace_data[:size]
 self._trace_data = self._trace_data[size:]

 return data

 progress_callback(len(self._trace_data), size)

 start = time.time()
 while len(self._trace_data) < size:
 progress_callback(len(self._trace_data), size)
 self._accumulate_trace()

 time.sleep(0.1)
 now = time.time()

 if timeout is not None and ((now - start) > timeout):
 raise TimeoutExpiredError("Timeout waiting for tracing data", expected_size=size,
 received_size=len(self._trace_data), timeout=timeout)

 progress_callback(size, size)

 data = self._trace_data[:size]
 self._trace_data = self._trace_data[size:]

 return data

 def _accumulate_trace(self):
 """Copy tracing data from trace queue into _trace_data"""

 if self._trace_queue is None:
 return

 try:
 while True:
 blob = self._trace_queue.get(block=False)
 self._trace_data += bytearray(blob)
 except Empty:
 pass

 def iter_broadcast_reports(self, blocking=False):
 """Iterate over broadcast reports that have been received.

 This function is designed to allow the creation of dispatch or
 processing systems that process broadcast reports as they come in.

 Args:
 blocking (bool): Whether to stop when there are no more readings or
 block and wait for more.
 """

 if self._broadcast_queue is None:
 return

 try:
 while True:
 yield self._broadcast_queue.get(block=blocking)
 except Empty:
 pass

 def wait_broadcast_reports(self, num_reports, timeout=2.0):
 """Wait until a specific number of broadcast reports have been received.

 Args:
 num_reports (int): The number of reports to wait for
 timeout (float): The maximum number of seconds to wait without
 receiving another report.
 """

 if self._broadcast_queue is None:
 raise ExternalError("You have to enable broadcasting before you can wait for broadcast reports")

 reports = []

 for i in range(0, num_reports):
 try:
 report = self._broadcast_queue.get(timeout=timeout)
 reports.append(report)
 except Empty:
 raise TimeoutExpiredError("Timeout waiting for a report", expected_number=num_reports,
 received_number=i, received_reports=reports)

 return reports

[docs] def iter_reports(self, blocking=False):
 """Iterate over reports that have been received.

 If blocking is True, this iterator will never stop. Otherwise
 it will iterate over all reports currently in the queue (and those
 added during iteration)

 Args:
 blocking (bool): Whether to stop when there are no more readings or
 block and wait for more.
 """
 if self._stream_queue is None:
 return

 try:
 while True:
 yield self._stream_queue.get(block=blocking)
 except Empty:
 pass

 def wait_reports(self, num_reports, timeout=2.0):
 """Wait for a fixed number of reports to be received

 Args:
 num_reports (int): The number of reports to wait for
 timeout (float): The maximum number of seconds to wait without
 receiving another report.
 """

 if self._stream_queue is None:
 raise ExternalError("You have to enable streaming before you can wait for reports")

 reports = []

 for i in range(0, num_reports):
 try:
 report = self._stream_queue.get(timeout=timeout)
 reports.append(report)
 except Empty:
 raise TimeoutExpiredError("Timeout waiting for a report", expected_number=num_reports,
 received_number=i, received_reports=reports)

 return reports

 def __enter__(self):
 return self

 def __exit__(self, exc_type, exc_value, traceback):
 self.stream.close()
 return False

 @finalizer
 def close(self):
 """Stop and close this HardwareManager.

 This method will stop all background device activity and prevent any
 further usage of this HardwareManager object. If RPCs are being
 recorded, this will also save the recording to a file.
 """

 self.stream.close()

 @return_type("list(basic_dict)")
 @param("wait", "float", desc="Time to wait for devices to show up before returning")
 @param("sort", "string", desc="Sort scan results by a key named key")
 @param("limit", "integer", desc="Limit results to the first n devices")
 @param("reverse", "bool", desc="Reverse the sort order")
 def scan(self, wait=None, sort=None, reverse=False, limit=None):
 """Scan for available devices and print a dictionary of information about them.

 If wait is specified as a floating point number in seconds, then the
 default wait times configured inside of the stream or device adapter
 used to find IOTile devices is overridden with the value specified.

 Args:
 wait (float): An optional override time to wait for results to accumulate before returning
 sort (string): An optional key to sort by
 reverse (bool): An optional key that will reverse the sort from ascending to descending
 limit (integer): An optional limit to the number of devices to return
 """

 devices = self.stream.scan(wait=wait)

 for device in devices:
 # Add a Device Slug for user convenience
 if 'uuid' in device:
 device['slug'] = uuid_to_slug(device['uuid'])

 if sort is not None:
 devices.sort(key=lambda x: x[sort], reverse=reverse)

 if limit is not None:
 devices = devices[:limit]

 # FIXME: Use dictionary format in bled112stream to document information returned about devices
 return devices

 def get_proxy(self, short_name, version):
 """Find a proxy type given its short name.

 If no proxy type is found, return None.
 """

 if short_name not in self._name_map:
 return None

 proxy_match = self.find_correct_proxy_version(self._name_map[short_name], version)
 return proxy_match if proxy_match is not None else self._name_map[short_name][0]

 def find_correct_proxy_version(self, proxies, version):
 """Retrieves the ModuleVersion of each proxy and match it with the tile version

 something

 Args:
 proxies (list): A list of proxies of a specific short name
 version (obj): A tuple that specifies the tile's version
 """

 proxy_details = {}
 tile_version = SemanticVersion(version[0], version[1], version[2])
 min_version = SemanticVersion(0, 0, 0)
 best_proxy = None
 self.logger.debug("Short name matched proxies found: {0}".format(proxies))
 for proxy in proxies:
 proxy_details[proxy] = {}
 try:
 # If proxy has ModuleVersion(), get the SemanticVersionRange
 module_version = proxy.ModuleVersion()
 least_version = module_version._disjuncts[0][0][0]
 except AttributeError:
 # If proxy does not have ModuleVersion(), use None
 module_version = None
 least_version = SemanticVersion(0, 0, 0)

 if module_version is None:
 # Regardless if version is compatible, choose a best proxy for now
 if min_version == SemanticVersion(0, 0, 0):
 best_proxy = proxy
 self.logger.debug("Found a proxy without ModuleVersion info: {0}".format(proxy))
 elif module_version.check(tile_version):
 # Set best proxy since it matches SVR and update min_version to beat
 if least_version > min_version:
 min_version = least_version
 best_proxy = proxy
 self.logger.debug("Found a compatible proxy: {0}".format(proxy))
 else:
 self.logger.debug("Passed compatible proxy: {0}".format(proxy))

 self.logger.debug("Best proxy found: {0} with base version {1}".format(best_proxy, min_version))
 # If we don't make it in either conditional, best_proxy will return None
 return best_proxy

 def _create_proxy(self, proxy, address):
 """
 Create a python proxy object to talk to an IOTile module with the given type
 at the given address.
 """

 if proxy not in self._proxies:
 raise UnknownModuleTypeError("unknown proxy module specified", module_type=proxy, known_types=list(self._proxies))

 proxy_class = self._proxies[proxy]
 return proxy_class(self.stream, address)

 def _create_stream(self, force_adapter=None, record=None):
 conn_string = None
 port = self.port

 if port is not None:
 port = port.strip()

 # Check if we're supposed to use a specific device adapter
 if force_adapter is not None:
 return AdapterStream(force_adapter, record=record)

 # Attempt to find a DeviceAdapter that can handle this transport type
 reg = ComponentRegistry()

 for _, adapter_factory in reg.load_extensions('iotile.device_adapter', name_filter=self.transport):
 return AdapterStream(adapter_factory(port), record=record)

 raise HardwareError("Could not find transport object registered to handle passed transport type",
 transport=self.transport)

 Source code for iotile.core.hw.reports.report

"""Base class for data streamed from an IOTile device"""

import datetime
from iotile.core.exceptions import NotFoundError

[docs]class IOTileReading:
 """Base class for readings streamed from IOTile device.

 Each reading represents a single time/value pair sent from an IOTile Device.
 Since many IOTile Devices do not have a hardware realtime clock, the timestamp
 that is assigned to a reading may only be a relative interval from a fixed
 event in the past, like the time the device turned on.

 If the user knows the absolute time for this event they can pass it as a datetime
 in time_base to turn the relative reading timestamp into an absolute datetime
 accessible as reading_time.

 Args:
 raw_time (int): the number of seconds since the device turned on
 when the reading was taken
 time_base (datetime): An optional estimate of when the device was
 last turned on so that we can calculate the actual time of the
 reading
 reading_time (datetime): An optional UTC time when this event was acquired.
 If combined with time_base, this value will take precedence and time_base
 and raw_time will be ignored.
 reading_id (int): An optional unique identifier for this reading that allows
 deduplication. If no reading id is passed, InvalidReadingID is used.
 stream (int): The stream that this reading is part of
 value (int): The raw reading value
 """

 _Y2KReference = datetime.datetime(2000, 1, 1)
 InvalidReadingID = 0

 def __init__(self, raw_time, stream, value, time_base=None, reading_id=None, reading_time=None):
 self.raw_time = raw_time
 self.stream = stream
 self.value = value

 if reading_id is None:
 reading_id = IOTileReading.InvalidReadingID

 self.reading_id = reading_id

 self.reading_time = reading_time

 if self.reading_time is None:
 self.reading_time = self._try_assign_utc_time(self.raw_time, time_base)

 def _try_assign_utc_time(self, raw_time, time_base):
 """Try to assign a UTC time to this reading."""

 # Check if the raw time is encoded UTC since y2k or just uptime
 if raw_time != IOTileEvent.InvalidRawTime and (raw_time & (1 << 31)):
 y2k_offset = self.raw_time ^ (1 << 31)
 return self._Y2KReference + datetime.timedelta(seconds=y2k_offset)

 if time_base is not None:
 return time_base + datetime.timedelta(seconds=raw_time)

 return None

[docs] def asdict(self):
 """Encode the data in this reading into a dictionary.

 Returns:
 dict: A dictionary containing the information from this reading.
 """

 timestamp_str = None
 if self.reading_time is not None:
 timestamp_str = self.reading_time.isoformat()

 return {
 'stream': self.stream,
 'device_timestamp': self.raw_time,
 'streamer_local_id': self.reading_id,
 'timestamp': timestamp_str,
 'value': self.value
 }

[docs] @classmethod
 def FromDict(cls, obj):
 """Create an IOTileReading from the result of a previous call to asdict().

 Args:
 obj (dict): A dictionary produced by a call to IOTileReading.asdict()

 Returns:
 IOTileReading: The converted IOTileReading object.
 """

 timestamp = obj.get('timestamp')
 if timestamp is not None:
 import dateutil.parser
 timestamp = dateutil.parser.parse(timestamp)

 return IOTileReading(obj.get('device_timestamp'), obj.get('stream'), obj.get('value'), reading_id=obj.get('streamer_local_id'), reading_time=timestamp)

 def __eq__(self, other):
 return self.raw_time == other.raw_time and self.stream == other.stream and self.value == other.value and self.reading_id == other.reading_id

 def __str__(self):
 if self.reading_time is not None:
 return "Stream 0x{:04X} (id 0x{:08X}): 0x{:08X} at {}".format(self.stream, self.reading_id, self.value, self.reading_time)
 else:
 return "Stream 0x{:04X} (id 0x{:08X}): 0x{:08X} at uncorrected time {}".format(self.stream, self.reading_id, self.value, self.raw_time)

class IOTileEvent:
 """Base class for all unstructured events.

 An event is a dictionary with a small summary section and an arbitrarily
 large data section. The difference between IOTileReading and IOTileEvent
 is that all readings are integers whereas events are key/value stores.

 There are two different key/value stores in an IOTileEvent because there
 may be a very large amount of raw data that is summarized into a smaller
 representation. It may be useful to know that separation so that we can
 store the large data somewhere different from where we store the summary.

 Args:
 raw_time (int): the number of seconds since the device turned on
 when the reading was taken. This may be 0xFFFFFFFF if the raw
 time is not known.
 time_base (datetime): An optional estimate of when the device was
 last turned on so that we can calculate the actual time of the
 reading. If this is passed it is combined with raw_time to figure
 out the UTC time when the reading was taken.
 reading_time (datetime): An optional UTC time when this event was acquired.
 If combined with time_base, this value will take precedence and time_base
 and raw_time will be ignored.
 reading_id (int): An optional unique identifier for this reading that allows
 deduplication. If no reading id is passed, InvalidReadingID is used.
 stream (int): The stream that this reading is part of
 summary_data (dict): A dictionary of any summary data this event has. You
 may pass None if there is no summary data.
 raw_data (dict): A dictionary (possibly very large) of all data associated
 with this event. You may pass None if all data is contained in the
 summary_data member.
 """

 InvalidRawTime = 0xFFFFFFFF

 def __init__(self, raw_time, stream, summary_data, raw_data, time_base=None, reading_id=None, reading_time=None):
 self.raw_time = raw_time
 self.stream = stream

 if reading_id is None:
 reading_id = IOTileReading.InvalidReadingID

 self.reading_id = reading_id

 self.reading_time = reading_time
 if self.reading_time is None and time_base is not None and raw_time != IOTileEvent.InvalidRawTime:
 self.reading_time = time_base + datetime.timedelta(seconds=raw_time)

 self.summary_data = summary_data
 self.raw_data = raw_data

 def asdict(self):
 """Encode the data in this event into a dictionary.

 The dictionary returned from this method is a reference to the data
 stored in the IOTileEvent, not a copy. It should be treated as read
 only.

 Returns:
 dict: A dictionary containing the information from this event.
 """

 return {
 'stream': self.stream,
 'device_timestamp': self.raw_time,
 'streamer_local_id': self.reading_id,
 'timestamp': self.reading_time,
 'extra_data': self.summary_data,
 'data': self.raw_data
 }

 @classmethod
 def FromDict(cls, obj):
 """Create an IOTileEvent from the result of a previous call to asdict().

 Args:
 obj (dict): A dictionary produced by a call to IOTileEvent.asdict()

 Returns:
 IOTileEvent: The converted IOTileEvent object.
 """

 timestamp = obj.get('timestamp')
 if timestamp is not None:
 import dateutil.parser
 timestamp = dateutil.parser.parse(timestamp)

 return IOTileEvent(obj.get('device_timestamp'), obj.get('stream'), obj.get('extra_data'),
 obj.get('data'), reading_id=obj.get('streamer_local_id'), reading_time=timestamp)

 def __str__(self):
 if self.reading_time is not None:
 return "Stream 0x{:04X}: Event at {}".format(self.stream, self.reading_time)
 elif self.raw_time != self.InvalidRawTime:
 return "Stream 0x{:04X}: Event at uncorrected time {}".format(self.stream, self.raw_time)

 return "Stream 0x{:04X}: Event at unknown time".format(self.stream)

class IOTileReport:
 """Base class for data streamed from an IOTile device.

 All IOTileReports must derive from this class and must implement the following interface

 - class method HeaderLength(cls)
 function returns the number of bytes that must be read before the total length of
 the report can be determined. HeaderLength() must always be less than or equal to
 the length of the smallest version of this report.
 - class method ReportLength(cls, header):
 function that takes HeaderLength() bytes and returns the total size of the report,
 including the header.
 - class method FromReadings(cls, uuid, readings)
 function that creates an instance of an IOTileReport subclass from a list of readings
 and a device uuid.
 - property ReportType:
 The one byte type code that defines this report type
 - instance method verify(self):
 function that verifies that a report is correctly received and, if possible, that
 the sender is who it says it is.
 - instance method decode(self):
 function that decodes a report into a series of IOTileReading objects. The function
 should return a list of readings.
 - instance method serialize(self):
 function that should turn the report into a serialized bytearray that could be
 decoded with decode().

 Args:
 rawreport (bytearray): The raw data of this report
 signed (bool): Whether this report is signed to specify who it is from
 encrypted (bool): Whether this report is encrypted
 received_time (datetime): The time in UTC when this report was received from a device.
 If not received, the time is assumed to be utcnow().
 """

 def __init__(self, rawreport, signed, encrypted, received_time=None):
 self.visible_readings = []
 self.visible_events = []

 self.origin = None

 if received_time is None:
 self.received_time = datetime.datetime.utcnow()
 else:
 self.received_time = received_time

 self.raw_report = rawreport
 self.signed = signed
 self.encrypted = encrypted
 self.verified = False

 # We may not have any visible readings if our report is encrypted
 # and we do not have access to the decryption key.
 self.visible_readings, self.visible_events = self.decode()

 @classmethod
 def HeaderLength(cls):
 """Return the length of a header needed to calculate this report's length

 Returns:
 int: the length of the needed report header
 """

 raise NotFoundError("IOTileReport HeaderLength needs to be overridden")

 @classmethod
 def ReportLength(cls, header):
 """Given a header of HeaderLength bytes, calculate the size of this report
 """

 raise NotFoundError("IOTileReport ReportLength needs to be overriden")

 def decode(self):
 """Decode a raw report into a series of readings
 """

 raise NotFoundError("IOTileReport decode needs to be overriden")

 def encode(self):
 """Encode this report into a binary blob that could be decoded by a report format's decode method."""

 return self.raw_report

 def save(self, path):
 """Save a binary copy of this report

 Args:
 path (string): The path where we should save the binary copy of the report
 """

 data = self.encode()

 with open(path, "wb") as out:
 out.write(data)

 def serialize(self):
 """Turn this report into a dictionary that encodes all information including received timestamp"""

 info = {}
 info['received_time'] = self.received_time
 info['encoded_report'] = bytes(self.encode())

 # Handle python 2 / python 3 differences
 report_format = info['encoded_report'][0]
 if not isinstance(report_format, int):
 report_format = ord(report_format)
 info['report_format'] = report_format # Report format is the first byte of the encoded report
 info['origin'] = self.origin

 return info

 def __str__(self):
 if self.verified:
 verified = "verified"
 else:
 verified = "not verified"

 if self.encrypted:
 enc = "encrypted"
 else:
 enc = "not encrypted"
 return "IOTile Report (length: %d, visible readings: %d, visible events: %d, %s and %s)" \
 % (len(self.raw_report), len(self.visible_readings), len(self.visible_events), verified, enc)

 Source code for iotile.core.hw.virtual.common_types

"""Shared decorators and exceptions used in virtual tiles and devices."""

import struct
from collections import namedtuple
import binascii
import inspect
from ..exceptions import (RPCNotFoundError, RPCInvalidArgumentsError,
 RPCInvalidReturnValueError, RPCInvalidIDError,
 TileNotFoundError, RPCErrorCode,
 BusyRPCResponse)

RPCDeclaration = namedtuple("RPCDeclaration", ["rpc_id", "arg_format", "resp_format"])

def _create_argcode(code, arg_bytes):
 if not code.endswith('V'):
 return "<" + code

 code = code[:-1]
 fixed_size = struct.calcsize("<" + code)
 var_size = len(arg_bytes) - fixed_size

 if var_size < 0:
 raise RPCInvalidArgumentsError("Argument was too small for variable size argument value", arg_format=code,
 minimum_size=fixed_size, actual_size=len(arg_bytes),
 payload=binascii.hexlify(arg_bytes))

 return "<" + code + "%ds" % var_size

def _create_respcode(code, resp):
 if not code.endswith('V'):
 return "<" + code

 code = code[:-1]

 final_length = len(resp[-1])
 fixed_size = struct.calcsize("<" + code)

 if fixed_size + final_length > 20:
 raise RPCInvalidReturnValueError(0, 0, code, resp, reason="Variable length return value is too large for rpc response payload (20 bytes)",
 fixed_code=code, fixed_length=fixed_size, variable_length=final_length)

 return "<" + code + "%ds" % final_length

def pack_rpc_response(response=None, exception=None):
 """Convert a response payload or exception to a status code and payload.

 This function will convert an Exception raised by an RPC implementation
 to the corresponding status code.
 """

 if response is None:
 response = bytes()

 if exception is None:
 status = (1 << 6)
 if len(response) > 0:
 status |= (1 << 7)
 elif isinstance(exception, (RPCInvalidIDError, RPCNotFoundError)):
 status = 2
 elif isinstance(exception, BusyRPCResponse):
 status = 0
 elif isinstance(exception, TileNotFoundError):
 status = 0xFF
 elif isinstance(exception, RPCErrorCode):
 status = (1 << 6) | (exception.params['code'] & ((1 << 6) - 1))
 else:
 status = 3

 return status, response

def unpack_rpc_response(status, response=None, rpc_id=0, address=0):
 """Unpack an RPC status back in to payload or exception."""

 status_code = status & ((1 << 6) - 1)

 if address == 8:
 status_code &= ~(1 << 7)

 # There is a firmware bug in lib_controller that misreports rpc not found exceptions
 # as application level exceptions, not protocol level exceptions.
 if status == 0:
 raise BusyRPCResponse()
 elif status == 2 or (address == 8 and status_code == 2):
 raise RPCNotFoundError("rpc %d:%04X not found" % (address, rpc_id))
 elif status == 3:
 raise RPCErrorCode(status_code)
 elif status == 0xFF:
 raise TileNotFoundError("tile %d not found" % address)
 elif status_code != 0:
 raise RPCErrorCode(status_code)

 if response is None:
 response = b''

 return response

def pack_rpc_payload(arg_format, args):
 """Pack an RPC payload according to arg_format.

 Args:
 arg_format (str): a struct format code (without the <) for the
 parameter format for this RPC. This format code may include the final
 character V, which means that it expects a variable length bytearray.
 args (list): A list of arguments to pack according to arg_format.

 Returns:
 bytes: The packed argument buffer.
 """

 code = _create_respcode(arg_format, args)

 packed_result = struct.pack(code, *args)
 unpacked_validation = struct.unpack(code, packed_result)
 if tuple(args) != unpacked_validation:
 raise RPCInvalidArgumentsError("Passed values would be truncated, please validate the size of your string",
 code=code, args=args)
 return packed_result

def unpack_rpc_payload(resp_format, payload):
 """Unpack an RPC payload according to resp_format.

 Args:
 resp_format (str): a struct format code (without the <) for the
 parameter format for this RPC. This format code may include the final
 character V, which means that it expects a variable length bytearray.
 payload (bytes): The binary payload that should be unpacked.

 Returns:
 list: A list of the unpacked payload items.
 """

 code = _create_argcode(resp_format, payload)
 return struct.unpack(code, payload)

[docs]def rpc(address, rpc_id, arg_format, resp_format=None):
 """Decorator to denote that a function implements an RPC with the given ID and address.

 The underlying function should be a member function that will take
 individual parameters after the RPC payload has been decoded according
 to arg_format.

 Arguments to the function are decoded from the 20 byte RPC argument payload according
 to arg_format, which should be a format string that can be passed to struct.unpack.

 Similarly, the function being decorated should return an iterable of results that
 will be encoded into a 20 byte response buffer by struct.pack using resp_format as
 the format string.

 The RPC will respond as if it were implemented by a tile at address ``address`` and
 the 16-bit RPC id ``rpc_id``.

 Args:
 address (int): The address of the mock tile this RPC is for
 rpc_id (int): The number of the RPC
 arg_format (string): a struct format code (without the <) for the
 parameter format for this RPC. This format code may include the final
 character V, which means that it expects a variable length bytearray.
 resp_format (string): an optional format code (without the <) for
 the response format for this RPC. This format code may include the final
 character V, which means that it expects a variable length bytearray.
 """

 if rpc_id < 0 or rpc_id > 0xFFFF:
 raise RPCInvalidIDError("Invalid RPC ID: {}".format(rpc_id))

 def _rpc_wrapper(func):
 async def _rpc_executor(self, payload):
 try:
 args = unpack_rpc_payload(arg_format, payload)
 except struct.error as exc:
 raise RPCInvalidArgumentsError(str(exc), arg_format=arg_format, payload=binascii.hexlify(payload))

 resp = func(self, *args)
 if inspect.isawaitable(resp):
 resp = await resp

 if resp is None:
 resp = []

 if resp_format is not None:
 try:
 return pack_rpc_payload(resp_format, resp)
 except struct.error as exc:
 raise RPCInvalidReturnValueError(address, rpc_id, resp_format, resp, error=exc) from exc

 return resp

 _rpc_executor.rpc_id = rpc_id
 _rpc_executor.rpc_addr = address
 _rpc_executor.is_rpc = True
 return _rpc_executor

 return _rpc_wrapper

def tile_rpc(rpc_id, arg_format, resp_format=None):
 """Decorator to denote that a function implements an RPC with the given ID on a tile.

 The underlying function should be a member function that will take
 individual parameters after the RPC payload has been decoded according
 to arg_format.

 Arguments to the function are decoded from the 20 byte RPC argument payload according
 to arg_format, which should be a format string that can be passed to struct.unpack.

 Similarly, the function being decorated should return an iterable of results that
 will be encoded into a 20 byte response buffer by struct.pack using resp_format as
 the format string.

 The RPC will respond as if it were implemented by a tile at address ``address`` and
 the 16-bit RPC id ``rpc_id``.

 Args:
 rpc_id (int): The number of the RPC
 arg_format (string): a struct format code (without the <) for the
 parameter format for this RPC
 resp_format (string): an optional format code (without the <) for
 the response format for this RPC
 """

 return rpc(None, rpc_id, arg_format, resp_format)

class RPCDispatcher:
 """A simple dispatcher that can store and call RPCs."""

 def __init__(self, *args, **kwargs):
 super(RPCDispatcher, self).__init__(*args, **kwargs)
 self._rpcs = {}

 # Add any RPCs defined using decorators on this class
 for _name, value in inspect.getmembers(self, predicate=inspect.ismethod):
 if hasattr(value, 'is_rpc'):
 self.add_rpc(value.rpc_id, value)

 def add_rpc(self, rpc_id, func):
 """Add an RPC.

 Args:
 rpc_id (int): The ID of the RPC
 func (callable): The RPC implementation.
 The signature of callable should be callable(args) taking
 a bytes object with the argument and returning a bytes object
 with the response.
 """

 self._rpcs[rpc_id] = func

 def has_rpc(self, rpc_id):
 """Check if an RPC is defined.

 Args:
 rpc_id (int): The RPC to check

 Returns:
 bool: Whether it exists
 """

 return rpc_id in self._rpcs

 def call_rpc(self, rpc_id, payload=bytes()):
 """Call an RPC by its ID.

 Args:
 rpc_id (int): The number of the RPC
 payload (bytes): A byte string of payload parameters up to 20 bytes

 Returns:
 bytes: The response payload from the RPC
 """
 if rpc_id < 0 or rpc_id > 0xFFFF:
 raise RPCInvalidIDError("Invalid RPC ID: {}".format(rpc_id))

 if rpc_id not in self._rpcs:
 raise RPCNotFoundError("rpc_id: {}".format(rpc_id))

 return self._rpcs[rpc_id](payload)

 Source code for iotile.mock.devices.realtime_test_device

"""Reference device for testing the individual report format
"""

from iotile.core.hw.exceptions import DevicePushError
from iotile.core.hw.virtual import SimpleVirtualDevice
from iotile.core.hw.reports import IndividualReadingReport, IOTileReading, BroadcastReport

[docs]class RealtimeTestDevice(SimpleVirtualDevice):
 """Mock IOTileDevice that streams and traces data periodically

 This device can be configured to stream data on any streams at any interval.
 It can be used for testing realtime streaming functionality of any other portion
 of the IOTile stack.

 If no other arguments are passed, this device defaults to producing the value 100
 on stream 0x1001 every second. If a streams dictionary is passed, that overrides
 this default setting.

 You can also configure this device to broadcast readings without a connection on
 a periodic interval as well.

 If no 'trace' argument is passed the device defaults to tracing the phrase
 'Hello trace world. ' every second. If a 'trace' array is passed, that overrides
 the default behavior.

 Args:
 args (dict): Any arguments that you want to pass to create this device.
 Supported args are:

 iotile_id (int): The UUID used for this device. If no UUID is
 specified, the default value of 1 is used.

 streams (dict): A map of strings with hex numbers to tuples of
 (interval, value) where interval is a float that expresses
 how often the stream should stream in seconds and value is
 an integer that is sent as the value every interval as a
 realtime reading (IndividualReadingReport). The stream id
 is the key of the streams dict which should be a string
 encoding of a hex number including the prefix 0x so that
 it can be parsed with int(key, 0).

 broadcast (dict): A map of strings with hex numbers to tuples
 of (interval, value) where interval is a float that
 expresses how often the stream should stream in seconds
 and value is an integer that is sent as the value every
 interval as a broadcast reading (BroadcastReport). The
 stream id is the key of the streams dict which should be a
 string encoding of a hex number including the prefix 0x so
 that it can be parsed with int(key, 0).

 Note that a device can only broadcast a single value at
 once so if you specify multiple broadcast entries, only
 the last one to be triggered will be visible at any given
 time. For this reason, it is not useful to have multiple
 broadcast values with the same ``interval`` since only one
 will ever be shown.

 trace (list): A list of tuples which are (float, string) lists
 that will trace the fixed string every fixed interval
 given by the first float argument in seconds.
 """

 def __init__(self, args):
 iotile_id = args.get('iotile_id', 1)

 if isinstance(iotile_id, str):
 iotile_id = int(iotile_id, 16)

 super(RealtimeTestDevice, self).__init__(iotile_id, 'Simple')

 streams = args.get('streams', {'0x1001': (1.0, 100)})
 broadcast = args.get('broadcast', {'0x1001': (1.0, 100)})

 if 'streams' in args:
 streams = args['streams']

 for key, value in streams.items():
 stream = int(key, 0)
 interval, reading = value

 self.create_worker(self._create_stream, interval, stream, reading)

 for key, value in broadcast.items():
 stream = int(key, 0)
 interval, reading = value

 self.create_worker(self._create_broadcast, interval, stream, reading)

 traces = [[1.0, 'Hello trace world. ']]

 if 'trace' in args:
 traces = args['trace']

 for interval, value in traces:
 self.create_worker(self._create_trace, interval, value)

 async def _create_trace(self, value):
 """Send a realtime tracing value

 Args:
 value (string): The tracing value to send
 """

 if not self.interface_open('tracing'):
 return

 try:
 await self.trace(bytearray(value.encode('ascii')))
 except DevicePushError:
 pass

 async def _create_stream(self, stream, value):
 """Send a realtime streaming value

 Args:
 stream (int): The stream id to send
 value (int): The stream value to send
 """

 if not self.interface_open('streaming'):
 return

 reading = IOTileReading(0, stream, value)

 report = IndividualReadingReport.FromReadings(self.iotile_id, [reading])

 try:
 await self.stream(report)
 except DevicePushError:
 pass

 async def _create_broadcast(self, stream, value):
 """Send a broadcast streaming value.

 Args:
 stream (int): The stream id to send
 value (int): The stream value to send
 """

 reading = IOTileReading(0, stream, value)

 report = BroadcastReport.FromReadings(self.iotile_id, [reading])

 try:
 await self.stream(report)
 except DevicePushError:
 pass

 Source code for iotilegateway.device

"""A device adapter that aggregates multiple other device adapters.

:class:`AggregatingDeviceAdapter` is compatible with
:class:`AbstractDeviceAdapter` and can be used in the same way. It's purpose
is to aggregate the views of multiple device adapters together and present
them as a single unified device adapter.

So, connecting to a device will automatically connect through the best device
adapter that can see that device and has an open connection slot. You can
force a connection to use a specific device adapter by using a specially
formatted connection string if you don't want the automatic behavior.

TODO:
- [] Periodically expire devices from visible_devices
- [] Add threadsafe mutex around visible_devices
"""

import logging
import copy
from time import monotonic
import functools
from iotile.core.exceptions import ArgumentError, InternalError
from iotile.core.utilities import SharedLoop
from iotile.core.hw.transport.adapter import AbstractDeviceAdapter, BasicNotificationMixin, PerConnectionDataMixin, DeviceAdapter, AsynchronousModernWrapper
from iotile.core.hw.exceptions import DeviceAdapterError

_MISSING = object()

[docs]class AggregatingDeviceAdapter(BasicNotificationMixin,
 PerConnectionDataMixin,
 AbstractDeviceAdapter):
 """Aggregates multiple device adapters together.

 This class aggregate all of the available devices across each
 DeviceAdapter that is added to it and route connections to the appropriate
 adapter as connections are requested. An API is provided to make
 connections to devices, monitor events that happen on devices and remember
 what devices have been seen on different adapters.

 It is assumed that devices have unique identifiers so if the same device
 is seen by multiple DeviceAdapters, those different instances are unified
 and the best route to the device is chosen when a user tries to connect to
 it. For this purpose there is an abstract notion of 'signal_strength'
 that is reported by each DeviceAdapter and used to rank which one has a
 better route to a given device.

 Args:
 loop (BackgroundEventLoop): The background event loop that we should
 use to run our adapters. Defaults to :class:`SharedLoop`.
 """

 def __init__(self, port=None, adapters=None, loop=SharedLoop):
 BasicNotificationMixin.__init__(self, loop)
 PerConnectionDataMixin.__init__(self)
 AbstractDeviceAdapter.__init__(self)

 self._config = {}
 self._devices = {}
 self._conn_strings = {}
 self.adapters = []
 self.connections = {}
 self._started = False
 self._logger = logging.getLogger(__name__)
 self._next_conn_id = 0

 #TODO: Process port string

 self.set_config('probe_supported', True)
 self.set_config('probe_required', True)

 if adapters is None:
 adapters = []

 for adapter in adapters:
 self.add_adapter(adapter)

 def add_adapter(self, adapter):
 """Add a device adapter to this aggregating adapter."""

 if self._started:
 raise InternalError("New adapters cannot be added after start() is called")

 if isinstance(adapter, DeviceAdapter):
 self._logger.warning("Wrapping legacy device adapter %s in async wrapper", adapter)
 adapter = AsynchronousModernWrapper(adapter, loop=self._loop)

 self.adapters.append(adapter)

 adapter_callback = functools.partial(self.handle_adapter_event,
 len(self.adapters) - 1)
 events = ['device_seen', 'broadcast', 'report', 'connection',
 'disconnection', 'trace', 'progress']

 adapter.register_monitor([None], events, adapter_callback)

 def unique_conn_id(self):
 """Generate a new unique connection id.

 See :meth:`AbstractDeviceAdapter.unique_conn_id`.

 Returns:
 int: A new, unique integer suitable for use as a conn_id.
 """

 next_id = self._next_conn_id
 self._next_conn_id += 1
 return next_id

 def get_config(self, name, default=_MISSING):
 """Get a configuration setting from this DeviceAdapter.

 See :meth:`AbstractDeviceAdapter.get_config`.
 """

 val = self._config.get(name, default)
 if val is _MISSING:
 raise ArgumentError("DeviceAdapter config {} did not exist and no default".format(name))

 return val

 def set_config(self, name, value):
 """Adjust a configuration setting on this DeviceAdapter.

 See :meth:`AbstractDeviceAdapter.set_config`.
 """

 self._config[name] = value

 def can_connect(self):
 """Return whether this device adapter can accept another connection.

 We just generically return that we can always connect to one more
 device.

 See :meth:`AbstractDeviceAdapter.can_connect`.
 """

 return True

 async def start(self):
 """Start all adapters managed by this device adapter.

 If there is an error starting one or more adapters, this method will
 stop any adapters that we successfully started and raise an exception.
 """

 successful = 0

 try:
 for adapter in self.adapters:
 await adapter.start()
 successful += 1

 self._started = True
 except:
 for adapter in self.adapters[:successful]:
 await adapter.stop()

 raise

 async def stop(self):
 """Stop all adapters managed by this device adapter."""

 for adapter in self.adapters:
 await adapter.stop()

 def visible_devices(self):
 """Unify all visible devices across all connected adapters

 Returns:
 dict: A dictionary mapping UUIDs to device information dictionaries
 """

 devs = {}

 for device_id, adapters in self._devices.items():
 dev = None
 max_signal = None
 best_adapter = None

 for adapter_id, devinfo in adapters.items():
 connstring = "adapter/{0}/{1}".format(adapter_id, devinfo['connection_string'])
 if dev is None:
 dev = copy.deepcopy(devinfo)
 del dev['connection_string']

 if 'adapters' not in dev:
 dev['adapters'] = []
 best_adapter = adapter_id

 dev['adapters'].append((adapter_id, devinfo['signal_strength'], connstring))

 if max_signal is None:
 max_signal = devinfo['signal_strength']
 elif devinfo['signal_strength'] > max_signal:
 max_signal = devinfo['signal_strength']
 best_adapter = adapter_id

 # If device has been seen in no adapters, it will get expired
 # don't return it
 if dev is None:
 continue

 dev['connection_string'] = "device/%x" % dev['uuid']
 dev['adapters'] = sorted(dev['adapters'], key=lambda x: x[1], reverse=True)
 dev['best_adapter'] = best_adapter
 dev['signal_strength'] = max_signal

 devs[device_id] = dev

 return devs

 async def connect(self, conn_id, connection_string):
 """Connect to a device.

 See :meth:`AbstractDeviceAdapter.connect`.
 """

 if connection_string.startswith('device/'):
 adapter_id, local_conn = self._find_best_adapter(connection_string, conn_id)
 translate_conn = True
 elif connection_string.startswith('adapter/'):
 adapter_str, _, local_conn = connection_string[8:].partition('/')
 adapter_id = int(adapter_str)
 translate_conn = False
 else:
 raise DeviceAdapterError(conn_id, 'connect', 'invalid connection string format')

 if self.adapters[adapter_id].can_connect() is False:
 raise DeviceAdapterError(conn_id, 'connect', 'chosen adapter cannot handle another connection')

 # Make sure to set up the connection information before
 # so there are no races with events coming soon after connect.
 self._setup_connection(conn_id, local_conn)
 self._track_property(conn_id, 'adapter', adapter_id)
 self._track_property(conn_id, 'translate', translate_conn)

 try:
 await self.adapters[adapter_id].connect(conn_id, local_conn)
 except:
 self._teardown_connection(conn_id)
 raise

 async def disconnect(self, conn_id):
 """Disconnect from a connected device.

 See :meth:`AbstractDeviceAdapter.disconnect`.
 """

 adapter_id = self._get_property(conn_id, 'adapter')
 await self.adapters[adapter_id].disconnect(conn_id)

 self._teardown_connection(conn_id)

 async def open_interface(self, conn_id, interface):
 """Open an interface on an IOTile device.

 See :meth:`AbstractDeviceAdapter.open_interface`.
 """

 adapter_id = self._get_property(conn_id, 'adapter')
 await self.adapters[adapter_id].open_interface(conn_id, interface)

 async def close_interface(self, conn_id, interface):
 """Close an interface on this IOTile device.

 See :meth:`AbstractDeviceAdapter.close_interface`.
 """

 adapter_id = self._get_property(conn_id, 'adapter')
 await self.adapters[adapter_id].close_interface(conn_id, interface)

 async def probe(self):
 """Probe for devices.

 This method will probe all adapters that can probe and will send a
 notification for all devices that we have seen from all adapters.

 See :meth:`AbstractDeviceAdapter.probe`.
 """

 for adapter in self.adapters:
 if adapter.get_config('probe_supported', False):
 await adapter.probe()

 async def send_rpc(self, conn_id, address, rpc_id, payload, timeout):
 """Send an RPC to a device.

 See :meth:`AbstractDeviceAdapter.send_rpc`.
 """

 adapter_id = self._get_property(conn_id, 'adapter')
 return await self.adapters[adapter_id].send_rpc(conn_id, address, rpc_id, payload, timeout)

 async def debug(self, conn_id, name, cmd_args):
 """Send a debug command to a device.

 See :meth:`AbstractDeviceAdapter.debug`.
 """

 adapter_id = self._get_property(conn_id, 'adapter')
 return await self.adapters[adapter_id].debug(conn_id, name, cmd_args)

 async def send_script(self, conn_id, data):
 """Send a script to a device.

 See :meth:`AbstractDeviceAdapter.send_script`.
 """

 adapter_id = self._get_property(conn_id, 'adapter')
 return await self.adapters[adapter_id].send_script(conn_id, data)

 async def handle_adapter_event(self, adapter_id, conn_string, conn_id, name, event):
 """Handle an event received from an adapter."""

 if name == 'device_seen':
 self._track_device_seen(adapter_id, conn_string, event)
 event = self._translate_device_seen(adapter_id, conn_string, event)

 conn_string = self._translate_conn_string(adapter_id, conn_string)
 elif conn_id is not None and self._get_property(conn_id, 'translate'):
 conn_string = self._translate_conn_string(adapter_id, conn_string)
 else:
 conn_string = "adapter/%d/%s" % (adapter_id, conn_string)

 await self.notify_event(conn_string, name, event)

 def _track_device_seen(self, adapter_id, conn_string, event):
 universal_conn = "device/%x" % event.get('uuid')
 local_conn = "adapter/%d/%s" % (adapter_id, conn_string)

 if universal_conn not in self._devices:
 self._devices[universal_conn] = {}

 event['expires'] = monotonic() + event.get('validity_period')
 self._devices[universal_conn][adapter_id] = event
 self._conn_strings[local_conn] = universal_conn

 def _translate_device_seen(self, adapter_id, conn_string, event):
 universal_conn = self._translate_conn_string(adapter_id, conn_string)

 translated_event = dict(uuid=event.get('uuid'), connection_string=universal_conn)
 return translated_event

 def _translate_conn_string(self, adapter_id, conn_string):
 local_conn = "adapter/%d/%s" % (adapter_id, conn_string)
 return self._conn_strings.get(local_conn)

 def _find_best_adapter(self, universal_conn, conn_id):
 if universal_conn not in self._devices:
 raise DeviceAdapterError(conn_id, 'find_best_adapter', 'device not seen on any adapters')

 for adapter_id, dev in self._devices[universal_conn].items():
 if self.adapters[adapter_id].can_connect():
 return adapter_id, dev.get('connection_string')

 raise DeviceAdapterError(conn_id, 'find_best_adapter', 'no adapter has space for connection')

 def _device_expiry_callback(self):
 """Periodic callback to remove expired devices from visible_devices."""

 expired = 0
 for adapters in self._devices.values():
 to_remove = []
 now = monotonic()

 for adapter_id, dev in adapters.items():
 if 'expires' not in dev:
 continue

 if now > dev['expires']:
 to_remove.append(adapter_id)
 local_conn = "adapter/%d/%s" % (adapter_id, dev['connection_string'])

 if local_conn in self._conn_strings:
 del self._conn_strings[local_conn]

 for entry in to_remove:
 del adapters[entry]
 expired += 1

 if expired > 0:
 self._logger.info('Expired %d devices', expired)

 Source code for iotilegateway.gateway

"""An IOTile gateway-in-a-box that will connect to devices using device adapters and serve them using agents."""

import logging
from iotile.core.dev import ComponentRegistry
from iotile.core.exceptions import ArgumentError
from iotile.core.utilities import SharedLoop
from .device import AggregatingDeviceAdapter

[docs]class IOTileGateway:
 """A gateway that finds IOTile devices using device adapters and serves them using device servers.

 The gateway runs in separate thread inside of a BackgroundEventLoop and
 you can call the synchronous wait function to wait for it to quit. It
 will loop forever unless you stop it by calling the stop() or
 stop_from_signal() methods.

 IOTileGateway should be thought of as a turn-key gateway object that
 translates requests for IOTile Device access received from one or more
 AbstractDeviceServer into commands sent to one or more
 AbstractDeviceAdapters. It is a multi-device, multi-user, multi-protocol
 system that can have many connections in flight at the same time, limited
 only by the available resources on the computer that hosts it.

 The arguments dictionary to IOTileGateway class has the same format as the json parameters
 passed to the iotile-gateway script that is just a thin wrapper around this class.

 Args:
 config (dict): The configuration of the gateway. There should be two keys set:

 servers (list):
 a list of dictionaries with the name of the device server and
 any arguments that should be passed to create it.

 adapters (list):
 a list of dictionaries with the device adapters to add into the gateway
 and any arguments that should be use to create each one.
 """

 def __init__(self, config, loop=SharedLoop):
 self._loop = loop
 self._config = config
 self._logger = logging.getLogger(__name__)

 self.adapters = _load_adapters(self._config.get('adapters', []), self._loop, self._logger)
 self.device_manager = AggregatingDeviceAdapter(adapters=self.adapters, loop=self._loop)
 self.servers = _load_servers(self._config.get('servers', []), self._loop, self._logger, self.device_manager)

 async def start(self):
 """Start the gateway."""

 self._logger.info("Starting all device adapters")
 await self.device_manager.start()

 self._logger.info("Starting all servers")
 for server in self.servers:
 await server.start()

 async def stop(self):
 """Stop the gateway manager and synchronously wait for it to stop."""

 self._logger.info("Stopping all servers")
 for server in self.servers:
 await server.stop()

 self._logger.info("Stopping all device adapters")
 await self.device_manager.stop()

def _load_servers(configs, loop, logger, adapter):
 if len(configs) == 0:
 logger.warning("No servers defined in arguments to iotile-gateway, "
 "this is likely not what you want")

 reg = ComponentRegistry()
 servers = []

 for agent_info in configs:
 if 'name' not in agent_info:
 logger.error("Invalid server information in gateway config, info=%s, missing_key=%s",
 str(agent_info), 'name')

 raise ArgumentError("No server name given in config dict: %s" % agent_info)

 agent_name = agent_info['name']
 agent_args = agent_info.get('args', {})

 logger.info("Loading server by name '%s'", agent_name)
 _, agent_class = reg.load_extensions('iotile.device_server', name_filter=agent_name, unique=True)

 try:
 agent = agent_class(adapter, agent_args, loop=loop)
 servers.append(agent)
 except Exception: # pylint: disable=W0703
 logger.exception("Could not load device server %s, quitting", agent_name)
 raise

 return servers

def _load_adapters(configs, loop, logger):
 if len(configs) == 0:
 logger.warning("No adapters defined in arguments to iotile-gateway, "
 "this is likely not what you want")

 reg = ComponentRegistry()
 adapters = []

 for adapter_info in configs:
 if 'name' not in adapter_info:
 logger.error("Invalid adapter information in gateway config, info=%s, missing_key=%s",
 str(adapter_info), 'name')
 raise ArgumentError("No adapter name given in config dict: %s" % adapter_info)

 adapter_name = adapter_info['name']
 port_string = adapter_info.get('port', None)

 logger.info("Loading device adapter by name '%s' and port '%s'", adapter_name, port_string)

 try:
 _, adapter_class = reg.load_extensions('iotile.device_adapter', name_filter=adapter_name, unique=True)
 adapter = adapter_class(port_string, loop=loop)
 adapters.append(adapter)
 except Exception: # pylint: disable=W0703
 logger.exception("Could not load device adapter %s", adapter_name)
 raise

 return adapters

Creating Your First IOTile Device

There are two kinds of IOTile Devices, real and virtual. Real devices are physical
objects that let you either sense or control things around you. Virtual devices
are programs that act as if they are real IOTile Devices.

Virtual devices are indistinguishable from real IOTile devices, except for the
fact that you can’t actually touch them. In particular, virtual IOTile devices
interact with the rest of CoreTools the same way a real device would, so they are
particularly useful for tutorials like this one.

We’re going to make a simple virtual IOTile Device that will stream you fake temperature
data when you connect to it. It will also have one command that will send you a random
temperature value back to you whatever you call it. Then we’re going to interact with the
device as if it were a real IOTile device.

Goals

	Introduce the concept of Python Proxy Modules, that are used to wrap low-level access to
IOTile devices in a python compatible API

	Introduce Virtual Devices and show how you can use them to quickly mock up what a real
IOTile device could look like and use them with the rest of CoreTools.

	Introduce Support Packages, which are pip installable packages that contain all of the
necessary python modules to interact with an IOTile Device. They are usually produced
as part of the build process for the device.

Note

For this tutorial, you are going to need to have CoreTools installed. It’s best to create
a new virtual environment for this walkthrough so that you have a clean slate and don’t
pollute any other CoreTools installations you have with the products of this walkthrough.

Background

When you send commands to an IOTile device, the commands all take the form of remote procedure
calls (RPCs). Basically you send an ID indicating what function you want the device to execute,
followed by the arguments. The device synchronously executes the function and returns the response
back to you as if you had just invoked a function locally on your own computer.

Since IOTile devices typically contain small embedded microcontrollers, the low-level binary encoding
for how RPCs are transmitted to the device is not user-friendly, e.g. the RPCs are identified with unique
16-bit numbers rather than string names and all arguments and responses are packed into 20 byte
binary buffers.

So, instead of directly building these low-level RPC payloads and manually decoding the responses, CoreTools
wraps them inside a python class where the methods on the class take in normal python objects as
arguments, build the RPC payload and decode the response back into normal python objects. These
wrappers are called Proxy Objects and the python modules that contain them are called Python
Proxy Modules.

Every IOTile device should have at least one python proxy module that allows you to access its functionality
from python. Many IOTile devices internally consist of several distinct parts called Tiles, each of which
is independent and has its own proxy module. For now though, we won’t have to worry about multiple
proxy modules.

The goal of this tutorial is walk you through creating a proxy module. Rather than wrapping a physical
IOTile device though, we’ll wrap a virtual device so you don’t need any hardware to follow the walk through.

Getting Started

Before we can start working on our proxy module, we first need to get some boilerplate out of the way. We need
to create an IOTile component that will contain our proxy module.

Important

Pretty much everything in the IOTile world (except CoreTools itself) starts its life as an IOTile Component.
Components are like packages in npm, or distributions in PyPI. They are just directories with a
module_settings.json file that lets CoreTools know what to do with the files inside the folder.

So, let’s create an empty Component to contain our proxy module:

$ mkdir test_component
$ cd test_component
$ mkdir python
$ touch python/demo_proxy.py
$ touch module_settings.json
$ ls
module_settings.json python

Now we need to add enough information to module_settings.json to identify this folder as an IOTile component and
point out that demo_proxy.py should be treated as a proxy module. We’ll call our component demo_component and
put it in the walkthrough namespace (called a domain). These names can be anything but should be unique if you
ever want to share your component with anyone else.

Save the following to your module_settings.json file:

{
 "module_name": "demo_component",
 "modules":
 {
 "demo_component":
 {
 "version": "0.0.1",

 "products":
 {
 "python/demo_proxy.py": "proxy_module"
 },

 "domain": "walkthrough"
 }
 }
}

This is the minimum needed in a module_settings.json file to identify the component and point out that we have a proxy
module defined in python/demo_proxy.py. In more complicated components, there are many different kinds of products that
could be generated and would be listed along with the proxy module in the products section of the file.

Now that we have an IOTile component, we need to tell CoreTools about it by adding it to the Component Registry (this command
should be run from the test_component directory:

$ iotile registry add_component .
$ iotile registry list_components
walkthroughs/demo_component

Important

The Component Registry is a file maintained in each virtualenv that contains a CoreTools installation. It lists what
iotile components have been installed so that CoreTools knows to look in those directories for things like proxy modules.

Any changes you make to your Component Registry only affect your current virtual environment.

Now you have your component registered with CoreTools so we need to create a simple virtual device that it can interact with.

Creating a Virtual Device

Virtual IOTile devices are just python scripts that define a class that inherits from BaseVirtualDevice. We’re going to
create a demo device. Just like above there is a bit of boilerplate that is required for the device to support the necessary
RPC for CoreTools be able to identify its name and match it with a Proxy Module. Since the device we are creating is so
simple, we are going to derive from a convenience subclass SimpleVirtualDevice.

Create a file named demo_device.py in your current working directory with the following contents:

"""Virtual IOTile device for CoreTools Walkthrough"""

from iotile.core.hw.virtual import SimpleVirtualDevice, rpc

class DemoVirtualDevice(SimpleVirtualDevice):
 """A simple virtual IOTile device that has an RPC to read fake temperature

 Args:
 args (dict): Any arguments that you want to pass to create this device.
 """

 def __init__(self, args):
 super(DemoVirtualDevice, self).__init__(1, 'Demo01')

Note how this is just a normal python class and it has one function controller_status that is
decorated with an @rpc decorator. This decorator is how we mark what python functions in our
class are really mocking the RPCs present in a real IOTile device. For more information on the rpc
decorator, we can see its documentation below.

	
iotile.core.hw.virtual.rpc(address, rpc_id, arg_format, resp_format=None)[source]

	Decorator to denote that a function implements an RPC with the given ID and address.

The underlying function should be a member function that will take
individual parameters after the RPC payload has been decoded according
to arg_format.

Arguments to the function are decoded from the 20 byte RPC argument payload according
to arg_format, which should be a format string that can be passed to struct.unpack.

Similarly, the function being decorated should return an iterable of results that
will be encoded into a 20 byte response buffer by struct.pack using resp_format as
the format string.

The RPC will respond as if it were implemented by a tile at address address and
the 16-bit RPC id rpc_id.

	Parameters

	
	address (int [https://docs.python.org/3/library/functions.html#int]) – The address of the mock tile this RPC is for

	rpc_id (int [https://docs.python.org/3/library/functions.html#int]) – The number of the RPC

	arg_format (string) – a struct format code (without the <) for the
parameter format for this RPC. This format code may include the final
character V, which means that it expects a variable length bytearray.

	resp_format (string) – an optional format code (without the <) for
the response format for this RPC. This format code may include the final
character V, which means that it expects a variable length bytearray.

There are a couple of other things to note about our DemoVirtualDevice. We gave it a name of Demo01. All IOTile
devices have a 6 character name that is used to match the device with its associated proxy module by looking for matching
names. We also gave the device an IOTile ID of 1, which we’ll use to connect to the device.

So, let’s try to interact with our virtual device:

$ iotile hw --port=virtual:./demo_device.py
(HardwareManager) connect 1
(HardwareManager) controller
HardwareError: Could not find proxy object for tile
Additional Information:
known_names: ['Simple', 'NO APP', 'Rptdev']
name: 'Demo01'
(HardwareManager) quit
$

We told the iotile tool that we wanted to connect to an IOTile device that was virtual and implemented in the python module
./demo_device.py. We connected to it (connect 1) and tried to get a proxy object for it using the controller
command but we were told that CoreTools couldn’t find a proxy module for it.

This makes sense because we haven’t created the proxy module yet. So, lets create a basic proxy module and try again. Add the
following to demo_proxy.py (make sure this file is within the python subfolder):

from iotile.core.hw.proxy.proxy import TileBusProxyObject
from typedargs.annotate import return_type, context, param
import struct

@context("DemoProxy")
class DemoProxyObject(TileBusProxyObject):
 """A demo proxy object for the CoreTools walkthrough"""

 @classmethod
 def ModuleName(cls):
 """The 6 byte name by which CoreTools matches us with an IOTile Device"""

 return 'Demo01'

The only required function that we need to implement is the classmethod ModuleName that tells CoreTools what IOTile devices
should load this proxy module. Now let’s try to connect to our virtual device again:

$ iotile hw --port=virtual:./demo_device.py connect 1 controller
(DemoProxy) quit
$

This time CoreTools looked through the registry and found a matching proxy object (our DemoProxy object). Now we’re ready to start
adding some functions to our virtual device and wrapping them in the proxy object so we can test them out from the command line.

Adding an RPC That Returns Data

Let’s add an RPC to our virtual device name get_temperature that returns the (fake) temperature of the device. Add the following to
your demo_device.py DemoVirtualDevice class:

@rpc(8, 0x8000, "", "L")
def get_temperature(self):
 """Get the current temperature of the device in degrees kelvin

 Returns:
 list a list with a single value containing the device temperature
 """

 return [273]

This defines an RPC with id 0x8000 that returns a single 32-bit integer (the L result format) with the fixed value 273. Now we
need to add a function to our proxy object that calls this RPC.

Note

The rpc decorator, as described in the doc source above, is how we pack and unpack data types
through struct under the hood. You’ll see this later, but there are several ways to communicate
more information, as long as you fit in 20 byte payloads.

For example, you can pack something with 10s, and you pass in a length 10 string.

Add the following to your demo_proxy.py DemoProxyObject class:

@return_type("float")
def get_temperature(self):
 temp, = self.rpc(0x80, 0x00, result_format="L")
 return float(temp)

Note

The decorator on this function is what allows iotile to print the function’s return value on the command line. There is more information
about these type annotations in the section on typedargs.

Now let’s call our new RPC:

$ iotile hw --port=virtual:./demo_device.py connect 1 controller
(DemoProxy) <TAB><TAB>
back config_manager hardware_version quit status tile_status
check_hardware get_temperature help reset tile_name tile_version
(DemoProxy) get_temperature
273.0
(DemoProxy) quit
$

Internally this worked because our type annotation in DemoProxyObject told the iotile tool that this function could be called from the command
line. So when we typed get_temperature we invoked that function in DemoProxyObject. Internally it used the self.rpc function provided
by TileBusProxyObject to invoke an RPC on our virtual device, which sent back the temperature value 273 that it then returned and iotile
printed for us using the return_type type annotation to know that we wanted it to print the result as a floating point number.

If we had been talking to a physical IOTile device rather than a virtual one, nothing would be different except for the argument that we passed to
--port in HardwareManager that tells it what transport mechanism to use to send RPCs and receive their responses.

Adding a More Complex RPC

Let’s say that our device actually can store the last 5 temperature values that its recorded and has an RPC that allows us to query them all. We want
to print those values as a list. First lets implement the underlying RPC on the virtual device:

@rpc(8, 0x8001, "", "LLLLL")
def historical_temps(self):
 """Get a list of 5 temperatures from the device in degrees kelvin

 Returns:
 list a list with a single value containing the device temperature
 """

 return [273, 280, 215, 315, 300]

Then we need to add a corresponding call on the proxy object:

@return_type("list(float)")
def historical_temps(self):
 temps = self.rpc(0x80, 0x01, result_format="LLLLL")
 return [float(x) for x in temps]

Note

See how we used a complex type annotations list(float) to tell typedargs how to print our return value even though it wasn’t
a simple primitive type.

Now we can call it:

$ iotile hw --port=virtual:./demo_device.py connect 1 controller
(DemoProxy) historical_temps
273.0
280.0
215.0
315.0
300.0
(DemoProxy) quit
$

Setting Values Using an RPC

Up until now, we’ve only received information from RPCs, so lets create one that lets us set the temperature that the virtual device returns when you
call get_temperature. We’ll need to create a member variable to store the temperature and a new RPC set_temperature that sets its value. Adjust
demo_device.py to look like this:

"""Virtual IOTile device for CoreTools Walkthrough"""

from iotile.core.hw.virtual import SimpleVirtualDevice, rpc

class DemoVirtualDevice(SimpleVirtualDevice):
 """A simple virtual IOTile device that has an RPC to read fake temperature

 Args:
 args (dict): Any arguments that you want to pass to create this device.
 """

 def __init__(self, args):
 super(DemoVirtualDevice, self).__init__(1, 'Demo01')
 self.temp = 273

 @rpc(8, 0x8000, "", "L")
 def get_temperature(self):
 """Get the current temperature of the device in degrees kelvin

 Returns:
 list a list with a single value containing the device temperature
 """

 return [self.temp]

 @rpc(8, 0x8002, "L")
 def set_temperature(self, new_temp):
 """Set the current temperature of the device in degrees kelvin"""

 self.temp = new_temp
 return []

 @rpc(8, 0x8001, "", "LLLLL")
 def historical_temps(self):
 """Get a list of 5 temperatures from the device in degrees kelvin

 Returns:
 list: a list with 5 historical temperatures
 """

 return [273, 280, 215, 315, 300]

Now add a new annotated RPC wrapper to DemoProxyObject in your demo_proxy.py file:

@param("new_temp", "integer")
def set_temperature(self, new_temp):

 self.rpc(0x80, 0x02, new_temp, arg_format="L", result_format="")

Important

When you write a proxy module method that takes arguments, you need to
tell typedargs what type they are so that it can convert them to the
appropriate python types when you enter them on the command line. In this
case we’re telling typedargs that we take one parameter new_temp
that is an integer. That’s all we need to say and typedargs takes
care of interpreting our command line input into a native python integer
and passing that to set_temperature.

Alternatively, you can pack your arguments with the newer rpc method, rpc_v2:

@param("new_temp", "integer")
def set_temperature(self, new_temp):

 self.rpc_v2(0x8002, "L", "", new_temp)

Note that here, the rpc_id is combined in to one argument, and you are required to pass two arguments ahead
of your input: the arg_format (in this case, L), and the resp_format, which in this case is blank.
If you provide multiple inputs you would append an argument for each format type, for example:

self.rpc_v2(0x8888, "LLL", "", new_temp1, new_temp2, new_temp3)

Additionally, you could use @docannotate instead of @param to tell typedargs how to parse input:

@docannotate
def set_temperature(self, new_temp):
"""Sets the temperature of the virtual device.

Args:
 new_temp (int): New temperature
"""
 args = struct.pack("<L", new_temp)

 self.rpc(0x80, 0x02, args)

Let’s try out our set_temperature and get_temperature functions:

$ iotile hw --port=virtual:./demo_device.py connect 1 controller
(DemoProxy) get_temperature
273.0
(DemoProxy) set_temperature 15
(DemoProxy) get_temperature
15.0
(DemoProxy) set_temperature 275
(DemoProxy) get_temperature
275.0
(DemoProxy) quit
$

Next Steps

This concludes the tutorial on creating proxy modules. It’s a pretty simple
proxy module that we made that just sets one number but one of the core
principles of IOTile is that everything we do should be as reusable as
possible, so in future tutorials we’ll take the exact same proxy module and
virtual device and show how you can access them over MQTT from anywhere in the
world or over Bluetooth Low Energy without doing any additional work.

You may already be able to think of what you would want to do with a virtual
device running on your computer that would let you run a python function from
anywhere in the world.

Setting Up a Gateway

You may have to pip install iotile-gateway.

Many times individual IOTile Devices are not able to directly connect to the
internet and instead talk exclusively to an intermediate gateway device. This
is usually because the devices lack the required communications hardware to
send multi-hop or IP routed transmissions. An example would be a battery
powered wireless sensor connected via Bluetooth Low Energy. BLE devices
connect to a local central device in a point-to-point fashion without a built-in
provision for connecting to the internet.

So, there’s often a need for a gateway that knows how to connect to a specific
sensor device and then serves access to that device over a different protocol,
acting as a translator between, e.g. BLE and Websockets, or BLE and MQTT.

Since all IOTile Devices implement the same basic interfaces for streaming
data and receiving RPC commands, we can make a generic gateway program that
translates requests from any supported protocol into any other supported
protocol.

This program, and the python objects behind it, is called iotile-gateway and
is provided by the iotile-gateway package in CoreTools.

Goals

	Understand how to configure iotile-gateway to translate between communication
protocols.

	Use iotile-gateway to aggregate devices across multiple communication
protocols by plugging multiple DeviceAdapters into the same gateway.

	Understand the use case for mixing physical and virtual IOTile devices in the
same gateway to allow for remote configuration of the gateway computer as
well as providing access to other IOTile Devices.

Background

In previous tutorials, we’ve seen how DeviceAdapters provide a generic way to
allow access to IOTile devices from multiple clients and how HardwareManager
allows a single client or script to discover and make a connection to a specific
IOTile Device.

We’ve also seen how we can create our own device and serve access to it using
a VirtualInterface. In this tutorial we’re going to introduce
GatewayAgents.

GatewayAgents are the direct complement to DeviceAdapters. Whereas
DeviceAdapters standardize devices that may have very different communication
protocols, GatewayAgents take those standardize devices and re-broadcast them
over a different communucation protocol. So, you could take a device connected
over Bluetooth and serve it up over Websockets, MQTT, or HTTPS.

Since there are many moving pieces in performing this kind of translation, there
needs to be a host application that provides the framework for linking
DeviceAdapters and GatewayAgents together. This program is called
iotile-gateway and is installed as a script when you pip install the
iotile-gateway package in CoreTools.

The heavy lifting is done by an asynchronous event loop managed by the
AggregatingDeviceAdapter class.

	
class iotilegateway.device.AggregatingDeviceAdapter(port=None, adapters=None, loop=<iotile.core.utilities.async_tools.event_loop.BackgroundEventLoop object>)

	Aggregates multiple device adapters together.

This class aggregate all of the available devices across each
DeviceAdapter that is added to it and route connections to the appropriate
adapter as connections are requested. An API is provided to make
connections to devices, monitor events that happen on devices and remember
what devices have been seen on different adapters.

It is assumed that devices have unique identifiers so if the same device
is seen by multiple DeviceAdapters, those different instances are unified
and the best route to the device is chosen when a user tries to connect to
it. For this purpose there is an abstract notion of ‘signal_strength’
that is reported by each DeviceAdapter and used to rank which one has a
better route to a given device.

	Parameters

	loop (BackgroundEventLoop) – The background event loop that we should
use to run our adapters. Defaults to SharedLoop.

By itself, AggregatingDeviceAdapter does not allow serving access to IOTile Devices, it
just aggregates multiple DeviceAdapters together and unifies the view of the
devices that they can see.

There still needs to be a way to configure what DeviceAdapters to add to the
AggregatingDeviceAdapter and to specify what GatewayAgents should be included as well.

This is performed by the IOTileGateway class. IOTileGateway is designed
for simple integration into host applications and forms the backbone of the
iotile-gateway command line program.

	
class iotilegateway.gateway.IOTileGateway(config, loop=<iotile.core.utilities.async_tools.event_loop.BackgroundEventLoop object>)

	A gateway that finds IOTile devices using device adapters and serves them using device servers.

The gateway runs in separate thread inside of a BackgroundEventLoop and
you can call the synchronous wait function to wait for it to quit. It
will loop forever unless you stop it by calling the stop() or
stop_from_signal() methods.

IOTileGateway should be thought of as a turn-key gateway object that
translates requests for IOTile Device access received from one or more
AbstractDeviceServer into commands sent to one or more
AbstractDeviceAdapters. It is a multi-device, multi-user, multi-protocol
system that can have many connections in flight at the same time, limited
only by the available resources on the computer that hosts it.

The arguments dictionary to IOTileGateway class has the same format as the json parameters
passed to the iotile-gateway script that is just a thin wrapper around this class.

	Parameters

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The configuration of the gateway. There should be two keys set:

	servers (list):

	a list of dictionaries with the name of the device server and
any arguments that should be passed to create it.

	adapters (list):

	a list of dictionaries with the device adapters to add into the gateway
and any arguments that should be use to create each one.

The overall structure of the iotile-gateway system is shown in the figure below.
You can see the different device adapters that can be used to find IOTile
Devices and the various gateway agents that allow users to access them.

[image: Stack diagram of iotile-gateway]

The structure of the iotile-gateway program that translates between
different communication protocols to allow remote control of IOTile Devices
that don’t possess long-range communications hardware.

Key Concepts

A class that takes multiple DeviceAdapters and merges all of the devices
that they can see. Requests to connect to individual devices are routed to
the appropriate DeviceAdapter based on which adapters can see that device,
what their signal strength is and whether they have the resources for an
additional connection.

	IOTileGateway

	A helper class that locates and loads DeviceAdapter and GatewayAgent plugins
and then runs a DeviceManager instance with those plugins in a separate
thread to allow for easy integration into a host application

	GatewayAgent

	A class that serves access to IOTile Devices over a communication protocol.
This class serves the opposite function as a DeviceAdapter and you would
imagine a natural pairing where each DeviceAdapter has a corresponding
GatewayAgent.

	iotile-gateway

	A cross-platform command line script that allows turning a computer into a
turn-key gateway that searches for IOTile Devices using DeviceAdapters and
then serves access to them using GatewayAgents. A JSON configuration file
lets you specify what plugins to load and how to configure them

Using iotile-gateway

The iotile-gateway program is fairly turn-key. You just need to tell it what
DeviceAdapters to load and what GatewayAgents to use. The DeviceAdapters are
configured by passing the same ‘port’ string you would use in the iotile tool.

The GatewayAgents have more configurability and take a dictionary of arguments
that are specific to each agent. In this example, we’re going to use our
venerable VirtualDeviceAdapter to connect to a virtual device and serve access
to it over Websockets.

Websockets are a bidirectional communication channel built on top of http that
is widely used in javascript web applications, so serving IOTile Devices over
web sockets is a great way to connect them to web apps.

We’ll need to create a config file with the required information (named
gateway.json):

{
 "agents":
 [
 {
 "name": "websockets",
 "args":
 {
 "port": 5120
 }
 }
],

 "adapters":
 [
 {
 "name": "virtual",
 "port": "realtime_test"
 }
]
}

Then we just run iotile-gateway and point it to our config file:

(iotile) > iotile-gateway --config=gateway.json
I-2017-05-19 14:38:18,977-gateway :94 Loading agent by name 'websockets'
I-2017-05-19 14:38:19,381-ws_agent :38 Starting Websocket Agent on port 5120
I-2017-05-19 14:38:19,388-gateway :116 Loading device adapter by name 'virtual' and port 'realtime_test'

Now (in another shell or a separate computer on the same network),
we can connect to the gateway just like we connect directly to an IOTile
Device by specifying a protocol supported by one of the gateway’s agents, in
this case websockets:

(iotile) > iotile hw --port=ws:localhost:5120/iotile/v1
(HardwareManager) scan
{
 "adapters": [
 [
 0,
 100,
 "0/1"
]
],
 "best_adapter": 0,
 "expires": "2017-05-26 13:23:46.277000",
 "signal_strength": 100,
 "uuid": 1
}

Note how there is a little more detail here than when you scan directly from
the IOTile tool. In particular we see a list of all of the DeviceAdapters that
could see the device ranked in order of signal strength and a key specifying
the best adapter to use to connect to the device.

If this were, for example, a Bluetooth device and we had two different Bluetooth
adapters connected to the computer, we would see the device twice but they
would both be merged into a single entry with the closest adapter used to
actually make the connection.

Combining Multiple Device Adapters

There is no restriction on the number of different device adapters that you
can connect to a gateway, so let’s use two virtual adapters:

{
 "agents":
 [
 {
 "name": "websockets",
 "args":
 {
 "port": 5120
 }
 }
],

 "adapters":
 [
 {
 "name": "virtual",
 "port": "realtime_test"
 },

 {
 "name": "bled112"
 }
]
}

Important

You need a BLED112 USB bluetooth dongle plugged into your computer for
this to work.

In this case, we’re going to find physical IOTile Devices over bluetooth as
well as our virtual device. This combination of physical and virtual devices
is often very useful since virtual devices can provide you a way to configure
things on the computer running the gateway program.

For example, lets say you’re deploying a gateway on a remote farm that you
are going to use to control a variety of bluetooth sensors. It would be great
if you could also control the gateway computer itself. By making a virtual
device that allows control of the gateway and connecting it to the
iotile-gateway as well as the bluetooth adapter, you’re able to introspectively
access the gateway just as easily as you can reach through it to access a
local bluetooth device:

(iotile) > iotile hw --port=ws:localhost:5120/iotile/v1
(HardwareManager) scan
{
 "adapters": [
 [
 0,
 100,
 "0/1"
]
],
 "best_adapter": 0,
 "expires": "2017-05-26 13:39:15.516000",
 "signal_strength": 100,
 "uuid": 1
}
{
 "adapters": [
 [
 1,
 -79,
 "1/C0:05:C8:DB:E5:45"
]
],
 "best_adapter": 1,
 "expires": "2017-05-19 15:00:16.032000",
 "low_voltage": false,
 "pending_data": true,
 "signal_strength": -79,
 "user_connected": false,
 "uuid": 53
}
{
 "adapters": [
 [
 1,
 -66,
 "1/D0:45:A7:7E:A9:F0"
]
],
 "best_adapter": 1,
 "expires": "2017-05-19 15:00:16.283000",
 "low_voltage": false,
 "pending_data": false,
 "signal_strength": -66,
 "user_connected": true,
 "uuid": 54
}

Here we see a number of devices that our gateway found over bluetooth as well
as our virtual device. You can connect to any device by uuid in the same manner
so you don’t have to worry about which devices are physical vs virtual.

Next Steps

After this tutorial you should be ready to set up your own IOTile Gateway that
translates devices from one communication protocol to another. You should also
be able to use what you learned in the previous tutorials to add virtual devices
to your gateway that let you control things directly connected to the gateway
computer or configure the gateway itself as if it were an IOTile Adapter.

You can read on to figure out how to configure your own physical IOTile devices
using the SensorGraph language.

Advanced SensorGraph Usage

The last few tutorials covered the basics of how to write and simulate a sensor
graph. Now we’re going to dive deeper into how to actually program a sensor
graph into a device using the iotile tool. We’re also going to cover how to
semihost a sensor graph where it runs on your computer but executes its
RPCs on an actual IOTile device.

Goals

	Understand how to use the iotile-sgcompile program to display detailed
information on how a sensor graph works internally.

	Understand the different kinds of streams and their uses

	Understand how the sensor graph optimizer works and how to disable it
if needed.

Background

We’ve seen how the SensorGraph language lets you specify at a very high level
how an IOTile device should be wired together to create a specific application.
You can specify how data should be collected by the device, what triggers should
cause actions to be executed and what data should be sent remotely for long
term storage.

It’s not necessarily clear though, why the language is called Sensor*Graph*.
There’s nothing particularly graph-like about the language as we’ve discussed it
so far. However, the low level representation of the SensorGraph files that
you write is actually a data processing graph where DataStreams are linked
together with processing functions to create complex chains of actions that
are simultaneously powerfully expressive and also easy to verify and understand.

Conceptually a sensor graph is made up of Nodes that correspond with
processing functions. Each Node has several inputs that are each FIFOs so
multiple values can accumulate in an input and then be processed at once.
The node has a Trigger that determines when it should run its
processing function on its inputs to produce an output.

The input FIFOs are called Stream Walkers. Stream walkers are FIFOs
that are attached to a DataStream and remember the last value in that Stream
that each node has processed. You can have multiple stream walkers on the
same stream that walk that stream at a different rate. For example, say you
have a stream named ‘output 1’ that has two nodes connected to it. The first
node processes readings one at a time every time they come in so its stream
walker will always stay up to date with the latest reading. The second node,
though, could be configured to average its input every 60 readings, so its
stream walker would accumulate 60 readings before the node fires.

The key point is that whenever a reading is pushed into a stream, it is as if
a copy of the value is pushed to each stream walker
separately and those stream walkers function as independent FIFOs. So, one
could have 60 readings in it while another has 5 even though the have the
same stream name.

In this tutorial we’re going to use the iotile-sgcompile program to compile
our high level SensorGraph down into the actual graph nodes and edges that
are simulated and programmed into a physical IOTile device.

Key Concepts

	SensorGraph Node

	A node in the underlying graph of processing functions that make up a
sensor graph. Nodes have a single processing function, up to 2 inputs and
a single output. They also have a set of triggering conditions that
determine when the node triggers its processing function based on its
input conditions. When the node triggers it uses its processing function
to transform its inputs into zero or more outputs.

	Node Trigger

	A specific triggering condition that determines when a Node activates
is processing function. Triggers can be based either on the latest value
present in an input or on the number of readings accumulated in the
input Stream Walker.

	Stream Walker

	A FIFO that attaches to a DataStream and walks over its values. Walkers
keep track of where they are in a DataStream independent of all other
Stream Walkers attached to that same stream so they can walk streams at
different rates.

Seeing the Actual Graph

Consider the following sensor graph:

every 10 minutes
{
 call 0x8000 on slot 1 => unbuffered 2;
}

on value(unbuffered 2) == 5
{
 call 0x9000 on slot 2;
}

Let’s compile it using iotile-sgcompile and see the underlying graph that
is produced (save the above example as example.sgf):

(iotile) > iotile-sgcompile example.sgf -f nodes
(system input 2 always) => counter 1024 using copy_all_a
(system input 3 always) => counter 1025 using copy_all_a
(counter 1024 when count >= 60) => counter 1026 using copy_latest_a
(counter 1026 when count == 1 && constant 1024 always) => unbuffered 2 using call_rpc
(unbuffered 2 when value == 5) => unbuffered 1024 using copy_latest_a
(unbuffered 1024 when count == 1 && constant 1025 always) => unbuffered 1025 using call_rpc

First note that we called the iotile-sgcompile program, passed it our
sensor graph file and asked for the output in the ‘node’ format, which is the
generated graph.

There were 6 nodes generated in the graph. All the nodes have the same
format:

(<input 1> trigger [&&, ||] [<input 2 trigger]) => <output> using <processor>

Basically they are written as (inputs) => output where there can either be
one or two input streams and always a single output stream. The processing
function to use is also explicitly specified by name.

Let’s dissect the first node:

(system input 2 always) => counter 1024 using copy_all_a

In prose, this says:

Always, when there is a reading in the 'system input 2' stream, run the
function copy_all_a that copies it to the 'counter 1024' stream.

This node will always activate whenever new data is placed into
system input 2.

Note

system input 2 is special in that it is a 10 second tick supplied by the
sensor graph engine that is used internally to create whatever timers are
needed to run other nodes at specific intervals.

Let’s look at a more complicated node:

(counter 1026 when count == 1 && constant 1024 always) => unbuffered 2 using call_rpc

In prose, this says:

Whenever there is exactly one reading in the counter 1026 stream, run the
function call_rpc. Call_rpc uses its second input (the value in constant
1024) to determine what RPC to call on what tile. Technically there
are two triggers for this node combined with the AND function:

count(counter 1024) == 1 AND always

The always trigger is always true so the node fires whenever
count(counter 1024) == 1

Triggers can be based on the number of readings available in a stream or they
can be based on the value of the latest reading in a stream as in:

(unbuffered 2 when value == 5) => unbuffered 1024 using copy_latest_a

In prose this says:

Whenever the latest value in the `unbuffered 2` stream is equal to 5,
copy it to unbuffered 1024.

Important

When a node is triggered, it typically consumes all of the data that is
pending on all of its inputs, returning their counts back to 0 (except
for constant streams that are inexhaustible).

So if you have a node like:

(counter 1 when count >= 60) => output 1 using copy_latest_a

This will fire exactly once for every 60 readings added to counter 1
because each time it runs it will reset the count on its input StreamWalker
back to zero.

Different Kinds of Streams

There are currently 6 different classes of streams. Their only differences are
in how many past values are remembered and whether a count is kept
of how many readings have been pushed to the stream.

	Buffered Streams

	Buffered streams can be considered as normal FIFOs. All readings pushed to
a buffered stream are remembered until the device runs out of storage space
and the count of available readings corresponds with the number of readings
that have been pushed to the stream with each pop() operation returning the
next oldest reading.

	Unbuffered Streams

	Unbuffered streams only ever store 1 value. They have no space to store
historical data and they also don’t lie to you about how many readings are
available so an unbuffered stream can only ever have a count of 0 or 1
depending on whether it has data available or not.

	Counter Streams

	Counter streams are unbuffered so they only store a single reading, however,
they keep an accurate count of how many times they have been pushed to and
allow you to pop from them that many times, each time returning the same
latest value that was last pushed. Counter streams are primarily useful
for creating efficient timers but their values are typically not used, just
their counts.

	Input Streams

	Input streams are the global inputs to a sensor graph. They are the roots
of the processing graph. The only entry points for new data into a sensor
graph are inputs. They are unbuffered.

	Output Streams

	Output streams are buffered streams but stored in a different region of
persistent storage from buffered streams so that overflowing the buffered
storage region does not overflow the output storage. As the name suggests,
output streams typically represent the outputs of a device that should be
saved historically.

	Constant Streams

	Constant streams always return a constant value. They can never be
exhausted and are useful for two primary purposes. The first is to embed
constant data in a sensor graph like what RPCs to call. The second is to
create latches that are used to derive timers gated on specific events.

For example, if the user creates a when connected block that should call
an RPC every second while a user is connected to the device, internally a
constant stream is used to create a latch that is 1 when the user is
connected and 0 otherwise. This is combined with a 1 second clock to
create a derived 1 second clock that is only active when a user is
connected.

Users need to explicitly specify the types of each stream they want to allocate
since it’s not possible for the SensorGraph compiler to infer which would be
most appropriate in most cases.

Understanding the Optimizer

Since SensorGraphs allow their user to very explicitly say what should happen
as data comes into the device and what data is considered an output, the
compiler can aggressively optimize the underlying graph as long as it
guarantees that the behavior for each input is unchanged in so far as the
outputs are concerned.

The optimizer works by taking an initial sensor graph and either removing
or modifying nodes and triggers if it can prove that the resulting
configuration is identical to the initial one in terms of user visible
behavior. The optimizer makes no assumptions about what happens inside of
an RPC and just works on the sensor graph structure itself.

If you want to see what the optimizer does or need to disable it, you can
specify the –disable-optimizer flag to the sensorgraph compiler.

Next Steps

After finishing all of these tutorials you should be ready to build your
own IOTile based data gathering and control system by putting all of the
pieces we’ve covered together to fit your needs.

Introduction to SensorGraph

Previous tutorials have covered how to create virtual IOTile devices that expose
functionality in terms of RPCs that can be called to, for example, read a sensor
or flip a switch. We’ve also seen how we can interact with those devices from
a computer using CoreTools to send commands and extract data over a variety
of communications channels.

However, we haven’t yet touched on how you could embed a program into one of
these devices so that it can be left running and autonomously collect data
or take actions.

For example, lets say you have a device that can measure the temperature of the
air in the room and you want to configure it to measure that temperature every
10 minutes and if its too hot, turn on the AC.

Basically you want a simple script that does the following:

every 10 minutes
{
 measure temperature
}

if temperature > upper_limit
{
 enable AC
}

In this tutorial we are going to cover how to write these scripts for an IOTile
device in a language called SensorGraph that makes it easy to write scripts
and verify that they work as intended before deploying them to a potentially
remote and mission critical location.

Goals

	Understand what SensorGraph is at a high level and what the major components
of the sensor graph system are.

	Be able to write and simulate SensorGraph scripts on your computer using the
iotile-sensorgraph package in CoreTools.

	Understand the major statements and blocks that make up a SensorGraph script.

Background

The way to think of an IOTile device is as a set of APIs, just like a web
service would have a set of REST APIs that you can wire together to make an
application.

Without an Application tying the APIs together the system won’t do anything, it
will just sit and wait for someone to call one of its APIs (like we did in
previous tutorials).

Most applications that we want to write on IOTile devices are fairly small and
just wire together a few APIs to collect data and then prepare it for either
remote transmission to the cloud or use it to control some local process.

There are three parts to an IOTile application:

	Configuring the device: An IOTile device is made up of several different
modules called tiles. These tiles are designed to be used in a variety of
different ways, so you may need to configure them to be in the right mode
of operation for what you want. Configuration of all tiles happens once
when the IOTile device turns on.

	Wiring tiles together to collect data: Once the IOTile device is
configured, there needs to be a script that it runs through that tells it
what RPCs to call on which tiles in order to collect data or control things.
This script could either be time driven like ‘collect data every 10 minutes’
or event driven as in ‘when this happens to this’. Combinations of time
driven and event driven actions are also possible.

	Choosing what data to report: Often times IOTile devices are designed to
send data they collect to a remote server in the cloud for further processing.
Usually you only want a subset of the data that an IOTile device generates
to be sent remotely in order to save bandwidth, power or money. So, there
needs to be some rules in place that select what data gets sent remotely.

The selected data is packaged into Reports as described in a previous
tutorial. In this section we’re talking about how the device knows what
data should go into those reports and what data is only for internal use.

The part of the IOTile device that is responsible for choosing data for
remote transmission is a Streamer. Streamers determine what data is
sent, under what conditions it is sent, how retries are handled and what
report format to use (i.e. what level of security and robustness
guarantees are required).

Normally, the data that an IOTile device generates can be divided into two
classes:

	Realtime Data: Realtime data is continually being regenerated and does not
have any long term value. It could be, for example, the current temperature
of a device that is updated once per second. There is no need to keep more
than one current temperature reading around.

	Historical Data: Other data is specifically designed to be saved in long
term storage. For example, consider using that same temperature monitoring
device to record a profile of the temperature experienced by a package along
a multi day journey around the world. You want to keep historical readings
around because the point is to have a record, not just the latest value.

Because these two types of data are so common, IOTile Devices handle them
separately. Realtime data is referred to as unbuffered data and is never
stored in a persistent memory location like flash memory. It can change very
rapidly without wearing out any persistent storage medium.

In contrast, historical data is treated as buffered data and every value
written to a data stream marked as historical data will be saved securely and
assigned a globally unique identifier so that it can be robustly transferred
to a remote server and acknowledged that it was correctly received.

So, buffered data corresponds to data that should be tracked over time and
unbuffered is for realtime data and intermediate results that will be
overwritten when new data comes in.

Only the user knows what data should be buffered vs unbuffered so part of
designing a SensorGraph is specifying how to treat each data stream that
is generated.

Key Concepts

	Tile Configuration

	A series of variable assignments that are performed on an IOTile module in
order to prepare it for operation. These configurations can do things like
set what units it reports data in or selecting what sensor is plugged into
a tile that can work with many different kinds of sensors.

	Streamer

	A task running on an IOTile Device whose job is to send some subset of the
data generated by that device to a remote server in a configurable way.
Streamers choose what data to send, when to send it, how it is packaged
and how retries are handled if an initial attempt to send the data fails.

	Buffered Data

	Data that is tracked with a unique identifier and stored securely in
long term storage. Once buffered data is generated, it will stay around
until the device is forced to overwrite it due to a lack of space or it
is successfully transferred to a remote server.

	Unbuffered Data

	Data that is ephemeral and not persistently stored. Whenever a new reading
comes in, it overwrites that last unbuffered reading in the same data
stream.

Creating Your First SensorGraph

With this background information in hand, we’re ready to try out our first
complete sensor graph in a simulator so we can see how everything works.

Important

For this tutorial you will need to make sure the iotile-sensorgraph
package is installed:

pip install -U iotile-sensorgraph

In this tutorial, we’re going to write sensor graphs by example without diving
too much into the mechanics behind it. A later tutorial will go deeper into
how everything works behind the scenes.

Let’s start with a complete simple sensor graph that just calls an RPC every
10 minutes:

every 10 minutes
{
 call 0x8000 on slot 1 => output 1;
}

Basically we’re asking the device to call the RPC with id 0x8000 on the tile
located in slot 1 once every 10 minutes and to store the output in a stream named
output 1. Save this file as simple.sgf and then you can simulate it
in the sensor graph simulator named iotile-sgrun that is installed by the
iotile-sensorgraph package:

(iotile) > iotile-sgrun simple.sgf -s 'run_time 1 hour' -w 'output 1'
(600 s) output 1: 0
(1200 s) output 1: 0
(1800 s) output 1: 0
(2400 s) output 1: 0
(3000 s) output 1: 0
(3600 s) output 1: 0

In addition to the sensor graph file that we wanted to simulate, we also passed
a stop condition (-s ‘run_time 1 hour’) that stops the simulation after 1 hour
of simulated time has passed. We also told the simulator to watch (-w) the
stream named ‘output 1’ and report whenever data was written to it.

The output showed us that a 0 was output ever 10 minutes (600 seconds) for a
total of 6 readings in 1 hour.

This is a complete sensor graph that you could program into an iotile device
and have it take data every 10 minutes forever. It’s not that interesting
of a SensorGraph though, so we’ll add some more to it later.

Mocking RPCs

In our example above, the simulator called the RPC numbered 0x8000 and stored
its result in output 1. Evidently the RPC returned a 0.

By default, all simulated RPCs return 0.

You can override this behavior by specifying an explicit return value using
the -m option to the simulation. Let’s say we want to simulate an RPC that
returns 15 rather than 0:

(iotile) > iotile-sgrun simple.sgf -s 'run_time 1 hour' -w 'output 1' -m 'slot 1:0x8000 = 15'
(600 s) output 1: 15
(1200 s) output 1: 15
(1800 s) output 1: 15
(2400 s) output 1: 15
(3000 s) output 1: 15
(3600 s) output 1: 15

Note

There is a more advanced way to use the simulator called ‘semihosting’
where the RPCs are sent to an actual iotile device to run and the response
is returned to the simulator. This lets you test your sensor graph as if
it were running on an actual device while still being able to watch any
stream and accelerate the passage of simulated time to verify that the
sensor graph behaves as you would expect over time without having to have
an actual device running for that long.

How to use semihosting will be covered in the next tutorial.

The syntax for mocking an RPC is straightforward:

-m "<slot id>:<rpc number> = <value>"

- <slot id> should be either the literal value controller or 'slot X'
where X is a number >= 1.

- <rpc number> should be the same 16 bit number in either decimal or hex
that you enter into the sensor graph to identify the RPC you want to call.

- <value> should be an integer that will simulate what the RPC returned.
It is not currently possible to change what the mocked RPC returns over
time from the command line; it always returns the same thing.

For example:

- m "controller:0x2000 = 0x50"
- m "slot 5:1500 = 12"

Adding Control to a SensorGraph

The first sensor graph above just got data via an RPC and then saved it as
a buffered output. We used an every <time> block to specify how often
we wanted the RPC called. Now we’re going to introduce the on block that
lets us inspect and act on the values we get.

Let’s say our RPC represents temperature and we want to turn on the AC when
the temperature rises above a certain temperature (say 80 degrees). We can
express that as follows:

every 10 minutes
{
 call 0x8000 on slot 1 => unbuffered 1;
}

on value(unbuffered 1) > 80
{
 # In this example, 0x9000 is the RPC that turns on the AC
 call 0x9000 on slot 2;
}

on unbuffered 1
{
 copy => output 2;
}

This sensor graph will still log the temperature every 10 minutes but also
check if its value is greater than 80 degrees and call another RPC that turns
on the AC. (Note in a real life example, you would probably want another
on block to turn off the AC as well!)

Note

See how there are two ways to use the call statement. In the first call,
we specified that we wanted to keep track of the value returned by the RPC
so we gave it a name. In the second call, we didn’t care about the return
value of the RPC so we didn’t give it an explicit name.

Internally, the sensor graph compiler automatically allocated an unused
stream for this value and we’ll see in the next tutorial how this turns
into the actual rules that could be programmed.

Adding Realtime Data Outputs

Most IOTile devices don’t have screens. However, users can walk up to them with
their phones and access their virtual screen over Bluetooth Low Energy.

When a user is standing next to an IOTile device, they probably don’t want to
wait 10 minutes to see the next data point, so there needs to be a way to
trigger faster data outputs when a user is connected to the device.

This functionality is builtin to sensor graph and can be enabled using a when
block as in the example below:

every 10 minutes
{
 call 0x8000 on slot 1 => unbuffered 1;
}

when connected to controller
{
 on connect
 {

 }

 every 1 second
 {
 call 0x8000 on slot 1 => unbuffered 10;
 call 0x8001 on slot 1 => unbuffered 11;
 }

 on disconnect
 {

 }
}

The when connected to controller block specifies actions that should
only be taken when a user is connected. The on connect and on disconnect
blocks are not required if they are unused but are included here for reference.

This sensor graph says that when a user is connected two RPCs should be made
every second and the results stored in unbuffered streams 10 and 11.

The on connect and on disconnect blocks allow you to do any required setup
or cleanup on the device that might be necessary to prepare it for high
resolution outputs and then put it back into low power autonomous mode when the
user disconnects.

Now let’s simulate this for 10 seconds:

(iotile) > iotile-sgrun simple.sgf -s 'run_time 10 seconds' -w "unbuffered 10" -w "unbuffered 1"
(iotile) >

We didn’t see any output because no user was connected and we didn’t wait 10
minutes for a reading.

So let’s wait 10 minutes to make sure the readings are happening:

(iotile) > iotile-sgrun simple.sgf -s 'run_time 10 minutes' -w "unbuffered 10" -w "unbuffered 1"
(600 s) unbuffered 1: 0

Now let’s simulate a connected user with the -c flag:

(iotile) > iotile-sgrun simple.sgf -s 'run_time 10 seconds' -w "unbuffered 10" -c

(1 s) unbuffered 10: 0
(2 s) unbuffered 10: 0
(3 s) unbuffered 10: 0
(4 s) unbuffered 10: 0
(5 s) unbuffered 10: 0
(6 s) unbuffered 10: 0
(7 s) unbuffered 10: 0
(8 s) unbuffered 10: 0
(9 s) unbuffered 10: 0
(10 s) unbuffered 10: 0

Notice how we now got realtime outputs now in the stream unbuffered 10 every
second.

Selecting Data to Stream

In the beginning of this tutorial, we laid out three jobs for a SensorGraph:

	Configuring tiles

	Wiring together RPCs into an application

	Selecting data to send remotely

We’ve focused on step 2 so far. Step 1 will be addressed in the next tutorial
so we will briefly touch on step 3 now.

As mentioned, the way to send data from an IOTile Device is referred to as
Streaming and is done by a Streamer.

When you write a sensor graph you need to explicitly say what streamers you want
to set up so that the device can be configured properly. Just like there are
two kinds of data produced by an IOTile device, there are also two kinds of
streamers: realtime and historical.

Realtime streamers report the latest value in a stream without worrying about
robustness, packaging it, or retrying the transmission if its not successful
because it’s expected that they can just send an updated value when its
available.

Historical (or Robust) streamers take much more care in signing and optionally
encrypting the data before sending it and keeping track of exactly which readings
have been acknowledged as successfully received by the cloud so that no data can
be lost. Historical data is resent until it is successfully received.

The syntax for specifying streamers is straightforward. You just specify
what data streams you want to send and whether you want to send them as realtime
or historical data:

[manual] (signed | realtime) streamer on <selector>;

The manual keyword will be covered in the next tutorial but it gives the user
more flexibility in when the streamer tries to send data. By default streamers
are “automatic”, which means they try to send data whenever it is available.

You choose whether data is realtime or historical by specifying the
keywords realtime or signed and finally you choose what data to send by
specify a Stream Selector. This can be just the name of a stream or it can
be a wildcard like all outputs.

Here are a few examples:

manual signed streamer on all outputs;
realtime streamer on unbuffered 10;

These two streamers say that we would like to report realtime data whenever it
is available on the unbuffered 10 stream and we would also like to send
all output streams as historical data that will be triggered manually.

In the next tutorial, we will cover how to trigger manual streamers from a
sensor graph.

Next Steps

Read about how to write more advanced sensor graphs as well as how to program
or test them with actual devices.

The SensorGraph Language

In this tutorial we’re going to cover the main statements that you can write in
a sensor graph and what they do.

Goals

	Understand the key statements and blocks that make up the sensor graph
language.

Background

Like most languages, there are two kinds of elements in a sensor graph:
Blocks and Statements.

Blocks are containers for statements that are used to influence how the
statements are compiled. All blocks consist of a single line that starts the
block and then zero or more statements contained in curly braces.

Statements are the actual commands that you want your IOTile device to run.
An empty block should have no effect. All statements are a single line
and end with a semicolon.

Whitespace is ignored and comments may be included anywhere by prefacing a
line with the # character. There are no C-like multiline comments.

Call Statements

The most basic statement in a sensor graph is the call statement that calls
an RPC on a tile. It’s syntax is:

call <rpc id> on <slot id> [=> <output stream>];

Important

The way to interpret a syntax definition like the one above is as follows:

	Anything in < > characters should be substituted in an actual command
with a specific value. It is just a placeholder.

	Any word or token not enclosed in < > characters must be literally
included as part of the statement. So, the keyword ‘call’ is required
to start a call statement.

	Anything in a [] is optional.

This statement calls an RPC and optionally stores the result in
<output stream>. It must be used inside of a block that allows triggering
statements like an on block or every block.

	<rpc id> should be a number.

	<slot id> should be a Slot Identifier.

	<output stream> should be Data Stream.

Copy Statements

Copy statements copy a value from an input stream to an output stream:

copy [all | count] [<input stream>] => <output stream>;

There are three ways you can copy things:

	copy all copies all readings that have not been processed yet from the input
to the output stream.

	copy just copies the latest reading, ignoring any readings that may have
been pushed before this statement triggered.

	copy count copies the number of readings currently in the input stream to
the output stream.

If an explicit input stream is given, the data is copied from that stream,
otherwise there is always an implicit trigger stream defined in every block.

Implicit streams are useful inside on blocks since the copy command would
then work with the stream data that triggered the on condition.

Trigger Statements

Trigger statements trigger the streaming of data inside manual streamers. Their
usage is:

trigger streamer <index>;

where <index> is the index of the streamer you want to trigger, i.e. the first
streamer defined is index 0, the second is index 1, etc. Trigger statements
are used to trigger manual streamer that don’t try to automatically send
data whenever it is available.

Streamer Statements

You define a streamer with a streamer statement:

[manual] [realtime] streamer on <stream selector> [with streamer <index>];

If you specify a with clause, this streamer will trigger whenever the other streamer
identifier by index triggers.

You can specify either realtime or historical streamers by specifying realtime
or nothing.

The Every Block

Every blocks run the commands inside of them every given time interval. The
syntax is:

every <time interval>
{
 <statement 1>;
 ...
 <statement N>;
}

Each statement (1 through N) will be called exactly once in order every time
interval.

	<time interval> should be a TimeInterval.

The On Block

On blocks run statements when a specific event happens. They are like if
statements in other languages. There are three possible triggers for an
on block:

on value(<stream>) <op> <reference>
{
 <statements>...
}

on count(<stream>) <op> <reference>
{
 <statements>...
}

on <named event>
{
 <statements>...
}

The first on block triggers when a comparison between the value in a stream
and a constant reference value is true.

The second on block triggers when a comparison betwen the number of readings
in a stream and a constant reference value is true.

The third on block triggers when the specific named event happens. Currently
the major named events are connect and disconnect which are defined only
inside of a when connected block.

The possible comparison operations are: <, <=, ==, >, >=.

You cannot nest another block inside of an on block.

The When Block

When blocks let you conditionally trigger statements to happen only when a
user is connected to a device. They can contain on blocks and every blocks,
which can in turn contain statements:

when connected to <slot id>
{
 on connect
 {
 <statements>
 }

 every <time interval>
 {
 <statements>
 }

 on disconnect
 {
 <statements>
 }
}

The <slot id> is the tile that the user is connected to, in case there are
multiple communications tiles in a device. This is almost always controller.

Statements inside the on connect block will run once when the user connects
and statements in on disconnect will run once when the user disconnects.

Statement inside an every block nested inside a when block will run every time
interval while a user is connected.

The Config Block

If you need to specify configuration variables for a tile, you do so with
set statements inside a config block:

config <slot id>
{
 set <variable id> to <value> as <type>;
 <more set statements>
}

Each set statement stores a value that will be sent to the tile in <slot id>
every time it powers on.

	<variable id> is a 16 bit identifier for the config variable you want to set

	<value> should be an integer

	<type> must match the type of the variable defined for the tile you are trying
to configure and be one of uint8_t, uint16_t, uint32_t

Note

Currently, knowing what config variables to set and what types they are
requires having access to a TileBus configuration file that is compiled as
part of the tile’s firmware. In the future, these will be integrated with
the SensorGraph language so that you will be able to specify config
variables by name.

Slot Identifiers

Slot identifiers, when used as part of a statement specify the tile on which
an action should be taken. Their syntax is:

controller

OR

slot <number>

Time Intervals

Time intervals can be specified down to 1 second precision in units of
seconds, minutes, hours, days, months or years:

<number> (seconds | minutes | hours | days | months | years)

The unit can either be singular second or plural seconds with the same
meaning. A month is considered to be 30 days exactly and a year is considered
to be 365 days exactly.

Stream Identifiers

Stream Identifiers specify a single stream that data can go in:

[system] (input | output | buffered | unbuffered | counter | constant) <number>

System streams are for internal use and should not be created by users but they
may be used for a variety of purposes. The number must be between 0 and 1023
(inclusive). Streams with numbers between 1024 and 2047 are allocated and
used internally by the sensor graph compiler.

The meanings of the various types of streams is covered in the next tutorial.

Stream Selectors

Stream selectors can either select a single stream or an entire class of
streams. Their syntax is:

Stream Identifier

OR

all [system] (inputs | outputs | buffered | unbuffered | counters | constants)

Next Steps

Read about advanced sensor graph topics and the low level details of how your
statements get turned into commands that IOTile devices can safely execute.

Deploying Sensor Graphs

In the last tutorial we covered the basics of how to make your own SensorGraph.
Now we are going to talk about how to program that sensor graph into an
IOTile device and how to “semihost” it so that you can test out the RPCs without
needing to fully program it into the device.

Goals

	Be able to semihost a sensor graph to test RPCs on an actual device

	Be able to program a sensor graph onto a device for autonomous operation

Background

There are two big parts to a sensor graph. The first is the actual graph
that is coordinating what RPCs to call in order to acquire data or control
something. The second is the underlying hardware that implements those RPCs.

Semihosting is running the sensor graph on your computer but delegating the
RPCs to an actual hardware device. This is useful because:

	It means you can accelerate the passage of time to uncover subtle bugs that
only manifest over a long period of operation.

	It means you have access to all of the watch infrastructure of the simulator
to see in detail what is happening in each stream. This is more difficult
once the sensor graph is actually embedded fully into a physical device.

Key Concepts

Semihosting

Running a sensor graph on your computer while dispatching the RPCs to be
run on an actual device. This device is connected to using the same
HardwareManager based methods as the previous tutorials, so the device
can be anywhere in the world or even virtual.

Semihosting a Sensor Graph

Note

In order to run the following commands successfully, make sure that you
have the iotile-test package installed in order to have the right test
virtual device:

pip install -U iotile-test

Semihosting a sensor graph is really easy. You just need to know two things:

	the port string for the DeviceAdapter that you want to use to connect to your
IOTile device. This is the same string that you use with the iotile tool
(i.e. the port string in iotile hw –port=<port string>).

	the device id of the device that you want to connect to (like 0xABCD)

Simply pass the port as a -p argument to iotile-sgrun and the device id in
a -d parameter and then simulate the sensor graph as normal. The simulator
will connect to the device using the supplied information and run all RPCs
on the device.

For example, save the following sensor graph as test.sgf:

every 10 seconds
{
 call 0x8000 on controller => unbuffered 2;
 call 0x8002 on controller => unbuffered 2;
}

on value(unbuffered 2) == 5
{
 call 0x8001 on slot 1 => output 1;
}

We’re going to semihost using a virtual device in iotile-test called
(appropriately) sg_test. The sg_test device just has two RPCs that are useful
for learning sensor graphs:

controller: 0x8000 returns a random number between 0 and 100
slot 1: 0x8001 returns the fixed integer 42

Let’s try it out:

(iotile) > iotile-sgrun test.sgf -p virtual:sg_test -d 1 -s 'run_time 1 minute' -w 'unbuffered 2'
(10 s) unbuffered 2: 80
(20 s) unbuffered 2: 59
(30 s) unbuffered 2: 25
(40 s) unbuffered 2: 45
(50 s) unbuffered 2: 24
(60 s) unbuffered 2: 1

We can also run for along time to see the random value trigger our second
sensor graph rule on unbuffered 2 == 5:

(iotile) > iotile-sgrun test.sgf -p virtual:sg_test -d 1 -s 'run_time 1 hour' -w 'output 1'
(490 s) output 1: 42
(530 s) output 1: 42
(610 s) output 1: 42
(1290 s) output 1: 42
(1810 s) output 1: 42
(2360 s) output 1: 42
(2870 s) output 1: 42

Note the random timestamps since those were the random times that RPC 0x8000
on the controller returned 5. Your results should vary.

Important

You can still mock RPCs and those will override RPCs defined in the
semihosting device. This can be useful for injecting unlikely conditions
into more complicated sensor graphs for testing.

Let’s mock RPC 0x8001 on slot 1 to return 50 rather than 42:

(iotile) > iotile-sgrun test.sgf -p virtual:sg_test -d 1 -s 'run_time 1 hour' -w 'output 1' -m "slot 1:0x8001 = 50"
(40 s) output 1: 50
(390 s) output 1: 50
(2260 s) output 1: 50
(2760 s) output 1: 50
(3250 s) output 1: 50
(3360 s) output 1: 50

Programming Into a Device

Note

Before programming a sensor graph to a device, your environment will
need its appropriate support package. In this example, we will need
the proxy image for the nrf52832:

pip install iotile-support-con-nrf52832-3

Currently the best way to program a sensor graph into an actual device is to
use a combination of the iotile-sgcompile and iotile tools. Given your
sensor graph, compile it with an output format of snippet. This produces
a list of commands that can be entered into the iotile tool to program
the sensor graph onto a device. You can just pipe this to the iotile tool
to program the sensor graph.

For example, let’s look at the snippet corresponding to the test.sgf that
we created above:

(iotile) > iotile-sgcompile test.sgf -f snippet
disable
clear
reset
add_node "(system input 2 always) => counter 1024 using copy_all_a"
add_node "(system input 3 always) => counter 1025 using copy_all_a"
add_node "(counter 1024 when count >= 1) => counter 1026 using copy_latest_a"
add_node "(counter 1026 when count == 1 && constant 1024 always) => unbuffered 2 using call_rpc"
add_node "(counter 1026 when count == 1 && constant 1025 always) => unbuffered 2 using call_rpc"
add_node "(unbuffered 2 when value == 5) => unbuffered 1024 using copy_latest_a"
add_node "(unbuffered 1024 when count == 1 && constant 1026 always) => output 1 using call_rpc"
set_constant 'constant 1024' 557056
set_constant 'constant 1025' 557058
set_constant 'constant 1026' 753665
persist
back
config_database
clear_variables
set_variable 'controller' 8192 uint32_t 1
back
reset

You can see how these are just iotile tool commands. They are meant to be
entered in the controller sensor_graph context in the iotile tool while
connected to an IOTile device.

So the easiest way to program this into a device is:

(iotile) > iotile-sgcompile test.sgf -f snippet | iotile hw --port=<port> connect <device id> controller sensor_graph

When the command terminates the new sensor graph will be programed into the
device and the device will have reset itself to start running the sensor graph.

Simulating in Realtime

If you want to simulate your sensor-graph in real time, i.e. waiting 10 minutes
for an every 10 minutes block to fire, you can do so by passing the -r
flag to the simulator.

Next Steps

You can cover more advanced sensor graph concepts in the next tutorial or
start writing and testing your own sensor graphs!

Understanding IOTile Reports

All data from IOTile devices comes in the form of Reports. As the name
suggests, a Report just contains a list of data that the IOTile Device wants
to report to the cloud. This data is packed into a specific structure for
transportation to the cloud and then unpacked and inspected to make sure it
arrived correctly and originated from the IOTile Device that it claimed to
come from.

In this tutorial, we’re going to build our own reports in Python to get a
feel for how the process works and the various classes involved.

At the end we’ll talk about how you could upload a report to the cloud on
behalf of a device.

Goals

	Understand how IOTile devices report data and how they package it into
reports for transmission.

	Introduce the classes in iotile-core that represent data from IOTile
devices and their API.

	Understand the distinction between realtime data and signed Robust Reports.

Background

Before talking about how CoreTools handles data from IOTile Devices, we need to
cover how IOTile Devices generate data in the first place.

IOTile Devices are designed to produce timeseries of discrete data points.
Think of a soil moisture sensor programmed to record the water content in the
soil every 10 minutes. It produces a single data stream which is a series of
discrete soil moisture readings (i.e. single numbers) every 10 minutes.

Now think of a more complicated IOTile Device that measures soil moisture
every 10 minutes but also measures the temperature of the air every hour and
wants to report both of those numbers. Clearly, there needs to be a way to
distinguish these two data streams so that users know which numbers are
temperatures and which are moisture values.

IOTile Devices distinguish different sensor readings by using a 16-bit
Stream identifier (a Stream ID), where each different Stream corresponds
to a different type of reading.

All of the data entries in a Stream are time, value pairs, i.e a single reading
that occurred at a specific time. Most IOTile Devices timestamp their data with
1 second precision. Currently, each data value saved in a Stream must fit in
32 bits, so it can either be an integer or encoded/packed into an integer.

For example, realtime water flow measurements might report their results as 2
16 bit numbers packed together with one number representing the fractional
part of the flow and the other number representing the whole number part of the
flow (a 16.16 fixed point format).

To save space on small embedded microcontrollers, there are no explicit units
included in data sent from IOTile Devices.

Important

it us up to the user to make sure that they understand the implicit
units of the data being sent from an IOTile Device, since just bare
numbers are transmitted from the devices. The data in each Stream
must all have the same units.

Since many IOTile devices are not directly connected to the internet, they
typically save up data to transmit periodically to the cloud in the form of a
Report. A Report is simply a data packet with 1 or more readings in it
and some associated header and footer information identifying where it came
from and what it contains. Reports may be encrypted or cryptographically
signed if desired to provide data privacy and verification of origin.

Key Concepts

	Reading

	An individual time/value data entry recorded by an IOTile Device. Each
reading is timestamped and the reading value must fit in 4 bytes (32 bits).
Every reading must be associated with exactly 1 Stream.

	Stream

	A time series of Readings that all have the same units and should be
logically grouped together. Usually Streams come from a single sensor.

	Stream ID

	A 16-bit number that identifies a stream. Stream IDs are stored with each
Reading so that the device can remember what Stream that Reading is
contained in.

	Report

	A Report is a data packet containing one or more Readings from one or more
Streams that is packaged together for transmission from an IOTile Device to
a remote user, usually either a mobile phone or the cloud.

There are different report formats that can be used depending on the
communication channel constraints and the user’s desired privacy and
security levels for the data.

How CoreTools Handles Reports

Once data is received from an IOTile Device, it is decoded into an
IOTileReport subclass. All reports processed through CoreTools are
represented as subclasses of IOTileReport.

Each IOTileReport contains one or more IOTileReadings which are the way that
CoreTools represents Readings coming from an IOTile Device.

The IOTileReading class is pretty simple.

	
class iotile.core.hw.reports.IOTileReading(raw_time, stream, value, time_base=None, reading_id=None, reading_time=None)[source]

	Base class for readings streamed from IOTile device.

Each reading represents a single time/value pair sent from an IOTile Device.
Since many IOTile Devices do not have a hardware realtime clock, the timestamp
that is assigned to a reading may only be a relative interval from a fixed
event in the past, like the time the device turned on.

If the user knows the absolute time for this event they can pass it as a datetime
in time_base to turn the relative reading timestamp into an absolute datetime
accessible as reading_time.

	Parameters

	
	raw_time (int [https://docs.python.org/3/library/functions.html#int]) – the number of seconds since the device turned on
when the reading was taken

	time_base (datetime) – An optional estimate of when the device was
last turned on so that we can calculate the actual time of the
reading

	reading_time (datetime) – An optional UTC time when this event was acquired.
If combined with time_base, this value will take precedence and time_base
and raw_time will be ignored.

	reading_id (int [https://docs.python.org/3/library/functions.html#int]) – An optional unique identifier for this reading that allows
deduplication. If no reading id is passed, InvalidReadingID is used.

	stream (int [https://docs.python.org/3/library/functions.html#int]) – The stream that this reading is part of

	value (int [https://docs.python.org/3/library/functions.html#int]) – The raw reading value

	
classmethod FromDict(obj)[source]

	Create an IOTileReading from the result of a previous call to asdict().

	Parameters

	obj (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary produced by a call to IOTileReading.asdict()

	Returns

	The converted IOTileReading object.

	Return type

	IOTileReading

	
asdict()[source]

	Encode the data in this reading into a dictionary.

	Returns

	A dictionary containing the information from this reading.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

There are two major Report Formats that we are going to be using in this
tutorial. The first is the IndividualReportFormat. Individual reports
contain a single reading and are used by IOTile devices to communicate
real time data to a connected user that should not be stored persistently in the
cloud.

Important

Readings sent in Individual reports cannot be stored persistently in
iotile.cloud since they do not contain the required unique reading
identifiers to allow the cloud to deduplicate readings received from
multiple sources. They are only used for transmitting ephemeral,
realtime data.

The second major report format is the SignedListReport. Signed list reports,
as the name suggests contain a list of readings, possibly from multiple streams
and can be cryptographically signed to ensure that they came from the device
they claim to come from.

Simulating Realtime Data

Note

This section builds on the virtual device concepts we used in the first
tutorial on Creating Your First IOTile Device. If you want an explanation
for those concepts you should do that tutorial before continuing.

We’re going to create a simple virtual IOTile Device that streams realtime
data “temperature” every second. The data will just be a random number
between 32 and 100.

Just like in the first tutorial, create a class for the virtual device:

"""Virtual IOTile device for CoreTools Walkthrough."""

import random
from iotile.core.hw.virtual import SimpleVirtualDevice

class DemoVirtualDevice(SimpleVirtualDevice):
 """A simple virtual IOTile device that streams fake temperature.

 Args:
 args (dict): Any arguments that you want to pass to create this
 device.
 """

 def __init__(self, args):
 super(DemoVirtualDevice, self).__init__(1, 'Demo02')

 # Create a worker that streams our realtime data every second
 self.create_worker(self._stream_temp, 1.0)

 async def _stream_temp(self):
 """Send a fake temperature reading between 32 and 100."""

 await self.stream_realtime(0x1000, random.randint(32, 100))

Save your device file as demo_streamer.py.

This time we’ll scan for the device before connecting to it. Scanning in real life will display all of the devices you are able to connect to, as well as the unique id (uuid) of each device. You can then connect to it using the
iotile tool connect:

(iotile-virtualenv) > iotile hw --port=virtual:./demo_streamer.py
(HardwareManager) scan
 {
 "connection_string": "1",
 "expiration_time": "2017-05-26 13:06:54.800662",
 "signal_strength": 100,
 "uuid": 1
 }
(HardwareManager) connect 1
(HardwareManager) enable_streaming
(HardwareManager) count_reports
1
(HardwareManager) count_reports
2
(HardwareManager) count_reports
3
(HardwareManager) quit

Notice how we used the enable_streaming function to inform the IOTile Device
that we wanted to receive reports from it. Then we used the count_reports
function to count how many reports we had received. It should increase by one
every second when a new reading comes in.

Note

There is not currently a good way to view the contents of the reports in
the iotile shell tool. To see what the reports contain, we need to write
a python script that looks at the IOTileReport objects directly.

Now, let’s write a python script that prints out the realtime data as it comes
in:

from iotile.core.hw.hwmanager import HardwareManager
from iotile.core.hw.reports import IndividualReadingReport, IOTileReading

with HardwareManager(port='virtual:./demo_streamer.py') as hw:
 hw.connect('1')
 hw.enable_streaming()

 # hw.iter_reports() will run forever until we kill the program
 # with a control-c so make sure to catch that and cleanly exit
 # without printing an exception stacktrace.
 try:
 for report in hw.iter_reports(blocking=True):

 # Verify that the device is sending realtime data as we expect
 assert isinstance(report, IndividualReadingReport)
 assert len(report.visible_readings) == 1

 reading = report.visible_readings[0]
 assert isinstance(reading, IOTileReading)

 print("Received {}".format(reading))
 except KeyboardInterrupt:
 pass

This script uses the hw.iter_reports() function to wait forever for each new
report to come and the let you print it out. Run it inside your virtual
environment to see it print out all of the readings your device is sending.

Save it as test_script.py and then run it to make sure everything works as
expected.

You should see a new reading come once per second. You can quit the program
by sending it a Ctrl-C event:

(iotile-virtualenv) > python ./test_script.py
Received Stream 4096: 34 at 2017-05-17 16:31:46.461000
Received Stream 4096: 49 at 2017-05-17 16:31:47.522000
Received Stream 4096: 73 at 2017-05-17 16:31:48.581000
Received Stream 4096: 55 at 2017-05-17 16:31:49.646000
Received Stream 4096: 72 at 2017-05-17 16:31:50.706000
Received Stream 4096: 59 at 2017-05-17 16:31:51.763000
Received Stream 4096: 36 at 2017-05-17 16:31:52.824000

Reference Information

We introduced two new functions on HardwareManager in this tutorial:
iter_reports and enable_streaming. For reference, their API documentation
is here.

	
class iotile.core.hw.hwmanager.HardwareManager(port=None, record=None, adapter=None)[source]

	A module for managing and interacting with IOTile Hardware

This context provides tools to configure, control, debug and program
any IOTile module. Specific functionality can be implemented in dynamically
loaded proxy objects that are designed to provide access to each IOTile.

To create a HardwareManager, you need to pass a port string that describes the
method to be used to connect to the IOTile device. The method should specify the
name of the connection method optionally followed by a colon and any extra information
possibly needed to connect using that method.

	Currently implemented ports are:

	bled112
jlink
jlink:mux=ftdi
virtual:…(e.g. simple)

	
enable_streaming()[source]

	Enable streaming of report data from the connected device.

This function will create an internal queue to receive and store
reports until the user looks at them and then inform the connected
IOTile device that is should begin streaming data.

This is done by telling the underlying DeviceAdapter managing the
communication with the device that it should open the device’s
streaming interface.

There is currently no way to close the streaming interface except
by disconnecting from the device and then reconnecting to it.

	
iter_reports(blocking=False)[source]

	Iterate over reports that have been received.

If blocking is True, this iterator will never stop. Otherwise
it will iterate over all reports currently in the queue (and those
added during iteration)

	Parameters

	blocking (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to stop when there are no more readings or
block and wait for more.

Next Steps

This concludes the tutorial on understanding data from IOTile Devices. We
looked mainly at how realtime data is streamed from IOTile devices and covered
the different report formats that exist inside CoreTools.

Future tutorials will cover creating signed reports that could be uploaded to
iotile.cloud. That process is a little more involved because the cloud requires
readings that come from devices to include unique identifier information to
ensure data integrity.

Serving Access to Virtual Devices

Up till now, we have focused on understanding RPCs and realtime data streaming
from IOTile devices. We’ve used python classes as virtual devices and
interacted with them directly on your computer.

However, virtual devices are much more powerful than just tutorial usage. One
of the key foundations of IOTile and CoreTools is that every part of an IOTile
system should be testable and mockable without complicated tools.

For example, let’s say you’re building a solution for monitoring water meters.
You have an IOTile device attached to the water meter that counts how much
water has passed through the meter and provides access to that data over
Bluetooth. You also have a mobile app that connects to the water meter and
allows you to download that data and see the flow rate through the pipe in
realtime when you’re connected.

It can be challenging to properly test your mobile app across a range of
conditions because you need to trick the water meter into showing you a wide
range of ‘fake’ flow rates and historical readings on demand.

For a large piece of industrial equipment, it’s not always clear how to ‘trick’
it into giving you the data you need to test other parts of the system and while
it’s easy to generate fake data on a computer, it’s not clear how to get your
computer to serve that data over Bluetooth in the same way the water meter would
so you can properly test your mobile app.

Virtual devices fix this problem. Any IOTile device (including its wireless
connectivity) can be replaced with a Virtual Device that exactly mimics it (
or whatever portion of it we need to test).

So, we can create a simple Virtual Device to act as a stand in for the
real IOTile Device and then have our computer serve it over Bluetooth for the
mobile app to talk to. Since the Virtual Device will be running on our computer
we’ll be able to make it generate whatever data we need for testing.

Goals

	Understand key CoreTools concepts of Device Adapters and Virtual Interfaces
and how to use them to mock IOTile Devices for testing.

	Introduce the virtual_device script that serves a Virtual Device over
a Virtual Interface so that users can connect to it without running
CoreTools.

	Show how we can interact with our Virtual Device over Bluetooth from
CoreTools.

Background

For past tutorials, we’ve been using VirtualDevices just as a simple tool to
illustrate some of the concepts in IOTile Device interactions like RPCs and
streaming data without needing physical hardware. To keep things simple,
we directly embedded the virtual device inside of a HardwareManager object.

However, that’s not the only way that a VirtualDevice can be used. In a more
general sense, HardwareManager loads plugins called DeviceAdapters that
tell us how to find and communicate with IOTile Devices. In past tutorials,
we’ve implicitly been using a VirtualDeviceAdapter plugin that lets
HardwareManager talk directly to a VirtualDevice object running in the same
process as the HardwareManager.

Another way to use a VirtualDevice is to attach it to a VirtualInterface that
exposes its RPCs and Streaming interface directly over a communication channel
like Bluetooth Low Energy.

In that case the VirtualDevice ceases to be just a tutorial aid and becomes
basically a normal IOTile Device that just happens to be written in Python
rather than embedded C.

The overall picture then looks like the figure below.

[image: Stack diagram showing virtual Interfaces]

The stack that allows interacting with a Virtual IOTile Device from another
computer as if it’s a real IOTile device over a communication channel like
Bluetooth Low Energy.

Users rarely need to interact directly with a VirtualInterface object. Just
as HardwareManager finds DeviceAdapters as needed and loads them by name, there
is a script included with iotile-core called virtual_device that will take
a VirtualDevice and provide access to it over a VirtualInterface.

Key Concepts

	DeviceAdapter

	A class whose job is to translate the abstract internal CoreTools
representations of RPCs, Reports and Readings into concrete packets that
can be sent to an IOTile Device connected via some communication mechanism.
For example, the way an RPC is represented over the air will be different
for a Bluetooth Low Energy connection than it would be for an HTTPS
connection between the user and the IOTile Device. Device Adapters provide
the translation layer between internal CoreTools objects and whatever needs
to be sent/received over a communication channel. There needs to be one
DeviceAdapter for each different communication mechanism that CoreTools
supports.

	VirtualInterface

	VirtualInterfaces are python implementations of the communication stack
inside an IOTile Device that allows it to communicate with CoreTools.
For example, a Bluetooth Low Energy VirtualInterface would allow a
Virtual Device to receive RPCs over Bluetooth LE using the Bluetooth stack
built-in to your computer. The combination of a VirtualDevice and a
VirtualInterface is a complete ‘software implementation’ of an IOTile
Device.

	virtual_device

	A script included with the iotile-core package that loads in
a VirtualDevice and VirtualInterface by name and then hosts the soft IOTile
Device. This script simplifies the process of using VirtualInterfaces.

Using virtual_device

The virtual_device script is just a small program whose job is to let you
run a VirtualDevice inside of a VirtualInterface without having to write custom
python code.

VirtualInterfaces and VirtualDevices can be installed in your virtual environment
by packages during the pip install process, and you can use virtual_device to
list what installed interfaces and devices are available using the -l flag:

(iotile) > virtual_device -l
Installed Virtual Interfaces:
- awsiot
- bled112

Installed Virtual Devices:
- simple
- report_test
- realtime_test
- tracing_test
- no_app

In this case, we had the ability to serve virtual devices over AWS IOT’s MQTT
broker and locally over bluetooth using a BLED112 USB->BLE dongle. There were
5 built-in virtual devices that we had available to us as well.

In this tutorial we’ll be using the realtime_test device that can be
configured to produce realtime streaming data on demand.

Let’s see what the realtime_test device does.

	
class iotile.mock.devices.RealtimeTestDevice(args)

	Mock IOTileDevice that streams and traces data periodically

This device can be configured to stream data on any streams at any interval.
It can be used for testing realtime streaming functionality of any other portion
of the IOTile stack.

If no other arguments are passed, this device defaults to producing the value 100
on stream 0x1001 every second. If a streams dictionary is passed, that overrides
this default setting.

You can also configure this device to broadcast readings without a connection on
a periodic interval as well.

If no ‘trace’ argument is passed the device defaults to tracing the phrase
‘Hello trace world. ‘ every second. If a ‘trace’ array is passed, that overrides
the default behavior.

	Parameters

	args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Any arguments that you want to pass to create this device.
Supported args are:

	iotile_id (int): The UUID used for this device. If no UUID is

	specified, the default value of 1 is used.

	streams (dict): A map of strings with hex numbers to tuples of

	(interval, value) where interval is a float that expresses
how often the stream should stream in seconds and value is
an integer that is sent as the value every interval as a
realtime reading (IndividualReadingReport). The stream id
is the key of the streams dict which should be a string
encoding of a hex number including the prefix 0x so that
it can be parsed with int(key, 0).

	broadcast (dict): A map of strings with hex numbers to tuples

	of (interval, value) where interval is a float that
expresses how often the stream should stream in seconds
and value is an integer that is sent as the value every
interval as a broadcast reading (BroadcastReport). The
stream id is the key of the streams dict which should be a
string encoding of a hex number including the prefix 0x so
that it can be parsed with int(key, 0).

Note that a device can only broadcast a single value at
once so if you specify multiple broadcast entries, only
the last one to be triggered will be visible at any given
time. For this reason, it is not useful to have multiple
broadcast values with the same interval since only one
will ever be shown.

	trace (list): A list of tuples which are (float, string) lists

	that will trace the fixed string every fixed interval
given by the first float argument in seconds.

Basically, this is just a configurable device that can simulate realtime
streaming data. Note that it takes a dictionary of parameters named args.
When using the virtual_device script, you can set these parameters by passing
a json config file using a –config flag on the command line.

Warning

For this next test to work, you will need two BLED112 USB Bluetooth dongles
attached to your computer to allow for a loopback test and you will need to
know either their device file on Mac OS and Linux or their COM port number
on Windows.

In Linux, you will need to find the dongle existing in the /dev directory. You will also need to yourself to the sudo user group with sudo usermod -a -G dialout [username].

First, create a config file named device_config.json:

{
 "interface":
 {
 "port": "<path to device file or port, dongle 1>"
 },

 "device":
 {
 "iotile_id": "0x10",
 "streams":
 {
 "0x1000": [1.0, 50],
 "0x2000": [0.5, 100]
 }
 }
}

Now, start running your virtual device using:

(iotile) > virtual_device bled112 realtime_test --config device_config.json
Starting to serve virtual IOTile device

Note

If there was an error finding the VirtualDevice realtime_test, make sure
you have a recent version of iotile-test installed using:

pip install --upgrade iotile-test

Note

To run a virtual device that hasn’t been installed, simply replace the
installed device name with the path to your virtual device. For example,
to run our “demo_streamer” device you might use:

(iotile) > virtual_device bled112 ./demo_streamer.py

Now your computer is advertising itself as an IOTile Device over bluetooth.
Either using a second computer or using a different terminal on the same
computer, we’re going to connect to the device over bluetooth:

(iotile) > iotile hw --port=bled112:<path to second dongle>
(HardwareManager) scan
{
 "connection_string": "88:6B:0F:18:34:AF",
 "expiration_time": "2017-05-18 10:36:23.491000",
 "low_voltage": false,
 "pending_data": false,
 "signal_strength": -39,
 "user_connected": false,
 "uuid": 16
}

Note how we used the port string bled112 to indicate that we wanted to
connect to the device over bluetooth. In previous tutorials, we’ve used the
virtual DeviceAdapter rather than Bluetooth Low Energy. Make sure you pass
the correct COM port or file path in the port string otherwise you will get an
error.

Now when we type scan, the results we get will be bluetooth based IOTile Devices
that are in range of our computer. Here we see the virtual device that we just
set up with UUID 0x10 (decimal 16). We see an RSSI signal strength of -39 dBm
and see that no one is currently connected to it.

So, let’s connect and see the realtime streaming data come in over Bluetooth:

(HardwareManager) connect 0x10
(HardwareManager) enable_streaming

Now look back at the virtual device terminal and you’ll see it log audit
messages telling you in detail what it’s doing:

Starting to serve virtual IOTile device
2017-05-18 10:42:40,453 [AUDIT ClientConnected] A client connected to this device
2017-05-18 10:42:40,865 [AUDIT RPCInterfaceOpened] A client opened the RPC interface on this device
2017-05-18 10:42:44,888 [AUDIT StreamingInterfaceOpened] A client opened the streaming interface on this device
2017-05-18 10:42:45,163 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:45,572 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:45,680 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:46,191 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:46,698 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:46,707 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:47,315 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:47,724 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:47,829 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:48,338 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:48,848 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:48,954 [AUDIT ReportStreamed] The device streamed a report to the client, report=IOTile Report of length 20 with 1 visible readings
2017-05-18 10:42:49,309 [AUDIT StreamingInterfaceClosed] A client closed the streaming interface on this device
2017-05-18 10:42:49,311 [AUDIT ClientDisconnected] A client disconnected from this device

These audit messages are a great way to see in detail what’s going on from the
IOTile device’s standpoint if you’re trying to debug another part of the stack.

Now let’s see how RPCs look when sent over Bluetooth. Stop the virtual_device
by sending it a Ctrl-C signal and then create a new one using the simple
device that supports RPCs:

(iotile) > virtual_device bled112 simple --config device_config.json
Starting to serve virtual IOTile device

This device has a fixed UUID of 1, so let’s connect to it:

(iotile) > iotile hw --port=bled112:<path to second bled dongle
(HardwareManager) connect 1
(HardwareManager) controller
(SimpleProxy) tile_status
configured: True
debug_mode: False
app_running: True
trapped: False

The SimplyProxy is built-in to iotile-test for testing and demo purposes.

Let’s see what the RPCs look like over bluetooth now:

2017-05-18 10:53:48,516 [AUDIT ClientConnected] A client connected to this device
2017-05-18 10:53:48,854 [AUDIT RPCInterfaceOpened] A client opened the RPC interface on this device
2017-05-18 10:53:59,391 [AUDIT RPCReceived] An RPC has been processed (id=4, address=8, payload=""), status=192, response="ffff53696d706c6501000003"
2017-05-18 10:53:59,440 [AUDIT RPCReceived] An RPC has been processed (id=4, address=8, payload=""), status=192, response="ffff53696d706c6501000003"
2017-05-18 10:54:03,661 [AUDIT RPCReceived] An RPC has been processed (id=4, address=8, payload=""), status=192, response="ffff53696d706c6501000003"

Here we see the RPC as received by the virtual device from the bluetooth stack
and the raw hex bytes sent back in response. Note that when we called
controller on the HardwareManager instance it sent two RPCs on our behalf to
ask the virtual device for its 6-byte identifier that it uses to match it to a
Proxy object. That’s how it knew that it should load the SimpleProxy object.

The tile_status command is supported by every IOTile Device (and even by each
individual tile inside composite devices) and just shows basic status
information about whether there are any issues with the device. In this case
everything’s running fine.

Scripting Actual Devices

One of the core principles of IOTile is orthogonality, which means that a given
script or command should be able to be used no matter what the IOTile Device is
and no matter how its connected to the user. In this case, we’re going to reuse
the exact same script we used before to print realtime streaming data from our
virtual device to now print the realtime data coming from our actual (soft)
device over bluetooth.

Start the realtime_test device again:

(iotile) > virtual_device bled112 realtime_test --config device_config.json
Starting to serve virtual IOTile device

Now load up your realtime stream dumping script from the last tutorial (fixing
the port to use bled112 instead of virtual (test_script.py):

from iotile.core.hw.hwmanager import HardwareManager
from iotile.core.hw.reports import IndividualReadingReport, IOTileReading

with HardwareManager(port='bled112:<path to dongle or COM port>') as hw:
 hw.connect(0x10)
 hw.enable_streaming()

 # hw.iter_reports() will run forever until we kill the program
 # with a control-c so make sure to catch that and cleanly exit
 # without printing an exception stacktrace.
 try:
 for report in hw.iter_reports(blocking=True):

 # Verify that the device is sending realtime data as we expect
 assert isinstance(report, IndividualReadingReport)
 assert len(report.visible_readings) == 1

 reading = report.visible_readings[0]
 assert isinstance(reading, IOTileReading)

 print("Received {}".format(reading))
 except KeyboardInterrupt:
 pass

Run it and see the realtime data coming from your device:

(iotile) > python ./test_script.py
Received Stream 4096: 50 at 2017-05-18 18:05:45.693000
Received Stream 8192: 100 at 2017-05-18 18:05:45.693000
Received Stream 8192: 100 at 2017-05-18 18:05:46.211000
Received Stream 4096: 50 at 2017-05-18 18:05:46.727000
Received Stream 8192: 100 at 2017-05-18 18:05:46.727000
Received Stream 8192: 100 at 2017-05-18 18:05:47.337000
Received Stream 4096: 50 at 2017-05-18 18:05:47.842000
Received Stream 8192: 100 at 2017-05-18 18:05:47.852000
Received Stream 8192: 100 at 2017-05-18 18:05:48.350000
Received Stream 4096: 50 at 2017-05-18 18:05:48.859000
Received Stream 8192: 100 at 2017-05-18 18:05:48.859000
Received Stream 8192: 100 at 2017-05-18 18:05:49.468000

If you have a physical IOTile device as well, you could now point your
script at it and have it show you the realtime sensor data coming from the
device.

Next Steps

After finishing this tutorial, you’re ready to build your own virtual IOTile
Device and allow access to it over bluetooth.

 _static/up-pressed.png

_images/iotile_gateway.png
lotile-gateway

BLED112

_static/up.png

_images/virtual_interface_layers.png
Computer 2

HardwareManager

DeviceAdapter
Wireless
Channel

Virtuallnterface

VirtualDevice

Computer 1

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to IOTile

 		
 Getting Started

 		
 Installation Requirements

 		
 First Steps

 		
 Writing Scripts

 		
 Tutorials

 		
 Creating Your First IOTile Device

 		
 Goals

 		
 Background

 		
 Getting Started

 		
 Creating a Virtual Device

 		
 Adding an RPC That Returns Data

 		
 Adding a More Complex RPC

 		
 Setting Values Using an RPC

 		
 Next Steps

 		
 Understanding IOTile Reports

 		
 Goals

 		
 Background

 		
 Key Concepts

 		
 How CoreTools Handles Reports

 		
 Simulating Realtime Data

 		
 Reference Information

 		
 Next Steps

 		
 Serving Access to Virtual Devices

 		
 Goals

 		
 Background

 		
 Key Concepts

 		
 Using virtual_device

 		
 Scripting Actual Devices

 		
 Next Steps

 		
 Setting Up a Gateway

 		
 Goals

 		
 Background

 		
 Key Concepts

 		
 Using iotile-gateway

 		
 Combining Multiple Device Adapters

 		
 Next Steps

 		
 Introduction to SensorGraph

 		
 Goals

 		
 Background

 		
 Key Concepts

 		
 Creating Your First SensorGraph

 		
 Mocking RPCs

 		
 Adding Control to a SensorGraph

 		
 Adding Realtime Data Outputs

 		
 Selecting Data to Stream

 		
 Next Steps

 		
 Deploying Sensor Graphs

 		
 Goals

 		
 Background

 		
 Key Concepts

 		
 Semihosting a Sensor Graph

 		
 Programming Into a Device

 		
 Simulating in Realtime

 		
 Next Steps

 		
 The SensorGraph Language

 		
 Goals

 		
 Background

 		
 Call Statements

 		
 Copy Statements

 		
 Trigger Statements

 		
 Streamer Statements

 		
 The Every Block

 		
 The On Block

 		
 The When Block

 		
 The Config Block

 		
 Slot Identifiers

 		
 Time Intervals

 		
 Stream Identifiers

 		
 Stream Selectors

 		
 Next Steps

 		
 Advanced SensorGraph Usage

 		
 Goals

 		
 Background

 		
 Key Concepts

 		
 Seeing the Actual Graph

 		
 Different Kinds of Streams

 		
 Understanding the Optimizer

 		
 Next Steps

 		
 How CoreTools Works

 		
 Packages in CoreTools

 		
 How the IOTile Tool Works

 		
 Type Conversions

 		
 Adding Your Own Commands to the IOTile Tool

 		
 Extensibility via Entry Points

 		
 Extending CoreTools

 		
 Creating IOTile Plugins

 		
 Creating Virtual Devices

 		
 Creating New Device Adapters

 		
 Creating Virtual Interfaces

 		
 Creating Report Formats

 		
 Creating Authentication Providers

 		
 Setting an Authentication Provider as Default

 		
 Typedargs Reference

 		
 Building Your Own IOTile Devices

 		
 Build Requirements

 		
 Contributing

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

