

 Navigation

 	
 index

 	core latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/core/checkouts/latest/doc/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/core/checkouts/latest/doc/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	core latest documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 development-guides/dev-systems/samba_cntlm.html

 Navigation

 		
 index

 		core latest documentation »

Windows & Firewall Help

These are optional Items that we find handy if you are developing on Windows using VMs and/or behind corporate firewalls

SAMBA share (allows dev editing from Windows hosts)

		ubuntu: sudo apt-get install samba

		sudo vi /etc/samba/smb.conf
1. at the bottom add the example of share block [https://gist.github.com/cloudedge/298121043ea8ec2b9620] to add
1. edit to match your system if needed
1. sudo service smbd restart

		connect from your host using \\[machine address]\crowbar_dev

CNTLM proxy (allows storing user names for authenticated proxies)

VMs and Containers are not “local” and require your CNTLM proxy to act as a gateway

		ubuntu: sudo apt-get install cntlm

		sudo vi/etc/cntlm.conf1. make sure that you allow NON local hosts to use the proxy (setgateway yes`)!
1. add your credentials
1. make sure the port is 3128

		sudo service cntlm restart

You likely also need to tell your Squid proxy to use CNTLM! With the following additional Squid config lines (assumed CNTLM using port 3128):

always_direct allow to_localnet
always_direct allow to_localhost
cache_peer 127.0.0.1 parent 3128 0 default
never_direct allow all

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/dev-systems/dev-vm-Ubuntu.html

 Navigation

 		
 index

 		core latest documentation »

THIS IS DEPRECATED. Use the Docker based development environment instead here

OpenCrowbar Development Environment Based Upon Ubuntu

Setting Up the Virtual Machine (VM)

Currently only Ubuntu 12.04 LTS is supported, though the instructions here
should also work with other versions.

The steps here describe how to setup the VM from the command line. You can
use virt-manager [http://virt-manager.org] if you prefer a graphical user
interface. Do submit your relevant virt-manager configs if you have some!

The steps here assume that your KVM host is also the desktop that you are
working from. If not, adapt the commands accordingly.

Installation steps:

		Download Ubuntu 12.04 LTS 64 bit (ubuntu-12.04.1-server-amd64.iso) from
http://www.ubuntu.com/download/server. For example, run the following
commands within the OpenCrowbar git checkout on the qemu-kvm host:

cd dev-setup/qemu-kvm
aria2c http://releases.ubuntu.com/precise/ubuntu-12.04.1-server-amd64.iso.torrent

		Create a blank disk image that is at least 20 GB. For example:

qemu-img create -f qcow2 -o preallocation=metadata ubuntu-12.04.qcow2 20G

		Start a VM with the desired network (private network with NAT), with the ISO
and disk attached. For example:

sudo qemu-kvm -m 2G -daemonize -vnc :10 -cdrom ubuntu-12.04.1-server-amd64.iso \
 -net nic,model=virtio,macaddr=DE:AD:BE:EF:30:22 \
 -net tap,script=qemu-ifup \
 -drive file=ubuntu-12.04.qcow2,cache=none,if=virtio

Note that script=qemu-ifup points to the script at qemu-kvm/qemu-ifup,
so make sure you are running the above command in the same directory, or
modify it accordingly.

		Connect to the VM via VNC and install the system:

vncviewer :10

The installer will attempt to auto-configure the network with DHCP, which
you can cancel and jump to manual configuration instead with the following
settings:

IP address: 192.168.124.10
Netmask: 255.255.255.0
Gateway: 192.168.124.1

Use the same name server (DNS) address as your host, which you can find out
on Linux systems by running grep nameserver /etc/resolv.conf on the host.
For example, within the SUSE intranet it is 10.120.2.88. If the host is not
running in any internal or corporate network, you can use 8.8.8.8.

The hostname and domain names can be left at the defaults. The apt-get proxy
can also be left blank.

		Once installation is complete, you can shutdown the VM (sudo poweroff) and
subsequently start it in the same way, minus the -cdrom ... option. Or
use the qemu-kvm/start-vm [https://github.com/crowbar/crowbar/blob/master/dev-setup/qemu-kvm/start-vm])
helper script.

Setup password-less sudo

During the build process the Dev Tool has to perform certain tasks which require root access (mounting ISOs, etc.). In order to avoid being prompted for your password every time we will setup password-less sudo. Don’t run your build as root.

run this command to add your
sed -ie "s/%sudo\tALL=(ALL:ALL) ALL/%sudo ALL=(ALL) NOPASSWD: ALL/g" /etc/sudoers

Setting up the development environment

Before beginning to set up a development environment, you should have
a working VM that with a build user created. These directions use ‘crowbar’
as the build user.

The general requirements are:

		You should be able to access the machine from the host with ssh as the build
user.

		The build user has passwordless sudo access enabled.

		The machine has outbound acess via http for downloading packages,operating
system images, and Ruby gems, including any necessary firewall and
proxy setup.

		The machine has access to github for fetching code.

		The machine has approximately 40Gb of free disk space
(15 Gb - operating system images, 10 Gb for output isos, 15 Gb for
build cache

After verifying these requirements, you can begin setting up the development
environment.

Install needed packages and gems

These directions are for Ubuntu 12.04 (Precise.) Other versions of
Ubuntu are not supported. Postgresql is only supported by the Postgresql
community on LTS releases.

let's install some OS packages
sudo apt-get update
sudo apt-get install git rpm ruby ruby1.9.1-dev rubygems1.9 curl build-essential debootstrap \
mkisofs binutils markdown erlang-base debhelper python-pip libsqlite-dev \
 libopenssl-ruby1.9.1 libssl-dev zlib1g-dev ruby-sqlite3 libsqlite3-dev
sudo apt-get install libpq-dev
to make Ruby 1.9.1 the default. ruby -v will report version 1.9.3
sudo update-alternatives --config ruby
make Gem 1.9 the default, gem -v will report version 1.8.11
sudo update-alternatives --config gem
#
Remove Postgresql
#
we need Postgresql 9.3 (we rely on 9.3+ features)
first, remove the automatically added old Posgresql
sudo apt-get remove postgresql
To Verify that you have removed postgresql you can run
sudo dpkg --get-selections | grep postgresql
if there is anything still there with deinstall do a
sudo dpkg --purge postgres*
#
#
Additional reference, please visit [[https://wiki.postgresql.org/wiki/Apt]]
for now you need to add the sources (please remove this step when 9.3 is in the official repos!)
You will need to edit /etc/apt/sources.list and add the following to it.
Add - deb http://apt.postgresql.org/pub/repos/apt/ [your release]-pgdg main
where [your release] is the version of OS you using, i.e. Ubunutu-precise is "precise-pgdg" (without the quotes)
wget --quiet -O - http://apt.postgresql.org/pub/repos/apt/ACCC4CF8.asc | sudo apt-key add -
sudo apt-get update
now install and set to use the special port/pipe config
sudo apt-get install postgresql-9.3 pgadmin3
sudo vi /etc/postgresql/9.3/main/pg_hba.conf
 # to the beginning of the file
 # add 'local all all trust'
sudo vi /etc/postgresql/9.3/main/postgresql.conf
 # change 'port = 5439'
sudo service postgresql restart
sudo createuser -s -d -U postgres -p 5439 crowbar
you can test the install by making sure the following call returns
export PGCLUSTER=9.3/main
psql postgresql://crowbar@:5439/template1 -c 'select true;'

let's install some needed gems next
sudo gem install builder bluecloth
sudo gem install bundler --version '1.3.5' --no-ri --no-rdoc
sudo gem install json net-http-digest_auth kwalify delayed_job delayed_job_active_record rake simplecov rspec pg --no-ri --no-rdoc

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/dev-systems/proxy-cache.html

 Navigation

 		
 index

 		core latest documentation »

Configuration of Proxy Cache

Because Dev Mode uses online access for packages, we strongly recommend using a caching proxy such as Squid or Polipo.

If you are behind a firewall, you should have the cache access CNTLM or similar.

Squid Proxy (on Ubuntu)

		Configure your CNTLM proxy on :3128

		Install: sudo apt-get install squid3

		Update your configuration: sudo vi /etc/squid3/squid.conf

		make sure that you allow containers to use the proxy

		example https://gist.github.com/cloudedge/1b46280b7dfbffe2d763

		it is important to add BOTH your local subnet & the docker subnet to allowed

		include the always_direct allow to_localnet line

		order is very important in the configuration file

		Create your cache directory: sudo mkdir /var/cache/squid

		Allow Squid to write to the cache: sudo chown proxy:proxy /var/cache/squid

		Restart the service: sudo service squid3 restart

		Access the proxy

		export http_proxy="http://127.0.0.1:8123"

		export https_proxy="http://127.0.0.1:8123"

		Test the proxy: wget google.com

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/dev-systems/dev-vm-SUSE.html

 Navigation

 		
 index

 		core latest documentation »

Crowbar Development Based Upon SUSE

Here we describe how to setup a Crowbar development environment in a virtual
machine (VM) that is based on openSUSE or SUSE Linux Enterprise Server (SLES).
It is currently focused on the core Rails application and required barclamps.

Setting up the VM

We assume that you are using KVM and have read the KVM setup
instructions. If not, setup the VM accordingly and
continue on to the next
section.

We assume your KVM host is the desktop you are working from, so adapt them if
necessary.

Download the VM

Download the latest version of the Crowbar Dev VM from one of the following
locations (KVM image in qcow2 format recommended):

		openSUSE Crowbar Dev VM [http://susestudio.com/a/n0rKOx/crowbar-dev]

		SLES Crowbar Dev VM [http://susestudio.com/a/n0rKOx/crowbar-dev-sles]

Boot the VM

This can be done either via libvirt, or directly via qemu-kvm:

Booting via libvirt

Give the VM a name; this can be whatever you want.

 kvm-host# vm_name=crowbar-admin-sles

Set which bridge device you want to route the VM’s NAT traffic
through:

 kvm-host# bridge=virbr0

Register and boot the VM:

 kvm-host# vm-install \
 -n $vm_name -o sles11 -c4 -m2048 -M2048 \
 -d qcow2:$vm_disk,xvda,disk,w,0,cachemode=none \
 -e \
 --nic bridge=$bridge,model=virtio \
 --keymap en-gb

(Note: the above applies for openSUSE 12.3. Older distributions may
need tweaks, e.g. cache=none instead of cachemode=none.)

Of course you can tweak the number of virtual CPUs and amount of RAM
in the above arguments if you want. It is not recommended to allocate
less than 2GB of RAM to the VM.

Once the VM is registered with libvirt, you can later control it
using virt-manager in the normal way.

Booting via qemu-kvm

		Place the image in the dev-setup/qemu-kvm directory of the Crowbar
git [https://github.com/crowbar/crowbar/] checkout on your KVM host.

		[Optional] Set which bridge device you want to route the VM’s NAT
traffic through:

 kvm-host# export BRIDGE=virbr0

		Start the VM by running the following as root:

 kvm-host# ./start-vm

Use the --preallocate option if you need to improve disk performance.

Post-boot

		[SLES VM only] Connect to the VM’s graphical console to accept the
end user license agreement (EULA). If you used qemu-kvm,
connect via VNC, e.g.:

 kvm-host> vncviewer :10

Otherwise you will already see the console, but you can also connect
via virt-manager or vncviewer.

Once connected, type q, y, and hit enter.

		After the VM boots up (takes a bit longer for first boot), you
should be able to connect to the VM via SSH:

 kvm-host> ssh root@192.168.124.10 # Password is 'linux'

		[SLES only] If you’re running the VM within the SUSE network, run
add-suse-internal-repos to add the internal SUSE
repositories. Otherwise, if you have a SLES subscription, register
with NCC to get updates.

		Create a non-root user account and set the password. Use the same
username as you do on your regular workstation for
convenience. Then re-login to the dev VM as the newly created
user, e.g.:

 root@crowbar-dev> useradd -m jamestyj
 root@crowbar-dev> passwd jamestyj
 root@crowbar-dev> logout
 jamestyj@kvm-host> ssh 192.168.124.10
 jamestyj@crowbar-dev>

Setting Up the Development Environment

You should now have a working VM that you can SSH into from the qemu-kvm host.

		Copy your .gitconfig and other configuration files to the VM. For example:

 crowbar-dev> scp -r <your-usual-dev-host>:.{gitconfig,vimrc,vim,profile,ssh} .

		Check out the Crowbar git repo and run the dev tool:

 crowbar-dev> git clone git://github.com/crowbar/crowbar.git
 crowbar-dev> cd crowbar
 crowbar-dev> ./dev setup

The ./dev setup script will ask for your Github username and
password. It will fork the Crowbar and corresponding barclamp
repositories to your account and clone them into
crowbar/barclamps/. See
dev-and-workflow [https://github.com/crowbar/crowbar/blob/master/README.dev-and-workflow]
and dev-and-code-review [https://github.com/crowbar/crowbar/blob/master/README.dev-and-code-review]
for details.

		Now assemble the Crowbar application:

 crowbar-dev> ./dev tests setup --no-gem-cache

This assembles a working and testable Crowbar Rails application in
/tmp/crowbar-dev-test/opt/dell/crowbar_framework.

		Now you can run an instance of the web UI:

 crowbar-dev> cd /tmp/crowbar-dev-test/opt/dell/crowbar_framework
 crowbar-dev> bundle install
 crowbar-dev> bundle exec rake db:migrate
 crowbar-dev> bundle exec rails s puma

		And also to run the (unit + RSpec) tests:

 crowbar-dev> bundle exec rake db:drop railties:install:migrations db:migrate db:fixtures:dump test:units spec

See the testing page for details.

Troubleshooting Tips

		Connect to the VM via VNC. This is useful for debugging the VM (e.g., networking issues).

 kvm-host> vncviewer :10

The VM is configured with the following settings:

 IP address: 192.168.124.10
 Netmask: 255.255.255.0
 Gateway: 192.168.124.1
 DNS: 10.120.2.88, 8.8.8.8

You may need to update the DNS setting to match your environment
by modifying /etc/resolv.conf.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/contributing-code.html

 Navigation

 		
 index

 		core latest documentation »

Contributing to OpenCrowbar

Before [submitting pull requests]
(https://help.github.com/articles/using-pull-requests), please make sure you understand the Apache license. We consider submitting a pull to be accepting the project license terms.

We are using this style [http://nvie.com/posts/a-successful-git-branching-model/] branching model. The main goal is not to develop in master, but on the develop branch so that master is the latest validated code. develop should be stable and tests should have been run against it, but hasn’t necessarily been regression tested for production release stability. Feature branches are encouraged for shared work. Large features requiring multiple items or multiple individual participation can be created in the OpenCrowbar repo. This should be discussed in the weekly OpenCrowbar meetings. Once complete, these features would be merged into develop.

Guidelines for Pull Requests

		Must be Apache 2 license

		For bugs & minor items (20ish lines), we can accept the request at our
discretion

		UI strings are localized (only EN file needs to be updated)

		Does not inject vendor information (Name or Product) into OpenCrowbar expect
where relevant to explain utility of push (e.g.: help documentation &
descriptions).

		Passes code review by OpenCrowbar team reviewer

		Does not degrade the security model of the product

		Items requiring more scrutiny
		Major changes

		New barclamps

		New technology

		Pull requests should be against a defined feature branch in the OpenCrowbar repo or the develop branch

		Pull requests once pulled into develop will be merged into master at release boundaries.

Timing

		Accept no non-bug fix push requests within 2 weeks of a release fork

		No SLA - code accepted at PTLs discretion. No commitment to accept
changes.

Coding Expectations

		Copyright & License header will be included in files that can tolerate
headers

		At least 1 line comments as header for all methods

		Unit tests for all models concurrent with pull request

		BDD tests for all API calls and web pages concurrent with pull request

		Documentation for API calls concurrent with pull request

		Adhere to the community [Ruby style guide]
(https://github.com/bbatsov/ruby-style-guide)

		Adhere to the community [Rails style guide]
(https://github.com/bbatsov/rails-style-guide/)

Testing/ Validation

		For core functions, push will be validated to NOT break build or deploy or
our commercial products

		For product suites (OpenStack, Hadoop, etc), push will be validated to NOT
break build or deploy our commercial products

		For operating systems that are non-core, we will not validate on the
target OS for the push (e.g.: not testing SUSE install at this point)

		Eventually, we would expect that a pull request would be built and tested
in our CI system before the push can be accepted
‘

Feature Progression

The following table shows the progression of new feature additions to OpenCrowbar.
The purpose of this list is to help articulate how new features appear in
OpenCrowbar and when they are considered core.

Phase	Comments	Roadmap	Support	On Trunk
———–	:————————————-	:———————	:—————	:———–
Proposed	Conceptual ideas and suggestions for OpenCrowbar functionality that have not been implemented as code	May be shown	None	N/A
Proof of Concept	Initial code showing partial functionality for feature	Optionally Identified	Negative Test (Does not impact core)	No (on branch)
Incubated	Base functional code allowing use of feature to demonstrate value	Identified	Negative Test (Does not impact core)	No (on branch)
Stable	Base functional code is available for use in select builds	Included	Validated by QA, No Support	Yes
Core	Feature code integrated into operations of OpenCrowbar in fundamental way	Central	Validated by QA, Current Version Support	Yes
Supported	Same as core, but available with commercial support	Central	Backwards Support via Patches	Yes

&

 Maintained on Branches |

Note: Features are NOT required to progress through all these phases!
Architectural changes may skip ahead based on their level of impact and
disruption.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/contributing.html

 Navigation

 		
 index

 		core latest documentation »

 ##Contributing Code

###Fork The Code

we assume you already have a clone of https://github.com/opencrowbar/core

		create a personal fork of the https://github.com/opencrowbar/core
1. Fork the code if you want to be able to submit changes
1. rename your fork in Github to something like ‘crowbar-core’ to make it easier to track. We’ll assume that you did that in these directions
1. remember to update your public SSH key to github

		setup your git identity (one time only)
1. git config --global user.name "user.name"
1. git config --global user.email "email.address"

		add a personal remote: git remote add personalhttps://github.com/[yourgitnamehere]/[crowbar-core]`

		you can check your remotes using git remote -v

		get the latest code from your repo git fetch personal

###To create a pull request

		make your change and commit it: git commit -a -m "I cut and pasted this"

		get the latest code from origin: git fetch

		sync your code into the trunk: git rebase
		you may have to merge changes using git add [file]= and =git rebase --continue--

		run and pass all the BDD tests, [[testing/README.md]]

		push your change to your personal repo in a branch: git push personal master:[my-pull-request-branch]

		from your Github fork UI, create a pull request from my-pull-request-branch

###Work on a branch

It’s good practice to work on a branch instead of trunk. That allows you to isolate several changes into distinct pulls instead of co-mingling changes.

		get on master using ‘git checkout master’

		make sure you are up to date using git fetch and git rebase

		create a branch using git branch [namehere]

		switch to that branch using git checkout [namehere]

		work & commit

		when you are ready to push, use git push personal [namehere]:[namehere]

You can switch between branches anytime! That allows you to help on master or work on multiple pull requests. This flow is especially handy if your pull may take a few days to be accepted because you can work on your next item while the community does the review. It also isolates you from changes in master. If you need to get changes from master, use git merge master from your branch.

###Edit Documentation

You do NOT need a local clone to update docs! You can edit them right from your fork on Github. Just make the changes and then create a pull request using the Github UI.

We love Docs changes!

 © Copyright .
 Created using Sphinx 1.3.1.

principles/README.html

 Navigation

 		
 index

 		core latest documentation »

Operational Principles

The operational model behind Crowbar is entering its third generation and its important to understand the principles behind that model. The model is critical because it shapes how Crowbar approaches the infrastructure at a fundamental level so it makes it easier to interact with the platform if you see how we are approaching operations. Crowbar’s goal is to create emergent services.

The topics in this guide help explain Crowbar’s core architectural principles.

Crowbar Objective

Crowbar delivers repeatable best practice deployments. Crowbar is not just about installation: we define success as a sustainable operations model where we continuously improve how people use their infrastructure. The complexity and pace of technology change is accelerating so we must have an approach that embraces continuous delivery.

Crowbar’s objective is to help operators become more efficient, stable and resilient over time.

Background

When Greg Althaus (github @GAlthaus) and Rob “zehicle” Hirschfeld (github @CloudEdge) started the project, we had some very specific targets in mind. We’d been working towards using organic emergent swarming (think ants) to model continuous application deployment. We had also been struggling with the most routine foundational tasks (bios, raid, o/s install, networking, ops infrastructure) when bringing up early scale cloud & data applications. Another key contributor, Victor Lowther (github @VictorLowther) has critical experience in Linux operations, networking and dependency resolution that lead to made significant contributions around the Annealing and networking model. These backgrounds heavily influenced how we approached Crowbar.

First, we started with best of field DevOps infrastructure: Opscode Chef. There was already a remarkable open source community around this tool and an enthusiastic following for cloud and scale operators . Using Chef to do the majority of the installation left the Crowbar team to focus on

Key Features

		Heterogeneous Operating Systems – chose which operating system you want to install on the target servers.

		CMDB Flexibility – don’t be locked in to a devops toolset. Attribute injection allows clean abstraction boundaries so you can use multiple tools (Chef and Puppet, playing together).

		Ops Annealer –the orchestration at Crowbar’s heart combines the best of directed graphs with late binding and parallel execution. We believe annealing is the key ingredient for repeatable and OpenOps shared code upgrades

		Upstream Friendly – infrastructure as code works best as a community practice and Crowbar use upstream code

		without injecting “crowbarisms” that were previously required. So you can share your learning with the broader DevOps community even if they don’t use Crowbar.

		Node Discovery (or not) – Crowbar maintains the same proven discovery image based approach that we used before, but we’ve streamlined and expanded it. You can use Crowbar’s API outside of the PXE discovery system to accommodate Docker containers, existing systems and VMs.

		Hardware Configuration – Crowbar maintains the same optional hardware neutral approach to RAID and BIOS configuration. Configuring hardware with repeatability is difficult and requires much iterative testing. While our approach is open and generic, the team at Dell works hard to validate a on specific set of gear: it’s impossible to make statements beyond that test matrix.

		Network Abstraction – Crowbar dramatically extended our DevOps network abstraction. We’ve learned that a networking is the key to success for deployment and upgrade so we’ve made Crowbar networking flexible and concise. Crowbar networking works with attribute injection so that you can avoid hardwiring networking into DevOps scripts.

		Out of band control – when the Annealer hands off work, Crowbar gives the worker implementation flexibility to do it on the node (using SSH) or remotely (using an API). Making agents optional means allows operators and developers make the best choices for the actions that they need to take.

		Technical Debt Paydown - We’ve also updated the Crowbar infrastructure to use the latest libraries like Ruby 2, Rails 4, Chef 11. Even more importantly, we’re dramatically simplified the code structure including in repo documentation and a Docker based developer environment that makes building a working Crowbar environment fast and repeatable.

OpenCrowbar (CB2) vs Crowbar (CB1)?

Why change to OpenCrowbar? This new generation of Crowbar is structurally different from Crowbar 1 and we’ve investing substantially in refactoring the tooling, paying down technical debt and cleanup up documentation. Since Crowbar 1 is still being actively developed, splitting the repositories allow both versions to progress with less confusion. The majority of the principles and deployment code is very similar, I think of Crowbar as a single community.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/dev-systems/dev-vm.html

 Navigation

 		
 index

 		core latest documentation »

Getting started with Crowbar development

Setting up a full Crowbar development environment is complex due to its many
dependencies - we are simplifying and automating this process as much as
possible. This document provides detailed instructions on how to setup a
minimal Crowbar development instance: access to the web interface and the
ability to run the unit, RSpec, and BDD tests.

We assume you are setting up the Crowbar development environment in a qemu-kvm
virtual machine (VM). It is not a hard requirement - just adapt the steps and
commands accordingly.

If you prefer other hypervisors, check out the corresponding VirtualBox [https://github.com/crowbar/crowbar/wiki/Running-Crowbar-in-VirtualBox-VMs] and
VMWare [https://github.com/crowbar/crowbar/wiki/Running-Crowbar-in-VMWare-VMs] docs.
Then skip to the “Setting up the development environment” section of your
preferred distro.

If you are using Fedora 18, these scripts [https://github.com/cwolferh/crowbar-virt-for-f18] may save you a bit of time
setting up a qemu-kvm/virsh environment for Crowbar.

Setting up the qemu-kvm host

Installing KVM

First you need to install KVM. On SUSE based systems, run:

sudo zypper in kvm

Enabling CPU virtualization acceleration

Intel VT-x [http://en.wikipedia.org/w/index.php?title=X86_virtualization#Intel_virtualization_.28VT-x.29]
or AMD-V [http://en.wikipedia.org/wiki/X86_virtualization#AMD_virtualization_.28AMD-V.29]
capable CPUs are required for hardware acceleration. This is usually disabled
by default in the BIOS, so you may need to enable it manually.

Run the qemu-kvm/setup-kvm [https://github.com/crowbar/crowbar/blob/master/dev-setup/qemu-kvm/setup-kvm]
script to set it up. It checks for CPU support and loads the appropriate kernel
modules.

Setting up the virtual machine

Refer to the following distro specific docs: openSUSE / SLES,
Ubuntu, and Fedora.

 © Copyright .
 Created using Sphinx 1.3.1.

faq/do_you_have_a_question.html

 Navigation

 		
 index

 		core latest documentation »

Do you have a question?

needs answer!

 © Copyright .
 Created using Sphinx 1.3.1.

principles/concepts.html

 Navigation

 		
 index

 		core latest documentation »

OpenCrowbar Concepts

The operations challenge

A deployment framework is key to solving the problems of deploying, configuring, and scaling open source clusters for cloud computing.

Deploying an open source cloud can be a complex undertaking. Manual processes, can take days or even weeks working to get a cloud fully operational. Even then, a cloud is never static, in the real world cloud solutions are constantly on an upgrade or improvement path. There is continuous need to deploy new servers, add management capabilities, and track the upstream releases, while keeping the cloud running, and providing reliable services to end users. Service continuity requirements dictate a need for automation and orchestration. There is no other way to reduce the cost while improving the uptime reliability of a cloud.

These were among the challenges that drove the development of the OpenCrowbar software framework from it’s roots as an OpenStack [http://OpenStack.org] installer into a much broader orchestration tool. Because of this evolution, OpenCrowbar has a number of architectural features to address these challenges:

		Abstraction Around Orchestration

OpenCrowbar is designed to simplify the operations of large scale cloud
infrastructure by providing a higher level abstraction on top of
existing configuration management and orchestration tools based on
a layered deployment model.

		Web Architecture

OpenCrowbar is implemented as a web application server, with a full user
interface and a predictable and consistent REST API.

		Platform Agnostic Implementation

OpenCrowbar is designed to be platform and operating system agnostic.
It supports discovery and provisioning from a bare metal state,
including hardware configuration, updating and configuring BIOS and
BMC boards, and operating system installation. Multiple operating
systems and heterogeneous operating systems are supported. OpenCrowbar
enables use of time-honored tools, industry standard tools, and any
form of scriptable facility to perform its state transition operations.

		Modular Architecture

OpenCrowbar is designed around modular plug-ins called Barclamps.
Barclamps allow for extensibility and customization while encapsulating
layers of deployment in manageable units.

		State Transition Management Engine

The core of OpenCrowbar is based on a state machine that tracks nodes,
roles, and their relationships in groups called deployments. The
state machine is responsible for analyzing dependencies and scheduling
state transition operations (transitions).

		Data model

OpenCrowbar uses a dedicated database to track system state and data.
As discovery and deployment progresses, system data is collected
and made available to other components in the system. Individual
components can access and update this data, reducing dependencies
through a combination of deferred binding and runtime attribute
injection.

		Network Abstraction

OpenCrowbar is designed to support a flexible network abstraction,
where physical interfaces, BMC’s, VLANS, binding, teaming, and other low level
features are mapped to logical conduits, which can be referenced by other
components. Networking configurations can be created dynamically to adapt
to changing infrastructure.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/dev-systems/README.html

 Navigation

 		
 index

 		core latest documentation »

Dev System Configuration

Installation and Configuration Overview - What you’ll be doing:

		Install the base OS

		Configure base OS for running Crowbar

		git clone https://github.com/opencrowbar/core

		Start crowbar in a Docker container

		Deploy slave nodes and Hack away!

Prereqs

Before we begin, let’s review what you’ll need (or end up with after following these docs):

		A Linux development environment (running on bare metal or VirtualBox)

		Internet Access

		Your own user (NOT ROOT)

		Several Networks:
		Crowbar relies on a few private networks - they can all be on the same NIC, bridges, or whatever.

		Recommended: a local caching proxy server - we download a lot.

OK, let’s get started setting up the development environment:

Step 1: What’s your platform?

Virtual Machine Platform Configs

		VirtualBox based installations - network configs and basic install info

		KVM on Ubuntu

		KVM on Fedora Core 19

Bare Metal Platform Configs (must be Linux)

		Just start with the O/S configs below for your favorite flavor.

Step 2: Now Let’s Configure Your Development OS

Get the docker stuff all configured properly:

		Ubuntu 12.04.03

		[CentOS 6.5]

		[Fedora Core 19]

		SUSE

		OpenSUSE Images

Step 3: Big important step - Setup Docker Admin Node

		follow steps in docker-admin.md

Step 4: Deploy Nodes!

Now that you’ve got Crowbar installed, it’s time to look in the Deployment Guide for instructions about provisioning nodes.

Important - once you’re in the Docker container, you need to change to Crowbar user

		su - crowbar to gain ruby-2.0 and control Crowbar via the CLI!

		we’ve provided a handle tools/rails-console command if you want to reach deep into the bowels of the bunny.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/database.html

 Navigation

 		
 index

 		core latest documentation »

OpenCrowbar Database (Postgresql 9.3)

Migrating to delayed_jobs for all OpenCrowabr background processing made it
immediatly obvious that sqlite is not at all well suited to handling real
concurrency when dispatching multiple jig runs on different nodes
at a time. Postgresql is designed to be capable of handling forseeable
concurrency and HA use cases, and provides sufficient scope for future
optimizations and scalability.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/workflow/smoketesting.html

 Navigation

 		
 index

 		core latest documentation »

 This file documents the OpenCrowbar smoketest framework

Note: The default admin node memory allocation is 4G. It may be necessary to
run smoke tests with more (6 or 8G) to get speedy or reliable results.

##The smoketest framework lives on the admin node, and consists of:

		smoketest
This is the front-end to the in-cluster side of the smoketest framework.
It takes a single parameter, which is the name of a barclamp to smoketest.
smoketest must be run as root.

		check_ready
This checks to see if a node had transitioned to a given state.
smoketest uses it internally.

		run_on
This runs a command on a given node as root.

		knife_node_find
This is a very thin and stupid wrapper around knife search node.

		name_to_ip
This translates an hostname into an IP address.

		parse_yml_or_json
This is a cheesy little function that parses yml (or JSON), extracts
fields of interest, and prints them in a form suitable for bash’s eval.

##The smoketest command works like this:

		Your admin node is in the ready state, and the rest of the nodes are
in discovered.

		You run /opt/dell/bin/smoketest nova (for example).

		smoketest allocates all the nodes, and waits for them to transition
to ready. If any node transitions to problem, the smoketest fails.

		Once all the nodes are in ready state, smoketest will examine the barclamp
metadata for all installed barclamps. It will then deploy and test all the
barclamps needed to meet the dependencies of the barclamp to test, including
itself.

		The output from all the tests along with the proposals that were created,
modified, and deployed will be saved in /var/log/smoketests.

		If any deploys or tests fail, the smoketest fails.

		You can test more than one barclamp at a time by passing multiple arguments
to the smoketest command:
/opt/dell/bin/smoketest nova_dashboard swift tempest
will run the smoketests for nova_dashboard, swift and tempest and all
the barclamps they depend on.

		It is a good idea to make sure that the admin node has IP addresses on
the public, storage, and nova_fixed networks. The dev tool and
test_crowbar.sh do this automatically, otherwise you can run this script
on the admin node to add the networks:

##Writing Barclamp Smoketests

Barclamp smoketests consists of three parts:

		Smoketest Metadata.
This consists of metadata in the barclamp’s crowbar.yml that declares any
smoketest-specific barclamp dependencies and an overall timeout that the
smoketest for this barclamp cannot exceed. The smoketests use the
following metadata:
		barclamp.requires and smoketest.requires
Any barclamps that are in these arrays will be deployed and smoketested
before the current smoketest.

		barclamp.member
This is used to satisfy group dependencies if a group is listed as
a dependency in the barclamp.requires and smoketest.requires.

		smoketest.timeout
This is the number of seconds that a smoketest can run before the
framework decides that it is never going to finish and returns failure.

		smoketest/modify-json
This executable should accept the proposal JSON on stdin, make whatever
changes are needed to let it run in the framework (changing free space
requirements, replication factors, etc), and write the modified JSON to
stdout.

		smoketest/*.test
These executables should each perform a discrete test of the barclamp. The
smoketest framework will run them in ascending order, and the first test
that exits with a nonzero status will signal that the overall smoketest
for this barclamp failed, and the framework will stop processing further
tests. The framework does not care what language the tests are written in,
as long as the build/test system can run them.
The smoketest framework arranges for the crowbar CLI and the framework
helper commands to be available during the run. Any output from the test
hooks will be captured and logged.

Any other files will be ignored by the smoketest framework – you can use them
for shared libraries, templates, etc. as the needs of your smoketest require.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/README.html

 Navigation

 		
 index

 		core latest documentation »

Development Guide

Welcome to the amazing fuzziness of OpenCrowbar!

This guide is targeted at people who want to contribute and extend OpenCrowbar. You should review the architectural and operator instructions as part of the learning process.

Data Model and API

Information about Crowbar’s data models and methods is covered in the model section of this guide. We have intentionally split design and methods (in the model section) from more general API usage guides. Our intention is to keep the API documentation focused just on using the API and leave more it to curious readers to review the model and principles areas.

Dev Environment

Our development environments include a working administrative server for testing. It is very important in our process that developers are able to run deployments in their environment as part of the testing cycle.

While we have invested in BDD and system tests to catch core logic errors, most changes require performing a deployment to test correctness!

Let’s get started!

Follow the amazing docs to setup your dev environment!

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/provisioning.html

 Navigation

 		
 index

 		core latest documentation »

Provising Process

Overview

The Provisioner provides the roles and recipes to set up the provisioning server and a base environment for all
provisioned nodes. The Provisioner also provides the transition entry point for nodes that need to have DHCP transitions
done. The Provisioner assumes that addressing will be handled outside of this barclamp.

Roles

The following node roles are defined:

		Provisioner-server
		Configures the system to run the provisioning services (TFTP, Web server with apt packages, APT repository)

		Provisioner-service
		Allows for the injection of the provisioner information into other components

		DHCP-server
		Provides a DHCP server for doing initial device discovery

		Points to the provisioner-service

		DHCP-database
		Updates the DHCP information based upon the bootenv properties.

		Provisioner-database
		Updates the provisioner boot information based upon the bootenv properties

		Provisioner-repos
		Makes sure that the apt/yum repository is configured and a root ssh key is deployed

		Provisioner-setup-base
		Prepares boot environments from ISOs

Workflow

The provisioner provides the Sledgehammer discovery image. It is expected that there is a DHCP server,
OpenCrowbar provided or external to OpenCrowbar, that will allocate an address and point to the provisioner.

The Sledgehammer discovery image will register the node in OpenCrowbar and allocate an admin address. Once the node
is created, the database roles will update the provisioner and dhcp server to enable future control for operating system
installation, local booting, or other boot environments as needed.

New operating systems can be seen Adding Operating Systems.

After an operating system is installed, the system injects code to update OpenCrowbar that the node has completed
installation. The database roles will update the provisioner and dhcp servers to boot from local drives.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/workflow/sledgehammer-hooks.html

 Navigation

 		
 index

 		core latest documentation »

Sledgehammer Hooks

This file documents the hooks available in the Sledgehammer image that
can be used to customize how Sledgehammer transitions through states.

The primary Sledgehammer control script (control.sh) will search for
-pre and -post hooks for every Crowbar state transition it knows how
to go through. The hooks can be general (all nodes transitioning
through the state will run them) or specific to one machine. This
functionality is intended to be used to facilitate automated testing
that must happen outside of the chef-client runs. Hooks will run in
the following order:

1: Machine-specific -pre hooks,
2: General -pre hooks,
3: chef-client,
4: General -post hooks,
5: Machine-specific -post hooks.

All hooks will be run in alphabetic order, and non-executable hooks
will be skipped. All hooks to be run should be staged in the /updates
NFS share on the admin node in the following directories:

		/updates/$nodename/$state-pre

		/updates/$state-pre

		/updates/$state-post

		/updates/$nodename/$state-post

$state = the Crowbar state that Sledgehammer is transitioning through.
discovering, discovered, update, etc.

$nodename = the name of the node according to Chef.

To make writing hooks simpler, certian functions in the control.sh script
have been split into /updates/control_lib.sh, and control.sh has been
refactored to account for these changes. If your hooks are written in
bash, they can source /updates/control_lib.sh to pull in the following
functions:

		get_state
get_state will pull some information about from the
chef-server, and store it in the local environment. Specifically,
it will set the following environment variables:
BMC_ROUTER = the gateway IP address of the BMC network, if any.
BMC_ADDRESS = the IP address of the BMC for , if any.
BMC_NETMASK = the netmask in dotted quad format of the BMC network,
if any.
CROWBAR_STATE = the current Crowbar state that the node is in.
HOSTNAME = the hostname of the system according to the Chef server.
ALLOCATED = whether or not has been allocated

		post_state <crowbar_state>
post_state will attempt to transition to . If
successful, it will then update the same environment data that

get_state does.

		reboot_system
This will cleanly reboot the node. You should use it instead of
reboot to ensure that all the logs are flushed and that the NFS
shares get umounted.

		wait_for_allocated
This function will spin until has been allocated by Crowbar.

		wait_for_crowbar_state
If is not passed, this function will wait until
transitions to a state other than the one it is currently at. If
 is passed, this function will wait until transitions
into

		hook_has_run
If the current hook has already run for the current -pre or -post
state, hook_has_run will return 0. Otherwise, return 1. This
function works by creating state tracking files in /install-logs/.
To facilitate this function, control.sh exports the following
environment variables to the hooks:

		HOOKNAME = the name of the hook without any path components.

		HOOKSTATE = the -pre or -post state that the hook is running in.

Hook Exit Status

All hooks must exit successfully (with a 0 return status), otherwise
the system will reboot into the debug state.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/workflow/knife-config.html

 Navigation

 		
 index

 		core latest documentation »

Interact with Chef

First you must sync local date and time with that on the target system. Especially if you run in a development environment and did not do so on installation (chef protects agains replay attacks and needs a correct time setting)

Get your local time

echo \'date -us \"`date -u "+%Y-%m-%d %H:%M"`\"\'
'date -us "2012-10-10 18:07"'

and set it on all nodes (from the crowbar admin machine as root)

knife ssh node:* -- 'date -us "2012-10-10 18:07"'

Next copy your /etc/chef/webui.pem file from the admin machine to .chef/webui.pem

Copy the template knife.rb file and set the server url to the correct value

cp .chef/knife.rb.example .chef/knife.rb

copy the template .rvmrc in place and trust it (or install the corresponding ruby)

cp dot-rvmrc .rvmrc
rvm rvmrc trust .
rvm rvmrc load

install chef with the Gemfile

bundle install

finally you can work with knife from your local machine:

$ knife status
6 minutes ago, admin.v1.cr0wbar.de, admin.v1.cr0wbar.de, 10.124.0.10, ubuntu 12.04.
4 minutes ago, dc0-ff-ee-00-00-02.v1.cr0wbar.de, dc0-ff-ee-00-00-02.v1.cr0wbar.de, 10.124.3.2, ubuntu 12.04.
4 minutes ago, dc0-ff-ee-00-00-01.v1.cr0wbar.de, dc0-ff-ee-00-00-01.v1.cr0wbar.de, 10.124.3.3, ubuntu 12.04.
3 minutes ago, dc0-ff-ee-00-00-03.v1.cr0wbar.de, dc0-ff-ee-00-00-03.v1.cr0wbar.de, 10.124.3.1, ubuntu 12.04.

 © Copyright .
 Created using Sphinx 1.3.1.

faq/install-faq.html

 Navigation

 		
 index

 		core latest documentation »

 Q: crowbar converge keeps failing with httpd installs when running ./tools/docker-admin centos ./production.sh my.domain.here

Converge failed, so I checked the logs and saw Chef failing to install httpd. So I ran it on the command line and got the full error:

error: unpacking of archive failed on file /usr/sbin/suexec: cpio: cap_set_file

newgoliath [3:14 PM] Installing : httpd-2.2.22-1.ceph.el6.x86_64 1/1
Error unpacking rpm package httpd-2.2.22-1.ceph.el6.x86_64
error: unpacking of archive failed on file /usr/sbin/suexec: cpio: cap_set_file

newgoliath [3:14 PM] Linux judd-m6600 3.13.0-32-generic #57-Ubuntu SMP Tue Jul 15 03:51:08 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux

newgoliath [3:16 PM]3:16 bash-4.1# sestatus
SELinux status: disabled

A: Turns out it has nothing to do with SELinux. Make sure your docker server is running with -s devicemapper. On Ubuntu edit /etc/default/docker to include it. On RedHat derived, edit /etc/sysconfig/docker. All better!

Q: during crowbar converge dhcpd refuses to start. In /var/log/messages you find gems like:

nodes/c5babcfd3233.log:Aug 25 23:09:42 c5babcfd3233 kernel: [29976.767673] type=1400 audit(1409004582.401:82): apparmor="DENIED" operation="open" profile="/usr/sbin/dhcpd" name="/etc/dhcp3/groups.d/group_list.conf" pid=32074 comm="dhcpd" requested_mask="r" denied_mask="r" fsuid=0 ouid=0
nodes/c5babcfd3233.log:Aug 25 23:35:18 c5babcfd3233 dhcpd: Internet Systems Consortium DHCP Server 4.1.1-P1
nodes/c5babcfd3233.log:Aug 25 23:35:18 c5babcfd3233 dhcpd: Copyright 2004-2010 Internet Systems Consortium.
nodes/c5babcfd3233.log:Aug 25 23:35:18 c5babcfd3233 dhcpd: All rights reserved.
nodes/c5babcfd3233.log:Aug 25 23:35:18 c5babcfd3233 dhcpd: For info, please visit https://www.isc.org/software/dhcp/
nodes/c5babcfd3233.log:Aug 25 23:35:18 c5babcfd3233 dhcpd: Can't open /etc/dhcp3/groups.d/group_list.conf: Permission denied

A: That’s because your underlying Ubuntu OS has apparmor protecting the dhcpd package you have installed on the underlying Ubuntu. For Crowbar to work in Docker, you have to remove that apparmor stuff. If you still need the DHCPd server, just try removing the apparmor related files (ymmv). I revmove the whole package, which I found by doing

On the host: dpkg -S /etc/apparmor.d/usr.sbin.dhcpd and then dpkg --purge isc-dhcp-server. I then needed to service apparmor restart

In the container: service dhcpd restart and it turned out [OK]

 © Copyright .
 Created using Sphinx 1.3.1.

faq/README.html

 Navigation

 		
 index

 		core latest documentation »

Frequently Asked Questions (FAQ)

Commonly asked questions about Crowbar are collected in the FAQ section.

Can’t find your question? Please create a file for your question in this directory. If you do not know the answer, then please include “needs answer” in the body.

Install FAQs

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/dev-systems/dev-openSUSE-images.html

 Navigation

 		
 index

 		core latest documentation »

openSUSE images <== This info is not current – FixMe

There are a number of openSUSE images available for different use cases:

		Crowbar Dev VM [http://susestudio.com/a/n0rKOx/crowbar-dev]. This is a
ready to go Crowbar development image, based on openSUSE. Tailored for those
who want to work on the Crowbar Rails application directly from Git sources.
Follow the [step-by-step instructions]
(https://github.com/crowbar/crowbar/blob/master/doc/devguide/dev-vm-openSUSE.md)
and start hacking.

		Crowbar test image [http://susestudio.com/a/E5zfDp/crowbar-2-0]. This
image uses the packages from [systemsmanagement:crowbar:2.0]
(https://build.opensuse.org/project/monitor?project=systemsmanagement:crowbar:2.0)
and is intended only for developer testing.

		[Crowbar staging test image]
(http://download.opensuse.org/repositories/systemsmanagement:/crowbar:/2.0:/staging/images/).
This image is similar to the one above, but uses the packages from
[systemsmanagement:crowbar:2.0:staging]
(https://build.opensuse.org/project/monitor?project=systemsmanagement%3Acrowbar%3A2.0%3Astaging).
The image is automatically rebuilt by OBS [https://build.opensuse.org/]
whenever there are new packages/RPMs in the staging repository. Also
intended only for developer testing.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/dev-systems/kvm-fedora.html

 Navigation

 		
 index

 		core latest documentation »

Setting Up the Virtual Machine (VM) on a Fedora host O/S

		Create a new virtual network 192.168.124.0/24 (using virt-manager or virsh).
Do not use DHCP for this network.

		Start with a fresh Fedora 19 VM (this can be a minimal install).

		Assign the previously created virtual network to the VM and configure the
VM’s networking like this:

IP address: 192.168.124.10
Netmask: 255.255.255.0
Gateway: 192.168.124.1
DNS: 192.168.124.1

(You will need to edit /etc/sysconfig/network-scripts/ifcfg-eth0 and
/etc/resolv.conf to achieve this on a VM that was configured differently
during installation.)

		Connect to the machine via SSH and try to ping some address to verify that
traffic gets routed correctly and DNS works.

kvm-host> ssh root@192.168.124.10

		[Optional] If you have problems with outbound connections from VM even after
editing network-scripts and resolv.conf, it might be that iptables
forwarding rules for the virtual network didn’t get created on your host
machine. Check that with iptables:

kvm-host> sudo iptables -LChain FORWARD
target prot opt source destination
ACCEPT all – anywhere 192.168.124.0/24 state RELATED,ESTABLISHED
ACCEPT all – 192.168.124.0/24 anywhere

(The output is shortened to show the important part only.)

If you don’t see the above forwarding rules, shut down your VMs and restart
libvirtd:

kvm-host> systemctl restart libvirtd.service

Then check the iptables output again and the forwarding rules should be there.

		Create a user on the VM for Crowbar development.

root@crowbar-dev> useradd -m crowbar
root@crowbar-dev> passwd crowbar

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/dev-systems/docker-TLDR.html

 Navigation

 		
 index

 		core latest documentation »

Short Term notes for running the OpenCrowbar in Docker

This is the TL;DR version; the full version is here.

		Place the OS install ISOs for OSes you want to deploy on to slaves in
$HOME/.cache/opencrowbar/tftpboot/isos. We currently support:

		CentOS-6.5-x86_64-bin-DVD1.iso

		RHEL6.4-20130130.0-Server-x86_64-DVD1.iso

		ubuntu-12.04.4-server-amd64.iso

		Prep Environment

		Install Docker (do once)

		sudo chmod 666 /var/run/docker.sock (to run docker without sudo)

		sudo usermod -a -G docker <your-user> (to permanently run Docker
without sudo)

		To build Sledgehammer:

		tools/build_sledgehammer.sh Details

		To run in development mode:

		tools/docker-admin centos ./development.sh

		To run in production mode:

		tools/docker-admin centos ./production.sh admin.cluster.fqdn
The first time you run this, it will take awhile as caches a few
critical files and extracts the ISOs.

		tools/kvm-slave (to launch a KVM-based compute node)

Once Crowbar is bootstrapped (or if anything goes wrong), you will get a shell running inside a ‘tmux’ session, the first of which is in the container. Exiting the shell will kill Docker.

More about tmux:

http://tmuxp.readthedocs.org/en/latest/about_tmux.html

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/dev-systems/dev-ubuntu-12.04.03.html

 Navigation

 		
 index

 		core latest documentation »

Configuration Guide - Ubuntu 12.04.03

		Start the Ubuntu server install and answer the prompts
		English & Ubuntu Server
		Choose eth0 as your primary interface

		Name your machine and user accounts (we recommend “crowbar” as user) & time zone

		Partitioning: guided to use entire disk and LVM
		defaults are OK

		you need to select YES to continue (NO = return to selection)

		Proxy depends on your environment (we’ll install Squid later)
		No automatic updates

		Install OpenSSH & Samba (space toggles, enter continues)

		Install GRUB boot loader

		When Installation completes, make sure the ISO is not attached and allow reboot

		you may want to snapshot the machine in this state

		Add Network for SSH from Host
sudo vi /etc/network/interfaces and add the following lines

auto eth1
iface eth1 inet static
 address 192.168.222.6
 netmask 255.255.255.0

then restart networking:
sudo service networking restart

		validate network access to this net network by using Putty (or other ssh client) to SSH into crowbar@192.168.222.6

		Setup an .ssh keypair

		use ssh-keygen -t rsa
1. if that fails, try rssh-keygen

		Passwordless sudo: sudo sed -ie "s/%sudo\tALL=(ALL:ALL) ALL/%sudo ALL=(ALL) NOPASSWD: ALL/g" /etc/sudoers
1. additional information, see http://serverfault.com/questions/160581/how-to-setup-passwordless-sudo-on-linux

		Optional, SAMBA and CNTLM if you are developing on Windows using VMs and/or behind corporate firewalls

		Setup a Squid Proxy to ensure downloads are fast (needed by Crowbar too)

		Make sure your environment does not use proxy for local addresses:
1. export no_proxy="127.0.0.1,[::1],localhost,192.168.124.0/24,172.16.0.0/12"
1. tip: add this to your login init

		you need git and tmux: sudo apt-get install git tmux

###Position Boot Assets

We’ll need this for later but it takes a while so we do it now in different window....

Copy the ISOs that you want for nodes to $HOME/.cache/opencrowbar/tftpboot/isos. It’s OK to have more than 1 but make sure you have the space!

Examples:

		mkdir -p $HOME/.cache/opencrowbar/tftpboot/isos

		cd $HOME/.cache/opencrowbar/tftpboot/isos

		Centos: wget http://centos.mirror.ndchost.com/6.5/isos/x86_64/CentOS-6.5-x86_64-bin-DVD1.iso

		Ubuntu: wget http://releases.ubuntu.com/12.04.4/ubuntu-12.04.4-server-amd64.iso

###Checkout Code

		get git
1. ubuntu: sudo apt-get install git

		get the code: git clone https://github.com/opencrowbar/core

		if you want to contribute
1. review Contribute Guidelines
2. setup your personal git fork

		Advanced user optional build Sledgehammer

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/workflow/dev-build-sledgehammer.html

 Navigation

 		
 index

 		core latest documentation »

 Sledgehammer is the component of OpenCrowbar that we use as a bootstrapping
tool to perform initial node discovery and to register its discovered
state within the OpenCrowbar node provisioning framework. After it has been
discovered Sledehammer can be controlled to prepare the hardward and to
lay down the operating system and to assure correct node configuration.
It consists of a slightly modified Centos 6.5 live environment. To build
Sledgehammer you need:

		A CentOS 6.5 install DVD from bittorrent or your favorite CentOS
mirror.

To create Sledgehammer, run the tools\build_sledgehammersh script in the main
OpenCrowbar core checkout.

Failures

If it fails to find some packages, change the mirror kickstart is using in sledgehammer\sledgehammer.ks

List of mirrors here: http://isoredirect.centos.org/centos/6/isos/x86_64/

Example diff

diff --git a/sledgehammer/sledgehammer.ks b/sledgehammer/sledgehammer.ks
index 27fc7c0..7f8aa2f 100644
--- a/sledgehammer/sledgehammer.ks
+++ b/sledgehammer/sledgehammer.ks
@@ -7,9 +7,9 @@ rootpw --iscrypted 1H6F/NLec$Fps2Ut0zY4MjJtsa1O2yk0
 selinux --disabled
 firewall --disabled

-repo --name=a-base --baseurl=http://mirror.centos.org/centos/6/os/$basearch
-repo --name=a-updates --baseurl=http://mirror.centos.org/centos/6/updates/$basearch
-repo --name=a-extras --baseurl=http://mirror.centos.org/centos/6/extras/$basearch
+repo --name=a-base --baseurl=http://mirrors.kernel.org/centos/6/os/$basearch
+repo --name=a-updates --baseurl=http://mirrors.kernel.org/centos/6/updates/$basearch
+repo --name=a-extras --baseurl=http://mirrors.kernel.org/centos/6/extras/$basearch
 repo --name=a-live --baseurl=http://www.nanotechnologies.qc.ca/propos/linux/centos-live/$basearch/live
 repo --name=a-wsman --baseurl=http://download.opensuse.org/repositories/Openwsman/CentOS_CentOS-6
 %packages

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/workflow/online-install.html

 Navigation

 		
 index

 		core latest documentation »

 This file documents how to install OpenCrowbar on a basic install of
Ubuntu or CentOS without needing to create a crowbar ISO first.

####Caveats:

		Online install mode still has plenty of bugs to work out.

		Especially where the OpenCrowbar web UI is concerned. Doing an online
install as described by this README will result in a broken web
UI. The OpenCrowbar CLI still works, though.

		Online install mode is primarily intended as a development aid for
now. If you want to deploy something more production oriented,
build the ISO using the usual build process.

####Assumptions:

		Your primary NIC has an IP address of 192.168.124.10/24

		You have at least 20 gigs of disk space and 4 gigs of ram.

		You are running either as root or as crowbar.

####Instructions:

1: Install a basic install of Ubuntu Server or CentOS.
2: Do whatever is needed to be able to install packages from the Internet.
3: Install git, rubygems, the ruby development packages, rpm, sudo,
debootstrap, and the json gem. This may involve setting up sane http_proxy
and https_proxy environment variables.
4: Clone the OpenCrowbar repository from
http://github.com/crowbar/crowbar.git, and cd into the
newly-created crowbar directory.
5: In the crowbar repository, run ./dev switch. This will check out
the barclamps we need.
6: Run ./install, and wait.
7: Profit.

####Neato things:

		You don’t need to have a direct connection to the Internet at all
to deploy OpenCrowbar with this code. The install process pulls
all the packages it needs entirely over http, so all you need
is access to an http proxy that does have access to the Internet.
If you export an appropriate http_proxy before starting the
install, the install process and any nodes you bring up will wind
up using that proxy for all package fetching.

		The current code deploys its own caching proxy before installing
anything. This allows us to minimize the amout of data we have to
pull from the Internet.

		You don’t need to have ISO images of the operating systems you want
to install as long as you have an active Internet connection.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/model/user.html

 Navigation

 		
 index

 		core latest documentation »

User Model

Users!

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/workflow/README.html

 Navigation

 		
 index

 		core latest documentation »

Workflow Overview

This file documents dev, the workflow helper tool for OpenCrowbar
development.

##Assumptions:

		Everyone has their own forks on Github of the OpenCrowbar repository
and all of the barclamps.

		Development workflow will involve regular synchronization
against your upstream repositories.

		The only path for getting code into upstream repositories is via
pull requests.

##Requirements:

		A checkout of OpenCrowbar.

		Bash 4, ruby, rubygems, and the json gem. Microsoft Windows users shoul operate in either the cygwin or the msysgw enviromnent.

		A github username and password.

##Releases, Builds, and Barclamps:

A release is a collection of packages (RPMs or Debs), which in turn are collections of
barclamps and some associated build-specific metadata.

Releases are intended to be long-running, primary units of maintenance
and development for a collection of builds. By convention, every
release has a master build that contains references to the core
crowbar barclamps, along with other builds that may add other
barclamps to add extra capabilities.

Builds how a specific product in a release is built and what it
includes. It includes references to barclamps, and any build-specific
metadata and infrastructure.

Barclamps enable OpenCrowbar to manage sets of services across a
cluster. All OpenCrowbar functionality is implemented in terms of
barclamps. Barclamps consist of independent git repositories with a
well-defined and dev-controlled branching structure.

##Remotes:

OpenCrowabar expects you to manage the various remotes that you work with to pull
branches for pull requests. The best way to do this is to create a new branch in
the local checkout. Checkout the new branch, work on that branch, then at the conclusion
of work push your checkout to your personal github repository. Pull requests can be
generated from the github branch to the upstream branch that the code changes are targetted to.

##Day to Day Workflows:

###Initial Setup:

		Clone the OpenCrowbar repository from you preferred upstream fork of OpenCrowbar.If you are not sure where to clone from, use https://github.com/opencrowbar/core.git

####Regular Development:

		Run git pull against your upstream repositories.
a: Git will fetch all changes from all upstream remotes for all repositories.

		Hack/build/test/commit.

		Run git push to back up your changes. This force-pushes your changes to your personal forks of the OpenCrowbar repositories on Github.

		If you are not ready to create a pull request for your changes, go to 1.

###Collaborating on a Feature:

####Make Feature available for fetch:
Add documentation here.

Grabbing a feature and starting to hack on it:

		Normal git pull will make the feature available in your local repo.

Merging changes from parent into feature/

		Commit your current work to your local repo. git commit -am ‘cool message’

		Run git push personal master returns the name of the parent of your working copy.

####Ready for pull request:

		make your change and commit it: ‘git commit -a -m “helpful info”’

		get the latest code from origin: ‘git fetch’

		sync your code into the trunk: ‘git rebase’
		you may have to merge changes using ‘git add [file]‘ and ‘git rebase –continue–’

		push your change to your personal repo in a branch: ‘git push personal master:[my-pull-request-branch]‘

		from your Github fork UI, create a pull request from my-pull-request-branch

####Review pull request:
Put docs here.

####Release Workflows:
Put docs here.

####Getting a list of known releases:
Add docs here.

####Getting the release you are currently on:
Add docs here.

####Switching to a different release:
Add docs here.

All other commands operate just on your local repository.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/workflow/package-updates.html

 Navigation

 		
 index

 		core latest documentation »

 This file documents how to enable basic support for handling package
updates in OpenCrowbar.

####Assumptions:

		You have installed a OpenCrowbar admin mode by creating a OpenCrowbar ISO
and installing the admin node from it.

		The provisioner either has access to the Internet or visibility to
an HTTP proxy that does. The usual way of doing this is by
allocating a host IP address from the public network to the admin
node. See the OpenCrowbar users guide for more information on how to
do this.

		If you are going the HTTP proxy route, that proxy does not require
any form of authentication.

		You built your OpenCrowbar ISO from a OpenCrowbar checkout that is recent
enough to have this file in it.

####Enabling Online Mode

1: In the OpenCrowbar web UI, click on Barclamps, click on Provisioner, and
then click on Edit. This will open the editing pane for the default
provisioner proposal.
2: Find the “online”: value, and change it from false to true.
3: If you need to use an upstream HTTP proxy, find the
“upstream_proxy”: value and change it to contain the address and
port of the proxy in the following format: “address:port”
4: Click Save, then click Apply. Once the proposal is finished
applying, apt/yum/gem on all the nodes will be configured to allow
package updates from the Internet.

####Caveats:

		This is still a work in progress. OpenCrowbar does not have any
controls around what packages may or may not be updated, so it is
possible that updating certian packages may break your cluster or
whatever applications your barclamps are managing.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/model/dns_name_filter.html

 Navigation

 		
 index

 		core latest documentation »

DNS Name Filter

The DNS Name Filter is used to watch the Network Subsystem and generate DNS names for interface on nodes. These names are sent
to the DNS Management Services to update the DNS systems.

Each filter has 4 components and an optional name. The name is a helpful identifier to find or provide meaning to the filter.

The first mandatory component is system. This is a string that matches the name of a DNS Management service.
The DNS management service will be looked up and its API called to add or remove Name/IP(v6) pairs.

The second mandatory component is prioirty. This is an integer value that must be unique amoung all filters. This defines an order
from lowest to highest integer value. The filters are evaluated in this order.

The third mandatory component is matcher. This is a string that defines a matching string that is decoded and
used to match network allocations.

The following substrings are allowed joined by commas. The quotes around the right side of == are required.

		net.name == “admin” - if the network allocation is from the admin network, consider matched

		net.category == “internal” - if the network allocation is from a network with category internal, consider matched

		range.name == “host” - if the network allocation is from the host range, consider matched.

		deployment.name == “system” - the node is in the system deployment, consider matched.

		node.role has “role” - if the node has the role assigned to it, consider matched.

		node.attr.attr == “value” - if the node has the attr and it has the value of value, consider matched.

admin, internal, host, system, role, attr, and value can be replaced with custom values. attr is the barclamp name
for the attribute (not the map name). value must be the string form of the contents of that attribute.

If more than one substring is provided, all substrings must match.

The forth mandatory component is template. This string defines a template when used with other internal structures generates
an FQDN for this network allocation.

The template is a string that is an FQDN with the following strings that can be replaced.

		{{node.name}} - the current name of the noade truncated at the first ‘.’

		{{node.id}} - The id of the node in integer form

		{{node.mac}} - The mac address of the node with the ‘.’ or ‘:’ replaced with ‘-‘

		{{node.deployment}} - The deployment name of the node

		{{network.name}} - The name of the network used for this allocation

		{{network.range}} - The range of the network used for this allocation

		{{network.category}} - The category of the network used for this allocation.

The system will build matches for both IPv4 and IPv6 allocations.

DNS Name Entry

This model contains a helper set of references to quickly generate requests to the DNS Management Services.

The model contains a reference to a NetworkAllocation that has matched a specific DnsNameFilter that has matched this allocation.
The rendered name and the record type are record to assist in external request generation.

The API and CLI for these only really support GET operations.

 © Copyright .
 Created using Sphinx 1.3.1.

licenses/crowbar/deployer.html

 Navigation

 		
 index

 		core latest documentation »

Deployer Barclamp Licenses

This file contains information (if updated by the barclamp authors!) about the licenses that apply to your installation.

The following dependencies are required:

		?

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/model/attrib.html

 Navigation

 		
 index

 		core latest documentation »

Attrib Model

The attrib model provides an easy way to deal with manipulating data
of interest to the OpenCrowbar framework. Attribs in OpenCrowbar have
several functions:

		They provide a mechanism that NodeRoles can use to easily pull in data
from other sources without having to know how to parse that other
source’s blob of JSON.

		They provide an easy-to-use REST API to let users get and set their
data with built-in validation.

		They act as a building block for UI developers to write custom view
templates for workloads that require them.

Defining Attribs

Attribs are defined in the crowbar.yml files, either as part of a
Role, or at the top level of the yaml file. Attribs defined as part
of a Role can operate on the following sources of data:

		NodeRole user data, sysdata, and wall data.

		DeploymentRole user data and wall data.

		Role template data

		Node data (via its related NodeRoles)

		Deployment data (via the deployment’s DeploymentRoles)

Attribs defined at the top level of a crowbar yml file operate
strictly on Nodes, either on their discrovery data, or their hint
data.

Regardless of where Attribs are declared, they have the same layout
and fields:

attribs:
 - name: provisioner-target_os
 description: "The operating system to install on a node"
 map: 'crowbar/target_os'
 schema:
 type: str
 required: true
 enum:
 - ubuntu-12.04
 - redhat-6.5
 - centos-6.6

Attrib Fields

		name: The internal name of the Attrib. Attrib names must be
globally unique.

		description: A brief description of the data that the Attrib
manipulates.

		map: The path into a blob of JSON that the Attrib uses to find its
data. In this example, the map field tells the Attrib that its data
can be found at blob["crowbar"]["target_os"]. Map is also used
when mixing attribs back together to pass them off to a Jig run.

		schema: A
Kwalify [http://www.kuwata-lab.com/kwalify/ruby/users-guide.html]
schema fragment that describes what valid data for this attribute
looks like. Note that this is a schema fragment – it will be
wrapped in the following template for actual validation:

 type: map
 required: true
 mapping:
 <attrib name>:
 <schema fragment>

Attribs that do not have an associated schema cannot be updated via
the UI, the API, or the internal Attrib model.

 © Copyright .
 Created using Sphinx 1.3.1.

licenses/crowbar/berkshelf-2.html

 Navigation

 		
 index

 		core latest documentation »

Berkshelf v2

Copyright 2012-2013 Riot Games

Jamie Winsor (<jamie@vialstudios.com>)
Josiah Kiehl (<jkiehl@riotgames.com>)
Michael Ivey (<michael.ivey@riotgames.com>)
Justin Campbell (<justin.campbell@riotgames.com>)
Seth Vargo (<sethvargo@gmail.com>)

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/model/group.html

 Navigation

 		
 index

 		core latest documentation »

Group Model

A container for users to manage nodes. Primarily used for UI rendering.

Groups are not used by OpenCrowbar for internal operations

 © Copyright .
 Created using Sphinx 1.3.1.

licenses/crowbar/README.html

 Navigation

 		
 index

 		core latest documentation »

Crowbar Framework Licenses

Crowbar is made available by Dell under the Apache 2 license.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/model/node.html

 Navigation

 		
 index

 		core latest documentation »

Node Model

Boot Environment (“bootenv”)

The node’s Boot Environment determines which operating system will be
installed on the node after configuration and inventory by Sledgehammer.

There are several built in bootenv values:

		local - Tells the provisioner that this node should not be PXE booted to
anything.

		sledgehammer - Tells the provisioner that the node should PXE boot into
Sledgehammer the next time it reboots.

		[os-name]-install - Tells the provisioner that the node shold boot
into the OS install environment for [os-name].

Hint

Hints are settable on a Node to make node-specific user preferences
available to Roles before a noderole that would otherwise convey that
information has been bound to the node. For example, a user may wish
a node to have a specific IP address. This advice is communicated
to the network role(s) by giving the hint-the_admin-v4addr attrib on the
role the preferred IP address.

Hint Shortcut

Some hints are so common that there are parameter short-cuts during
node creation. This makes it easier to set these special values.

		=ip= maps to =hint-???-v4addr= where ??? the name of the network that the IP matches.
If no match is found, the unmanaged network is used.

		=mac= maps to =hint-admin-macs=

Aliveness and availability:

Nodes in the OpenCrowbar framework have two related flags that control
whether the annealer can operate on them.

Aliveness is under the control of the OpenCrowbar framework and
encapsulates the framework’s idea of whether any given node is
manageable or not. If a node is pingable and can be SSH’ed into as
root without a password using the credentials of the root user on
the admin node, then the node is alive, otherwise it is dead.
Aliveness is tested everytime a jig tries to do something on a node
– if a node cannot be pinged and SSH’ed into from at least one of
its addresses on the admin network, it will be marked as
dead. When a node is marked as dead, all of the noderoles on that
node will be set to either blocked or todo (depending on the state of
their parent noderoles), and those changes will ripple down the
noderole dependency graph to any child noderoles.

Nodes will also mark themselves as alive and dead in the course of
their startup and shutdown routines.

Availability is under the control of the OpenCrowbar cluster
administrators, and should be used by them to tell OpenCrowbar that it
should stop managing noderoles on the node. When a node is not
available, the annealer will not try to perform any jig runs on a
node, but it will leave the state of the noderoles alone.

A node must be both alive and available for the annealer to perform
operations on it.

Defaults: Alive defaults to false and Available default to false.

[[###]] Node Creation

In order for a node to be useable by the Crowbar process, it has to be
created and populated with its initial noderole bindings and
(optional) hints. Here is an example that demonstrates the node
creation process:

		CLI: crowbar nodes create '{"name": "newtest.cr0wbar.com", "bootenv": "local"}

		API: curl --digest -u $(cat /etc/crowbar.install.key) \ -X POST \ -d "name=newtest.cr0wbar.com" \ -d "bootenv=local" \ -H "Content-Type:application/json" \ --url http://127.0.0.1:3000/api/v2/nodes

This will return:
{
“admin”:false,
“alive”:false,
“allocated”:false,
“available”:false,
“bootenv”:”local”,
“created_at”:”2013-12-21T05:49:00Z”,
“deployment_id”:1,
“description”:””,
“discovery”:{},
“hint”:{},
“id”:41,
“name”:”newtest.cr0wbar.com”,
“order”:100,
“target_role_id”:null,
“updated_at”:”2013-12-21T05:49:00Z”
}

After creating the node, we still need to set the hint for the Admin
IP to have Crowbar try and use the one it already has:

		CLI: crowbar nodes set newtest.cr0wbar.com attrib hint-admin-v4addr to '{"value": "192.168.124.99/24"}

		API: curl --digest -u $(cat /etc/crowbar.install.key) -X PUT -H "Content-Type:application/json" --url http://127.0.0.1:3000/api/v2/nodes/newtest.cr0wbar.com/attribs/hint-admin-v4addr -d '{"value": "192.168.124.99/24"}'

We then need to bind a useful set of default noderoles to the node:

		CLI: crowbar roles bind crowbar-managed-node to newtest.cr0wbar.com

		API: curl --digest -u $(cat /etc/crowbar.install.key) -X POST -H "Content-Type:application/json" --url http://127.0.0.1:3000/api/v2/node_roles -d '{"node": "newtest.cr0wbar.com", "role": "crowbar-managed-node"}'

Commit the node, which will move the newly-created noderoles from
proposed to todo or blocked, and mark the node as available:

		CLI: crowbar nodes commit newtest.cr0wbar.com

		API: curl --digest -u $(cat /etc/crowbar.install.key) -X PUT -H "Content-Type:application/json" --url http://127.0.0.1:3000/api/v2/nodes/newtest.cr0wbar.com/commit

Mark the node as alive, which will allow the annealer to do its thing:

		CLI: crowbar nodes update newtest.cr0wbar.com '{"alive": true}'

		API: curl --digest -u $(cat /etc/crowbar.install.key) -X PUT -H "Content-Type:application/json" --url http://127.0.0.1:3000/api/v2/nodes/newtest.cr0wbar.com -d 'alive=true'

 © Copyright .
 Created using Sphinx 1.3.1.

licenses/crowbar/network.html

 Navigation

 		
 index

 		core latest documentation »

Network Barclamp Licenses

This file contains information (if updated by the barclamp authors!) about the licenses that apply to your installation.

The following dependencies are required:

		?

 © Copyright .
 Created using Sphinx 1.3.1.

licenses/crowbar/test.html

 Navigation

 		
 index

 		core latest documentation »

Test Barclamp Licenses

This file contains information (if updated by the barclamp authors!) about the licenses that apply to your installation.

The following dependencies are required:

		?

 © Copyright .
 Created using Sphinx 1.3.1.

licenses/crowbar/provisioner.html

 Navigation

 		
 index

 		core latest documentation »

Provisioner Barclamp Licenses

This file contains information (if updated by the barclamp authors!) about the licenses that apply to your installation.

The following dependencies are required:

		?

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/model/deployment.html

 Navigation

 		
 index

 		core latest documentation »

Deployment Model

Deployments are the primary scope boundary for work done by OpenCrowbar.

System Deployment

The System deployment is used for node discovery.

Cannot be placed into proposed and therefore cannot be used for anything other than
initial bootstrap and discovery. To do anything besides
bootstrap the admin node and discover other nodes, we need to create
another deployment to host the additional noderoles needed to allow
other workloads to exist on the cluster. Right now, you can only
create deployments as shildren of the system deployment, limiting the
deployment tree to being 2 layers deep.

Workload Deployments

		Create a new deployment, and add the provisioner-os-install role to
that deployment. In the future you will be able to edit the
deployment role information to change what the default OS for a
deployment should be.

		Drag one of the non-admin nodes onto the provisioner-os-install
role. This will create a proposed noderole binding the
provisioner-os-install role to that node, and in the future you would
be able to change what OS would be installed on that node by editing
that noderole before committing the deployment.

		Commit the deployment. This will cause several things to happen:

		The freshly-bound noderoles will transition to TODO, which will
trigger an annealer pass on the noderoles.

		The annealer will grab all the provisioner-os-install roles that
are in TODO, set them in TRANSITION, and hand them off to
delayed_jobs via the queuing system.

		The delayed_jobs handlers will use the script jig to schedule a
reboot of the nodes for 60 seconds in the future and then return,
which will transition the noderole to ACTIVE.

		In the crowbar framework, the provisioner-os-install role has an
on_active hook which will change the boot environment of the node
passed to it via the noderole to the appropriate os install state
for the OS we want to install, and mark the node as not alive so
that the annealer will ignore the node while it is being
installed.

		The provisioner-dhcp-database role has an on_node_change handler
that watches for changes in the boot environment of a node. It
will see the bootenv change, update the provisioner-dhcp-database
noderoles with the new bootenv for the node, and then enqueue a
run of all of the provisioner-dhcp-database roles.

		delayed_jobs will see the enqueued runs, and run them in the order
they were submitted. All the runs sholuld happen before the 60
seconds has elapsed.

		When the nodes finally reboot, the DHCP databases should have been
updated and the nodes will boot into the Uubntu OS installer,
install, and then set their bootenv to local, which will tell the
provisioner (via the provisioner-dhcp-database on_node_change
hook) to not PXE boot the node anymore.

		When the nodes reboot off their freshly-installed hard drive, they
will mark themselves as alive, and the annealer will rerun all of
the usual discovery roles.

 © Copyright .
 Created using Sphinx 1.3.1.

faq/UEFI.html

 Navigation

 		
 index

 		core latest documentation »

What is the Current State of UEFI:

This file documents the current state of UEFI booting in OpenCrowbar.

Right now, we have basic support for network booting systems running
in UEFI mode. We are able to netboot Sledgehammer and the OS install
kernel/initrd pairs, and get to the point where we have an installed
operating system on the compute nodes.

##How To Use UEFI:

		Switch your system to operate in UEFI mode. How this is done
varies from system to system.

		Once the system is in UEFI mode, configure it to network boot off
the first nic.

		The crowbar framework will handle things from there.

##What UEFI Gives You:

		Native support for drive sizes > 2TB.

		All new low-level system firmware.

##What Does Not Work:

		Booting Ubuntu 12.04 off the hard drive.

There is a bug in how the version of Grub 2 that comes with Ubuntu
handles memory mapping in the UEFI environment that causes the
system to crash the UEFI firmware when it tries to load the kernel
and initrd. Upstream grub2 has been patched to resolve this issue,
but the updates have not been pulled into Ubuntu 12.04 yet.

Patch is at http://savannah.gnu.org/bugs/?36532.

Possible workarounds include:

		Look at using grub-legacy or elilo instead of grub2 when
installing in UEFI mode.

		Working on getting Canonical to pull in an updated version of
Grub2 that has the patch that fixes the issue.

##What Had to Be Changed:

		We now generate per-node OS installation scripts and UEFI/PXE
config files on the fly instead of having per-OS install scripts
and config files. This was needed to support network installation
of Redhat and CentOS due to anaconda not being able to find out
what NIC it booted from when installing in UEFI mode. For
consistency between the UEFI and PXE netboot codepaths, the
per-machine UEFI and PXE config files are now IP address specific
instead of MAC address specific.

		When systems operate in UEFI mode, we manage the boot order
directly instead of assuming that we will always netboot.

Each of the OSes we support uses a different bootloader for UEFI
(CentOS and Redhat use grub1, and Ubuntu uses grub2), and they do
not have the right intersection of being able to netboot, being
able to chainload, and operating reliably in a network environment
to be useful. Instead we use elilo, and we grab the prcompiled EFI
apps from Sourceforge instead of trying to compile things ourselves,
playing packaging shennanigans to keep our admin node bootable
while juggling multiple bootloaders, or have the provisioner handle
messing with boot templates for multiple different bootloaders.

However, none of the UEFI capable bootloaders I have found have the
ability just hand control back to UEFI to try the next thing in the
boot sequence, which means that we can no longer assume that we
will always netboot. Instead, I have added efibootmgr to
Sledgehammer and the default package installs for the operating
systems, and added a piece of code to the crowbar-hacks recipe
in the deployer that knows how to change the boot order to either
be nics-first or nics-last, and we set that based on the PXE state
machine – if it is in execute state, we will set things to
nics-last, otherwise it will set things to nics-first.

In order to make that work reliably, I had to modify the
provisioner state machine to run chef-client on every node that is
transitioning out of the execute state in order to ensure that the
boot sequence gets updated. This failed when transitioning into
reset or delete, because those states deallocate all IP addresses
to the nodes. To cope with that, the network barclamp recognizes
when the admin network is being removed and arranges for the system
to run dhclient on all the interfaces until it gets an IP address.
Since we run chef-client on the nodes before running it on the
admin node, this should result in the system getting the same IP
address it had before, which will let the chef-client run continue.

 © Copyright .
 Created using Sphinx 1.3.1.

licenses/crowbar/ntp.html

 Navigation

 		
 index

 		core latest documentation »

Deployer Barclamp Licenses

This file contains information (if updated by the barclamp authors!) about the licenses that apply to your installation.

The following dependencies are required:

		?

 © Copyright .
 Created using Sphinx 1.3.1.

licenses/crowbar/dns.html

 Navigation

 		
 index

 		core latest documentation »

DNS Barclamp Licenses

This file contains information (if updated by the barclamp authors!) about the licenses that apply to your installation.

The following dependencies are required:

		?

 © Copyright .
 Created using Sphinx 1.3.1.

licenses/crowbar/logging.html

 Navigation

 		
 index

 		core latest documentation »

Logging Barclamp Licenses

This file contains information (if updated by the barclamp authors!) about the licenses that apply to your installation.

The following dependencies are required:

		?

 © Copyright .
 Created using Sphinx 1.3.1.

licenses/crowbar/licenses.html

 Navigation

 		
 index

 		core latest documentation »

Crowbar Barclamp Licenses

This file contains information (if updated by the barclamp authors!) about the licenses that apply to your installation.

The following dependencies are required by the Crowbar Barclamp

		Packages
		Ruby 1.9 - GPL license

		Ruby Gems
		Rails 3 - GPL license

		JavaScript
		Colorbox v1.4.28 - 2013-09-04
		jQuery lightbox and modal window plugin

		(c) 2013 Jack Moore - http://www.jacklmoore.com/colorbox

		license: http://www.opensource.org/licenses/mit-license.php

		JQuery

		JQuery UI
		http://jqueryui.com

		Copyright 2013 jQuery Foundation and other contributors;

		Licensed MIT

		Java Script InfoVis Toolkit
		License: Reuse with Attribution

		Copyright (c) 2011 Sencha Inc.

		Author: Nicolas Garcia Belmonte (http://philogb.github.com/)

		Source: http://philogb.github.io/jit/static/v20/Jit/Examples/ForceDirected/example1.html

		jQuery spritely 0.6.7
		http://spritely.net/

		Copyright 2010-2011, Peter Chater, Artlogic Media Ltd, http://www.artlogic.net/

		Dual licensed under the MIT or GPL Version 2 licenses.

		Graphics
		FamFamFam

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/model/role.html

 Navigation

 		
 index

 		core latest documentation »

Role Model

Conflicts

A role can declare that it conflicts with another role via the
conflicts stanza. Roles that conflict with one another cannot be
deployed to the same node at the same time – any attempt to do so
will cause the Crowbar framework to throw a 409.

Provides

Via the provides stanza, a role can declare that it can be used in
place of another role. However, a role that provides another role is
subject to a couple of restrictions:

		Roles in a provides relationship automatically conflict with
another. If role x provides y, then y and x cannot be bound on the
same node.

		Roles in a provides relationship cannot be have a direct or indirect
parent/child relationship in the noderole graph.

Trying to bind roles to nodes in a way that would violate these
constraints will result in a 409.

Additionally, when a role provides another role then any attributes
from the provided role can be utilized as if they were also declared
on the providing role.

Flags

Roles have several flags that detemrine how OpenCrowbar manages
relationships when creating the node-role graph.

implicit

Any role that depends on a parent role with the implicit flag will
automatically bind a noderole for the parent role to the same node.

bootstrap

Indicates that this role will be automatically bound to the first admin node.

You only need to do this to a few roles (by default, crowbar-admin-node)
because the role dependency logic flags will take care of the rest of
the bindings.

discovery

Indicates that this role will be automatically bound to all newly
discovered nodes.

“crowbar-managed-node” is the only one that uses this by default, and
we let the binding logic pull in the rest of the roles that it
requires. Other barclamps that have roles that need ot be
automatically bound should add this flag.

cluster

Indicates that all noderoles for this role in a given deployment should be
bound as parents instead of just one. This ensures that all instances of
a clustered service are up instead of just the first one.

It is needed to create linked set of services like the ceph-mons.
When we add a new monitor then we want all the children of the monitor
to be held until all the other cluster noderoles are updated together.

service

Indiciates that this role is used to manage an external service.

destructive

Indicates that this role is not idempotent, and that after it
transitions to active for the first time it should never be run
again. The only user of this flag is the provisioner-os-install role.

abstract

Indicates that this role exists only to be provided by other roles,
and cannot actually be bound to a node.

milestone

Indicates that role is a major delivery point in the orchestration
lifecycle. Milestone roles are exposed in the UI as selectable by
the user for adding to deployments. They are generally only added
to deployments by users or during discovery.

powersave

Indicates that the node should power down if the noderole for this role
transitions to active and the noderole either has no children or all of
its children are proposed. This can be overridden on a per-node basis by
setting the stay_on attribute on the node to true.

Noop and Network roles are almost always Milestones.

Non-milestone roles are typically added automatically when Crowbar
resolves the dependency graph.

Hooks / In-line Calls

Roles have several different hooks that are called as part of the
deployment and/or node role lifecycle. These hooks allow you to
customize how a role behaves in the crowbar framework. Hooks should
be kept short and fast so that they do not block the API or the UI –
if you want to do something that takes a long time, you should create
a new role.

Deployment hooks

There are two hooks for letting roles interact with deployment roles:

		on_deployment_create

		on_deployment_delete

They are called passing the relavent deployment as a parameter just after a
deployment_role is created or just before it is destroyed.

This function is import to set defaults, cleanup, validate and perform
other setups when a new role is added or removed from a deployment.
This can be very helpful to ensure that sane defaults are set and
items are cleaned up.

Node hooks

There are three hooks for letting roles take actions when nodes are created, changed, or deleted:

		on_node_create

		on_node_change

		on_node_delete

They are for all roles in the system when a new node is added,
updated, or deleted. The role does not have to be included in a
deployment or used in anyway for this hook to be called. If a role
exists and implements this hook then it will get called when a node is
created or destroyed.

It is expected that the code will scope correctly!

Noderole hooks

There are five hooks that get called as part of the state transitions
for node roles:

		on_proposed

		on_todo

		on_transition

		on_active

		on_error

Each of these hooks is called with the noderole as a parameter just
after the noderole transitions to the state for the hook in question.

Network hooks

There are five hooks for letting roles take actions when networks are created, updated, or deleted:

		on_network_create

		on_network_change

		on_network_delete

		on_network_allocation_create

		on_network_allocation_delete

They are for all roles in the system when a new network is added,
updated, or deleted. The network allocation functions are called as
IPs are allocated or deallocated. The role does not have to be included in a
deployment or used in anyway for this hook to be called. If a role
exists and implements this hook then it will get called when a network is
created, destroyed, or changed.

There is one hook that gets called whenever a noderole is committed:

		on_commit

It is called just before the data in the noderole is committed, and can be
used to keep a noderole being committed by throwing an exception.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/model/node_role.html

 Navigation

 		
 index

 		core latest documentation »

Node Role Model

Node Roles are the central unit of work in OpenCrowbar.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/model/README.html

 Navigation

 		
 index

 		core latest documentation »

Core OCB Objects Design Information

There are 3 basic objects that everything else in OpenCrowbar relies
on – node objects, roles, and noderole objects.

		Node objects encapsulate machine-specific state – they have unique
programmatically generated names (which must also be the machine’s FQDN
in DNS), track whether OpenCrowbar is allowed to manage the machine, and track
whether the machine is alive and reachable. In the OCB framework,
nodes are things that a jig performs operations on as directed by a
role through a noderole.

		Roles are the primary unit of functionality in OCB – they provide
the code that the jigs use to effect change on the nodes in accordance
with the desired state stored in the noderole graph. Roles form a
dependency graph of their own (roles must declare what other roles
they depend on), each role must declare the jig that will be used to
do things to a node, and roles can have flags that affect how the
annealer will handle certian aspects of building the noderole graph
and initial node bootstrap.

		Noderoles represent a binding of a role to a node. Each noderole
tracks any state that needs to communicated from the user or the
OpenCrowbar framework to a node (and vice versa), and the overall noderole
graph determines both the order in which roles are enacted on nodes
and what attributes are visible from other noderoles when the noderole
runs.

On top of those 3 basic object types, we have 2 more that are used to
help keep cluster administrators from dying of information overload
when staring at a noderole graph with 10,000 edges. These are
deployments and deployment roles.

		A deployment is an administratively convenient logical grouping of
nodes along with a set of default role configurations (the deployment
roles) relevant to whatever workload is being run in the
deployment. Deployments all have a parent deployment except for the
system deployment, which OpenCrowbar manages and which is where all
newly-discovered nodes wind up. Nodes belong to deployments, which
helps control how the noderole graph is built. Deployments can be
either proposed (when the user needs to make deployment-wide
configuration changes), or committed (where the annealer is allowed to
work, and user-level changes are Not Allowed)

Additionally, we have barclamps to group together logically related
roles, glue the roles into the OpenCrowbar API and Web UI, and contain any
jig-specific files that the roles require.

Roles, in a little detail:

Roles have a lot to do. Their dependency graph is used a template to
build the noderole DAG, they need to provide their jig with all the
code and data it will need to effect the changes that the role wants
on a node, they need to ensure that the noderole graph is build
properly, and in some cases they need to track state that should not
be represented directly in the noderole graph.

Most roles should not need to have any state outside of the state stored in the
noderole graph, but there are some (primarily those provided by the
network, dns, and provisioner barclamps) that need to maintain a
significant amout of state outside the noderole graph or that need to
be able to react to noderole and node state transitions. To give them
a formal method of doing so, you can override the base Role model with
one that responds to several events that happen in the noderole and
node lifecycles.

The Two Rules for Events:

		Events run synchronously, so they must be fast.

If your event takes more than a few milliseconds to run, or you
want to do something on a remote machine, you should make it a
role of its own and bind it to that node as a noderole instead.

2: Events must be idempotent.
If the work you were going to do has already been done, don’t do it again.

How To Respond to Events:

The base Role model has a mechanism for letting Rails dynamically
subclass it if there is an appropriatly named model in the Rails
engine that the barclamp provides – you can provide an override based
on the name of the role by providing

class BarclampFoo::RoleName < Role

class, and you can provide a general Role override for your barclamp
by providing

class BarclampFoo::Role < Role

Noderole Events:

You can provide event hooks on your roles that work with noderoles at
6 points in their lifecycle:

		on_proposed

		on_todo

		on_blocked

		on_transition

		on_error

		on_active

Each method will be called with the noderole that just completed its
state transition after the noderole has transitioned to the state, and
all of its child noderoles have had their state updated accordingly.

Node Events:

You can provide event hooks on your roles that work with nodes at 3
points in their lifecycle for now:

		on_node_create will be called after the node is created and the
default set of noderoles has been bound to it.

		on_node_delete will be called just before the node is destroyed.

		on_node_change will be called after a node change is persisted.

Network Events:

You can provide event hooks on your roles that work with networks at 3
points in their lifecycle for now:

		on_network_create will be called after the network is created.

		on_network_delete will be called just before the network is destroyed.

		on_network_change will be called after a network change is persisted.

Note this does NOT include IP allocation or deallocation

Role Flags:

Right now, roles have 4 flags that the OpenCrowbar framework knows how to
handle:

		Discovery, which means that this role will be automatically bound
to all non-admin nodes when the node is freshly-created if the role’s
jig is active.

		Bootstrap, which means that this role will be automatically bound
to all freshly-created admin nodes. This flag is primarily used by
the OpenCrowbar framework to bootstrap the initial OpenCrowbar admin node into
existence.

		Implicit, which signals that this role can be implicitly created
and bound to a node as part of the dependency resolution process, and
that it must be bound to the same node as the role that depends on it
is being bound to.

		Library, which is not used by anything right now and may be
removed.

Role dependency rules:

Each role must declare what other roles it directly depends on, and
those dependencies are not allowed to be cyclic – a role cannot
directly or indirectly depend on itself. Roles should not declare a
dependency on a role it only indirectly depends on, as that makes the
dependency graph needlessly more complicated. A role is dependent on
another role if that other role must be deployed somewhere in the
cluster before the current role.

Noderoles:

How the noderole graph is built:

Right now, all nodes are ultimately added to the noderole graph via
the add_to_node_in_deployment function on role objects. You pass it a
node and a deployment, and it either creates a node role bound to an
appropriate place in the graph or dies with an exception. In detail:

		Verify that the jig that implements the role is active.

		Check to see if this role has already been bound to this node. If
it has, return that noderole.

		Check that all our parent roles have been bound into the noderole
graph. If they have not, bind them on the same node we are binding
to.

		Create a new noderole binding this role to the requested node in
the deployment, and create parent/child relationships between the new
noderole and the parents we found. The noderole will be created in
the PROPOSED state.

		Call the on_proposed event hook for this role with the new
noderole.

		Return the new noderole to the caller.

This function will need to grow more ornate when we want to start
supporting more than just the system deployment – right now it will
not respect deployment-level scoping. Adding it is a fairly
straightforward extension to the tests in step 4. This function is
also arguably one of the more critical pieces of code in the OpenCrowbar
framework – it determines the shape and connectedness of the noderole
graph, and hence it plays a large part in determining whether what we
are deploying makes sense.

What is in a noderole:

		Pointers to its parents and children in the noderole graph.

		The state of the noderole.

		A blob of JSON that the user can edit. This blob is seeded from
the deployment role data, which in turn is seeded from the role
template

		A blob of data that the OpenCrowbar framework can edit. This is used
by the roles to pass system-generated data to the jigs, and is usually
seeded by one of the noderole events.

		A blob of data that we get back at the end of a jig run.

What happens in OCB to create a node:

		an API request come in with the requested name of the new node, and
a flag that indicates whether it is an admin node.

		The requested name is checked to see it is a valid FQDN in the
cluster’s administrative DNS domain and that it is unique. If neither
of those are true, the request fails, otherwise we create the node
object. The new node object will not be alive or available, and it
will not have any roles bound to it.

		(optional) API calls come in to hint to the system (via the
hint-admin-mac and hint-admin-v4addr attribs) what MAC address
should be used for DHCP purposes and what IP address should be
assigned to the node from the admin network. Nodes booting via
Sledgehammer use hint-admin-mac to ensure that the
provisioner-dhcp-database role runs, which allows Sledgehammer to
get a proper in-range DHCP address.

		API calls come in that bind the crowbar-managed-node role to the
freshly-created node. This will have the side effect of pullng in
all the roles we need to properly discover a node and bind them to
the node-role graph as well.

		(optional) API calls come in that modify the default values of the
freshly-bound noderoles.

		The node is committed via the node API, which automatically
commits all the noderoles bound to the node.

		The node is marked as alive by the node API. After that, the
annealer takes over to discover the node.

Creating the initial admin node follows the same process, except we
add the crowbar-admin-node role instead of the crowbar-managed-node role.

The NodeRole state machine, the framework-driven parts:

All noderoles start in PROPOSED state, and they stay there are
committed (either individually, as part of a node commit, or as part
of a deployment commit). From PROPOSED, a noderole
can go to TODO (if the noderole has no parents or all its parents are
ACTIVE), or BLOCKED (if it has any non-ACTIVE parents).

From BLOCKED, a noderole can go to TODO when all of its parents are
ACTIVE.

The annealer looks for noderoles in TODO that meet the following
conditions:

		The jig that is associated with the noderole via the role half of the binding is active,

		The deployment that the noderole belongs to is COMMITTED,

		The node that the noderole binds to is alive and available,

		There is no noderole for that node that is in TRANSITION

It takes all the noderoles that meet those conditions, sets them in
TRANSITION, and kicks off a delayed job that will wind up setting the
noderole either to ACTIVE or ERROR.

When a noderole is set to ACTIVE, it sets all of its children in
BLOCKED state to TODO if the rest of that child’s parents are ACTIVE.

When a noderole is set to ERROR, it transitions all of its children to
BLOCKED if they were not already blocked.

How we determine what information is visible to a node during a jig run:

Right now, we use the dumbest method possible that still obeys scoping
rules. We deep-merge all the JSON blobs from all the noderoles on
this node that are ACTIVE, deep-merge that with all the JSON blobs
from all the noderoles and deployment roles that are parents of mine,
starting from the most distant set to the closest set, and then
deep-merge that with the JSON blobs from the current noderole. That
gets handed to the jig, which does its jiggy thing with it and
whatever scripts/cookbooks/modules/whatever, and we get a blob of JSON
back. We deep diff that blob with the blob we sent to the jig, and
that is what winds up on the noderole’s wall.

Aliveness and availability:

Nodes in the OpenCrowbar framework have two related flags that control
whether the annealer can operate on them.

Aliveness is under the control of the OpenCrowbar framework and
encapsulates the framework’s idea of whether any given node is
manageable or not. If a node is pingable and can be SSH’ed into as
root without a password using the credentials of the root user on
the admin node, then the node is alive, otherwise it is dead.
Aliveness is tested everytime a jig tries to do something on a node
– if a node cannot be pinged and SSH’ed into from at least one of
its addresses on the admin network, it will be marked as
dead. When a node is marked as dead, all of the noderoles on that
node will be set to either blocked or todo (depending on the state of
their parent noderoles), and those changes will ripple down the
noderole dependency graph to any child noderoles.

Nodes will also mark themselves as alive and dead in the course of
their startup and shutdown routines.

Availability is under the control of the OpenCrowbar cluster
administrators, and should be used by them to tell OpenCrowbar that it
should stop managing noderoles on the node. When a node is not
available, the annealer will not try to perform any jig runs on a
node, but it will leave the state of the noderoles alone.

A node must be both alive and available for the annealer to perform
operations on it.

Delayed Jobs and Queuing:

The OpenCrowbar framework runs all jig actions in the background using
delayed_jobs + a thin queuing layer that ensures that only one task is
running on a node at any given time. For now, we limit ourselves to
having up to 10 tasks running in the background at any given time,
which should be enough for the immediate future until we come up with
proper tuning guidelines or auto-tuning code for significantly larger
clusters.

Postgresql 9.3:

Migrating to delayed_jobs for all our background processing made it
immediatly obvious that sqlite is not at all suited to handling real
concurrency once we started doing multiple jig runs on different nodes
at a time. Postgresql is more than capable of handling our forseeable
[[concurrency]] and HA use cases, and gives us lots of scope for future
optimizations and scalability.

Deployment tree:

Until now, the only deployment that OpenCrowbar knew about was the
system deployment. The system deployment, however, cannot be placed
into proposed and therefore cannot be used for anything other than
initial bootstrap and discovery. To do anything besides
bootstrap the admin node and discover other nodes, we need to create
another deployment to host the additional noderoles needed to allow
other workloads to exist on the cluster. Right now, you can only
create deployments as shildren of the system deployment, limiting the
deployment tree to being 2 layers deep.

Provisioner Installing Ubuntu 12.04:

Now, we get to the first of tqo big things that were added in the last
week – the provisioner being able to install Ubuntu 12.04 and bring
the resulting node under management by the rest of the OCB
framework. This bulds on top of the deployment tree and DHCP/DNS
database role work. To install Ubuntu 12.04 on a node from the web UI:

		Create a new deployment, and add the provisioner-os-install role to
that deployment. In the future you will be able to edit the
deployment role information to change what the default OS for a
deployment should be.

		Drag one of the non-admin nodes onto the provisioner-os-install
role. This will create a proposed noderole binding the
provisioner-os-install role to that node, and in the future you would
be able to change what OS would be installed on that node by editing
that noderole before committing the deployment.

		Commit the deployment. This will cause several things to happen:
		The freshly-bound noderoles will transition to TODO, which will
trigger an annealer pass on the noderoles.

		The annealer will grab all the provisioner-os-install roles that
are in TODO, set them in TRANSITION, and hand them off to
delayed_jobs via the queuing system.

		The delayed_jobs handlers will use the script jig to schedule a
reboot of the nodes for 60 seconds in the future and then return,
which will transition the noderole to ACTIVE.

		In the crowbar framework, the provisioner-os-install role has an
on_active hook which will change the boot environment of the node
passed to it via the noderole to the appropriate os install state
for the OS we want to install, and mark the node as not alive so
that the annealer will ignore the node while it is being
installed.

		The provisioner-dhcp-database role has an on_node_change handler
that watches for changes in the boot environment of a node. It
will see the bootenv change, update the provisioner-dhcp-database
noderoles with the new bootenv for the node, and then enqueue a
run of all of the provisioner-dhcp-database roles.

		delayed_jobs will see the enqueued runs, and run them in the order
they were submitted. All the runs sholuld happen before the 60
seconds has elapsed.

		When the nodes finally reboot, the DHCP databases should have been
updated and the nodes will boot into the Uubntu OS installer,
install, and then set their bootenv to local, which will tell the
provisioner (via the provisioner-dhcp-database on_node_change
hook) to not PXE boot the node anymore.

		When the nodes reboot off their freshly-installed hard drive, they
will mark themselves as alive, and the annealer will rerun all of
the usual discovery roles.

The semi-astute observer will have noticed some obvious bugs and race
conditions in the above sequence of steps. These have been left in
place in the interest of expediency and as learning oppourtunities for
others who need to get familiar with the OpenCrowbar codebase.

Bootstrapping OpenCrowbar:

Put docs here.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/model/00100_CB2_Design_Topics.html

 Navigation

 		
 index

 		core latest documentation »

OpenCrowbar Design Topics

We are working on core OpenCrowbar functions as per the design discussion
from last week. Our objective is to code incrementally to validate the
design. I believe this approach gives the community concrete examples for
discussion and makes it possible to update the design based on learning
and new viewpoints.

Currently, I’ve stripped out a lot of legacy code and
rebuilt the very basics of the model we discussed. See
[image: DIA file (image)]

Script Jig

In the next weeks, we are taking the first steps to define the Jig model API and test it using the Script jig. Here are some initial thoughts:

The script jig is described here:
[image: Script Jig Design (image)]

		The Script jig is built into the Crowbar barclamp.

		New nodes will be added to the system via the API (POST v2/nodes) not from the jigs

		The jig will provide methods that handle Crowbar node C.U.D. via node_create, node_update and node_delete.

		When new jigs are added, we expect them to get a call to node_create for all nodes already in the system [we are NOT covering this use case for the Script jig]

		Crowbar will create a “run” handle when it transfers control of node-roles to the Jig for operation

		The Jig will expose a run method that takes the run handle from Crowbar

		When the Jig takes over the run, it will change the run status and also update the node-role states to TRANSISTIONING

		The node-role’s in a run will also have the run handle

		A node-role only be managed by one jig at a time (so a run handle will be per jig)

Crowbar will use “rails runner” to collect a job and hand it off to the Jigs.

		This will allow the jig to operate without blocking Crowbar threats

		We will be able to run the process manually by disabling the rails runner starts

		We may outgrow this approach, but it is easy to add complexity (like delayed job) after this is working

There will be other items, but this is a good start.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/model/network.html

 Navigation

 		
 index

 		core latest documentation »

Network Model

Crowbar orchestrations the creation of networks and connects them to other roles using conduits

Categories

Networks have a category. The category is used to classify the network type. This is a string
field and can be anything. There are some special values for OpenCrowbar.

		admin - This indicates that the network is an admin network. Admin networks are preferred for communication paths for
bring-up and installion. When a node is discovered, an admin address is assigned from the networks marked admin. If
an admin network is not found, the hinted address will be allocated from the unmanaged network.

		bmc - This indcates that the network is a BMC network. The BMC-type network is used by the IPMI configuration subsystem
to allocate an address for the BMC.

Groups

Networks have a group. The group is used to cluster networks together. In general, this is just
for identification with the exception of BMC networks. When the IPMI subsystem needs to allocate a
BMC address, the node will be searched for other networks. Once these networks are found, the groups of
these networks will be used to find a BMC network that could be used for allocation.

Conduits

A logical description of the networks to help Crowbar bind generically across hardware platforms.

On physical infrastructure, NIC enumeration is unpredictable and not helpful for functional
topologies. For example, a storage application wants to bind it’s primary service interface
to the fasted teamed network available; however, there is no default teamed network because
they have to be constructed.

Crowbar uses the network and conduit information to build abstract networks for use by other
roles.

Conduits are defined using a Speed + Order syntax. Speed are given as 1g, 10g, 100m, etc
and then order is ordinal from 0. The first 10g network would be noted as 10g0.

The on board management (aka IPMI or BMC) interface is a special conduit named ‘bmc’

Please import more reference more material! There is a lot written about conduits for CB1.

IPv6 support.

You can create ranges and routers for IPv6 addresses
as well as IPv4 addresses, and you can tell a network that it should
automatically assign IPv6 addresses to every node on that network by
setting the v6prefix setting for that network to either:

		a /64 network prefix, or

		“auto”, which will create a globally unique RFC4193 IPv6 network
prefix from a randomly-chosen 40 bit number (unique per cluster
installation) followed by a subnet ID based on the ID of the
OpenCrowbar network.

Either way, nodes in a OpenCrowbar network that has a v6prefix will get
an interface ID that maps back to their FQDN via the last 64 bits of
the md5sum of that FQDN. For now, the admin network will
automatically create an RFC4193 IPv6 network if it is not passed a
v6prefix so that we can easily test all the core OpenCrowbar components
with IPv6 as well as IPv4. The DNS barclamp has been updated to
create the appropriate AAAA records for any IPv6 addresses in the
admin network.

Ranges (networks_ranges)

A network has at least 1 range. Ranges are use to allocate v4 and v6 IP addresses to nodes
using the network.

Ranges can have distinct conduits but will share the network conduit by default.

Router (networks_router)

Optional.

Describes the router used by the network and is required if the operator wishes to have Crowbar configure a router when the network is setup on a node.

Allocations (networks_allcation)

Tracks the IP addresses that have been assigned to the network.

IPs are allocated as CIDRs.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/model/barclamp.html

 Navigation

 		
 index

 		core latest documentation »

Barclamp Model

Barclamps are OpenCrowbar modules/plug-ins and act as containers for [[Jig]] and [[Role]] additions.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/model/deployment_role.html

 Navigation

 		
 index

 		core latest documentation »

Deployment Role Model

Hooks

To integrate Deployment Roles, the following hooks can be overriden.

On Deployment Create

Used to create deployment scoped information when a role is added to to a deployment

Calls code immplemented on the attached Role

On Deployment Delete

Used to cleanup role data when it is removed from a deployment.

At present, you cannot remove roles from a deployment.

Calls code immplemented on the attached Role.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/model/run.html

 Navigation

 		
 index

 		core latest documentation »

Run / Delayed Job

The OpenCrowbar framework runs all jig actions in the background using
delayed_jobs plus a thin queuing layer that ensures that only one task is
running on a node at any given time. For now, we limit ourselves to
having up to 10 tasks running in the background at any given time,
which should be enough for the immediate future until we come up with
proper tuning guidelines or auto-tuning code for significantly larger
clusters.

####Postgresql 9.3:

Migrating to delayed_jobs for all our background processing made it
immediatly obvious that sqlite is not at all suited to handling real
concurrency once we started doing multiple jig runs on different nodes
at a time. Postgresql is more than capable of handling our forseeable
concurrency and HA use cases, and gives us lots of scope for future
optimizations and scalability.

####DHCP and DNS:

The roles for DHCP and DNS have been refactored to have seperate
database roles, which are resposible for keeping their respective
server roles up to date. Theys use the on_node_* roles mentioned in
“Roles, nodes, noderoles, lifeycles, and events, oh my!” along with a
new on_node_change event hook create and destroy DNS and DHCP database
entries, and (in the case of DHCP) to control what enviroment a node
will PXE/UEFI boot into. This gives us back the abiliy to boot into
something besides Sledgehammer.

####Deployment tree:

Until now, the only deployment that OpenCrowbar knew about was the
system deployment. The system deployment, however, cannot be placed
into proposed and therefore cannot be used for anything other than
initial bootstrap and discovery. To do anything besides
bootstrap the admin node and discover other nodes, we need to create
another deployment to host the additional noderoles needed to allow
other workloads to exist on the cluster. Right now, you can only
create deployments as shildren of the system deployment, limiting the
deployment tree to being 2 layers deep.

####Provisioner Installing Ubuntu 12.04:

Now, we get to the first of two big things that were added – the
provisioner being able to install Ubuntu 12.04 and bring the resulting
node under management by the rest of the OpenCrowbar framework. This
bulds on top of the deployment tree and DHCP/DNS database role work.

To install Ubuntu 12.04 on a node from the web UI:

		Create a new deployment, and add the provisioner-os-install role
to that deployment. In the future you will be able to edit the
deployment role information to change what the default OS for a
deployment should be.

		Drag one of the non-admin nodes onto the provisioner-os-install
role. This will create a proposed noderole binding the
provisioner-os-install role to that node, and in the future you
would be able to change what OS would be installed on that node
by editing that noderole before committing the deployment.

		Commit the deployment. This will cause several things to happen:

		The freshly-bound noderoles will transition to TODO, which will
trigger an annealer pass on the noderoles.

		The annealer will grab all the provisioner-os-install roles that
are in TODO, set them in TRANSITION, and hand them off to
delayed_jobs via the queuing system.

		The delayed_jobs handlers will use the script jig to schedule a
reboot of the nodes for 60 seconds in the future and then return,
which will transition the noderole to ACTIVE.

		In the crowbar framework, the provisioner-os-install role has an
on_active hook which will change the boot environment of the node
passed to it via the noderole to the appropriate os install state
for the OS we want to install, and mark the node as not alive so
that the annealer will ignore the node while it is being
installed.

		The provisioner-dhcp-database role has an on_node_change handler
that watches for changes in the boot environment of a node. It
will see the bootenv change, update the provisioner-dhcp-database
noderoles with the new bootenv for the node, and then enqueue a
run of all of the provisioner-dhcp-database roles.

		delayed_jobs will see the enqueued runs, and run them in the order
they were submitted. All the runs sholuld happen before the 60
seconds has elapsed.

		When the nodes finally reboot, the DHCP databases should have been
updated and the nodes will boot into the Uubntu OS installer,
install, and then set their bootenv to local, which will tell the
provisioner (via the provisioner-dhcp-database on_node_change
hook) to not PXE boot the node anymore.

		When the nodes reboot off their freshly-installed hard drive, they
will mark themselves as alive, and the annealer will rerun all of
the usual discovery roles.

The semi-astute observer will have noticed some obvious bugs and race
conditions in the above sequence of steps. These have been left in
place in the interest of expediency and as learning oppourtunities for
others who need to get familiar with the OpenCrowbar codebase.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/model/crowbar_model.html

 Navigation

 		
 index

 		core latest documentation »

Experimental OpenCrowbar Model

[image: OpenCrowbar Model (image)]

Required Overrides

The OpenCrowbar system requires that you overide certain models/controllers for it to work

The required overrides are:

		Barclamp[Name]::Barclamp

The optional overrides are:

		Barclamp[Name]::Attrib[SpecialFunction]

Overriding Barclamp.rb

The superclass Barclamp.rb provides everything that you need to operate OpenCrowbar for most functions. You can override it to create advanced functionality.

create_proposal

Notes:

		superclass calls create_deployment

Use this to pre-populate nodes into a new proposal

is_valid? deployment

Notes:

		superclass returns true

		called before deployment.commit

process_inbound_data

transition

This is a critical function, it determines which actions the barclamp takes when it gets new information.

versions

Defaults to 2.0

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/model/model.html

 Navigation

 		
 index

 		core latest documentation »

OpenCrowbar Data Models

The data models in OpenCrowbar are expressed in ActiveRecord

Namespacing: Individual Barclamps can add models, but are expected to add them
contained within their own namespace.

		Example: Foo Barclamp with a model for Attrib::FooBar with a subclass for Attrib

BarclampFoo::Attrib

Path = app/models/foo/attrib_foo_bar.rb

Class = Foo::AttribFooBar < Attrib

Additional Data Model Design Information

Please refer to the following links for additional guidance:

OpenCrowbar Design Topics

OpenCrowbar Primary Model

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/doc-format-guides/formatting.html

 Navigation

 		
 index

 		core latest documentation »

Formatting Documentation

Cheat Sheet: http://warpedvisions.org/projects/markdown-cheat-sheet/

Links

You can create links to pages using with square braces for the link text and parens for the link address.

[Link Contents](Link URL)

For relative links, use the doc name with the extension. You can navigate the docs tree using relative paths, e.g.: ../to_parent. For example, sibling doc.

WYSIWG Editing

Markdown is designed to be easy to ready as plan text (think writing an email) but it really helps to be able to see how it will be formatted in the browser.

We recommending using [[http://www.ctrlshift.net/project/markdowneditor/]] to WYSIWYG edit markdown!

Of course, you’ll have to save it back to the source document after you browse.

Special Characters

If you want to use special charcters, just include them in the text w/ the HTML escape code. For example, Trademark &trade
http://www.escapecodes.info/

HTML Styling (considered harmful)

If you must use HTML (like for tables) then avoid adding any style or formatting information. Assume that we’ll apply CSS to the output so the look is consistent.

Images

You can include images in your documentation using ![caption](image_name.png)

This will create an HTML image in a paragraph.

Put the image in the same directory and Crowbar will make sure the relative paths work.

Please put your source material for the image in the directory too so that future editors can update images as needed.

Tables

For tables, formatting them using HTML with a lot of white space (see below). While not ideal, it makes it pretty easy to edit and read

 		this is cell 1
 		this is cell2

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/doc-format-guides/topic.html

 Navigation

 		
 index

 		core latest documentation »

Topic Documentation

Markdown is the current format.

Path is doc/default/barclamp/file.md

It is recommended to use additional subdirectories! Simply add another / to the same to indicate another level of depth on the file path. Ideally, each markdown file is only about 1 page of text.

The naming of topics will match the file paths!

The name of the topic is expected to start with a # title flag. This title is used by the generator to create the displayed title.

It is recommended to use # for top level (book), ## for second level (section), ### for third level (topic) and so on.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/doc-format-guides/README.html

 Navigation

 		
 index

 		core latest documentation »

Adding Documentation

OpenCrowbar uses a composite documentation system that allows each barclamp to add documentation specific to its function while still building a single comprehensive documentation set.

Note: Please see the Formatting subsection for tips on formatting markdown.

This information is available as a video! see http://youtu.be/eWHeEWiOEvo

Composite Documentation

It is vital to understand that the OpenCrowbar documentation system is composite documentation. That means that the information is assembled from multiple barclamps on the fly. This is required because the OpenCrowbar framework is really a collection of barclamps and each barclamp has its own capabilities and features.

The design of the documentation system allows each barclamp to contribute parts to the overall whole and also allows parts to cross reference each other.

For example, each barclamp is expected to contribute “barclamp” and “license” information. These pages only refer to the individual barclamp’s data; however, they are rolled up under the barclamp and license sections of the documentation. For OpenCrowbar suite barclamps, they are further grouped under the master OpenCrowbar set. That means that the Deployer license information depends on the OpenCrowbar Meta information.

While this adds complexity for the documentation author, it greatly simplify the documentation reading experience for the user. It also allows developers to isolate documentation changes.

Table of Contents - Directory Tree Layout

By design, the table of contents generally follows the directory structure of the documentation. This is intentional because it simplifies composition.

Each subdirectory can be paired with a matching topic document that functions as the index for the items in the subdirectory.

For example,

devguide.md
devguide/
 api.md
 api/
 node.md
 group.md
 testing.md
 testing/

In the above example, the devguide topic layout out general information for the developer guide. The api and testing sections would be shown as sections of the Developer Guide. Individual API topics node and group are subsections of the API topic.

If there is an index topic name (devguide.md) that matches a subdirectory (devguide/), then the contents of the subdirectory will be listed under the index topic name in the table of contents. If the index topic name is missing, but exists in the same location in the OpenCrowbar framwork docs, then the subdirectory will be conflated with other barclamps under the OpenCrowbar framework’s index topic name.

Ordering

You can control the order of documents within a directory by prefixing the file with a number followed by an underscore.

For example, a file named 333_sample_order.md would be ordered as 333.

Note: If you omit order, the system defaults to 9999.

Omitting Pages

The first heading of each OpenCrowbar document must start with #_ Title. If the pound (#) is omitted from the first position in the file, then it will not be included in the documentation generation process.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/jigs/README.html

 Navigation

 		
 index

 		core latest documentation »

Configuration Managers (aka Jigs)

Jigs are the interface between OpenCrowbar and external work that needs to be done.

OpenCrowbar provides a pluggable model for interacting with nodes and other datacetner infrastructural components such as switches, power controllers, failover controllers, etc. Each differing configuration manager has its own interfaces and control methods. OpenCrowbar provides a defined API for the configuration managers meeded to control and manage a collection of machines and systems.

For convenience the OpenCrowbar method for initiating and controlling a node-role state transition operation through a particular control manager is via a Jig. A Jig provides a consistent interface for OpenCrowbar state transition vectors. State transition vectors operate within the context of a predefined dependency graph. The collection of OpenCrowbar Jigs provide a platform-agnostic and operationally neutral method for initiating, monitoring, and completing a node-role state transition.

OpenCrowbar must have 1 or more Jigs that preform the work of OpenCrowbar of node-role state transition operations, known as Jobs.

##For initial OpenCrowbar work, the primary Jigs inclide:

		the Chef jig in Barclamp-Chef

		the script jig in Barclamp-Script

		the noop jig in Barclamp-Noop

##JIG semantic standard operations:

		A jig can create roles for operation

		A jig can set attributes for operations

The OpenCrowbar roadmap includes provision to use a Puppet jig. The Puppet JIG will include both front0-end driver as well as a Puppet-client capability.

For testing, OpenCrowbar provides a Test Jig that is included in the core OpenCrowbar barclamp.

Schema

Jig names have a limited character set. They can only include alphanumeric characters and underscore (_). They cannot start with underscore.

Inbound path

The jig can read data from the system and store it into attribute collection via JSON databags.

User Data

More information to follow.

System Data

More information to follow.

Outbound path

More information to follow.

Methods

Each jig overrides the following core methods in OpenCrowbar:

Create Node

Handles when a node is added to the OpenCrowbar DB. Allows the jig to make approporate entries in independant databases

Delete Node

Handles when a node is removed from the OpenCrowbar DB. Allows the jig to remove entries from its database

Run (input is list of Tacks)

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/jigs/noop.html

 Navigation

 		
 index

 		core latest documentation »

Noop Jig

The Noop Jig OpenCrowbar to deal with multiple dependent node-role requirements.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/jigs/script.html

 Navigation

 		
 index

 		core latest documentation »

Script Jig

The script Jig in performs all node-role state transition operations by pushing the state-change operation together with necessary databags over an ssh connection to the target node.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/jigs/chef.html

 Navigation

 		
 index

 		core latest documentation »

Chef Jig and Developing with Cookbooks

The Chef Jig in the Chef Barclamp allows OpenCrowbar to get data from Chef (inbound) and create roles / set attributes into Chef (outbound)

Adding Chef Jig into a dev system

bundle exec rake crowbar:chef:inject_conn url=http://127.0.0.1:4000 name=admin key_file=/etc/chef/client.pem

Developing with Chef Cookbooks

Crowbar and Berkshelf

For each of your workloads (core, openstack, hardware, etc.) Crowbar uses a centralized Berkshelf file for for all of your cookbooks. The Berksfile is in opencrowbar/<workload>/chef/cookbooks/Berksfile. Crowbar ignores Berksfiles in individual cookbooks.

Berkshelf resolves cookbook dependencies by following the Berksfile instructions for local and remote dependent cookbooks. It stores dependencies in the Berkshelf (path.) If you’re using a Chef Server, it can upload them to the Chef Server. If you’re using chef-solo or chef-client -x, it packages them on the filesystem and delivers them to your nodes.

We encourage you to clone from the OpenCrowbar github repos and submit pull requests.

Developing Cookbooks

		Run all the following as your crowbar user.

		YOU MUST put your cookbook and all your cookbooks’ dependencies in the centralized Berksfile for them to get picked up and used by the Chef Jig.

opencrowbar/<workload>/[barclamp]/chef/cookbooks/Berksfile

		You can use any of the normal sources to indicate the location of dependent cookbooks.

		Put your custom and wrapper cookbooks in opencrowbar/<workload>/chef/cookbooks/<my_cookbook>

		The Berkshelf is located at /root/.berkshelf/ Do not edit it. If you want to prune it of old and unnecessary versions of cookbooks, feel free to use sudo berks shelf uninstall <cookbook> -v <version> The Chef Jig should replace any missing versions of cookbooks in the Berkshelf next time it runs.

		Install dependencies:

$ cd <opencrowbar_root>/<workload>/[barclamp]/chef/cookbooks/
$ berks install

		Optional: You might want the cookbooks you indicated as dependents and your cookbooks to be available to you for reference or running chef-solo while you’re developing. The following example will download them and put them in the right place for you.

$ cd <opencrowbar_root>/<workload>/[barclamp]/chef/cookbooks/
$ berks install -p ./somewhere/else/to/look/at/

		If you’re using Chef-Solo: Package up cookbooks for delivery. Once you like your cookbooks, you need to package them for Crowbar to distribute to the nodes (even the Crowbar admin node)

$ cd <opencrowbar_root>/<workload>/[barclamp]/chef/cookbooks/
$ berks package

		If you kick off the annealer again for the proper role, you’ll be copying that package.tar.gz file over to your slave nodes

Testing Cookbooks

TODO: Script this, possibly under ‘tools’

		create a test node (a kvm node is just fine)

		add it to a deployment and add the node-role that your cookbook belongs to

		kick off the annealer to deploy your cookbooks to a test node.

FUTURE:

		Crowbar can help integrate your normal testing patterns. We’re considering test-kitchen integration.

 © Copyright .
 Created using Sphinx 1.3.1.

development-guides/ui/role.html

 Navigation

 		
 index

 		core latest documentation »

Barclamp Roles - User Interface Development and Testing

When a deployment role is in proposed state the user should be able to modify the role attributes defined for that role.

In all other states the attributes should be displayed as read-only. Please use the Messaging Barclamp as a reference and this guide for developing and testing other custom role user interfaces.

Development

The steps for building the UI (view) to edit and display node role attributes are as follows

		Define the attributes for the Role in the Barclamp’s crowbar.yml if they are not already present. These definitions will create Attrib objects for the Role in Crowbar.

Sample attributes:

roles:
 - name: messaging-server
 jig: chef-solo
 requires:
 - openstack-base
 attribs:
 # name used as id field in haml input tags. Needs to follow this convention: [barclamp]-[role]_rest_of_id
 - name: 'messaging-openstack_endpoints_mq_host'
 # Plain English description of attrib
 description: 'Messaging Host'
 # map to value in hash: hsh['openstack']['endpoints']['mq']['host'] for example
 map: 'openstack/endpoints/mq/host'
 - name: 'messaging-openstack_endpoints_mq_port'
 description: 'Messaging Port'
 map: 'openstack/endpoints/mq/port'
 - name: 'messaging-crowbar_messaging_mq_user'
 description: 'Messaging User'
 map: 'crowbar_messaging/mq/user'
 - name: 'messaging-crowbar_messaging_mq_password'
 description: 'Messaging Password'
 map: 'crowbar_messaging/mq/password'

		Create the view for the role

Crowbar expects the view file location and name to follow the convention:

[barclamp_name]/crowbar_engine/barclamp_[barclamp_name]/app/views/barclamp_[barclamp_name]/node_roles/_[@role.name].html.haml

For the messaging server role the following Rails partial was created:

messaging/crowbar_engine/barclamp_messaging/app/views/barclamp_messaging/node_roles/_messaging-server.name.html.haml

The partial is made up of four main components, the form, the validation rules, the validation messages and the read-only view. The template for the overall partial should follow this pattern:

- data_nil_empty = (data.nil? || data=={})
- if @node_role.proposed? # The node role can be edited in this state, show the form
 %dl.attribs
 %dt= t('.[label_key]')
 %dd= text_field_tag 'data_[@role.name]_[map_to_value]', (data_nil_empty || data["map"]["to"]["value"].nil?) ? template["map"]["to"]["value"] : data["map"]["to"]["value"] , :size => 30
 ...
 = hidden_field_tag :dataprefix, "data_"

 :javascript
 var rules = new Array();
 // cannot use regular json syntax because you cannot have hyphen in key names and attribs have hyphen, TODO should re-factor attribs to use json friendly key names
 rules["data_[@role.name]_[map_to_value]"] = new Object({
 required: true,
 minlength: 8
 //...
 });
 //...
 var messages = new Array();
 messages["data_[@role.name]_[map_to_value]"] = new Object({
 required: "#{t('.[field_label_required]', size: 8)}"
 //...
 });
 //..

- else # Not in proposed state, show read-only page.
 %dl.attribs
 %dt= t('.[label_key]')
 %dd= (data_nil_empty) ? template["map"]["to"]["value"] : data["map"]["to"]["value"]
 ...

		IMPORTANT: The ids used in the form fields MUST match the ids used to build the rules and messages javascript arrays.

		Add localization for all labels and validation messages. This follows the conventions mentioned in the localization documentation and the general localization pattern for the view above is as follows:

en:
 barclamp_[barclamp_name]:
 node_roles:
 [role_name]:
 label_key: Label Value
 message_key: Message with parameter: %{parameter}

		Override Role hooks if needed

If any special actions need to take place prior to sending the data down to the node after the Deployment is committed you can override one of the hooks declared in Role [https://github.com/crowbar/barclamp-crowbar/blob/master/crowbar_framework/app/models/role.rb].

For example in the messaging barclamp an encrypted databag needed to be created on the admin node populated with the user and password from the form. The data bag is then copied downstream to the node prior to a chef run.

Create a class that extends Role and use the following name/location convention:

class Barclamp[Role::Name} < BarclampChef::Role

[barclamp_name]/crowbar_engine/barclamp_[barclamp_name]/app/models/barclamp_[barclamp_name]/[role_name].rb

For example, in the messaging barclamp the class used for the server role hook override is:

class BarclampMessaging::Server < BarclampChef::Role

messaging/crowbar_engine/barclamp_messaging/app/models/barclamp_messaging/server.rb

The hook override used in the encrypted data bag use case is the on_todo hook which is called when the node role is moved into the to_do state once all, if any, blocking parent roles make it to active state, but before the data is pushed down to the target node, so this hook is ideal for this use case. Sample code from Messaging Barclamp below:

def on_todo(node_role, *args)
 nrd= node_role.data
 if(!nrd.nil? && nrd != {} && !nrd["crowbar_messaging"]["mq"]["user"].nil? \
 && !nrd["crowbar_messaging"]["mq"]["password"].nil?)
 messaging_user_id = nrd["crowbar_messaging"]["mq"]["user"]
 messaging_password = nrd["crowbar_messaging"]["mq"]["password"]
 store_credential("messaging", "user", messaging_user_id, messaging_password)
end

end
```





Testing


A typical front-to-back testing scenario is outlined below, using the Messaging Barclamp as an example:



		Start the Admin node, log in and create new Deployment.


		Start a new test node, either a VM or actual hardware.


		Validate the test node has PXE booted and is the discovered state in the UI


		Create a new Deployment and add the single role you are trying to test, messaging-server for example.


		Add the newly discovered node to the Deployment


		At the intersection of the role and node click the green + icon to expand all the parent roles.


		At this point the very last role, from left-to-right, should be the role you are testing with a blue diamond icon at the intersection of the node and role. The blue diamond indicates the node role is in the Proposed state. Click this icon, this will bring you to the Node Role view that contains the functionality you are testing.


		Before proceeding copy the ID of the node role you are editing to be used later on. This can be found by looking at the URL of the page. For instance the following  http://192.168.124.10:3000/node_roles/84, shows that the node role is 84


		Validate the form fields and labels are correct that the form validation is working properly. Validation error messages should be displayed to the right of the field in question. The tester should know what each field’s validation rules are supposed to be to validate the rules.


		Test required fields by clearing them all and attempt to save the node role. You should see required messages for every field in the messaging server role for example as every field is required


		Validate and field length rules are working correctly, there are on-key-up event handlers on each field and when the length doesn’t meet the defined max/min length you should be notified.


		Validate special case fields like password and email.  In messaging there is a custom validator defined that will not allow special characters in the password.  If you enter % you should see a validation error message.


		Enter all required information in the correct format and save the node role.  You should see a notification, in the standard global notification section of the page, that the node role has been saved successfully.


		Navigate through the deployments menu to get back to the deployment node role list page again.  Click the blue icon for the role you are testing and validate the information you previously changed repopulates the form.


		Make additional changes and repeat previous step the validate the additional update was successful. The reason for this is the first time you edited the node role you were overwriting the defaults, creating a new object. This second pass is an update of that object.


		Testing of the rendered form is done at this point. It may be worthwhile to validate model data itself is correct prior to committing the deployment. This can be easily done through the Rails console:


		SSH into the admin node navigate to the crowbar_framework director





:~$ cd /opt/dell/crowbar_framework




		Start the rails console





:~$ RAILS_ENV=development bundle exec rails c




		Use the Rails console to retrieve the node role object





irb(main):001:0> nr = NodeRole.find(84)




		Verify the model matches the changes made in UI





irb(main):001:0> y nr.data # This prints out a yaml version of the data that was modified in the UI



It should look something like:


```yaml
 openstack:
 endpoints:
 mq:
 port: 5532
 host: 127.0.0.1
 crowbar_messaging:
 mq:
 user: the_user
 password: the_password
```




		If the information looks correct in the model commit the Deployment in the UI.  While the parent node is executing parent roles like installing the operating system etc, you can take a look at the read-only node role view by clicking the grey circle icon (indicating blocked state) at the intersection of the node and role.  This will take you to the read-only node role view. Validate the fields and data correct.


		When the Deployment is finished and active the last step is to verify the settings set in the UI actually made it to the target node and configured the service correctly.  The validation steps will be different for each role. For the Messaging Server role the following should be verified:


		SSH into the target node and verify that the service is running





:~$ sudo rabbitmqctl status




		Verify the settings are correct in the RabbitMQ config and environment files





:~$ sudo less /etc/rabbitmq/rabbitmq.config
:~$ sudo less /etc/rabbitmq/rabbitmq-env.conf




		This completes testing and verification of the entire life-cyle, from the UI to the actual deployed service.











          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/ui/navigation.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Adding Menu Items


You add menu items into OpenCrowbar using database migrations that insert into the navs table using the Nav object.


You must add the migration to the crowbar_framework/db/migrate directory and follow the Rails migration naming convention of YYYYMMDDHHMMSS_barclamp_navs.rb.


Inside the migration, use the Nav.find_or_create_by_item to populate the information for the menu item:



		item = the id of the item


		parent_item = the id of the top level menu you want to use (root creates a top level menu)


		name = the i18n path to the menu text


		description = the i18n path to the menu hover information


		path = the Rails path you want to follow.  Unless it starts with http, eval will be applied to the path.


		order = the display order of the menu item





Remember to:



		Provide a self.down that removes your menu item, to maintain a clean environment.


		Create matching entries in your barclamp’s i18n files.






Example from the Network barclamp:


class NetworkNavs < ActiveRecord::Migration
  def self.up
    Nav.find_or_create_by_item :item=>'switches', :parent_item=>'network', :name=>'nav.switch', :description=>'nav.switch_description', :path=>"switch_path", :order=>500
  end

  def self.down
    Nav.delete_by_item 'switches'
    Nav.delete_by_item 'vlan'
  end
end









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/ui/localization.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Adding Localizations (i18n)


OpenCrowbar uses the Rails I18N library.  Please refer to the documentation http://guides.rubyonrails.org/i18n.html for usage hints that can help you reduce coding, and to add features such as Interpolation.


Each barclamp is expected to add its own localization (i18n) file.



Note: Please do not add your localizations into another barclamp’s i18n file.
You must also be careful not to create duplicate entries; doing so can confuse OpenCrowbar.




		Add your localization file (en.yml is the default) into the crowbar_framework/config/locales/[barclamp] directory.






Note: You must replace [barclamp] with the name of your barclamp.




		If you are supporting multiple languages, replace en with the target language code.  For example, use fr.yml if you want to provide French translations.





		Inside the i18n file, provide a simple YML hash for translations. For example:


 en:
   # Layout
   nav:
     nodes: Nodes
     nodes_description: Infrastructure Components








Reminder: Encode your translations in quotes if you need to use comma ( : ) or tick ( ` ) characters!







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/status.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Status APIs


Status APIs are used to provide lists of objects in optimized formats.  They do not have a release contract and should not be used for external APIs that are not tightly integrated to the code base


The general pattern for the Status API calls is:



api/status/object/[:id]




Queue Status


Returns JSON for Annealer worker queue


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	/api/status/queue	none	Number of Workers and List of Jobs	Used by BDD


Output


{ workers:10, jobs:[] }





Node Status


Returns JSON for node status for AJAX calls.  Includes hash of all nodes to help detect changes.


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	api/status/node	none	All nodes	Used by Dashboard
GET	api/status/node/[id]	none	id is the node ID or name.	Used by Node details





Inventory Status


Returns JSON for Ansible Inventory JSON.  See http://docs.ansible.com/developing_inventory.html


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	api/status/inventory	none	All deployments and nodes	Used by Ansible clients
GET	api/status/inventory	hostvar=[node]	nodes variables from _meta without deployemnts	Used by Ansible python –host client
GET	api/status/inventory	hostvar=none	All deployments without node _meta data	Used by Ansible python –list client
GET	api/status/inventory/[id]	none	id is the deployment ID or name.	Used by Ansible clients


Lists all the deployments with children, hosts and vars.


Includes “_meta” section with variables per host.



This code is designed to work with the /clients/ansible/inventory.py script






Deployment Status


Returns JSON for Deployment status


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	api/status/deployment	none	All deployments	
GET	api/status/deployment/[id]	none	id is the deployment ID or name.	





Heartbeat Status


Used by UI to track backlog on menu bar.


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	api/status/heartbeat	none	All counts of node roles	








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/jig.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Jig (aka CMDB interface) APIs


Jigs are the interface between OpenCrowbar and doing work in the infrastructure.



System Jigs


OpenCrowbar has three built-in jigs



		Script - uses SSH to perform operations on nodes.  This is used for bootstrapping actions that install the agents for other Jigs.  Not activated in development mode.


		Noop (no operation) - takes internal actions in OpenCrowbar only.  Used when database updates or coordination points are needed that have no external action.


		Test - used by the test infrastructure to validate OpenCrowbar logic when no phyiscal infrastructure is available.  Not activited in production mode.








API Actions


Verb	URL	Comments
:——	:———————–	:—————-
GET	api/v2/jigs	List
GET	api/v2/jigs/:id	Specific Item
PUT	api/v2/jigs/:id	Update Item
POST	api/v2/jigs	Create Item
DELETE	api/v2/jigs/:id	Delete Item
VARIOUS	api/v2/jigs/:id/extra	Special Ops








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/ui/README.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
User Interface Development


Crowbar uses the basic Rails MVC approach for UI development with some small AJAX extension.


While there are more sophisticated and scalable models, the development team feels that Rails MVC provides sufficient experience without additional complexity.  Maintainability and simplicity of the UI are primary goals at this point.


We expect to revisit this assumption in the future and encourage community development of this UI or other approaches.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/ui/tips_and_tricks.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Tips & Tricks (UI Developer)



Dashboard No Polling


When you are troubleshooting the UI or REST APIs, the Node Dashboard (dashboard) polling can be a pain because it generates log traffic.  You can disable polling for debug by using the nopoll parameter.


For example, http://192.168.124.10:3000/dashboard/89?nopoll





Stop Rendering Navigation


If you are in developer mode, then you can pass in ?nav=false and the template will not render the menu.


For example, http://192.168.124.10:3000/docs?nav=false





Force/Stop Documentation reindexing


You can use the ?rebuild=[true/false] to force the documentation index to rebuild (also happens on web startup).  In developer mode, the documentation will reindex everytime the /doc page is hit.



		in production mode, force reindexing, use ?rebuild=[anything]


		in developer mode, stop reindex on every load, use ?rebuild=false











          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/node.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Node API


Node APIs are used to manage nodes (servers) within the Crowbar system


When Nodes are created, updated or deleted, roles and jigs are notified so they can tale appropriate actions.



API Actions


Verb	URL	Comments
—–	—–	———–
GET	api/v2/nodes	List
GET	api/v2/nodes/:id	Specific Item
PUT	api/v2/nodes/:id	Update Item, notifies all jigs and roles
POST	api/v2/nodes	Create Item, notifies all jigs and roles
DELETE	api/v2/nodes/:id	Delete Item + notifies all jigs and roles
GET	api/v2/nodes/:id/node_roles	Shows all the roles that the node is using (including their status)
GET	/api/v2/nodes/[:node_id]/attribs	List Attribs for a specific node
GET	/api/v2/nodes/[:node_id]/attribs/[:id]	Show Attrib (including value) for a specific Node
PUT	/api/v2/nodes/[:node_id]/commit	Commit all the noderoles in proposed on a specific node
PUT	/api/v2/nodes/[:node_id]/attribs/[:id]	Update Attrib


Details:



		name - must be FQDN









Hints:


Uesrs can provide shortcuts to the hint data. The following hints have been defined as optional parameters for the Node API



		ip - requests a specific network-admin IP


		mac - setup up the DHCP resolution for the node using the given MAC address








Examples


Using CURL to create a minimally configured node from the Admin node


curl –digest -u ‘developer:Cr0wbar!‘ -H “Content-Type:application/json” –url http://127.0.0.1:3000/api/v2/nodes -X POST –data @ns.json


Where the data file is ns.json and contains


{ “alive”: “true”, “bootenv”: “local”,
“name”: “test.cr0wbar.com” }





JSON Fields


| Attribute | Type |Settable | Note
:——–	:——–	:————–	:—————-
Admin	Boolean	Yes	
Alias	String	Yes	
Alive	Boolean	Yes	
Allocated	Boolean	Yes	
Available	Boolean	Yes	
Bootenv	String	Yes	
Created_at	String	No	Unicode - date format
Deployment_id	Internal Ref	No	Actually an Int
Description	String	Yes	
Discovery	String	Yes	All the details of the hardware - very large
Hint	String	Yes	
Id	Integer	No	
Name	String	Yes	
Order	Integer	??	
Target_role_id	Internal Ref	No	
Updated_at	String	No	Unicode - date format





Field Information



Minimum fields needed for create


Alive, Bootenv, Name





Target Role ID


TargetRole is used to troubleshoot problem nodes by putting them into a state hopefully known working state allows you to put the node back into sledgehammer so you can take the installed OS out of the picture..  To do this, set the target role to TargetRole to “crowbar managed node” and BootEnv to “sledgehammer” then reboot.










          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/dns_name_filter.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
DNS Name Filter APIs



DNS Name Filter Routes


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	/api/v2/dns_name_filters	none	DNS Name Filter List	-
POST	/api/v2/dns_name_filters	none	New DNS Name Filter	-
GET	/api/v2/dns_name_filters/[:id]	none	Existing DNS Name Filter Detail	-
PUT	/api/v2/dns_name_filters/[:id]	none	Update DNS Name Filter Detail	-
DELETE	/api/v2/dns_name_filters/[:id]	none	Delete a DNS Name Filter	-







JSON fields


Attribute	Type	Settable	Note
———	—-	——–	—-
id	Integer	No	Numeric id of filter
name	String	Yes	Descriptive name of the filter
priority	Integer	Yes	Unique priority to order evaluation of filters
matcher	String	Yes	A string that is used to match a network allocation
template	String	Yes	A string that is used to generate a DNS name for a matched node
system	String	Yes	A string that references a DNS Management Service to update
Created_at	String	No	Unicode - date format
Updated_at	String	No	Unicode - date format


Minimum fields needed for create - name, priority, matcher, template, and system.



DNS Name Entry Routes


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	/api/v2/dns_name_entries	none	DNS Name Entry List	-
GET	/api/v2/dns_name_entries/[:id]	none	Existing DNS Name Entry Detail	-







JSON fields


Attribute	Type	Settable	Note
———	—-	——–	—-
id	Integer	No	Numeric id of filter
name	String	No	DNS Name for the network allocation
rr_type	String	No	DNS RR Type of record
network_allocation	Integer	No	Id reference to network allocation
dns_name_filter	Integer	No	Id reference to the matching DNS Name Filter
Created_at	String	No	Unicode - date format
Updated_at	String	No	Unicode - date format






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/user.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  The user API is used to manage users.



User CRUD: List


Lists the current users.


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	crowbar/2.0/user/2.0/users	N/A	JSON array of user ID:Username pairs	


Output:


{
  "32": "test123",
  "1": "developer",
  "2": "crowbar",
  "3": "machine-install",
  "4": "davpat2112"
}






User CRUD: Show


Shows details about a selected user.


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	crowbar/2.0/user/2.0/users/[id]	id is the user ID or username.	Details of the user in JSON format	


Output:


{
 "created_at": "2012-12-12T18:56:14Z",
 "updated_at": "2013-01-01T06:27:33Z",
 "username": "crowbar",
 "id": 2,
 "is_admin": true,
 "email": "email@emai.com"
}






User CRUD: Create


Creates a new user.


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
POST	crowbar/2.0/user/2.0/users		User json definition (see User CRUD: Show)	must be a valid user object


{
  "username":"testuser1",
  "email":"test1@domain.com",
  "password":"password123",
  "password_confirmation":"password123",
  "remember_me":"false",
  "is_admin":"false"
}



Details:



		username - The unique username (must be letters and numbers, and must start with a letter)


		email - well formed unique and valid email address


		password - password field (must meet password strength requirement)


		password_confirmation - password confirmation field


		remember_me - when user logs into UI will a cookie be set so username field is prepopulated.


		is_admin - will user have admin privileges, (create new update existing users in ui)





Output:


{
 "created_at": "2012-12-12T18:56:14Z",
 "updated_at": "2013-01-01T06:27:33Z",
 "username": "crowbar",
 "id": 2,
 "is_admin": true,
 "email": "email@emai.com"
}






User CRUD: Update


Updates existing user.


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
PUT	crowbar/2.0/user/2.0/users/[id]		User json definition (see User CRUD: Show)	


{
  "id":"1",
  "username":"testuser1x",
  "email":"testuser1x@domain.com",
  "remember_me":"false",
  "is_admin":"false"
}



Details:



		id - the ID or username of the user to update


		username - unique username (must be letters and numbers, and must start with a letter)


		email - well formed unique and valid email address


		remember_me - when user logs into UI will a cookie be set so username field is prepopulated.


		is_admin - will user have admin privileges, (create new update existing users in ui)





Output:


{
 "created_at": "2012-12-12T18:56:14Z",
 "updated_at": "2013-01-01T06:27:33Z",
 "username": "crowbar",
 "id": 2,
 "is_admin": true,
 "email": "email@emai.com"
}






Reset User Password


Change existing user password


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
PUT	crowbar/2.0/user/2.0/users/reset_password/[id]		User json definition (see User CRUD: Show)	


{
  "id":"1",
  "password":"password123",
  "password_confirmation":"password123"
}



Details:



		id - the ID or username of the user to update


		password - password field (must meet password strength requirement)


		password_confirmation - password confirmation field





Output:


{
 "created_at": "2012-12-12T18:56:14Z",
 "updated_at": "2013-01-01T06:27:33Z",
 "username": "crowbar",
 "id": 2,
 "is_admin": true,
 "email": "email@emai.com"
} 






Lock User


Lock existing user account.


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
POST	crowbar/2.0/user/2.0/users/lock/[id]	id is the user ID or username	User json definition (see User CRUD: Show)	


Output:


{
 "created_at": "2012-12-12T18:56:14Z",
 "updated_at": "2013-01-01T06:27:33Z",
 "username": "crowbar",
 "id": 2,
 "is_admin": true,
 "email": "email@emai.com"
}






Unlock User


Unlock existing user account.


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
DELETE	crowbar/2.0/user/2.0/users/lock/[id]	id is the user ID or username	User json definition (see User CRUD: Show)	


Output:


{
 "created_at": "2012-12-12T18:56:14Z",
 "updated_at": "2013-01-01T06:27:33Z",
 "username": "crowbar",
 "id": 2,
 "is_admin": true,
 "email": "email@emai.com"
}






Make User Admin


Add user administrator priviledge to existing user.


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
POST	crowbar/2.0/user/2.0/users/admin/[id]	id is the user ID or username	User json definition (see User CRUD: Show)	


Output:


{
 "created_at": "2012-12-12T18:56:14Z",
 "updated_at": "2013-01-01T06:27:33Z",
 "username": "crowbar",
 "id": 2,
 "is_admin": true,
 "email": "email@emai.com"
}    






Remove User Admin


Delete user administrator priviledge from existing user.


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
DELETE	crowbar/2.0/user/2.0/users/admin/[id]	id is the user ID or username	User json definition (see User CRUD: Show)	


Output:


{
 "created_at": "2012-12-12T18:56:14Z",
 "updated_at": "2013-01-01T06:27:33Z",
 "username": "crowbar",
 "id": 2,
 "is_admin": true,
 "email": "email@emai.com"
} 






User CRUD: Delete


Deletes a user.


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
DELETE	crowbar/2.0/user/2.0/users/[id]	User ID or username	HTTP error code 200 on success	


No body.


Output:


None.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/group.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Group APIs


Group APIs are used to manage groups.  Groups are used to organized things



Group CRUD


Create, Read, Update, Delete actions for Groups



List


Returns list of group id:names in the system



Note: Category is not included in this list



Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	/2.0/crowbar/2.0/group	-	-	-


Output:


{
  1:"not_set",
  2:"rock_n_role",
  4:"group_of_wrath"
}



Details:



		id - Node id


		name - Node name








Read


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	/2.0/crowbar/2.0/group/[id]	id is the group ID or name.	-	-


Output:


{
  "id":4,
  "name":"greg.example.com",
  "description":null,
  "order":10000,
  "category":"ui",
  ...
  "created_at":"2012-08-13T17:20:21Z",
  "updated_at":"2012-08-13T17:20:21Z"
}



Details:



		Format - json


		id - Node id


		name - Node name


		category - one of the allowed categories in lowercase: ui, rack


		all Node properties serialized








Group CRUD: Create


Creates a new group


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
POST	/2.0/crowbar/2.0/node/	-	json definition (see Node Show)	must be a legal object


Input:


{ 
  "id":1
  "name":"fqdn.example.com",
  "description":"description",
  "category":"ui"
  "order":10000,
}



Details:



		name - group name (must be letters - numbers and start with a letter)


		description - optional (default null)


		category - (default = ui) determines the collection of groups.  Allowed categories are
		ui


		rack








		order - optional (default 10000)








Group CRUD: Delete


Deletes a group


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
DELETE	/2.0/crowbar/2.0/group/[id]	Database ID or name	-	must be an existing object ID


No body.


Ouptut


None.


Details:



		id - Group name or database ID










Node Actions on Groups


These actions are for showing adding, removing, or moving nodes in groups


On success, They all return the same result as the Show method



Note: This these methods are used by the UI for drag and drop group management



Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	/2.0/crowbar/2.0/group/[group-id]/node	none	json list of nodes (see below)	Shows nodes that below to group
POST	/2.0/crowbar/2.0/group/[group-id]/node/[node-id]	none	json definition (see Node Show)	Add node to group
PUT	/2.0/crowbar/2.0/group/[group-id]/node/[node-id]	none	json definition (see Group Node Show)	Move Node from Group 1 to Group 2
DELETE	/2.0/crowbar/2.0/group/[group-id]/node/[node-id]	none	json definition (see Node Show)	Removes a node from an existing group



Note: Move a node from an existing group to an another group in the same category.  This is effectively a combined delete/add action.



Details:



		All data is contained in the URL (no body required)


		group-id: id of the group (can be name)


		node-id: id if the node (can be name)





Output:


{
  "id": #
  "nodes": {"[group_id#]":"[group_name]"},
  "name":"[group_name]",
  "category":"[group_category]"}
}



Errors:



		404 if node requested is not found


		404 if group requested is not found











          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/attrib.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Attribute (aka Attrib) APIs


Attribute APIs are used to manage attributes used by the jigs.
Roles, Nodes, NodeRoles, and DeploymentRoles all work with Attribs.



To prevent Rails name collisions, OpenCrowbar uses ‘Attrib’ instead of Attribute.




Routes


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	/api/v2/attribs	none	List Attribs	-
GET	/api/v2/attribs/[:id]	none	Show Attrib	-
GET	/api/v2/nodes/[:node_id]/attribs	none	List Attribs for a specific node	-
GET	/api/v2/nodes/[:node_id]/attribs/[:id]	none	Show Attrib (including value) for a specific Node	-
PUT	/api/v2/nodes/[:node_id]/attribs/[:id]	none	Update Attrib	-
GET	/api/v2/roles/[:role_id]/attribs	none	List Attribs for a specific role	-
GET	/api/v2/roles/[:role_id]/attribs/[:id]	none	Show Attrib (including value) for a specific Role	-
PUT	/api/v2/roles/[:role_id]/attribs/[:id]	none	Update Attrib	-
GET	/api/v2/deployments/[:deployment_id]/attribs	none	List Attribs for a specific deployment	-
GET	/api/v2/deployments/[:deployment_id]/attribs/[:id]	none	Show Attrib (including value) for a specific Deployment	-
PUT	/api/v2/deployments/[:deployment_id]/attribs/[:id]	none	Update Attrib	-
GET	/api/v2/deployment_roles/[:deployment_role_id]/attribs	none	List Attribs for a specific deployment_role	-
GET	/api/v2/deployment_roles/[:deployment_role_id]/attribs/[:id]	none	Show Attrib (including value) for a specific Deployment_Role	-
PUT	/api/v2/deployment_roles/[:deployment_role_id]/attribs/[:id]	none	Update Attrib	-
GET	/api/v2/node_roles/[:node_role_id]/attribs	none	List Attribs for a specific node_role	-
GET	/api/v2/node_roles/[:node_role_id]/attribs/[:id]	none	Show Attrib (including value) for a specific Node_Role	-
PUT	/api/v2/node_roles/[:node_role_id]/attribs/[:id]	none	Update Attrib	-





List Attribs



		CLI: crowbar attribs list


		API: curl -X GET --digest -u $(cat /etc/crowbar.install.key) -H "Content-Type:application/json" http://localhost:3000/api/v2/attribs





Returns:


[
  {
    "order": 10000,
    "barclamp_id": 2,
    "writable": false,
    "map": "ohai/dmi/base_board/asset_tag",
    "name": "asset_tag",
    "updated_at": "2014-03-03T05:18:01.883Z",
    "description": "BIOS configured system identifier",
    "id": 1,
    "role_id": null,
    "schema": null,
    "created_at": "2014-03-03T05:18:01.873Z"
  },
  {
    "order": 10000,
    "barclamp_id": 2,
    "writable": false,
    "map": "ohai/dmi/base_board/asset_tag",
    "name": "serial_number",
    "updated_at": "2014-03-03T05:18:01.909Z",
    "description": "System Serial Number",
    "id": 2,
    "role_id": null,
    "schema": null,
    "created_at": "2014-03-03T05:18:01.899Z"
  },
  ...
]






Show Attrib



		CLI: crowbar attribs show hint-admin-macs


		API: curl -X GET --digest -u $(cat /etc/crowbar.install.key) -H "Content-Type:application/json" http://localhost:3000/api/v2/attribs/hint-admin/macs





Returns


{
  "writable": true,
  "map": "admin_macs",
  "created_at": "2014-03-03T05:18:02.241Z",
  "id": 14,
  "barclamp_id": 2,
  "description": "Hint for Admin MAC addresses",
  "order": 10000,
  "updated_at": "2014-03-03T05:18:02.254Z",
  "name": "hint-admin-macs",
  "schema": {
    "type": "seq",
    "sequence": [
      {
        "type": "str",
        "pattern": "/([0-9a-fA-F]{2}:){5}[0-9a-fA-F]/"
      }
    ],
    "required": true
  },
  "role_id": null
}









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

deployment-guide/attaching-to-bmc.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Connecting to the BMC Network


By default, Crowbar sets up a BMC network on 192.168.128.xxx/24 named the_bmc in the category bmc and the group internal.You may, of course, modify this by changing values from the /networks page.  These instructions have been created with the
assumption that you are using the default network and should be modified to match your specific configuration.



Attaching Admin to BMC


While Crowbar will configure the admin node and managed node BMCs, it does not configure a gateway for your workstation
to connect to the nodes on that network.  You need to add a gateway IP on the BMC network from the system you are using
to connect to the BMC network.


These instructions assume you are using a Linux desktop with the Admin node running in a docker container.  The container
is using docker0 as the network bridge to the nodes.


You must add the bmc range the bridge from your workstation: sudo ip addr add 192.168.128.1/24 dev docker0


You should now be able to ping the node’s BMC interfaces.  By default they are assigned on from 192.168.128.21, so
ping 192.168.128.21 should work.


The IPs for the BMC network should be visible on the /network_map page in the UI and node detail page.





Remote Manage Web UI


Once you know the node’s BMC IP address and have network access to that network, you should be able to open the node’s
Web Management interface (if your node has one).


From a browser: https://[node ip] should bring up a login prompt.


The default login is root/cr0wBar!








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/deployment.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Deployment APIs



Deployment Routes


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	/api/v2/deployments	none	Deployment List	-
POST	/api/v2/deployments	none	New Deployment	-
GET	/api/v2/deployments/[:id]	none	Existing Deployment Detail	-
PUT	/api/v2/deployments/[:id]	none	Update Deployment Detail	-
GET	/api/v2/deployments/[:id]	none	Existing Deployment Detail	-
PUT	/api/v2/deployments/[:id]/commit	none	Commit Proposed	-
PUT	/api/v2/deployments/[:id]/propose	none	Create an new Proposal based on Active	-
PUT	/api/v2/deployments/[:id]/transition	none	Send Transistion Data into the system	-
GET	/api/v2/deployments/[:deployment_id]/attribs	none	List Attribs for a specific deployment	-
GET	/api/v2/deployments/[:deployment_id]/attribs/[:id]	none	Show Attrib (including value) for a specific Deployment	-
PUT	/api/v2/deployments/[:deployment_id]/attribs/[:id]	none	Update Attrib	-







JSON fields


Attribute	Type	Settable	Note
———	—-	——–	—-
System	Boolean	No	
Parent_id	Internal Ref	??	Actually an Int
Description	String	Yes	
Name	String	Yes	Limited to Alpha + Numbers - no spaces or special chars
Created_at	String	No	Unicode - date format
Updated_at	String	No	Unicode - date format


Minimum fields needed for create - name






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

deployment-guide/adding-operating-systems.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Adding Provisionable Operating Systems


This process ensures that the Admin node can deploy operating systems to slaves.


When deploying an admin node in production mode, you will want to be able to install operating systems on slave nodes.  By default, the provisioner-base-images role will look for OS install ISO images in /tftpboot/isos.


As of April 2015, the provisioner knows how to install the following operating systems from the following ISO images:



		ubuntu-12.04: ubuntu-12.04.4-server-amd64.iso


		ubuntu-14.04: ubuntu-14.04.1-server-amd64.iso ** Ubuntu 14.04-1 is no longer available for download.  Download ubuntu -14.04.2-server-amd64.iso and rename it to ubuntu-14.04.1-server-amd64.iso


		centos-6.6: CentOS-6.6-x86_64-bin-DVD1.iso


		centos-7.1.1503: CentOS-7-x86_64-Minimal-1503-01.iso


		redhat-6.5: RHEL6.5-20131111.0-Server-x86_64-DVD1.iso


		redhat-7.0: rhel-server-7.0-x86_64-dvd.iso


		debian-7.8.0: debian-7.8.0-mini-amd64.iso
		NOTE This is really the netboot mini.iso renamed.  This can be found here [http://ftp.nl.debian.org/debian/dists/wheezy/main/installer-amd64/current/images/netboot/mini.iso]








		debian-8.1.0 : debian-8.1.0-mini-amd64.iso


		NOTE This is really the netboot mini.iso renamed.  This can be found here [http://ftp.nl.debian.org/debian/dists/jessie/main/installer-amd64/current/images/netboot/mini.iso]


		Mirantis Fuel 6.0: MirantisOpenStack-6.0.iso


		ESXi 5.5: VMware-VMvisor-Installer-5.5.0.update02-2068190.x86_64.iso


		Xen Server 6.5: XenServer-6.5.0-xenserver.org-install-cd.iso






This list is subject to change!  For the latest list, consult Provisioner Base Images [https://github.com/opencrowbar/core/blob/master/chef/roles/provisioner-base-images/role-template.json] template file.




For Docker Installs only


To enable the provisioner to install from those images, place them in $HOME/.cache/opencrowbar/tftpboot/isos, either directly or via a hard link.  These images will then be available inside the Docker container at /tftpboot/isos, and the provisioner will be able to use them to install operating systems on slave nodes or if you do not want to copy the ISOs into place, you must hard link (not soft link) the ISO files because symlinks are not visible on file system paths mapped inside containers





Add a new OS after initial annealing


If you add a new OS after the initial annealing, Crowbar must be told to rediscover available operating systems.  You must reapply (retry) the provisioner-base-images role (aka Available O/S) on the Admin server in the  System deployment.



you can generally navigate directly to this NodeRole using /nodes/2/node_roles/provisioner-base-images or using the name of your admin server instead of the #2.









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

deployment-guide/Install-CentOS-RHEL-6.6-AdminNode.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
RHEL/CentOS 6.6 Deployment Guide



Objectives


Create an OpenCrowbar admin node on a VM or physical machine to begin the process of configuring or managing deployment of a cluster (openstack, hadoop, ceph, etc.).


NOTE: OpenCrowbar assumes complete ownership of the admin node and is
NOT meant to be a shared services machine.  The installation process
will turn off firewalls and turn off selinux.  The installation process
will reduce exposed ports and restrict ssh access.


The following steps will be completed:


* Prepare a Virtual or Physical machine
* Installation of CentOS 6.6 x86_64
* Install OpenCrowbar
* Start OpenCrowbar webUI
* Connect to the webUI using a browser



An outline is provided as a foundation for QA validation requirements for OpenCrowbar RPM packages.


Known limitations of the installation process, its sensitivities to updates and to upgrades is summarized.





Prerequisites


Before commencing installation and configuration, ensure that everything needed is available and that all remote resources that must be accessed are capable of being reached.



		CentOS 6.6 x86_64 - download site: http://www.centos.org/download/


		You will need to know how to access the internet from your VM/Physical environment.


		Optional: Proxy Services
		Windows - Fiddler 2 is a good one


		Linux - potential proxy services include: cntlm and squid.


		Direct Connection - Ensure you have appropriate security setup per security guidelines in effect within your organization.














Machine preparation


Machine requirements are:



		Memory: Min 4GB


		CPU Cores: 2 or more


		Network Interface Controllers: 2 preferred, 1 minimum (can use virtio if using a VM)
		The first NIC (may be named eth0, em1, or en1) must be wired into the private space (192.168.124.0/24)


		The second NIC will be wired into a network that routes to the internet. Internet access is required for installation of CentOS/RHEL 6.6


		Note: It is possible to use a single NIC. In that case the default network address will be 192.168.124.0/24, the admin node IP address will be 192.168.124.10


		Where a single NIC is used, the private admin network (192.168.124.0/24) must be capable of download of files from the internet or from a local caching server








		Storage: A disk capacity of at least 80 GB is preferred.


		Make sure you configure RAID on the drives before installing.





Ensure that all physical network transports are correctly configured and are operational - at least check/verify that:



		All network cabling is in place


		Network switches are turned on and configured correctly (ask network admin if necessary)


		Keyboard,Video, and Mouse (if required) devices are connected and ready for use.





If using a virtual machine (VM), where VM motion (ability to migrated VMs across Hypervisor platforms) is required ensure that secure VM access is correctly configured and is operational.


Where network-managed power switches are in use, ensure that network access is secure from unwanted access.





CentOS 6.6 installation


The following is a screen/selector step process to get CentOS 6.6
installed:



		Boot CentOS 6.6 x86_64 from pristine ISO media


		At the boot screen select “Install or upgrade an existing system”, hit Enter


		Screen: “Welcome to CentOS for x86_64”, select [Skip], hit Enter


		At the first graphical screen, “CentOS 6 Community ENTerprise Operating System”, Click [Next]


		Screen: “What language would you like to use ...”, Select “English (English)”, Click [Next]


		Screen: “Select the appropriate keyboard ...”, Select “U.S. English”, Click [Next]


		Screen: “What type of devices will your installation involve?”, Select “Basic Storage Devices”, Click [Next]


		Pop-up: “Storage Device Warning”, Click [Yes, discard any data]


		Screen: “Please name this computer. The hostname ...”, In the Hostname field enter as valid FQDN (Ex. admin.mytest.lcl)


		Click [Configure Network]
		Network configuration requirements depend on how many NICs are available, and on available network topology


		For Single NIC configuration:
		Select “System eth0” (first NIC - on public network), Click [Edit]
		Check “Connect automatically”


		Click on [IPV4 Settings]


		Select Method “Manual”
		Click [Add]
		Enter IP address: 192.168.124.10


		Click on blank field below “Netmask”. Enter: 24, or 255.255.255.0.


		Enter DNS ip address (Ex.38.151.210.40)














		Click [Apply]














		For Dual NIC configuration:
		Select “System eth0” (First NIC - on private admin network), Click [Edit]
		Check “Connect automatically”


		Click [IPV4 Settings]


		Select Method “Manual”
		Click [Add]
		Enter IP address: 192.168.124.10


		Click on blank field below “Netmask”. Enter: 24, or 255.255.255.0, no gateway


		Enter DNS ip address (Ex.38.151.210.40)














		Click [Apply]








		Select “System eth1” (Second NIC - on public network), Click [Edit]
		Check “Connect automatically”


		Click [IPV4 Settings]


		Select Method “Automatic (DHCP)” if appropriate, else configure network settings. (Need ip, netmask and gw)


		Click [Apply]


		Click [Close]














		Click [Next]








		Screen: “Please select the nearest city in your time zone:”, Select your time zone, Click [Next]


		Screen: “The root account is used for administering the system. ...”, Enter  a Root password (Ex. crowbar), Confirm , Click [Next]


		Popup: “Weak Password”, Click [Use Anyway]


		Screen: “Which type of installation would you like?”, Select “Use All Space”, Click [Next]


		Popup: “Writing storage configuration to disk”, Click [Write changes to disk]


		Screen: “The default installation of CentOS is a minimum install ...”, Select “Basic Server”, Click [Next]


		The system will now install. When finished, Click [Reboot]








OpenCrowbar installation


To install OpenCrowbar, the following things need to be done:



		Turn off firewalls


		Turn off or set SELinux to permissive


		Download the default installation OS [Optional]





Remote Access Step (Do one of the following):



		Install an admin user (e.g. adduser admin) and make sure sudo works


		Install an ssh public key in the root directory /root/.ssh/authorized_keys file
to enable key-less root access


		Use the crowbar user that is installed by the production.sh script to access the box after installation.  The default password is crowbar.





The standard install will remove access to root account using password.  Key-less access is allowed.


The crowbar-install.sh script supports three flags given (or not in this
order):



		Select release (if not specificed, it is master).  The following options:
		–develop - Use RPMs built from the develop tree.


		–master - Use RPMs built from the master tree. This is same as not specified.


		–release &lt;


name&gt;


 - Use RPMs built from the release &lt;


name&gt;


 tree.








		–without-hardware - Don’t install the hardware RPM


		–download-os - This will download the Centos-7.1.1503 ISO for
installation of nodes. By default, this is not done.





After logging in as root, run the following command (as an example) to
install hardware support off of the latest master build:


wget --no-check-certificate -O - https://raw.githubusercontent.com/opencrowbar/core/master/tools/crowbar-install.sh | source /dev/stdin



or if you don’t want hardware support (bios, RAID, and IPMI) and the
develop builds, run the following command:


wget --no-check-certificate -O - https://raw.githubusercontent.com/opencrowbar/core/master/tools/crowbar-install.sh | source /dev/stdin --develop --without-hardware



This will take a little bit of time.  Once complete, you will need to
add the RAID configuration tools displayed as output or described
here [https://github.com/opencrowbar/hardware/tree/master/doc].


You may also want to add supported ISOs to your installation as
described
here [https://github.com/opencrowbar/core/tree/master/doc/deployment-guide/adding-operating-systems.md].


If you are running on a VM, you may want to snapshot the VM support
updates, see below.





OpenCrowbar Configuration



Services


By default OpenCrowbar will configure DNS, NTP, and DHCP to run on the admin node.  You can choose to change the configuration of these services by modifying /opt/opencrowbar/core/crowbar-config.sh.  These include setting up forwarding DNS servers and upstream stratum servers for NTP.


It is also possable to utilize services that are already installed in the enviornment and choose to have OpenCrowbar not install them on the Admin server.  These configuirations are described [here] (https://github.com/opencrowbar/core/tree/master/doc/deployment-guide/external-services.md)


Execute the following commands:


  /opt/opencrowbar/core/production.sh <FQDN of the admin node>



Once this is complete, the admin node is configured.







Start Using OpenCrowbar


Launch your web browser and connect to the IP address of the Admin node on port 3000 using a browser of choice (Google Chrome, or Internet Explorer) URL:http://192.168.124.10:3000



		Log in as user: crowbar


		Password: crowbar








Known Issues:



Updating OpenCrowbar


There is not an update method currently.  We don’t handle database
migration or chef updates currently.  Please use the following to
replace the system.



		Revert your VM to the last Snapshot taken,  (You did follow the advice above to make a SnapShot, correct?)


		yum clean all; yum makecache


		yum erase opencrowbar-hardware # If it was installed


		yum erase opencrowbar-core


		yum install -y opencrowbar-core


		yum install -y opencrowbar-hardware # If you want hardware support


		/opt/opencrowbar/core/production.sh &lt;


FQDN&gt;





		Launch your web browser and connect to the IP address of the Admin node on port 3000 using a browser of choice (Google Chrome, or Internet Explorer) URL:http://192.168.124.10:3000










Known Limitations:


Please document all limitations that are discovered into this document.


RPM package installation/removal/update/upgrade processes confer many known limitations on third-party application-layer services such as OpenCrowbar, OpenStack, Hadoop. Here are a few issues that need to be defined and addressed:



		There is a latent need to document update and upgrade requirements and dependencies so that packaging methods can fully accommodate the scope of these so far as possible.


		The impact of RPM package updates on service continuity must be clearly defined. User-oriented documentation should set appropriate expectations for RPM update application.


		Risks to continuity of service, potential for loss of critical operational data needs to be identifies and documented.





Testing, validation and QA requirements for OpenCrowbar itself need to be documented separately and links to these documents should be inserted into this document.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

deployment-guide/faq.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  Q: if I add gems to the crowbar.yml under gems: pkgs: they aren’t added to my install.


A: Add them in crowbar.yml under gems: required_pkgs: - those are gems pull when Crowbar is in “online” mode.  Gems in gems: pkgs: will be cached when “offline” mode is enabled (TBD).




          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

deployment-guide/advanced-deployment.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Advanced Deployments


While docker-based developments or simple developments can function will with the default configuration, many cases will
need customization.  From networking to external services to initial configuration values, the crowbar-config.sh script
currently controls how the admin components are deployed.


The production.sh script is used to stage, install, and configuration the initial OpenCrowbar admin server.  Customizing
crowbar-config.sh script allows for additional configurations and modifications.


External Services describes how to turn off services in OpenCrowbar and use external replacements.


Another customization allowed is around networking.  The default system configuration assumes that the admin network will
contain the admin server.  This allocation is done by the following line:


crowbar roles bind "network-$admin_net_name" to "$FQDN"



Commenting this line out will not allocate an admin address for that network.  The admin server providing the provisioner
will need to be routable from the other admin networks to network the admin server is on.  The implication of this is that
the admin node does not have to be on an admin network only routable to admin networks.


The network category system allows for the creation of multiple admin networks.  Creating a new network is accomplished by
adding a new network with a category of admin.  The DHCP server, if configured, will update and serve that network as well.
The only assumption is that the new admin network has DHCP relay agent or helper that forwards the DHCP requests to the admin
node or has a DHCP server that forces the nodes to PXE boot to the admin node.


The default OpenCrowbar environment builds an admin network and a BMC network that are paired by a common group field value.
Additional admin networks can be joined to the existing BMC network by using the same group.  If a different BMC network is
needed it can be created and associated with its cooresponding admin network through a common group value.


If the admin node is not part of the admin network, additional networks can be added at any time in the future.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

deployment-guide/admin_port_maps.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Crowbar Admin Node Port Mapping


The following table can help figure out which OpenCrowbar services are running on the admin server:


Ports



		22 - SSH


		53 - DNS


		68 - DHCP


		123 - NTP


		443 - Chef API


		514 - SYSLOG


		953 - RNDC


		3000 - Crowbar API & UI


		4646 - Chef Server


		5432 - Postgresql Database


		6754 - DNS Mgmt Server


		8091 - TFTP Server (provides PXE images)


		8123 - Squid Proxy


		8300 - Consul


		8301 - Consul


		8302 - Consul


		8400 - Consul


		8500 - Consul UI


		8600 - Consul


		9991 - DHCP Management Port





Please review and edit these port numbers.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

user-guide/README.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
User Guide


This is the OpenCrowbar user guide.  Please feel free to add sections and information as needed.



State Image Key


State	Icon	Description
:——	:———————–	:——–
Ready	[image: Ready (image)]	Updates applied, Stable
Error	[image: Error (image)]	Failed, Incomplete transition
Blocked	[image: Blocked (image)]	Annealer waiting until all prereq’s met
Idle	[image: Idle (image)]	System not active
Off	[image: Off (image)]	Power is off.  No activity possible
Wait	[image: Wait (image)]	Todo action but power is off.  Waiting until power is on
Proposed	[image: Proposed (image)]	Waiting on user input
Reserved	[image: Reserved (image)]	User hold on activity
To do	[image: TODO (image)]	All prereq’s met but not Annealer not started yet
Transition	[image: Transition (image)]	Annealer sent work to Jig





Getting the Admin up


Once you’ve got a working Crowbar Admin node running, you access the UI via port http://[Admin IP]:3000.  The default user is crowbar with password crowbar.



All (and more) of the UI capabilities are also exposed by the Crowbar CLI which is automatically setup on the Admin node.



The production.sh script will automatically configure the Admin node to a complete working state.  When the Admin node is ready, you can validate that the Admin node is working correctly in several ways:



		the Deployments...System Overview (/dashboard/layercake) should should all green checks


		the Deployments...Annealer (/annealer) should show no active work


		the Deployments...Deployments...system (/deployments/system) should show all green checks


		the Nodes...Nodes (/nodes) show should a green check for the Admin node






You can check these screens before the annealer has completed bringing up the Admin node and watch Crowbar provision the 1st admin node.






Crowbar Admin Up!  Add Nodes


Once the Crowbar Admin is running, simply booting VMs or physical nodes onto the management network will engage the discovery process (using DHCP and PXE).  Crowbar does not event hook the PXE service (to maintain separation of duties) so please be patient, the default discovery process requires the system to boot the Sledgehammer image which requires time.


Once the node is booted, Crowbar automaticallly adds the node into the system deployment.  The system deployment is a special purpose deployment used for discovery and base management.  Users have limited options to change it; however, you can easily monitor the discovery process watching the Annealer or system deployment screens.  They will show exactly which steps of the discovery progress are pending, acting and completed.


A node is completely discovered when all the system deployment steps (aka “node roles”) are complete with green checks.


It is acceptable to configure nodes (the next steps) even before the discovery is complete.  Crowbar will figure out the correct order of operations and perform actions in sequence.





Ready State Wizard


The Ready State Wizard performs multiple steps for provisioning discovered nodes from a single screen. This convenience eliminates several steps that are commonly performed together.


From the Ready State Wizard Screen,



		name the deployment (network will be named the same as the deployment)


		describe the network settings (you can change this later from the Networks page)


		check the nodes that you want to provision


		select the o/s that you want to be installed


		accept the changes (this takes you to the deployment page)


		commit the deployment to begin.








Step by Step Instructions



Create a Deployment



These steps duplicate the Ready State wizard operations as individual steps



To do additional operations on a node, it must be part of a deployment.


Create a deployment from the Deployment...Deployments (/deployments) page.  Provide the name for your deployment (default is default) and click the add button.


Once the deployment is created, you can navigate directly to the deployment from the Deployment...Deployments submenu or direct using /deployments/[my deployment].



Deployments are automatically set to have the system deployment as their parent.  In the future, other parents may be set.






Adding Nodes to a Deployment


Once you have a deployment, you must attach nodes to it before you can take further action.


You can set a node into a deployment from the Nodes list drill down into each node page (/nodes/[node name]) or several at a time from the Nodes...Bulk Edit (/dashboard/list).  Both methods provide a list of available deployments.





Adding Networks to a Deployment


Generally, deployments also configure one or more networks.


To create a network, visit the Network...Networks page (/networks) and fill out the table row for your network making sure to select your deployment.  Click add to create the network.


Creating a network will also create a matching network-[name] role in the system.  These roles allow you to bind the network definition to specific nodes in later steps.



Once you create a network, you cannot change the assigned network.






Adding Roles to a Deployment


The new deployment page should now have a list of assigned nodes.  Crowbar uses roles to determine the specific configuration required for a deployment.  You manage the deployment using special purpose milestone roles (aka “noop”) that represent target states.   Crowbar tracks the subroles needed to achieve the milestone and automatically adds them.


To add a milestone role, select it from the list at the top of the screen and click add role.  For these instructions, use the O/S Installed role to install an operating system.


Once a role is added to a deployment, Crowbar will add it an it’s dependencies as columns into the deployment matrix.


Clicking on the role header will allow you to make deployment wide configuration changes if that role has configuration settings.





Installing an OS on a Node


To install an operating system on a node, you must attch the O/S Installed milestone role to the node.


To attach the O/S role to the node, you much click the green plus button.  This will automatically add both the O/S Installled and Install O/S role.


Once the O/S role is attached, the icon changes to a wrench.  Clicking the wrench on the  Install O/S role allows you to choose which operating system Crowbar will deploy if you’ve added multiple boot ISOs.


Once the roles are attached, you start the process by clicking the commit button.


Once the deployment is committed, Crowbar will automatically reboot the node and start the O/S install process.










          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

deployment-guide/dns-subsystem.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
DNS Subsystem


The DNS Subsystem consists of three components: the server, management server, and filters.



DNS Server and Service


The DNS server can be provided by the OpenCrowbar system or externally.  Currently, the OpenCrowbar DNS server
is BIND.  The BIND server will set up everything needed run a DNS server.  External DNS server can be anything, but
needs to be injected into the consul services.  This is done in crowbar-config.sh.  See that file for how to select
a server.





DNS Management Server and Service


The management server is used to inject information into the DNS server.  The management server runs on the same system as the
BIND DNS server and rebuilds files.  The management server can also manage an PowerDNS server through its HTTP API (version 3.4.5
or higher).  The management server can be on any system in that case.  Currently, only external PowerDNS servers can be
managed remotely.  The management server needs some additional information like access token and a few other things.  These are
provided as consul key/value pairs associated with the external PowerDNS service injected into consul. These are also
specified in crowbar-config.sh along with external service registration.





DNS Name Filters


The third component of the DNS subsystem are filters.  The Name filters provide a mechanism to generate names for address
allocations on nodes.  These name/IP pairs are sent to a specified DNS management service to handle updating the DNS server.
Filters are ordered and evaluated.  Once matched, a name is generate and the service is called.  A template
system is used to generate names from node attributes.  All matching filters will be applied.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

deployment-guide/node_registration.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Node Registration Process


Crowbar uses it’s API to creates nodes and bind their initial NodeRoles (generally No-Op roles).


Use the following steps to register a new node in the system and get it under Crowbar control.  These steps are automatically used by the PXE discovery image (Sledgehammer) when Nodes are detected during their initial boot.



		POST to /api/v2/nodes to create a basic Node object. This will not have any roles bound to it nor will it have any addresses from the admin network assigned to it. The node will neither be alive nor available.


		in the CLI, use crowbar nodes create ...


		(Optional) PUT any node-specific hints that may be needed for the bootstrap process, including node MAC addresses or your suggested IP address.


		POST to /api/v2/node_roles to bind default roles to the node. Binding crowbar-admin-node will result in the node having all the roles needed for it to act as an admin node, and crowbar-managed-node will bind all the roles needed for the Sledgehammer discovery process to work.


		in the CLI, use crowbar nodes [node] bind [role]


		(Optional) PUT any node-specific attrib updates to the node.


		PUT to /api/v2/nodes/[node-key]/commit to move all the node’s NodeRoles from PROPOSED to TODO, and mark the node as available (but still not alive)


		PUT to /api/v2/nodes/[node-key]/alive to make the node as alive so processing can start






An example of this process is implemented in the production.sh script in the root of the OpenCrowbar repo.







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

deployment-guide/README.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Deploy Guide


The files located in this directory provide key information sought by software engineers, systems operators, DevOps staff, and end users.



Help us build this documentation!  Don’t know how to do a Github pull request?  Email the update (markdown prefered) to
opencrowbar@googlegroups.com and recommend where it should go and we’ll make it happen.




Install OpenCrowbar


There are two ways to install OpenCrowbar.  The best way for you depends on what you are planning to do.



		If you are planning on installing and using OpenCrowbar but not necessarly doing development then use the RPM installation.
deploy OpenCrowbar onto a CentOS 6.6 or Red Hat Enterprise Linux 6.6 admin node.





Please Note: When getting the packages you will have a choice to get the current Development version (Develop Branch) or the current
released version (Master Branch).  If you do not choose then you will get the current released version.



		If you are familiar with containers or are planning on doing a lot of development where you will be cycling and testing
the code base then see the [Development Guide] (/doc/development-guides/README.md).











          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

deployment-guide/accessing_bmcs.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Connecting to the BMC Network


By default, Crowbar sets up a BMC network on 192.168.128.xxx/24 named the_bmc in the category bmc and the group internal.  You may, of course, modify
this by changing values from the /networks page.  These instructions have been created with the assumption that you are using the default
network and should be modified to match your specific configuration.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

principles/attribute_injection.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Attribute Injection


Attribute Injection is an essential aspect of the “FuncOps” story because it helps clean boundaries needed to implement consistent scripting behavior between divergent sites.


It also allows Crowbar to abstract and isolate provisioning layers.  This operational approach means that deployments are composed of layered services (see emergent services) instead of locked “golden” images.  The layers can be maintained independently and allow users to compose specific configurations a la cart.  This approach works if the layers have clean functional boundaries (FuncOps) that can be scoped and managed atomically.


To explain how Attribute Injection accomplishes this, we need to explore why search became an anti-pattern in Crowbar v1.  Originally, being able to use server based search functions in operational scripting was a critical feature.  It allowed individual nodes to act as part of a system by searching for global information needed to make local decisions.  This greatly added Crowbar’s mission of system level configuration; however, it also created significant hidden interdependencies between scripts.  As Crowbar v1 grew in complexity, searches became more and more difficult to maintain because they were difficult to correctly scope, hard to centrally manage and prone to timing issues.



Crowbar was not unique in dealing with this problem - the Attribute Injection pattern has become a preferred alternative to search in integrated community cookbooks.



Attribute Injection in OpenCrowbar works by establishing specific inputs and outputs for all state actions (NodeRole runs).  By declaring the exact inputs needed and outputs provided, Crowbar can better manage each annealing operation.  This control includes deployment scoping boundaries, time sequence of information plus override and substitution of inputs based on execution paths.


This concept is not unique to Crowbar.  It has become best practice for operational scripts.  Crowbar simply extends to paradigm to the system level and orchestration level.


Attribute Injection enabled operations to be:



		Atomic - only the information needed for the operation is provided so risk of “bleed over” between scripts is minimized.  This is also a functional programming preference.


		Isolated Idempotent - risk of accidentally picking up changed information from previous runs is reduced by controlling the inputs.  That makes it more likely that scripts can be idempotent.


		Cleanly Scoped - information passed into operations can be limited based on system deployment boundaries instead of search parameters.  This allows the orchestration to manage when and how information is added into configurations.


		Easy to troubleshoot - since the information is limited and controlled, it is easier to recreate runs for troubleshooting.  This is a substantial value for diagnostics.









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

principles/simulated_annealing.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Simulated Annealing


Simulated Annealing is a modeling strategy from Computer Science for seeking optimum or stable outcomes through iterative analysis.  The physical analogy is the process of strengthening steel by repeatedly heating, quenching and hammering.   In both computer science and metallurgy, the process involves evaluating state, taking action, factoring in new data and then repeating.  Each annealing cycle improves the system even though we may not know the final target state.


Annealing is well suited for problems where there is no mathematical solution, there’s an irregular feedback loop or the datasets change over time.  We have all three challenges in continuous operations environments.  While it’s clear that a deployment can modeled as directed graph (a mathematical solution) at a specific point in time, the reality is that there are too many unknowns to have a reliable graph.  The problem is compounded because of unpredictable variance in hardware (NIC enumeration, drive sizes, BIOS revisions, network topology, etc) that’s even more challenging if we factor in adapting to failures.  An operating infrastructure is a moving target that is hard to model predictively.


Crowbar implements the simulated annealing algorithm by decomposing the operations infrastructure into atomic units, node-roles, that perform the smallest until of work definable.  Some or all of these node-roles are changed whenever the infrastructure changes.  Crowbar anneals the environment by exercising the node-roles in a consistent way until system re-stabilizes.


One way to visualize Crowbar annealing is to imagine children who have to cross a field but don’t have a teacher to coordinate.  Once student takes a step forward and looks around then another sees the first and takes two steps.  Each child advances based on what their peers are doing.  None wants to get too far ahead or be left behind.  The line progresses irregularly but consistently based on the natural relationships within the group.


To understand the Crowbar Annealer, we have to break it into three distinct components: deployment timeline, annealing and node-role state.   The deployment timeline represents externally (user, hardware, etc) initiated changes that propose a new target state.  Once that new target is committed, Crowbar anneals by iterating through all the node-roles in a reasonable order.  As the Annealer runs the node-roles they update their own state.  The aggregate state of all the node-roles determines the state of the deployment.  Let’s look at each in detail.


A deployment is a combination of user and system defined state.  Crowbar’s job is to get deployments stable and then maintain over time.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

principles/ready_state.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Crowbar delivers “Ready State” infrastructure


The following points focus on the unique aspects of the Crowbar Operations Model.  Unlike other Operating System Provisioning Tools (like Razor, Foreman, Cobbler), Crowbar takes a systems perspective to physical infrastracture management.  Specifically, Crowbar acknowledges that successful deployment means connecting all the various operational components together including NTP, DNS and (most critically) networking from both the server and switch sides. We also believe there are no “application islands” in production data centers: operators manage Ceph and OpenStack as independent but connected applications.  While a coordinated system perspective is essential, we seek to complement existing operational tools like Chef and Puppet.


This coordinated system perspective requires that actions take place in controlled sequences both within and between data center components; consequently, Crowbar’s heart is an orchestration platform designed for physical hardware.  Infrastructure has distinct challenges and needs that are unique from other cloud focused orchestration and configuration managment.  If we can solve these problems then the general cloud focused tools become highly reusable for both physical, virtual and containerized deployments.


For this reason, we see Crowbar as complementary to application provisioning tools like Fuel, Puppet, Chef, Juju, Salt or Ansible which focus on application configuration post ready state.  In these tools, the community is working to capture the specific operational characteristics of the applications.  Crowbar can be used to to simply provide ready state or taken further to drive these tools at the system level.  For example, the OpenStack Chef Cookbooks lack the system orchestration that Crowbar provides but Juju includes.


These are not OpenStack focused items.  They are universal operations concerns for any scale out application including OpenStack, Ceph, Hadoop, Cloud Foundry, Cloud Stack or others.


Key Points:



		configure RAID & BIOS systems (ideally, “late bound” so target configuration is determined with application bring-up)
		in band configuration using discovery images (as needed)


		out of band RAID & BIOS - does not require systems to boot into discovery image for iDRAC or iLO








		UEFI boot capable to handle > 2 TB drives


		IPv6 native
		able to handle IPv6 communication


		setup IPv6 DNS records when nodes are managed


		easier to change/reconfigure IPv4








		Repeatable server-side networking config
		able to use topology to setup bridges and bonds


		able to correctly enumerate NICs over different hardware types and configurations








		Operating System agnostic


		CMDB agnostic (Chef & Chef Solo, Bash Scripts via SSH, Puppet, others possible)


		DevOps configuration improves flexibly and reduces maintenance over “golden” image based
		Crowbar can deploy your golden images as you wish, and even they can notify crowbar to change hardware configs, but they must be part of the overall graph of attributes so that other workloads have a say in hardware config.











Crowbar’s key function ends up being orchestration, so it can plug in the app provisioning tools to do their specific work.  We tried to make Crowbar work as either “disolvable provisioning” or long term support in v2.  Since Crowbar uses SSH means there’s really no penalty for leaving Crowbar around and ready if you have to maintain the system; however, things won’t crash if you stop using it.  That was not true in v1 because we relied on Chef Server to do everything.


Crowbar v2 is focused more on ready state because we’ve heard that is the more universal problem.  In v2, we really wanted to be able to use community cookbooks – it was not productive to have crowbar only versions.  We do much better sharing operations knowledge in the OpenStack/Ceph/Hadoop/etc communities and collaborating there.   I think Crowbar brings a lot of operational value into those cookbooks but we don’t want to force adoption in order to collaborate.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

principles/heterogenous-os-support.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Heterogenous Operating System Support


This file documents how to deploy multiple different operating systems
in Crowbar.


Right now deploying a hetrogenous OS cluster in OpenCrowbar relies on a
few prerequisites:



		Online mode.


You need to have the provisioner configure to operate in online
mode to deploy multiple different operating systems.  This is
needed to allow the operating systems to pick up all the packages
they well need for a node installation. See README.package-updates
for more information about setting the provisioner to online-mode.





		online_mirror stanzas in the deployed provisioner proposal for all
operating systems you wish to deploy.


These are needed so that the provisioner find the proper location
to copy all the information needed to kick off a network-based
installation of an operating system.  The defaout proposal includes
stanzas for the Ubuntu and CentOS operating system releases Crowbar
supports.





		Proper recipe supoprt for the OS in the provisioner.
Right now we only include support for Ubuntu and CentOS.  Adding
Redhat support is trivial, and adding SuSE support is slightly less
so.








Once the above prerequisites are met, you can use the crowbar
provisioner command to query the list of available oses a node can
install, and view and change the OS the provisioner will deploy on to
a node.  The new commands are:



		crowbar provisioner oses


		crowbar provisioner current_os 


		crowbar provisioner set_os  





You can run these commands at any time, and the next time a node
transitions through the installing or reinstall states it will have
the appropriate operating system installed.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

principles/emergent_services.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Emergent services


We see data center operations as a duel between conflicting priorities.  On one hand, the environment is constantly changing and systems must adapt quickly to these changes.  On the other hand, users of the infrastructure expect it to provide stable and consistent services for consumption.  We’ve described that as “always ready, never finished.”


Our solution to this duality to expect that the infrastructure Crowbar builds is decomposed into well-defined service layers that can be (re)assembled dynamically.  Rather than require any component of the system to be in a ready state, Crowbar design principles assume that we can automate the construction of every level of the infrastructure from bios to network and application.  Consequently, we can hold off (re)making decisions at the bottom levels until we’ve figured out that we’re doing at the top.


Effectively, we allow the overall infrastructure services configuration to evolve or emerge based on the desired end use.  These concepts are built on computer science principles that we have appropriated for Ops use; since we also subscribe to Opscode “infrastructure as code”, we believe that these terms are fitting in a DevOps environment.  In the next pages, we’ll explore the principles behind this approach including concepts around simulated annealing, late binding, attribute injection and emergent design.


Emergent (aka iterative or evolutionary) design challenges the traditional assumption that all factors must be known before starting



		Dependency graph – multidimensional relationship


		High degree of reuse via abstraction and isolation of service boundaries.


		Increasing complexity of deployments means more dependencies


		Increasing revision rates of dependencies but with higher stability of APIs









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/router.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Router API


The Router API is used to manage networks.  It must be a child of a specific network.  There can be only one router per network.



Router CRUD


Lists the current ranges for a network.


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	network/api/v2/networks/[network]/network_routers	N/A	JSON array of router for the network	
GET	network/api/v2/network_routers	N/A	JSON array of routers	
GET	network/api/v2/networks/[network]/network_routers/[any]		Details of the router in JSON format	
GET	network/api/v2/network_routers/[id]	no natural key, requires Database ID	Details of the router in JSON format	
POST	network/api/v2/networks/[network]/network_routers	json definition	network id is infered from path	
POST	network/api/v2/network_routers	json definition	must include network id	
PUT	network/api/v2/networks/[network]/network_routers/[range]		network id can be infered from path	
PUT	network/api/v2/network_routers/[range]			
DELETE	network/api/v2/networks/[network]/network_routers/[range]			
DELETE	network/api/v2/network_routers/[range]			





Notes



		Because only one router is allowed per network, Crowbar ignores the ID of the router when used with the networks path.


		Router does not conform to other Crowbar object maps.  It does not have a name, description or order.











          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/network.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Network API


The network API is used to manage networks.



Network CRUD


Lists the current networks.


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	api/v2/networks	N/A	JSON array of network IDs	
GET	\api/v2/networks/[network]	id is the network ID or name.	Details of the network in JSON format	-
POST	api/v2/networks	json definition (see Node Show)	must be a legal object	
PUT	api/v2/networks/[network]			
DELETE	api/v2/networks/[network]	Database ID or name	HTTP error code 200 on success	



There are helpers on the POST method that allow you to create ranges and routers when you create the network.



Sample:


{
  "name":       "networkname",
  "deployment": "deploymentname",
  "vlan":       your_vlan,
  "use_vlan":   true or false,
  "team_mode":  teaming mode,
  "use_team":   true or false,
  "use_bridge": true or false,
  "category":   "String to indicate type: admin,bmc,general,...",
  "group":      "String to indicate groups of networks",
  "conduit":    "1g0,1g1", // or whatever you want to use as a conduit for this network
  "ranges": [
     { "name": "name", "first": "192.168.124.10/24", "last": "192.168.124.245/24" }
  ],
  "router": {
     "pref": 255, // or whatever pref you want.  Lowest on a host will win.
     "address": "192.168.124.1/24"
  }
}






Network Actions: IP Allocate


Allocates a free IP address in a network.


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
POST	api/v2/networks/[id]/allocate_ip	Database ID or name of the network barclamp	HTTP error code 200 on success	





Network Actions: IP Deallocate


Deallocates a used IP address in a network.


| Verb | URL | Options | Returns | Comments |
|:——|:———————–|——–|——–|:—————-|
|DELETE | api/v2/networks/deallocate_ip/[network_id]/[node_id] | id: Database ID or name of proposal
network_id: Database ID or name of network
node_id: Database ID or name of node | HTTP error code 200 on success | |








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/role.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Role APIs


Roles are a core data type in OpenCrowbar.  They are used to define
services that OpenCrowbar deploys in the environment.



Role names are globally unique. This restriction may be related in the future




Role Types


OpenCrowbar allows Barclamp creators to override the default Role
behavior.  This is a very import extension point for OpenCrowbar
because custom Role beaviors are essential to many orchestration
situations.


If no override is provided, OpenCrowbar will use the OpenCrowbar::Role class.


A role specific override can be created using the name of the
barclamp-role to create the class in the Barclamp model name space.
For example, a role called test-admin should be created as
BarclampTest::Admin (or app/models/barclamp_test/admin.rb).  When the
role is imported, OpenCrowbar will automatically use this type if it
has been defined.


A barclamp specific override can be created using the name of the
barclamp and the class role.  If present, this class will be used if
no specific role class has been provided.  This is very useful for
barclamps that create roles dynamically like the network barclamp.
For example, OpenCrowbar will use the BarclampNetwork::Role (or
app/models/barclamp_network/role.rb) class when new Network roles are
added.  This allows Barclamp creators to add custom event handling
without knowing the name of the roles in advance.



This is also related to how Role Events are handled






API Actions


Verb	URL	Comments
:——-	:——————-	:———————-
GET	api/v2/roles	List
GET	api/v2/roles/:id	Specific Item
GET	/api/v2/roles/[:role_id]/attribs	List Attribs for a specific role
GET	/api/v2/roles/[:role_id]/attribs/[:id]	Show Attrib (including value) for a specific Role
PUT	/api/v2/roles/[:role_id]/attribs/[:id]	Update Attrib
PUT	-	NOT SUPPORTED / managed during import only
POST	-	NOT SUPPORTED / roles are only created during import
DELETE	-	NOT SUPPORTED





Role Events (triggered on NodeRole state changes)


The Role model has a series of events (Self.on_[STATE]) that are
called when any NodeRole changes state.  This is a designed override
point where Barclamp Roles can add functionality into the OpenCrowbar
Annealer engine.  This functionality is added when a Barclamp defines
it’s own Role definitions (Barclamp[Name]::[Role]).  If there is no
override, then the default behavior is used.


There is a matching event for each NodeRole state.  The event is
called when the NodeRole enters that state.  The purpose of this
function is to enable Barclamp creators to leverage information
available to OpenCrowbar within the Annealer operation including
before user editing (Proposed) or system error (Error) states.







JSON fields


| Attribute | Type |Settable | Note
:——–	:———	:——	:—————————–
Description	String	Yes	
Name	String	Yes	
Created_at	String	No	Unicode - date format
Updated_at	String	No	Unicode - date format
Server	Boolean	Yes	
Bootstrap	Boolean	Yes	
Library	Boolean	Yes	
Barclamp_id	Internal Ref	??	Actually an Int
Cluster	Boolean	Yes	
Implicit	Boolean	Yes	
Template	String	Yes	Another json blob
Jig Name	String	Yes	
Destructive	Boolean	Yes	
Service	Boolean	Yes	
id	Internal Ref	??	Actually an Int
Discovery	Boolean	Yes	



Structure of the template JSON (from an example)


The template structure is multi-layered - in the table assume that the
lines following a ‘blob’ are the subsidiary structure


|Name|Value
:——–	:——–
Ceph	json blob
config	json blob
osd	json blob
journal	file
encrypt	False
fstype	xfs








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/node_role.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Node Role APIs


Node Roles are the core of OpenCrowbar deployment and orchestration engine


There are four types of data that OpenCrowbar tracks, three of them
are maintained on related NodeRoleDatum mode.



		user data (node_role.data) is set by users during the proposed
state (also known as “out bound data”)


		system data (node_role.sysdata) is set by crowbar before annealing
(also known as “out bound data”)


		wall data (node_role.wall) is set by the jig after transistion
(also known as “in bound data”)


		discovery data (node.wall) is stored on the node instead of node
role because it reflects node information aggregated from all the
jigs.  This information is available using the node.attrib_[name]
and Attrib model.  Please see the node API docs for more about this
type of data





NodeRole does not have a natural key, so you must reference them them
by ID or under the relevant Nodes, Roles, or Deployment.



API Actions


Verb	URL	Comments
:——	:———————–	:—————-
GET	api/v2/node_roles	List
GET	api/v2/node_roles/:id	Specific Item
PUT	api/v2/node_roles/:id	Update Item
PUT	api/v2/node_roles/:id/retry	Retry (sets state back to TODO)
PUT	api/v2/node_roles/:id/propose	Propose (sets state to PROPOSED)
PUT	api/v2/node_roles/:id/commit	Commit (sets state to COMMIT)
POST	api/v2/node_roles	Create Item
GET	/api/v2/node_roles/[:node_role_id]/attribs	List Attribs for a specific node_role
GET	/api/v2/node_roles/[:node_role_id]/attribs/[:id]	Show Attrib (including value) for a specific Node_Role
PUT	/api/v2/node_roles/[:node_role_id]/attribs/[:id]	Update Attrib
DELETE	api/v2/node_roles/:id	Allowed if Node Role does not have child dependencies


Helpers have been added to NodeRole create so that you do not need to
provide IDs when creating a new NodeRole.  You can pass:



		Deployment Name instead of Deployment ID


		Node Name instead of Node ID


		Role Name instead of Role ID










JSON fields


Attribute	Type	Settable	Note
———	—-	——–	—-
Available	Boolean	Yes	
Cohort	Integer	??	
Created_at	String	No	Unicode - date format
Updated_at	String	No	Unicode - date format
Runlog	String	??	
Order	Integer	??	
State	Integer	??	
Node_Error	Boolean	No	Calculated
Node_Id	Integer	Yes	
Status	??	??	
Run_count	Integer	No	
Deployment_Id	Integer	??	
Role_Id	Integer	Yes	
Id	Internal Ref	??	Actually an Int





Field Notes



Node_Error


Calculated


True if any of the NodeRoles on the associated Node are in an error state.  This allows API users to monitor the status of a target role and know if there was an error that will block progress without having to inspect other NodeRoles.  Instead of looking at all parents (which could span nodes), Node provides a more limited scope








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/range.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Range API


The Range API is used to manage networks.  It must be a child of a specific network.



Range CRUD


Lists the current ranges for a network.


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	network/api/v2/networks/[network]/ranges	N/A	JSON array of ranges	
GET	network/api/v2/networks/[network]/ranges/[range]		Details of the network in JSON format	
POST	network/api/v2/networks/[network]/ranges	json definition (see Node Show)	must be a legal object	
PUT	network/api/v2/networks/[network]/ranges/[range]			


You cannot delete a range at this time.  You must delete the entire network.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

principles/late_binding.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Ops Late Binding


In terms of computer science languages, late binding describes a class of 4th generation languages that do not require programmers to know all the details of the information they will store until the data is actually stored.  Historically, computers required very exact and prescriptive data models, but later generation languages embraced a more flexible binding.


Ops is fluid and situational.


Many DevOps tooling leverages eventual consistency to create stable deployments.  This interative approach assumes that repeated attempts of executing the same idemnepotent scripts do deliver this result; however, they are do not deliver predictable upgrades in situations where there are circular dependencies to resolve.


Its not realistic to predict the exact configuration of a system in advance –



		the operational requirements recursively impact how the infrastructure is configured


		ops environments must be highly dynamic


		resilience requires configurations to be change tolerant





Even more complex upgrade where the steps cannot be determined in advanced because the specifics of the deployment direct the upgrade.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/test.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Test APIs


OpenCrowbar provides a comprehensive testing framework.  While we make every effort to use the API for all test functions, some activities require speciailized testing hooks.  It is not desired to change primary APIs to serve testing use-cases; consequently, the API has a reserved area for specialized test interfaces.


WARNING: The Test APIs (=/api/test/...=) are considered to be tightly coupled to the code base and have no contract for consistency between versions.



Test APIs should never be called except from the testing framework!  They are not considered stable or public.




Load Node Data from File (api/test/nodes/[:id]?source)


Verb	URL	Comments
:—–	:———————	:———————
PUT	/api/test/node/[:id]	returns Node json


Options



		source = specify the file to be loaded.  All files should be in the =[app base]/test/data= path.











          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

README.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  Autogenerated, do not edit!



Project Welcome Page





OpenCrowbar Table of Contents



		Deploy Guide


		Development Guide


		Frequently Asked Questions (FAQ)


		OpenCrowbar License


		Operational Principles


		User Guide








Documentation Full Index



		Deploy Guide


		RHEL/CentOS 6.6 Deployment Guide


		Adding Provisionable Operating Systems


		OpenCrowbar Directory Structure


		Node Registration Process


		Development Guide
1. OpenCrowbar API
1. Attribute (aka Attrib) APIs
1. Barclamp APIs
1. Deployment APIs
1. Deployment-Role API
1. DHCP Database
1. Group APIs
1. Interface (NICs) API
1. Jig (aka CMDB interface) APIs
1. Network API
1. Node API
1. Node Role APIs
1. Range API
1. Role APIs
1. Run APIs
1. Status APIs
1. Test APIs
1. Crowbar Barclamps
1. Creating a New OpenCrowbar Barclamp


		Contributing to OpenCrowbar


		Contributing Code


		OpenCrowbar Database (Postgresql 9.3)
1. Dev System Configuration
1. openSUSE images  <== This info is not current – FixMe
1. Configuration Guide - Ubuntu 12.04.03
1. Crowbar Development Environment Using Fedora
1. Crowbar Development Based Upon SUSE
1. OpenCrowbar Development Environment Based Upon Ubuntu
1. Getting started with Crowbar development
1. Short Term notes for running the OpenCrowbar in Docker
1. Admin Node in Docker
1. Test/Dev using Docker Worker Nodes
1. Configuration of Proxy Cache
1. Adding Documentation
1. Formatting Documentation
1. Topic Documentation
1. Configuration Managers (aka Jigs)
1. Chef Jig and Developing with Cookbooks
1. Noop Jig
1. Script Jig
1. Core OCB Objects Design Information
1. OpenCrowbar Design Topics
1. Attrib Model
1. Barclamp Model
1. Experimental OpenCrowbar Model
1. Deployment Model
1. Deployment Role Model
1. Group Model
1. OpenCrowbar Data Models
1. Node Model
1. Node Role Model
1. Role Model
1. Run / Delayed Job
1. User Model


		Network Barclamp


		Provising Process
1. Testing OpenCrowbar
		BDD Testing
1. OpenCrowbar Environment Simulator
1. User Interface Development
1. Adding Localizations (i18n)
1. Adding Menu Items
1. Barclamp Roles - User Interface Development and Testing
1. Tips & Tricks (UI Developer)
1. Workflow Overview
1. Interact with Chef








		Frequently Asked Questions (FAQ)


		Do you have a question?


		OpenCrowbar License
1. Crowbar Framework Licenses
1. Berkshelf v2
1. Deployer Barclamp Licenses
1. DNS Barclamp Licenses
1. Crowbar Barclamp Licenses
1. Logging Barclamp Licenses
1. Network Barclamp Licenses
1. Deployer Barclamp Licenses
1. Provisioner Barclamp Licenses
1. Test Barclamp Licenses


		Operational Principles


		Attribute Injection


		OpenCrowbar Concepts


		Emergent services


		Ops Late Binding


		Simulated Annealing


		User Guide









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/barclamp.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Barclamp APIs


Barclamps are the core modulization for OpenCrowbar.
For that reason, the API for barclamps is more limited because changes
to barclamps can cause breaking changes to the framework.



Routes


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	/api/v2/barclamps	none	List Barclamps	-
GET	/api/v2/barclamps/[:id]	none	Show Barclamp	-





List Barclamps



		CLI: crowbar barclamps list


		API: curl -X GET --digest -u $(cat /etc/crowbar.install.key) -H "Content-Type:application/json" http://localhost:3000/api/v2/barclamps





Returns:


[
  {
    "name": "core",
    "source_url": "https://github.com/opencrowbar/core",
    "created_at": "2014-03-03T05:18:01.330Z",
    "id": 1,
    "source_path": "/opt/opencrowbar/core",
    "description": "Core",
    "commit": "unknown",
    "barclamp_id": 1,
    "version": 2,
    "build_on": null,
    "updated_at": "2014-03-03T05:18:01.400Z"
  },
  {
    "name": "crowbar",
    "source_url": "http://github/opencrowbar/unknown",
    "created_at": "2014-03-03T05:18:01.709Z",
    "id": 2,
    "source_path": "/opt/opencrowbar/core",
    "description": "Crowbar",
    "commit": "unknown",
    "barclamp_id": 2,
    "version": 2,
    "build_on": null,
    "updated_at": "2014-03-03T05:18:01.737Z"
  },
  ...
]






Show Barclamp



		CLI: crowbar barclamps show core


		API: curl -X GET --digest -u $(cat /etc/crowbar.install.key) -H "Content-Type:application/json" http://localhost:3000/api/v2/barclamps/core





Returns:


{
  "commit": "unknown",
  "build_on": null,
  "updated_at": "2014-03-03T05:18:01.400Z",
  "description": "Core",
  "barclamp_id": 1,
  "version": 2,
  "source_url": "https://github.com/opencrowbar/core",
  "source_path": "/opt/opencrowbar/core",
  "created_at": "2014-03-03T05:18:01.330Z",
  "id": 1,
  "name": "core"
}









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

search.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/README.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
OpenCrowbar API


This document is the reference guide for the OpenCrowbar API.  Additional information is provided in the API directory.



Using the API


The OpenCrowbar API is RESTful and accepts/returns JSON.  XML output is not supported.


The OpenCrowbar API is versioned.  API urls include the OpenCrowbar version of the API (e.g.: 1.0 or v2).  Please use the most recent version available!



Legacy Note: routes with 1.0 are deprecated!






API Index


This is a reference index - API is documented in subpages


* /api/v2
  * /anneal (check the annealer status)
  * /nodes
    * /[:id]/node_roles
    * /[:id]/attribs
  * /jigs
  * /barclamps
  * /deployments
    * /[:id]/roles
    * /[:id]/node_roles
    * /graph (GET only)
    * /propose (PUT only)
    * /commit (PUT only)
    * /recall (PUT only)
  * /deployment_roles
  * /jigs
  * /roles
  * /attribs
  * /groups
    * /[:id]/nodes
* /:barclamp/v2
  * see docs per barclamp






OpenCrowbar API Pattern


The OpenCrowbar API follows the following behavior pattern.



Expectations:



		Core objects can be referenced equally by name or ID.
This means that objects with natural key names are NOT allowed to
start with a number (similar to FQDN restrictions)


		JSON is the API serialization model








Digest Authentication


API callers use digest authentication for all requests. User accounts
need to be specifically configured for API only access.  A user
account with API access will still be able to log in normally.


To get the digest, make a HEAD or GET request to /api/v2/digest





Common API URL Patterns:


OpenCrowbar uses a versioned URL pattern. By convention, resources
names are pluralized in the API.  For example, the API will use
=nodes= instead of =node= in paths.



		Base Form: [workload | api]/[version]/[resources]/[id]
		version - version of OpenCrowbar framework being used (v2 for this guide)


		workload - workload (aka barclamp) that owns the requested activity.  Framework uses ‘api’


		bc_version - the version of the barclamp being used.


		key_word - groups the API into different categories
		reserved words such as status and crowbar


		resource types like node, group, network, etc








		id - (optional) name or DB id of the barclamp configuration


		Result codes
		200 = OK, success


		500 = Error in processing.


		404 = item not found in database (may return 500 in some cases)














		List:
		HTTP get


		Returns a json array of objects








		CRUD Operations:
		id - name or database ID of the item.  Items that do not have
natural keys are not expected to honor use of name instead of
database ID.  When possible, either will be allowed.


		RESTful Verbs for CRUD:
		POST / Create - ID is ignored if provided


		GET / Read - Objects will be shallow


		PUT / Update - returns the updated object serialized


		DELETE/ Delete - no return data except 200








		Special Cases
		PUT - used to start an action on existing data (commit a node
or deployment)


		DELETE - Unlink/Deactivate/Dequeue

















In general, OpenCrowbar REST pattern uses the 4 HTTP verbs as follows:



		GET to retrieve information


		PUT to transform or change existing data


		POST to create new data or relationships


		DELETE to remove data or relationships










Expected Fields


By convention, most OpenCrowbar models have the same fields.



		id - database assigned role, number


		name - resource name, often a natural key with enforced uniqueness


		description - user definable content


		created_at - when object was created


		updated_at - when object was last updated


		object_id - cross reference id to an object.  In most cases, you can
use the name of the object instead of the API






Some of the information stored in objects is maintained as json and will appear as nested data.






API Headers & Response Patterns


The OpenCrowbar REST API uses HTTP content-type metadata header tags
to help clients quickly identify the information being returned by the API.


The API adds =”application/vnd.crowbar.[type].[form]+json;version=2.0”= to the content-type tag.


If you only care about certian attributes being returned for an API
call, you can set the x-return-attributes header to a JSON array of
the attributes you want to return.



		[type] is the object type being returned.  E.g.: node, deployment, jig, etc


		[form] describes how the objects are formed
		obj = single obj


		list = list of objects


		empty = nothing


		error = error.











REST results should be returned with the appropriate standard HTTP response code, such as:



		200 = ok


		404 = object not found


		500 = application error


		complete list [http://en.wikipedia.org/wiki/List_of_HTTP_status_codes]








Example Documentation


The following table should be populated for all API calls:



API Actions


Verb	URL	Comments
:———-	:——————————	:———
GET	api/v2/resources	List
GET	api/v2/resources/:id	Specific Item
PUT	api/v2/resources/:id	Update Item
POST	api/v2/resources	Create Item
DELETE	api/v2/resources/:id	Delete Item
VARIOUS	api/v2/resources/:id/extra	Special Ops







JSON Output Example:


{
  "id":41,
  "name":"sim.cr0wbar.com",
  "description":"example",
  "order":100,
  "admin":true,
  "alive":true,
  "allocated":false,
  "available":true,
  "bootenv":"sledgehammer",
  "deployment_id":1,
  "discovery":{
     {"foo":"this is json"}
  },
  "created_at":"2013-11-01T03:23:27Z",
  "updated_at":"2013-11-01T03:23:27Z"
}






Some workflow examples (using the Crowbar CLI)



Creating a Node for a system that already has an OS:


This example will show how to create a new node in Crowbar for an
already-installed system that we want to bring under Crowbar
management.  This example assumes that it has a non-conflicting IP
address that is already in the nodes range of the admin network, that
the public key of the Crowbar user will let the Script jig run things
as root on the node, and that there is already a Crowbar-compatible
operating system installed.



		CLI: crowbar nodes create '{"name": "newtest.cr0wbar.com", "bootenv": "local"}


		API: curl --digest -u $(cat /etc/crowbar.install.key) \ -X POST \ -d "name=newtest.cr0wbar.com" \ -d "bootenv=local" \ -H "Content-Type:application/json" \ --url http://127.0.0.1:3000/api/v2/nodes





This will return:
{
“admin”:false,
“alive”:false,
“allocated”:false,
“available”:false,
“bootenv”:”local”,
“created_at”:”2013-12-21T05:49:00Z”,
“deployment_id”:1,
“description”:””,
“discovery”:{},
“hint”:{},
“id”:41,
“name”:”newtest.cr0wbar.com”,
“order”:100,
“target_role_id”:null,
“updated_at”:”2013-12-21T05:49:00Z”
}


After creating the node, we still need to set the hint for the Admin
IP to have Crowbar try and use the one it already has:



		CLI: crowbar nodes set newtest.cr0wbar.com attrib hint-admin-v4addr to '{"value": "192.168.124.99/24"}


		API: curl --digest -u $(cat /etc/crowbar.install.key) -X PUT -H "Content-Type:application/json" --url http://127.0.0.1:3000/api/v2/nodes/newtest.cr0wbar.com/attribs/hint-admin-v4addr -d '{"value": "192.168.124.99/24"}'





We then need to bind a useful set of default noderoles to the node:



		CLI: crowbar roles bind crowbar-managed-node to newtest.cr0wbar.com


		API: curl --digest -u $(cat /etc/crowbar.install.key) -X POST -H "Content-Type:application/json" --url http://127.0.0.1:3000/api/v2/node_roles -d '{"node": "newtest.cr0wbar.com", "role": "crowbar-managed-node"}'





Commit the node, which will move the newly-created noderoles from
proposed to todo or blocked, and mark the node as available:



		CLI: crowbar nodes commit newtest.cr0wbar.com


		API: curl --digest -u $(cat /etc/crowbar.install.key) -X PUT -H "Content-Type:application/json" --url http://127.0.0.1:3000/api/v2/nodes/newtest.cr0wbar.com/commit





Mark the node as alive, which will allow the annealer to do its thing:



		CLI: crowbar nodes update newtest.cr0wbar.com '{"alive": true}'


		API: curl --digest -u $(cat /etc/crowbar.install.key) -X PUT -H "Content-Type:application/json" --url http://127.0.0.1:3000/api/v2/nodes/newtest.cr0wbar.com -d 'alive=true'








Installing an operating system on a node



Get the names of the nodes you want to install:



		CLI: crowbar nodes list --attributes name


		API: curl --digest -u $(cat /etc/crowbar.install.key) -X GET -H "Content-Type:application/json" -H 'x-return-attributes:["name"]' --url http://127.0.0.1:3000/api/v2/nodes





Returns:


[
  {
    "name": "78e3be198029.smoke.test"
  },
  {
    "name": "d52-54-05-3f-00-00.smoke.test"
  }
]






Create a deployment to deploy the nodes into:



		CLI: crowbar deployments create '{"name": "test1"}'


		API: curl --digest -u $(cat /etc/crowbar.install.key) -X POST -H "Content-Type:application/json" --url http://127.0.0.1:3000/api/v2/deployments -d '{"name": "test1"}'





Returns:


{
  "system": false,
  "created_at": "2014-03-03T04:40:07.351Z",
  "state": 0
  "parent_id": 1,
  "description": null,
  "updated_at": "2014-03-03T04:40:07.351Z",
  "id": 2,
  "name": "test1"
}






Update the target node with the new deployment that you just created:



		CLI: crowbar nodes move d52-54-05-3f-00-00.smoke.test to test1


		API: curl --digest -u $(cat /etc/crowbar.install.key) -X PUT -H "Content-Type:application/json" --url http://127.0.0.1:3000/api/v2/nodes/d52-54-05-3f-00-00.smoke.test -d '{"deployment": "test1"}'





Returns:


{
  "description": null,
  "target_role_id": null,
  "deployment_id": 2,
  "alive": true,
  "hint": {
    "admin_macs": [
      "52:54:05:3f:00:00"
    ]
  },
  "bootenv": "sledgehammer",
  "admin": false,
  "created_at": "2014-03-03T04:35:19.642Z",
  "name": "d52-54-05-3f-00-00.smoke.test",
  "id": 2,
  "order": 10000,
  "discovery": {},
  "available": true,
  "allocated": false,
  "updated_at": "2014-03-03T04:41:13.342Z"
}






Create a node-role to bind the role to the node:



		CLI: crowbar roles bind crowbar-installed-node to d52-54-05-3f-00-00.smoke.test


		API: curl --digest -u $(cat /etc/crowbar.install.key) -X POST -H "Content-Type:application/json" --url http://127.0.0.1:3000/api/v2/node_roles -d '{"node": "d52-54-05-3f-00-00.smoke.test", "role": "crowbar-installed-node"}'





Returns:


{
  "id": 25,
  "role_id": 3,
  "state": 4,
  "run_count": 0,
  "node_id": 2,
  "deployment_id": 2,
  "available": true,
  "runlog": "",
  "order": 10000,
  "created_at": "2014-03-03T04:47:43.856Z",
  "updated_at": "2014-03-03T04:47:43.860Z",
  "cohort": 10,
  "status": null
}






(Optional) Change the operating system to deploy onto the node:



		CLI: crowbar nodes set d52-54-05-3f-00-00.smoke.test attrib provisioner-target_os to '{"value": "ubuntu-12.04"}'


		API: curl --digest -u $(cat /etc/crowbar.install.key) -X PUT -H "Content-Type:application/json" --url http://127.0.0.1:3000/api/v2/nodes/d52-54-05-3f-00-00.smoke.test/attribs/provisioner-target_os -d '{"value": "ubuntu-12.04"}'





Returns:


{
  "updated_at": "2014-03-03T16:37:43.478Z",
  "description": "The operating system to install on a node",
  "writable": true,
  "barclamp_id": 7,
  "value": "ubuntu-12.04",
  "order": 10000,
  "name": "provisioner-target_os",
  "id": 37,
  "role_id": 24,
  "created_at": "2014-03-03T16:37:43.466Z",
  "schema": {
    "required": true,
    "enum": [
      "ubuntu-12.04",
      "redhat-6.5",
      "centos-6.6"
    ],
    "type": "str"
  },
  "map": "crowbar/target_os"
}






Commit the deployment:



		CLI: crowbar deployments commit test1


		API: curl --digest -u $(cat /etc/crowbar.install.key) -X PUT -H "Content-Type:application/json" --url http://127.0.0.1:3000/api/v2/deployments/test1/commit





Returns:


{
  "name": "test1",
  "system": false,
  "parent_id": 1,
  "id": 2,
  "created_at": "2014-03-03T04:40:07.351Z",
  "updated_at": "2014-03-03T04:40:07.351Z",
  "description": null
}













          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/interfaces.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Interface (NICs) API


The Interface API is used to update the Node -> NIC Bus mapping


Lists the current networks.


Input:


Verb	URL	Options	Returns	Comments
:——	:———————–	——–	——–	:—————-
GET	api/v2/interfaces	N/A	JSON array of Interface Mappings	
POST	api/v2/interfaces	-	-	Add new mapping
PUT	api/v2/interfaces/[Node Type]			


Data:


For POST/PUT use the following


JSON ={"pattern"=>"node type", "bus_order"=>"0000:00/0000:00:01 | 0000:00/0000:00:03 | etc"}=



Notes:



		There is no DELETE method.


		These changes are made to the System DeploymentRole Data for the “network-server” role









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/dev-systems/virtualbox.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
VirtualBox Development System


To set up a VirtualBox environment for Crowbar Development, follow these given instructions.


VirtualBox



		File...Preferences...Network


		you want at least two Host-Only Ethernet Adapters






		The first should be IP 192.168.222.1 & DHCP should be off





		The second should be IP 192.168.124.1 & DHCP should be off





		Create new Linux Ubuntu 64 bit Virtual Machine



		RAM: 4096






		Disk: VDI, Dynamically Allocated, at least 40 GB (80 recommended)








		Before Booting, go into settings



		System...Processor: give your self at least 2 cores






		Storage IDE Controller; choose CD Ubuntu-12.04.4-server-amd64.iso
		you have to download the ISO but you’ll need it later








		Network:
		Adapter 1 (default OK) - NAT


		Adapter 2 - Host Only #1 (has no number)


		Adapter 3 - Host Only #2

















Now, go back and find specifics for the O/S you’re using.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/dev-systems/docker-admin.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Admin Node in Docker


It is possible (and convienent) to run a OpenCrowbar admin node in a
CentOS 6.5 based Docker container.  To do so, you need to be running
in a development environment that can run Docker.



Once the admin node is running in a container, it will keep running until you kill the container using docker kill [cid] or exit from the container prompt.  We recommend looking at the Docker commands for additional options.




Install Docker


Instructions for installing Docker on the most common Linux distributions are at
[http://docs.docker.io/en/latest/installation/]



DO NOT TEST docker until you follow the steps below!






Configure Docker in your development environment


We assume you have given yourself permission to run docker without sudo.To do this, add your user to the docker group.



		sudo usermod -a -G docker <your-user> (to permanently run Docker
without sudo)


		you will need to reboot after this change (but you can wait until we tell you to reboot later)






if you don’t want this to be permanent or active before the reboot use, sudo chmod 666 /var/run/docker.sock



Configure docker to use the
devicemapper storage backend and to talk through your HTTP proxy (if
any)  We need to use the devicemapper storage backend because there
are directory permissions bugs in the AUFS driver that our CentOS
container exposes.


On Ubuntu, edit /etc/default/docker and make the following changes:



		Uncomment the line that starts with DOCKER_OPTS, and make it read
DOCKER_OPTS="-s devicemapper"


		If you need to have the Docker daemon talk through an http proxy,
uncomment the line that starts with export and change the part after
http_proxy to point at the http proxy you normally use.





On CentOS 6.5, edit /etc/sysconfig/docker, and make the following
changes:



		Change the line that starts with other_args to read
other_args="-s devicemapper".


		Add a line that reads export http_proxy="http://<your_http_proxy>"
if you need to have the Docker daemon talk through an http proxy.


		If you need a proxy to talk https, add a similar line reading
export https_proxy="http://<your_https_proxy>"





On OpenSuSE 13.1, Fedora 20, and other distributions that use systemd
as their init system, perform the following steps:



		Copy /usr/lib/systemd/system/docker.service to
/etc/systemd/system/docker.service


		Edit /etc/systemd/system/docker.service, and make the following
changes:





* Change the line that starts with `ExecStart=` and append
` -s devicemapper` to the end of it.
* If you need to have the Docker daemon talk through an http proxy,
add the following line directly under the `[Service]` line:

  `Environment="http_proxy=http://<your_http_proxy>" "https_proxy=http://<your_http_proxy>"`




		Reload the docker service configuration: systemctl daemon-reload





After making the above changes. reboot or restart the Docker service (sudo service docker restart) for them to
take effect.





The docker-admin command and its environment


The docker-admin command (located in the tools directory in the
core repository) is responsible for managing the interaction between
the development environment and the Docker container.  Among other
things, it ensures that:



		The contents of the core repository in the development environment
is visible in the Docker container at /opt/opencrowbar/core.  This
makes it trivial to edit the code in your development environment and
have the changes be instantly visible in the Docker container.


		The contents of $HOME/.cache/opencrowbar/tftpboot is visible in
the Docker container at /tftpboot.  This keeps the Docker
container from getting too bloated when setting up parts of the
provisioner.


		The UID and GID of the OpenCrowbar user in the container are identical
to your UID and GID in your development environment.


		Your SSH public key in your development environment is added to
/root/.ssh/authorized_keys


		Your http_proxy, https_proxy and no_proxy environment
variables will be visible in the Docker container.  If your
http_proxy and https_proxy environment variables refer to
localhost, 127.0.0.1, or [::1], then they will be rewritten to refer
to the IP address of the bridge that Docker is using.  In that case,
your local proxy should be configured to allow connections from
172.16.0.0/12.








Ensuring that the admin node can deploy operating systems to slaves



More complete instructions in (Deployment Guide)[../../deployment-guide/adding-operating-systems.md]



When deploying an admin node in production mode, you will want to be
able to install operating systems on slave nodes.  By default, the
provisioner-base-images role will look for OS install ISO images in
/tftpboot/isos.  The provisioner knows how to install several operating systems
(partial list below) from the ISO images:



		ubuntu-14.04: ubuntu-14.04.1-server-amd64.iso


		centos-6.6: CentOS-6.6-x86_64-bin-DVD1.iso


		centos-7.1.1503: CentOS-7-x86_64-Minimal-1503-01.iso






This list is subject to change!  For the latest list, consult Provisioner Base Images [https://github.com/opencrowbar/core/blob/master/chef/roles/provisioner-base-images/role-template.json] template file.



To enable the provisioner to install from those images, place them in
$HOME/.cache/opencrowbar/tftpboot/isos, either directly or via a
hard link (soft links do not work for Docker).  These images will then be available inside the Docker
container at /tftpboot/isos, and the provisioner will be able to use
them to install operating systems on slave nodes.


If you do this AFTER the admin node is running, you must rerun the Provisioner OS Repos role.





Running a production mode OpenCrowbar admin node in Docker


Once Docker is installed, configured, and you have ISO images in
place, you are ready to run a OpenCrowbar admin node on CentOS 6.5 in
Docker.  To do that, run the following command from the core
repository:


tools/docker-admin centos ./production.sh admin.smoke.test




note: the crowbar-bootstrap step takes a while, be patient



This will perform the following actions:



		If needed, pull the latest opencrowbar/centos image from the public
Docker repository.


		Spawn the container with all the parameters needed to set up the
environment as described above.  The rest of the actions will take
place in the spawned container.


		Ensure that the UID and GIDs of crowbar user inside the container is
the same as your UID and GID in the development environment.


		Append your SSH public key to root’s authorized_keys file.


		Run ./bootstrap.sh, which will ensure that ruby and chef-solo are
installed, and then run the crowbar-bootstrap cookbook to converge the
state of the container with our latest specifications.


		Bring up the OpenCrowbar webserver.


		Create a default admin network on the 192.168.124.0/24 address
range.


		Update the provisioner-server role template to use the passed-in
http proxy, if any.


		Update the provisioner-os-install role template to default to
centos-7.1.1503.


		Create the admin node record.


		Extract the addresses that were allocated to the admin node, and
bind them to eth0.


		Mark the admin node as alive, and converge the default set of admin
noderoles.


		You can turn off the TMUX launching using export TMUX=false





Options:



		–zombie will run all of the admin config except for the final “node alive” step.  This is handy if you want to check the system before completes





You should be able to monitor the progress of the admin node
deployment at http://localhost:3000.  Once the admin node is finished
deploying (or if anything goes wrong), you will be left at a running
shell inside the container.


You can ssh into the container from the host by finding its IP address
through Docker, as below. The container should already have your ssh
keys copied into the proper place.


$ docker ps
CONTAINER ID        IMAGE                       COMMAND                CREATED             STATUS              PORTS                                          NAMES
0db77a80acd0        opencrowbar/centos:6.5-11   "/opt/opencrowbar/co   32 minutes ago      Up 32 minutes       0.0.0.0:443->443/tcp, 0.0.0.0:3000->3000/tcp   evil_bohr           
$ docker inspect 0db77a80acd0 | grep IPAddress
        "IPAddress": "172.17.0.7",
$ ssh root@172.17.0.7
Last login: Wed Aug 27 16:20:41 2014 from 172.17.42.1
[root@0db77a80acd0 ~]# 






Booting slave VMs from the admin node


Prereq : sudo apt-get install bridge-utils



Bare Metal (the easy way)


If your development environment is running on bare metal (as opposed
to running inside a VM), you can use tools/kvm-slave & to spawn a
KVM virtual machine that will boot from the freshly-deployed
admin node.





Real Hardware slaves


To boot Real Hardware, bind a physical interface to docker0 with brctl, make sure that interface is up and does not have an address, and plug it in to a switch that has the physical boxes you want to boot.


Example Commands:



		slave the eth2 to the docker bridge, sudo brctl addif docker0 eth2


		turn on eth2 for the bridge, sudo ip link set eth2 up


		boot the physical nodes from a switch connected to eth2








Virtual Box (the corporate way)



This approach expects that you’ve added an ethernet device (not up’d) to your VM that will be the admin network for slave VMs. Also, if using vmware, you’ll need to use E1000 Nics and make sure your network settings are set to “Allow” promiscuous mode.



If your development environment is running in VMs then:



		make sure that your dev VM has an extra eth port connected to a dedicated host only bridge (let’s assume eth2)


		slave the eth2 to the docker bridge, sudo brctl addif docker0 eth2


		turn on eth2 for the bridge, sudo ip link set eth2 up


		create a VM with eth0
1. attached to the dedicated host only bridge
1. make sure it is able to network boot


		boot the VM
1. it should PXE boot
1. the VM should register and automatically progress in the system deployment
1. if you have issues, review the /var/log/install.log for details










Development Admin



		Dev/Simulator allows you to play with the UI and BDD tests which is good for developers working on the UI/API and Annealer logic
1. (optionally) Disable TMUX mode using export TMUX=false
1. Start with tools/docker-admin centos ./development.sh
1. Dev mode creates a special user developer/Cr0wbar!
1. To monitor the logs inside the container, use tail -f /var/log/crowbar/development.log
1. Run the BDD system [see BDD test pages]
		sudo apt-get install erlang


		compile the BDD code


		update the config file (copy example.config to default.config and update)


		erl then bdd:test()
1. Rails console in container: su -l -c 'cd /opt/opencrowbar/core/rails; bundle exec rails c' crowbar
‘

















          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/dev-systems/kvm-admin.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Admin Node in KVM


It is possible (and convienent) to run a OpenCrowbar admin node in a
KVM container.  To do so, you need to be running
in a development environment that can run KVM, Ruby and other tools.



Once the admin node is running in a container, it will keep running until you exit the script




Using the ocb-br bridge


...





Advance Options


Allows admins to quickly go back to a current check point


To use it:


1: Create an admin disk by running kvm-admin --create-image [filename]
1: Setup the admin node as normal.
1: Once the admin node has converged:
1: rm /etc/udev/rules.d/persist
1: halt
1: After the system has halted, kill the kvm-admin script. This
will cause the disk the admin node was using to be converted into
a compressed qcow2 image stored in
1: When you are ready to run the demo, run kvm-admin --demo [filename]





Ensuring that the admin node can deploy operating systems to slaves


KVM admin copies in an initial ISO, but you can add them to to the cache...





Running a production mode OpenCrowbar admin node


To do that, run the following command from the core repository:



		`cd /opt/opencrowbar/core1


		./production.sh admin.smoke.test






note: the crowbar-bootstrap step takes a while, be patient



You should be able to monitor the progress of the admin node
deployment at http://192.168.124.10:3000.  Once the admin node is finished
deploying (or if anything goes wrong), you will be left at a running
shell inside the container.


You can ssh into the VM from the host by finding its IP address.The script will preload your keys into VM.





Booting slave VMs from the admin node


Prereq : sudo apt-get install bridge-utils


Use the kvm-slave command



Bare Metal (the easy way)


If your development environment is running on bare metal (as opposed
to running inside a VM), you can use tools/kvm-slave & to spawn a
KVM virtual machine that will boot from the freshly-deployed
admin node.





Real Hardware slaves


To boot Real Hardware, bind a physical interface to ocb-br with brctl, make sure that interface is up and does not have an address, and plug it in to a switch that has the physical boxes you want to boot.


Example Commands:



		slave the eth2 to the ocb-br bridge, sudo brctl addif ocb-br eth2


		turn on eth2 for the bridge, sudo ip link set eth2 up


		boot the physical nodes from a switch connected to eth2













          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/dev-systems/docker-slaves.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Test/Dev using Docker Worker Nodes


Crowbar developers are strongly encouraged to always build and test deployment code in multi-node situations; however, this practice on VMs or physical servers has required significant computer resources.  With Docker, developers and testers can spin up a working multi-node environment much more quickly and with much lower resource requirements.  While the containerized nodes are not fully equivalent, they are more than close enough for the vast majority of deployment scenarios.


Benefits:



		lower resources requirements on development and test systems


		much faster bring up times (no operating systems to install and boot)


		very consistent and repeatable system configuration


		good separation of nodes helps find of issues related to multi-node deployment






Containers do still use system resources!  Do not assume that you can start unlimited containers - watch your RAM and CPU utilization.



Not Currently Available (but expected):



		support heterogeneous Linux operating systems (important for testing)


		deploy across multiple physical nodes (import for scale)


		use of multiple NICs (converts all conduits to eth0 for now)






Using docker-slaves with docker-slaves script



Prereqs



		Make sure that your docker is updated to at least docker 1.2.  There are timing problems with previous versions and SSDs that cause the devicemapper or btrfs to not find volumes or mounts during the bring up process.  You can update here: https://docs.docker.com/installation/#installation


		Pull the slave container: docker pull opencrowbar/ubuntu-slave






The docker-slaves script uses the docker-slave script.  They are different!



Wait until the admin node is up and admin node annealing is complete!





Start Up


From the dev system, tools/docker-slaves <number of slaves>


This creates the number of Docker nodes requested using the Crowbar
CLI on the Admin node.  This script relies on ssh root@172.17.0.2 to
access the Crowbar CLI and will fail if that access is not available; however
configuring keys and ssh is part of the normal docker-admin script process.



if your Admin IP is not 172.17.0.2, then will need to change the temporarily hard coded



It will run up to 40 of them all under TMux if
they were created successfully. Please review TMux intro [http://code.tutsplus.com/tutorials/intro-to-tmux–net-33889] to learn how to use this tool.  Quick tips are: Ctrl-B then N(ext), P(revious) X(close)



Detaching from the tmux session will kill all the nodes!



Docker slaves is currently hard coded to only work
when the admin node is running in a container as well.







Using Docker Slaves without the script


Please expand this section!


The critical step is to create the node with the ‘crowbar-docker-node’ role.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/ignore_me.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
		do not include this file in the documentation *






Ignore This File


This file tests the documentation builder’s titles must start with # test.


This feature allows you to exclude a file by not complying with the format.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/testing/README.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Testing OpenCrowbar


OpenCrowbar has a behavior driven test tool called BDD written in Erlang.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/testing/simulator.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
OpenCrowbar Environment Simulator



This topic uses the same infrastructure as the BDD test environment



You need a working [[devtool-build]] system.



To use the simulator:


In your dev system, run the test server:


./dev tests server



In a new window, start erlang


'cd ~/crowbar/barclamps/crowbar/BDD'
cp example.config default.config
[review default.config and update if needed]
cp dev.sample dev.config
./linux_compile.sh
./linux_sim.sh



Open the OpenCrowbar UI under ‘http://[dev system IP]:3000’
You can then explore and even run the Annealer!





Interactive Mode


You can also run the simulate interactively from ‘erl’ using ‘dev:pop().’ to create machines and ‘dev:unpop().’ to remove them.


You can change the nodes and other information created by the simulator by editing your copy of ‘dev.config’.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/barclamps/new_barclamp.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Creating a New OpenCrowbar Barclamp



Note: These instructions only apply to OpenCrowbar barclamps/workloads.



Before you start, figure out the name that you want to use.  It should be short but descriptive.  You will be able to add a more descriptive name, the repo name must be unique.  We also recommend using lower case and only alpha + underbar (_) in the name.



Starting from Template


To create a new workload, start by forking or cloning the OpenCrowbar template from [[https://github.com/opencrowbar/template]]


###Inside the template:



		replace “OCBTemplate” occurances with the name of your workload
1. the replacements include the crowbar.yml, licenses, readme, and /doc files.
1. update the /rails_engine/db/migrate/[barclamp_import] script
		change the name of the file to match the workload


		change the class and barclamp name to match the workload








		correct file names that are workload specific
1. rename the /doc/license/ocbtemplate.md file with the name of your workload.md
1. rename the /barclamps/ocbtemplate.yml file with the name of your workload.yml
1. rename the /BDD/features/ocbtemplate.feature file with the name of your workload.feature
1. rename the /roles/ocbtemplate-base/ directory with the name of your name of your workload-base











          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/barclamps/README.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Crowbar Barclamps



NOTE: This is from the wiki and needs to be reviewed, RAH 11/9/2012



The Crowbar barclamp provides the roles and recipes to set up the barclamp framework.
It initializes the system, creates initial instances of other barclamps defined in its configuration, and creates the users to access the crowbar API and UI. Any number of barclamp instances can be started. By default, the system starts a network, ganglia, nagios, ntp, dns, provisioner, deployer, ipmi, raid, and BIOS barclamp based upon their default configurations. The initialization function of the crowbar barclamp works exactly like the other barclamps. A proposal is created and can be committed during installation.


The main post-installation function is to provide the main transition entry point for the system. All barclamps’ transition functions can be called directly, but the crowbar barclamp calls these in an order specified each barclamps’ crowbar.yml file. The default unspecified priority is 1000.



Roles


The following node roles are defined:



		Crowbar
		Configures the system to run the barclamp framework (web app and other services).


		Depends upon the apache2, rails, passenger, and utils cookbooks.














Scripts


The shared barclamp command line library is all the is provided to interact with the barclamp.


The following scripts are also provided.


Script	Description
:———————-	:——————————————-
crowbar	Master control script for the command line interface
crowbar_crowbar	The actual control script for the crowbar barclamp
crowbar_watch_status	Wrapper for script that watches the node state and node status
crowbar_node_state	Displays the current provisioner state of the nodes
crowbar_node_status	Displays the current nagios state of the nodes
transition.sh	A helper script that can be used to transition nodes





Parameters


The Crowbar Barclamp has a couple of list parameters.


Name	Default	Description
:—————	:————————–	:——————————–
instances	The starting barclamps using their default configurations	A map of barclamp names that reference a list of json files (default is special to mean to take the defaults) that represent starting barclamp instances to create
users	A map of users - containing crowbar	This map defines the users allowed access to the OpenCrowbar UI and its REST API



The users map contains a map.


The key is the user name and the rest of the required fields are:


Name	Description
:———-	:—————————————–
password	Clear text password of the user
description	A description of the user.


Operations


When the barclamp is committed, it uses a custom apply_roles function to ensure that the barclamps listed in the instances variable are created and committed.


Once running, the barclamp provides the global transition function that calls other barclamps as nodes transition. The barclamp is also responsible for creating new nodes, assigning them a temporary name. The deployer will change these things if needed later in the node life cycle. The transition function will also add the crowbar config to the admin node as it transitions through the discovered state.


When starting a barclamp, use the following steps.


Example (using Swift):


Proposals:



		crowbar swift proposal list
		Output: Nothing or the name of the current proposals ie... default, Default, etc...








		crowbar swift proposal show Default &gt;


 swift_default.txt
		Output: creates the file swift_default.txt with the settings that are currently ready for deployment


		Other things you can do with the file:
		Edit the file and change parameters. Once done you will need to import or edit the proposal.














		crowbar swift proposal –file=swift_default.txt edit Default
		Output: “Edited Default”








		Command: crowbar swift commit Default
		Output: “Committed Default”











Working with the Running Config



		crowbar swift list
		List Current running configs








		crowbar swift show “Name”
		Shows the config in question in stdout, you can use standard unix commands to send it to a file








		crowbar swift –file=file.txt edit “Name”
		Edit and commits the current running config








		crowbar swift create default2
		creates and commits a config using defaults











Usage: crowbar swift [options] 



		–help or -h - help


		–hostname  or -n  - specifies the destination server


		–port  or -p  - specifies the destination server port


		–debug or -d - turns on debugging information


		–data  - used by create or edit as data (must be in json format)


		–file  - used by create or edit as data when read from a file (must be in json format)


		–timeout  - timeout in seconds for read http reads


		transition    - Transition a mac to state


		edit  - edit a new config


		list - show a list of current configs


		help - this page


		delete  - delete a config


		element_node  - List nodes that could be that element


		elements - List elements of a deploy


		show  - show a specific config


		create  - create a specific config


		proposal - Proposal sub-commands


		commit  - Commit a proposal to active


		edit  - edit a new proposal


		list - show a list of current proposals


		delete  - delete a proposal


		show  - show a specific proposal


		create  - create a proposal













          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/testing/bdd/README.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
BDD Testing


OpenCrowbar includes a Business Driven Development (BDD) framework written in Erlang that is based on the Cucumber DSL (Domain Specific Language).


The intent of these tests are to focus on the responses and requests to the web-interface and RESTful API.


Core BDD Commands:



		test - Runs the complete suite


		feature - Runs a single feature test file


		scenario - Runs a single test from a feature file


		steps - Shows available steps already created when creating new scenarios






Note: The site you are trying to test MUST BE RUNNING!






Using the BDD tool



		cd /opt/dell/crowbar_framework/BDD


		linux.sh or Win7.bat to compile the erlang code depending on your platform (may give an error; that’s ok)


		erl to start a command shell for erlang


		bdd:test(). will run all the tests and report the results.  Test results are copied to a ../tmp/bbd_results.out with a date/time stamp so you can review test status (see failed() below).


		bdd:feature(name). will run just the named feature set.  You can pass the feature name as an atom or string.


		bdd:scenario(name, id). will run just the scenario selected from the feature file.  ID’s are assigned by BDD based on a hash of the scenario name.


		bdd:debug(config, name, id). will run just the scenario selected from the feature file with debug logging flags.  ID’s are assigned by BDD based on a hash of the scenario name.
		You may also pass a list of the specific log levels requested.  (if omitted, debug is assumed)


		You can pass a single atom instead of a whole list of log levels: trace, debug, and info are supported.








		bdd:failed(config). will rerun just the failed tests using the test results output file (../tmp/bbd_results.out).


		bdd:steps(). will show you all the available step definitions






Note: You can run bdd:test("profile"). or bdd:feature("profile","feature"). if you want to use an alternate profile than default.  Alternate profiles use the matching configuration name and had a different global setup/teardown location.


The default tests run as the developer user; you must be in development mode to use them!






The BDD test results are reported using a condensed format:



		Feature name


		Total tests


		Passed tests


		Failed tests


		Skipped tests


		IDs of the failed tests






Test Files


Each barclamp is expected to add its own tests to the suite. The OpenCrowbar barclamp tests include:




		Test
		Function




		dashboard.feature
		Tests the nodes UI view




		documentation.feature
		Tests the documentation/help system




		navigation.feature
		Tests the basic menu system

Checks for localization omissions




		proposals.feature
		Tests the Proposal Status API




		nodes.feature
		Tests the node status API

Tests the node detail page & API




		groups.feature
		Tests the group API

Tests the groups + nodes API




		scaffolds.feature
		Tests all the feature objects




		authenticate.feature
		Tests login




		users.feature
		Tests user management screen




		attributes
		Tests Jig attributes API




		jigs
		Tests the Jig engine API










Test Debugging


The BDD system generates trace files for each test executed.  These trace files have the results of all the steps for each scenario.  If the test passes, the trace file is deleted automatically.


Reviewing the trace output on failed tests is the fastest way to determine if there is a problem with the system or the test because it will show you the page results that are being examined.



Note: Remember, if you change code then you must recompile (e.g.: c(bdd).) it!




Running BDD from Erlang


Erlang is a functional language; you can run nearly any step if you can duplicate the input. Nearly every BDD method requires the Config list.  The Config list contains critical information about the environment and session data based on a system login.


To create a Config list, use the start command with a configuration: bdd:start(default).  This command will load the selected config, start the http & auth services and finally get a session for access to the web site.



Note: The session will expire if it is not used!  If the session expires, forget the values (f(Cbase) and f(Config).).



Once you have a valid Config list, there are wide range of options.  You can execute the global inspector using bdd:inspect(Config). or one in each feature using node:inspector(Config).





Interactive Debugger


To use the interactive debugger, you must:



		Compile the files using show_debug flag.  For example, c(bdd, show_debug).


		Start the debugger using debugger:start().


		Use the GUI to monitor the module and injection point desired






Note: The debugger is a little flaky.  Have patience!






BDD Inspector


Since BDD works against a live system without rollback, BDD has added checks to make sure that tests to not leave testing artifacts in the database after a successful run.


To implement this capability, each object related feature is expected to implement an inspector method that returns the current state of the objects that it will be acting on.  These routines are called before and after the tests are run.  If the list is different, then the BDD inspector will issue a warning and show the artifacts.



		The pre-run artificat list is saved at ../tmp/inspection.list


		To retrieve the last inspector report, use bdd:is_clean(Config).


		To generate the list used for the inspector report, use bdd:inspect(Config).











          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/testing/bdd/tips.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
BDD Tips and Tricks



Usefule Steps in the BDD_Catchall Module


The catchall module has some useful steps for special cases and debugging code that did not fit in other places.  In fact, the step generator function is really a BDD catchall!


Here are some useful steps found is the BDD_Catchall module:



		HTTP Server Logging
		I mark the logs with “Mark”: handy to mark the logs so you can find a failure








		Time Lapse
		pause “Time” seconds to “Message”: if you have a time dependant issue that you cannot fix the right way


		after”, Time, “seconds: same as pause


		after”, Time, “minutes: same as pause


		after”, Time, “milliseconds: same as pause








		Logging
		I debug BDD: dumps log information into the BDD stream the the debug level


		I “puts” BDD: same as above but at puts


		I “[debug | trace | info |... ]” BDD: same as above but user chooses the level








		Play with pass/fail
		I do nothing to “Text”: does nothing


		I always pass: does what it says


		I always fail: does what it says

















          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/testing/bdd/steps.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Extending the DSL


Each feature definition can add it’s own ERL step parser.  The BDD system will automatically search for a step definition based on the feature name.  It will also automatically search the “crowbar” and “webrat” steps.


The webrat steps are designed to be general purpose Web access checks.  If you find yourself doing a routine HTTP or AJAX request then it likely belongs in the webrat file instead of your feature steps.


You can add custom step files from the config page.



Steps


All of the BDD tests decompose into the same Erlang method, known as the step method. The BDD test engine will search in multiple Erlang code files for steps in a specific order.



The steps have been defined to ensure that the last file tried (bdd_catchall) contains steps that have been defined to match all possible cases.  If the final catchall step is reached, that step will generate a stub step that you can use to create a new step.



A step is a standard Erlang function with 3 parameters:



		The BDD configuration file


		The pass forward file that represents the accumulated output of previous steps


		The DSL tuple populated by BDD as follows
		keyword (setup, teardown, given, when, or then)


		step number


		list of the DSL string tokenized by quotes












If you are terrified by the phrase “tokenized by quotes” then relax.  That just means that BDD turns your friendly when I click on link "foo" into an Erlang list that is super easy to parse: [“when I click on link”, Foo].



Let’s look at an example step:


step(Config, _Global, {step_given, {_ScenarioID, _N}, ["I went to the", Page, "page"]}) ->
    bdd_utils:http_get(Config, Page);



This step will match the DSL Given I went to the "dashboard" page in the scenario.  It simply does an HTTP get using the BDD utilities.  The http_get routine takes the base URL from the config file and adds the page information from the sentence.  BDD will take the result of this step function and add it to the Given list that is passed into all following ‘when’ steps.



You can also use { and } for delimiters.  Generally, these delimiters are used for special items like class types.
Reminder: Erlang variables that start with “_” are considered optional and don’t throw a warning if they are not used.  If you plan to use those variables, you can keep the “_”, however, I recommend removing it for clarity.



There is a simple output expectation from all steps:



		setup steps add to the Global list that is passed into Given steps


		given steps add to the Given list that is passed into When steps


		when steps add to the Results list that is passed into the Results steps


		results steps return true if the test passes or something else if it fails





One of the most important step files is known as “webrat” as a hold over from Cucumber.  The bdd_webrat.erl file contains most of the HTML & AJAX routines you will ever need for routine testing.  It is also a great place to look for examples of step programming.


You can extend/substitute step definitions by using the one of the predefinex prefixs.  This will invoke an Erlang method when the step is tokenized so that you can create custom lookups for your steps.


For example, using {bdd:bdd_utils.puts.foo.bar} will call the Bdd_utils method puts/2 with the input data of ["foo","bar"].  This approach can be used to extend steps so that they can substitue information when the step is parsed.  This is NOT a test run substitution - the replacement is made before test execution.



Remember, prefixes are static data used during pre-evaluation for steps.  You cannot use prefixs to lookup information that is only available during testing such as the IDs of created steps.  Use the bdd_utils:scenario_retrieve methods inside the steps if you need dynamic information.



BDD step prefixes are:



		bdd: does an apply() using the BDD Config pattern and . delimited information where bdd:f.m.p1.p2.pN becomes apply(f, m, [Config, p1, p2, pN])


		apply: does a raw apply() using . delimited information where apply:f.m.p1.p2.pN becomes apply(f, m, [p1, p2, pN])


		lookup: calls the g(type) value for the given model.  Use as lookup:node.name to call the node.erl g(name) method.  This is a very handy way to use the items created in the setup steps.


		atom: turns the text into an Erlang atom


		integer: turns the text into an Erlang integer


		object: same as atom but more user intuitive for REST steps






A handy example of this for OpenCrowbar is using the crowbar:i18n(Config, Key) lookup to resolve localizations using the Utils localization string retriever.  You can retrieve localizations in steps using {bdd:crowbar.i18n.my.local.key} where my.local.key maps to a key in the i18n files.






Adding Pre & Post Conditions


To add pre/post-configuration for a Feature file, you must have an Erlang step file with the same name as the feature file.  For example, if you have a feature called nodes.feature then you must have a nodes.erl to create setup and tear down steps for that feature file.


Setup Steps use the step_setup atom:


step(Config, _Global, {step_setup, {_ScenarioID, _N}, _}) -> 
  io:format("\tNo Feature Setup Step.~n"),
  Config;




This setup step adds results to the Config file.  You should use [{item, value} | Config] to ensure that your values get added to the Config list and are available for the features’ steps.
_Global is always an empty list ([]) for setup steps.



Teardown Steps use the step_teardown atom:


step(Config, _Global, {step_teardown, {_ScenarioID, _N}, _}) -> 
  io:format("\tNo Feature Tear Down Step.~n"),
  Config;



To perform actions, replace or augment the code in the steps to perform the needed operations.  The result from the Setup action is added to the Global list that is passed into all the steps called within the feature.  This allows you to reference items created in setup during subsequent tests.  You should remember to unwind any action from the setup in the teardown.


For example, the Nodes feature setup and tear down look like this:


step(Config, _Global, {step_setup, {_ScenarioID, _N}, _}) -> 
  Path = "node/2.0",
  Node1 = "BDD1.example.com",
  % just in case, cleanup first
  http_delete(Config, Path, Node),
  % create node(s) for tests
  Node = node_json(Node1, "BDD Testing Only", 100),
  Result = http_post(Config, Path, Node),
  {"id", Key} = lists:keyfind("id",1,Result),
  io:format("\tCreated Node ~p (id=~p) for testing.~n", [Node1, Key]),
  [{node1, Key} | Config];

step(Config, Global, {step_teardown, {_ScenarioID, _N}, _}) -> 
  % find the node from setup and remove it
  {"node1", Key} = lists:keyfind("node1", Global),
  http_delete(Config, Path, Key),
  io:format("\tRemoved Node ID ~p for Tear Down Step.~n", [Key]),
  Config;








Passing information between Steps in a Scenario


There are two ways to pass information between Steps in a Scenario: the the Results list and the Config Bag.



The Results List


The Results list is the primary way that information to be tested is added/checked in steps.  The entire design of the BDD system is to have the When steps collect information that is checked by the Then steps.  The “Result” list is the way this information is passed into the Results for checking.  The same mechanism is used for passing information from the Given to When steps.





The Config Bag


The Results List is the primary mechanism to use this because the trace and step designs encourage it; however, there are times when it is necessary to collect Given information and use it in Then steps.  In these cases, you can store Scenario specific information for use within the other steps using Scenario store and retrieve routines.


To Store, use bdd_utils:scenario_store(ScenarioID, Key, Value) in insert a KVP into the configuration thread space.  These values can be inspected from the Erlang shell using the regular get({scenario, ID#}) approach.  It is recommended to store IDs of objects that Given steps create so they are avialable during Then checks.



Storing the same key again will replace the old value with the new value.



To Revieve the value later, use bdd_utils:scenario_retrieve(ScenarioID, Key, Default).  This will recover the key value for the Scenario.


This approach is very handy:



		if you want to store given values for a form (Given I set "foo" to "bar" - see bdd_catchall).


		if you create value (Given REST creates {object:node} "foo.example.com") and need it’s ID for a later step










Debugging


Some handy Erlang tips:



		Config = bdd:getconfig("crowbar") will load the configuration file for passing into Step routines for manual testing








BDD Code Files



		bdd.erl - contains the core running logic


		bdd_utils.erl - utilities used across all modules of the bdd system


		eurl.erl - HTTP get, post, delete functions (like curl)


		json.erl - JSON parser converts to and from lists


		digest_auth.erl - Wrapps http to provide secure access


		bdd_catchall.erl - last step file executed, has fall back steps


		bdd_webrat.erl - handles most basic web & AJAX based steps


		default.erl - the fall back step file (global setup/teardown goes here)


		crowbar.erl - OpenCrowbar specific logic


		[feature].erl - Each feature can have a specific step file






In the feature specific code files, you will find the following





The Global routine “g”


Provides paths for the Feature type.  Using g helps to make the code DRY.


It is common for other features to call each other’s g routines to get the correct path for operations on that type.





JSON creator & validator


The json method is used to create json text for POST and PUT operations against the API.
The validate method is used to make sure that GET returned json matches the expected results





Inspector


The inspector inspects the system and returns a list of items that reflect it’s current state.  The goal of the inspector is to help detect testing artificats that should have been removed.  The inpector method is called before any tests are run and again after all the tests have completed.  If there is any new or missing artificat, the BDD inspector will alert you that the system was not left in a clean state.





Setup and Teardown steps for the Feature.


These steps are called by BDD before and after the feature are executed.  They create objects for the tests to manipulate and then restore the system to it’s original state.


REST API items that are specific to that Feature; however, some of these are common and should be moved to the OpenCrowbar or OpenCrowbarREST file.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/testing/bdd/dsl.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
BDD Domain Specific Language (DSL)


The BDD DSL is designed to be very natural language like.  There are 4 primary clauses in the DSL:



		General Purpose Steps


		Given ... some background thing has happened


		When ... take some action - generally return a data set


		Then ... get some result - always return true/false


		Special Purpose Steps (optional)


		Skip ... will disable the test (please provide a reason after the skip)


		While ... environment ... will only run the test in the environments included after the While (opposite of Unless)


		Unless environment ... will skip the test in the environments included after the Unless (opposite of While)


		Finally ... cleanup actions





Feature files may also include setup and tear down steps that are essential for creating input data for tests.  In some cases, tests require information to be in place before the Given step.





Writing Feature Tests


Test files all end with the extension .feature and contain “plain English” scripts for testing features.  This is known as the BDD DSL.  While it looks like plain language, it is very specifically mapped into the testing framework and must follow the DSL guidelines.


A feature file (in the features directory) is broken into specific “scenarios” to be tested.  Each scenario is effectively a test and has multiple steps.  They all start with a known state expressed using given or when instructions.  The state is then tested using then checks.  The concept is to mirror actions that a user takes: when the user takes this action then they should see these results.  Yes, it’s that simple!


A scenario must include a when statement but the given statement is optional.  Given is used to setup a scenario before the when action is taken.  This is very important for testing linking from a page.  For example, given that I’m on the nodes list page when I click on the all link then I should get a list that includes the admin node.  BDD’s goal is to turn those types of directives into tests.



HTML Tests


The following sentences can be used for testing HTML web pages where you can change the information in “quotes”.



		While I am interactive


		Given I am on the home page


		Given I am on the “dashboard” page


		Given there is a node “foo.example.com”


		When I go to the home page


		When I go to the “node/2.0/1” page


		When I click on the “Dashboard” menu item


		Then I should see “Full Name”


		Then there should be no translation errors


		Then I should not see “Error”


		Finally throw away node “foo.example.com”






Note: This is not a complete list!  To get a complete list of the tests use the bdd:steps(). command.






REST/AJAX Tests


The following sentences can be used for testing REST JSON (aka AJAX) API calls where you can change the information in



		When REST requests the “2.0/node/status” page


		Then key “[nodes][admin][state]” should be “Ready”


		Then key “count” should be “0”


		Then key “[groups][0]” should contain “7” items


		Finally throw away node “foo.bar.com”






Note: This is not a complete list!




Note: We are migrating to use “REST” instead of “AJAX”









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

_static/plus.png





_static/down-pressed.png





_static/comment.png





_static/minus.png





licenses/README.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
OpenCrowbar License


Is available from multiple authors under the Apache 2 license.


Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0    

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.




Component Licenses


Please see subdirectories under [[doc/licenses]] for component license information





Additional Components


Workloads using the Crowbar framework may be offered under different licenses.  These licenses should be documented under the components’ “doc/licenses” directory.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

_static/up-pressed.png





_static/file.png





_static/up.png





development-guides/api/deployment_role.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Deployment-Role API


DeploymentRoles provide the default values for node-roles in a
deployment. They are populated from the role’s template during import.


Unlike node-roles, they do not store any inbound or system data.



API Actions


Verb	URL	Comments
:——	:———————–	:—————-
GET	api/v2/deployment_roles	List
GET	api/v2/deployment_roles/:id	Specific Item
PUT	api/v2/deployment_roles/:id	Update Item
POST	api/v2/deployment_roles	Create Item
GET	/api/v2/deployment_roles/[:deployment_role_id]/attribs	List Attribs for a specific deployment_role
GET	/api/v2/deployment_roles/[:deployment_role_id]/attribs/[:id]	Show Attrib (including value) for a specific Deployment_Role
PUT	/api/v2/deployment_roles/[:deployment_role_id]/attribs/[:id]	Update Attrib
DELETE	-	NOT SUPPORTED








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/api/run.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Run APIs


Run APIs allow users to inspect the state of the annealer queue.



They are read only.




API Actions


Verb	URL	Type	Comments
:——	:———————–	——–	:—————-
GET	api/v2/runs	list of run	List all items in queue
GET	api/v2/runs/[node id]	list of run	shows list of queue items for the given node
PUT	not suppored	n/a	
POST	not supported	n/a	
DELETE	not supported	n/a	








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/testing/bdd/internals/rest.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
BDD Object Management


BDD follows a pattern in which test objects are use erlang modules to implement each model.   For example, the node model is expressed in node.erl.  There are standard methods that are expected for each object so that they can be correctly handled by =bdd_restrat= and =bdd_crud= modules.



To handle objects that have name conflicts (e.g.: group, user), BDD uses an alias system where a model can be registered to use an alias.  For example, group is handled by the group_cb model.  This is configurated in the setup steps.




BDD CRUD



		create


		read


		update


		delete








BDD Rest Rat








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/testing/bdd/internals/config.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
BDD Config


The BDD configuration file contains information that tells BDD how to execute.  While BDD adds to this file during execution, users choose which values it starts with.


BDD selects the default.config file automatically.  You can choose which configuration to load by passing it into the bdd:test(config) or bdd:feature(config, feature) methods.



  
    		Item
    		Required
    		Default
    		Comment
  


  
    		url
    		yes
    		none
    		This is the URL that BDD will use for testing
  


  
    		user
    		no
    		none
    		If your site requires auth, then this is required
  


  
    		password
    		no
    		none
    		If your site requires auth, then this is required.  WARNING: Retained in clear text!  Do not store production passwords here!
  


  
    		log
    		no
    		[true, puts, info, warn, error]
    		used by bdd_utils:log printouts.  Create list with none, some or all of the following: [puts, trace, debug, info, warn]
  


  
    		titles
    		no
    		[pass, fail, skip, header, result, feature, step, step_pass, step_fail]
    		used by bdd_utils:log printouts.
  


  
    		environment
    		no
    		undefined
    		used by Unless step prefix to skip tests
  


  
    		results_out
    		no
    		/tmp/bdd_results.out
    		stores the detailed results of the tests.  Used by bdd:failed().
  


  
    		coverage_out
    		no
    		/tmp/bdd.html
    		HTML version of test results
  


  
    		marker_url
    		no
    		undefined
    		If undefined, this behavior is turned off.  If defined, BDD does a web request to URL with debug information to make it easier to find matching steps in the log.  For OpenCrowbar, the url is `utils/marker`
  


  
    		marker_log/td>
    		no
    		/var/log/crowbar/development.log
    		Should point to the path where you log API calls
  


  
    		cli
    		no
    		undefined
    		Used by bdd_clirat for the command to the CLI if not in the given
  


  
    		cli_user_key
    		no
    		--username
    		Used by bdd_clirat to pass the username into the CLI
  


  
    		cli_password_key
    		no
    		--password
    		Used by bdd_clirat to pass the password into the CLI
  


  
    		cli_url_key
    		no
    		--url
    		Used by bdd_clirat to pass the URL into the CLI
  


  
    		system_phantom
    		no
    		system-phantom.internal.local
    		Used by Crowbar to set the name of the phantom
  


  
    		system_phantom_roles
    		no
    		["dns-service", "ntp-service","dns-mgmt_service"]
    		Used by Crowbar to set the name of the phantom roles
  


  
    		consul_url
    		no
    		http://127.0.0.1:8500
    		Used by Crowbar to set the consul server location
  




Example Config


%%-*-erlang-*- 
{url, "http://192.168.124.10:3000"}.
{user, "developer"}.
{password,"Cr0wbar!"}.
{feature_path,"features/"}.
{extension, "feature"}.
{global_setup, crowbar}.
{secondary_step_files, [crowbar_rest, crowbar, bdd_webrat, bdd_restrat, bdd_catchall]}.
{translation_error, "translation_missing"}.









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/testing/bdd/internals/json.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
JSON Parser


The BDD JSON parser is designed as a stand-alone JSON parser.  It is used to support REST API calls


The JSON parser turns JSON ({Key1:Value1, Key2:Value2})into an Erlang Tuple List ([{Key1, Value1}, {Key2, Value2}]) where each key-value pair becomes an Erlang tuple.  If the JSON is nested, then the Erlang will also nest the JSON.



Arrays & the JSON parser.  The parser converts JSON Arrays into Hash where the key values are a numbered index.  For example, {Key:[Arr1, Arr2, Arr3]} becomes [{Key, [{0, Arr1}, {1, Arr2}, {2, Arr3}]}].




Records


The JSON parser uses Erlang records to pass data between the recursive routines.



		json is used by the top level parser


		jsonkv is used by the value subparser








Keyfind & Value List


Keyfind is a helper to make DRY the lists:keyfind code.  This is a very simple, 1st order search.


Value is similar to keyfind, but performs a more exhaustive search of the JSON





Parser Workers



		parse calls the json parser functions


		json is the primary worker that identifies keys and then uses json_value to resolve matching values


		json_value uses the : as a token and resolves/recurses to retrieve the value for a key


		json_array is similar to json_value but handles the [] array values


		json_value_quoted is used to find values inside of quotes








Pretty


Formats the JSON parse output into a human readable, intended format





Output


Turns the erlang list from the parser back into JSON








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/testing/bdd/internals/README.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
BDD Internals


This section documents the internal working of the BDD code framework.  The audience for this section is for developers who are extended the BDD system and want to learn more about how it operates.


Information about creating tests and tests should be included in other parts of the guide.



Logging (bdd_utils:log)


The BDD system has a logging utility that is managed from the Configuration file.


The core logging call is bdd_utils:log(Config, Level, Message, Data).  Shortcuts have been created, but are not recommended because they do not leverage ability for users the change the logging levels!  The short cuts are: log(Level, Message, Data), log(Message, Data), and log(Message) where the assumed Level is info


The logging system offers several levels:



		true - always show the message


		puts - always shows for debugging info that should be removed and not left in the code


		dump - the lowest level of in-code statement used to output items that take up multiple lines


		trace - very verbose but helps trace entry of routines (do NOT dump objects using trace!)


		debug - general information used for debugging problems and common issues


		info - useful data about normal operations


		warn - actions that are not normal and may require investigation


		depricate - helps find class that have been depricated


		custom - you can define your own levels (e.g.: using your name, mascot or martian crater) as long as you remember to include it in the configuration list.





To set the log level from the Erlang command prompt, use the helper ‘bdd_utils:log_level(debug)’ or other level.  The log_level command will include the correct items.  Users can manually set the logging level by including the desired level in the configuration.  Levels must be added explicitly!  There is no assumption of inclusion: if you want trace and warn then you need to add both to the logging list.



The legacy debug methods are depricated and should be avoided!



You can use the log information in two ways



		modify the configuration file when running tests (applies to all tests)


		use bdd:debug(config, feature, scenario_id#, [log, level, list]). to call a single scenario with custom logging.  If you omit the list then it will default to [puts, debug, info, warn]






Log messages can be very verbose!  Generally, running just 1 scenario is enough information for debugging.






Logging for Titles


The information shown during test runs is also generated by the logging but managed by the “titles” config.


The log titles are



		Feature Titles


		header - BDD general information


		result - Results from a run


		feature - Feature introduction


		Scenario Titles


		pass - scenario passed


		fail - scenario failed


		skip - scanario skipped


		step - same as pass


		step_pass - details about step passed (used when failed)


		step_fail - defails about step failed (used when failed)











          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/dev-systems/build_sledgehammer.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Build Sledgehammer (Advanced Dev Only)


WARNING: Option step!  Usually requires multiple retries.


By default, setup will now download golden sledgehammers and this step is not needed.



Only do this step if you want to make changes to Sledgehammer!  We recommend using the golden sledgehammer.




		prep for sledgehammer requirements:
1. ubuntu: sudo apt-get install curl rpm rpm2cpio


		from core, tools/build_sledgehammer.sh
1. warning: this may take multiple attempts to complete to downloads.  Keep trying.
2. warning: might need a better literal mirror in sledgehammer/sledgehammer.ks - see Details









          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/dev-systems/kvm-ubuntu.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Ubuntu with KVM


The steps here describe how to setup the VM from the command line on Ubuntu. You can
use virt-manager [http://virt-manager.org] if you prefer a graphical user
interface. Do submit your relevant virt-manager configs if you have some!


The steps here assume that your KVM host is also the desktop that you are
working from. If not, adapt the commands accordingly.


Installation steps:



		Download Ubuntu 12.04 LTS 64 bit (ubuntu-12.04.1-server-amd64.iso) from
http://www.ubuntu.com/download/server. For example, run the following
commands within the OpenCrowbar git checkout on the qemu-kvm host:


cd dev-setup/qemu-kvm
aria2c http://releases.ubuntu.com/precise/ubuntu-12.04.1-server-amd64.iso.torrent






		Create a blank disk image that is at least 20 GB. For example:


qemu-img create -f qcow2 -o preallocation=metadata ubuntu-12.04.qcow2 20G






		Start a VM with the desired network (private network with NAT), with the ISO
and disk attached. For example:


sudo qemu-kvm -m 2G -daemonize -vnc :10 -cdrom ubuntu-12.04.1-server-amd64.iso \
              -net nic,model=virtio,macaddr=DE:AD:BE:EF:30:22 \
              -net tap,script=qemu-ifup \
              -drive file=ubuntu-12.04.qcow2,cache=none,if=virtio



Note that script=qemu-ifup points to the script at qemu-kvm/qemu-ifup,
so make sure you are running the above command in the same directory, or
modify it accordingly.





		Connect to the VM via VNC and install the system:


vncviewer :10



The installer will attempt to auto-configure the network with DHCP, which
you can cancel and jump to manual configuration instead with the following
settings:


IP address: 192.168.124.10
Netmask:    255.255.255.0
Gateway:    192.168.124.1



Use the same name server (DNS) address as your host, which you can find out
on Linux systems by running grep nameserver /etc/resolv.conf on the host.
For example, within the SUSE intranet it is 10.120.2.88. If the host is not
running in any internal or corporate network, you can use 8.8.8.8.


The hostname and domain names can be left at the defaults. The apt-get proxy
can also be left blank.





		Once installation is complete, you can shutdown the VM (sudo poweroff) and
subsequently start it in the same way, minus the -cdrom ... option. Or
use the qemu-kvm/start-vm [https://github.com/crowbar/crowbar/blob/master/dev-setup/qemu-kvm/start-vm])
helper script.












          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/dev-systems/kvm-slaves.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
Test/Dev using KVM Worker Nodes


Crowbar developers are strongly encouraged to always build and test deployment code in multi-node situations.



Using kvm-slaves with kvm-slaves script



closing the KVM window will not stop the VM because the scripts are designed to restart the VM if it halts.




Prereqs


There are some, run the script and it will tell you!  Some of the requirements are ruby gems.





Start Up


From the dev system, tools/kvm-slave


This creates a KVM machine and attaches it to the Docker bridge.







Shutdown


If you kill the pid of the kvm-slave, it will exit gracefully.





Common Usage


Most of our kvm-slave usage looks like:



		Create 3: for j in 1 2 3; do tools/kvm-slave & done


		Destroy 3: for j in 1 2 3; do kill %$j ; done











          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

_static/ajax-loader.gif





_images/crowbar_model_discussion.png
Jig: Chef

Deployment: Test]

RoleRequires

Barclamp: DNS

RoleRequires

Barclamp: SQL

RoleRequires

Jig: Puppet

[Snapshot: Proposa!

Role: DNS Resolver|

NodeRole

Attrib

Role: SQL Server]

Forwarder

NodeRole

NodeRole

NodeRole

NodeRole

Role: SQL Client

NodeRole

NodeRole

Attrib
DB Name

Role: DNS Client|

Node: Beta

Node: Omega





_static/comment-close.png





_static/comment-bright.png





_static/down.png





deployment-guide/external-services.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
External Services Configuration


<<<<<<< HEAD
The OpenCrowbar System can be configured to utilize external (not installed or managed by OpenCrowbar) services.  These configurations are made in the following file /opt/opencrowbar/core/crowbar-config.sh and must be made PROR to running production.sh to install the system.  Users can configure any combination of of these services.



DNS (Domain Name Server)


By default OpenCrowbar will utilize Bind (named) on the Admin Node when you install OpenCrowbar.  All clients will be configured to use this system when they are installed.  DNS entries are automatically updated as new nodes are configured or removed from OpenCrowbar.  OpenCrowbar can be configured to use an already existing DNS however it becomes the responsability of the user to ensure that entries are created or removed as OpenCrowbar will not function correctly if the name and IP Address are not configured with the ones assigned by OpenCrowbar (Typically MAC address of the primary interface)



		Edit /opt/opencrowbar/core/crowbar-config.sh


		Find the line ‘crowbar roles bind dns-database to “$FQDN”’ and comment it out by adding # to the front of the line.


		Find the line ‘#curl -X PUT -d ‘{“Datacenter”: “dc1”, “Node”: “external”, “Address”: “192.168.124.11”, “Service”: {“Service”: “dns-service”, “Port”: 43, “Tags”: [ “system” ]} }’ http://127.0.0.1:8500/v1/catalog/register’ uncomment it by removing the # from the front of the line and then change the IP address of the DNS server (192.168.124.11 in this example) to the IP of the system which will be serving DNS for the enviornment
=======
The OpenCrowbar System can be configured to utilize external (not installed or managed by OpenCrowbar) services.These configurations are made in the following file /opt/opencrowbar/core/crowbar-config.sh and must be made PROR to
running production.sh to install the system.  Users can configure any combination of of these services.








DNS (Domain Name Server)


By default OpenCrowbar will utilize Bind (named) on the Admin Node when you install OpenCrowbar.  All clients will be
configured to use this system when they are installed.  DNS entries are automatically updated as new nodes are configured
or removed from OpenCrowbar.  OpenCrowbar can be configured to use an already existing DNS however it becomes the
responsability of the user to ensure that entries are created or removed as OpenCrowbar will not function correctly if
the name and IP Address are not configured with the ones assigned by OpenCrowbar (Typically MAC address of the primary interface)



		Edit /opt/opencrowbar/core/crowbar-config.sh


		Find the line ‘crowbar roles bind dns-bind_server to “$FQDN”’ and comment it out by adding # to the front of the line.


		Find the line ‘#curl -X PUT -d ‘{“Datacenter”: “opencrowbar”, “Node”: “external”, “Address”: “192.168.124.11”, “Service”: {“Service”: “dns-service”, “Address”: “192.168.124.11”, “Port”: 43, “Tags”: [ “system” ]} }’ http://127.0.0.1:8500/v1/catalog/register’ uncomment it by removing the # from the front of the line and then change the IP address of the DNS server (192.168.124.11 in this example) to the IP of the system which will be serving DNS for the enviornment


		Find the line ‘#curl -X PUT -d ‘POWERDNS’ http://127.0.0.1:8500/v1/kv/opencrowbar/private/dns/system/type?token=$CONSUL_MACL` uncomment it by removing the # from the front of the line.


		Find the line ‘233 #curl -X PUT -d ‘POWERDNS’ http://127.0.0.1:8500/v1/kv/opencrowbar/private/dns/system/type?token=$CONSUL_MACL’ and uncomment it by removing the # from the front of the link.  Change the POWERDNS to BIND if you aren’t running POWERDNS.


		If you are running POWERDNS, uncomment the three curl lines right below the previous curl command and update the -d parameters for your POWERDNS server.












release/drill




























		Save the file and continue on with the remainder of the installation steps.








NTP (Network Time Protocol)


By default OpenCrowbar will utilize NTP (NTPd) on the Admin node and all clients will be configured to use this server to sync their time.  OpenCrowbar can be configured to not run NTP on the admin server and configure any nodes installed to point their clients to the IP address specified in this file.



		Edit /opt/opencrowbar/core/crowbar-config.sh


		Find the line ‘crowbar roles bind ntp-server to “$FQDN” and comment it out by adding # to the front of the line


		Find the line ‘#curl -X PUT -d ‘{“Datacenter”: “opencrowbar”, “Node”: “external”, “Address”: “192.168.124.11”, “Service”: {“Service”: “ntp-service”, “Address”: “192.168.124.11”, “Port”: 123, “Tags”: [ “system” ]} }’       http://127.0.0.1:8500/v1/catalog/register’ uncomment it by removing the # from the front of the line and then change the IP address of the NTP server (192.168.124.11 in this example) to the IP of the system which will be serving DNS for the enviornment.


		Save the file and continue on with the remainder of the installation steps.








DHCP (Dynamic Host Configuration Protocol)


By default OpenCrowbar will configure DHCP (dhcpd) on the Admin node and utilize it to preform boot sequences to nodes as they transition from discovery to OS installation.  Additionally it will direct a system to use it’s local drives to boot once an OS is installed.  OpenCrowbar can be configured to use an already existing DHCP Server however it becomes the responsability of the user to ensure that nodes keep the same IP address.



		Edit /opt/opencrowbar/core/crowbar-config.sh


		Find the line ‘crowbar roles bind dhcp-database to “$FQDN”’ and comment it out by adding # to the front of the line.


		Save the file and continue on with the remainder of the installation steps.


		On the DHCP server the user must redirect the node which is booting to the OpenCrowbar Admin server.  To do this add the following stanza to /etc/dhcpd/dhcpd.conf





subnet 192.168.124.0 netmask 255.255.255.0 {
 option routers 192.168.124.10;
 option subnet-mask 255.255.255.0;
 option broadcast-address 192.168.124.255;
 option domain-name "neode.com";
 option domain-name-servers 192.168.124.11;
 default-lease-time 7200;
 max-lease-time 36000;
  pool {
    range 192.168.124.81 192.168.124.254;
    allow unknown-clients;
    if option arch = 00:06 {
     filename = "discovery/bootia32.efi";
  } else if option arch = 00:07 {
     filename = "discovery/bootx64.efi";
  } else {
     filename = "discovery/pxelinux.0";
  }
    next-server 192.168.124.10;
  }   
}




		Replace the subet, domain-name and pool information to match the enviornment.


		Put the IP address of the OpenCrowbar Admin Node in the next-server in place of 192.168.124.10.








Proxy Server


By Default OpenCrowbar will install a Proxy server on the Admin server in order to facilitate access to packages on the internet by the target nodes.  After installation OpenCrowbar will install various packages based on the roles that are assigned to these devices.  As OpenCrowbar caches the packages they are downloaded from the internet they are only pulled down once even if many systems will be accessing them.  It is possable for a user to define a different proxy server if one already exists in the enviornment.



		Edit /opt/opencrowbar/core/crowbar-config.sh


		Find the line ‘crowbar roles bind proxy-server to “$FQDN”` and comment it out by adding # to the front of the line


		Find the line ‘curl -X PUT -d ‘{“Datacenter”: “opencrowbar”, “Node”: “external”, “Address”: “192.168.124.9”, “Service”: {“Service”: “proxy-service”, “Address”: “192.168.124.9”, “Port”: 3128, “Tags”: [ “system” ]} }’ http://127.0.0.1:8500/v1/catalog/register
` uncomment it by removing the # from the front of the line and then change the IP address of the proxy server (192.168.124.9 in this example) as well as the port (3128 in this example) to the IP and port of the proxy server for the enviornment.


		Save the file and continue on with the remainder of the installation steps.








AMQP Server and Service


Optionally, OpenCrowbar can be configured to send events to an AMQP server through the AMQP service.  To do this, either OpenCrowbar
should run its own RabbitMQ server or a AMQP service can be injected into OpenCrowbar.  The system currently assumes a user of crowbar,
a password of crowbar, and a virtual host of /opencrowbar.


To run a RabbitMQ service, uncomment the rabbitmq-server line in crowbar-config.sh.


To inject an AMQP service instead, uncomment the curl line for consul.  It is next to the rabbitmq-server line.


In either case, the amqp-service needs to be enabled.  Uncomment the amqp-service crowbar bind command.


Once the system is operational and the services configured, you will need to start the audit-to-event program.  To do this,
you will need to run the following command as crowbar from the /opt/opencrowbar/core/rails directory:
RAILS_ENV=production bundle exec rake audits.to_amqp &


To see events as they happen, a sample client can be run as crowbar from the /opt/opencrowbar/core/rails directory:
RAILS_ENV=production bundle exec scripts/event_client.rb #


The command line arguments are filters.  # means all.  Node.create will return events when nodes are created.  Other options
are available.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

deployment-guide/directory-layout.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
OpenCrowbar Directory Structure


A complete OpenCrowbar installation consists of a core component, and workloads (such as openstack, hadoop, hardware).  The base installation directory in a production environment will consist of:



OpenCrowbar Top-level directory layout


Directory	Description	Role
—————————-	:———————————————————–	:————–
/opt/opencrowbar/core	Core OpenCrowbar Complete system foundation and WebUI	Mandatory
/opt/opencrowbar/hadoop	Hadoop workload components	Optional
/opt/opencrowbar/hardware	RAID and BIOS Hardware Provisioner workload components	Optional
/opt/opencrowbar/openstack	OpenStack workload components	Optional
/opt/opencrowbar/ceph	Ceph worload components	Optional


The above components each have their own GIT repository. The OpenCrowbar core repository is the essential, engineer that drives OpenCrowbar and can operate alone from any of the workload components.  The workload components of OpenCrowbar have built-in dependencies on the core.





OpenCrowbar core directory layout


The directory structure of the core consists of these parts under the /opt/opencrowbar/core directory:


Sub-Directory	Description of Contents
——————-	:————————————————————–
BDD	Business Driven Development Testing Infrastructre
barclamps	Metadata that for barclamps that drive workload deployment
bin	OpenCrowbar executables and helper files
bootstrap	Utility files used to ready the core for operation
clients	API clients applications
doc	The OpenCrowbar core documentation suite
etc	Target deployment platform OpenCrowbar stop/start scripts
jig - chef	The core cookbook recipes for OpenCrowbar node-role drivers
jig - noop	Support infrastructure for the no-op jig
jig - script	Support for the script jig
rails	core only ruby-on-rails infrastructure support tools and utilities
rails-engines	ruby-on-rails support for workload deployment
setup	Tools and utilities to help get OpenCrowbar bootstrapped
sledgehammer	Contains the utilities used to generate the PXE boot image
smoketest	Automated self-test validation drivers
test	Additional role test facilities
tools	Tools used to allow enable the admin node to manage OS installed slaves
updates	Merge tools


Role configuration information is located within the jig infrastructure.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

_images/crowbar_jig_classes.png
Barclamp

Role
BarclampRole anatribuce NodeRole Nod
. [FEarclamp = barclam_id Coounng *—friode > ode
+role = role_id organizer [+Fole
-
1 RoleMap I'I
NodeAttribute
; ; Curent Best
. BarclampConfiguration i urent be
[Barclamp = barclamp id >
N >
Barclampinstance CmdbEvent
- P Decomposes AttributeMap
BarclampAttribute RoleAttribute [+Configuration = config_id L | Confianstance ——
[*Barclamp = barclamp_id Frole [*State = active/inactive Cmdbap! E
[ +attribute = attribute_id [ +attribute ‘Latmbut? s, ]
role wites) an
CmdbRuns
(cmdb-lient
> > - Cmdb runs) CmdbRun
ig
BarclampCmdb
Barclamps can Attribute- CmdbChef CmdbChefEvent CmdbChefRun
have multiple
Cmdbs
> CmdbPuppet| [CmdbPuppetEvent| [CmdbPuppetRun

CmdbAttribute

[+Scope = Cdb, Crdbchef, CrdbPuppet






deployment-guide/troubleshooting/README.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
OpenCrowbar Troubleshooting Tips



Chef-Client Fails: cannot download Chef RPM


If the very first role applied to a new node fails, there are several possible causes.



		outbound network access is not working.  Likely cause is that your squid proxy is not configured


		set the http_proxy (`export http_proxy=”http://127.0.0.1:8123”) and attempt to access google.com from the admin server


		if that worked, try the same thing after ssh’ing to the node


		you are missing the /tftboot/files path


		this can be caused when you do not have the ISOs staged








No OS?  Installing an OS, the TFTP Process


TFTP provides the boot images for the operating system install.


You can inspect the TFTP information the admin node provides by looking in the /tftpboot directories.


These directories contain the sledgehammer discovery, base OS install images and specific instructions for each node in the /tftpboot/nodes directory.


If Crowbar is not providing the right boot image, this is a good place to start.








          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

_images/crowbar_model.png
Barclamp

~template_snapshot]

Deployment
proposed_snapshot)
quesed_snepsnot
2pplying_snepsnot)
+zctive shepsnor

DeploymentRole]

“data
+wall

Run

Role
B
+description
emearys
Crpiaeies
B B Yy
s
cempiace

Name
+Description|

“osername
+isadmin

name
+description|
sorder

RoleRequires NetworkAlllocation

“eadress

NetworkRange|

name
+rizet
+1ast

Network

BT
+description]
+conduit

NetworkRouter|
name
address





development-guides/testing/bdd/rats/README.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
What are the BDD *rats?


The BDD system honors the Cucumber pattern of adding the suffix “rat” to the base step processors.


These base step processors are:



		Webrat (bdd_webrat.erl) which handles all the of the standard HTML page and forms processing


		RESTrat (bdd_restrat.erl) which handles REST API calls


		CLIrat (bdd_clirat.erl) which handles CLI calls





In many cases, good tests will combine steps from multiple rat files.


For example, a CLI test that creates a user should validate the return from the CLI and may also choose to use the REST API steps to confirm that the call created the correct result in the database.  Along the same lines, a test may use the API to create items that it wants to appear on the HTML UI for testing.  This is a desired practice!



The use of “rat” as a suffix likely refers to Cucumber’s use of the Capybara rendering engine.  A Capybara is a giant rat.



Serious test developers are strongly encouraged to submit new *rat steps!  The more good steps the better the ftamework; however, you are also encouraged to start with steps in the most narrow scope and gradually move them into larger scopes.  Consequently, we expect that steps in the *rat routines have been throughly tested and vetted for general goodness.






          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/testing/bdd/rats/clirat.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
CLI Steps (clirat)


The CLI Steps file is designed to test CLIs for the BDD framework.


The core function of the CLI steps is provided by the Erlang os:cmd instruction.  You may need to combine the path to the desired executable with the CLI.  For example, “cd ../bin && ./crowbar” in order to run the CLI.


There are multiple ways to identify which CLI to use:



		In config, you may add key for the CLI.  {cli, "cd ../bin && ./crowbar"}.


		In another erl file, you could add a g(cli)... cli -> "[cmd]"; instruction and call it from the given step using Given CLI is {apply:crowbar.g.cli}


		In the given step, you can define the CLI in place Given CLI is "cd ../bin && ./crowbar"





Once you have defined the CLI location, you can run commands using the When I run the "command here" command.  This command will capture the output into a list ({cli, ["reponse line 1", "response line 2", "response line N"]}).


You can then check the responses using the Then the CLI should return "expected result" steps.



OS Specific?  You can step tests that only work on Linux using the Unless windows or While linux step definition.



The CLI command will automatically add the following parameters to the CLI call:



		–user [user]


		–password [password]


		–url [url]





The values for the parameters are resolved from the configuration file.


For example:


Scenario: Machines List
  Unless windows
  Given there is a {object:node} "cli.cr0wbar.com"
  Given CLI is {apply:crowbar.g.cli}
  When I run the "machines list" command
  Then the CLI should return "cli.cr0wbar.com"
    And the CLI should return "global-node.testing.com""
  Finally REST removes {object:node} "cli.cr0wbar.com"







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

development-guides/testing/bdd/steps_rest.html


    
      Navigation


      
        		
          index


        		core latest documentation »

 
      


    


    
      
          
            
  
BDD testing RESTful APIs


This section descusses the common pattern for BDD testing a RESTful API



Exports



		step/3


		json/3 -


		validate/1


		inspector/1


		g/1










g


Put commonly used string and information here.  This function is provided to help avoid duplication of strings.  It makes it much easier to maintain the code if you centralize the string table.



		path - provides the path to the REST API that is the base for this object.  Commonly used from other modules.





		name & atom - are used as a string table for objects created in the steps





		type (not required) - is shown as a reference for information that you may want to keep in g


g(Item) ->
case Item of
path -> “2.0/crowbar/2.0/cmdb”;
type -> “CmdbTest”;
name1 -> “bddcmdb”;
atom1 -> cmdb1;
_ -> crowbar:g(Item)
end.











json & validate


A Happy API has consistent JSON.


The json routine creates a valid JSON version of the object.  This is used by the routines that create and update the object via the API.  You may implement multiple versions of json to capture the different required/optional components of the object.


json(Name) ->
  json:output([{"name",Name}]).

json(Name, Description, Order) ->
  json:output([{"name",Name},{"description", Description}, {"order", Order}]).



Use the shared validator to check common properties like ID, Name, Description and edit dates.  This validator should only check the items that are specific to your object.



The bdd_utils:is_a is your friend - extend it if needed.  There are similar BIFs for erlang that you can also leverage.



validate(J) ->
  R =[length(J) =:= 6,
      bdd_utils:is_a(J, str, description),
      bdd_utils:is_a(J, integer, order),
      crowbar_rest:validate(J)],
  bdd_utils:assert(R).






inspector


The inspector is part of a housekeeping system for BDD that helps detect orphaned artifacts.  It is optional, but recommended for root objects.


The objective of the inspector method is to return a list of items found in the system.  This list is generated before and after BDD runs.


inspector(Config) ->
  crowbar_rest:inspector(Config, cmdbs).  % shared inspector works here, but may not always




It is likely that you can leverage a generic inspector routine if your API has a consistent list pattern.






step - setup & teardown


Setup and teardown are called automatically by BDD at the start of a feature run.  They are optional.  It is import that they are balanced - any objects created by setup should be removed in teardown.


Setup and teardown steps are just like other steps except that they use the step_setup and step_teardown atoms.  Setup is expected to return a Config file.  Generally, a tumple for each object created ({name1, 5}) is added to the config so that teardown can delete objects by ID instead of name.


Setup


step(Config, _Global, {step_setup, _N, _}) ->
  % create node(s) for tests
  Node = json(g(name), g(description), 100),
  crowbar_rest:create(Config, g(path), g(atom), g(name), Node);



Teardown


step(Config, _Global, {step_teardown, _N, _}) ->
  % find the node from setup and remove it
  crowbar_rest:destroy(Config, g(path), g(atom)).






Common steps


Common steps are easy to create because thy can leverage existing steps with minor changes.  Even if the underlying step is simple, it’s more maintainable to build steps based on other steps.


Get List


step(Config, _Given, {step_when, _N, ["REST gets the cmdb list"]}) ->
  bdd_restrat:step(Config, _Given, {step_when, _N, ["REST requests the",eurl:path(g(path),""),"page"]});



Get Object


step(Config, _Given, {step_when, _N, ["REST gets the cmdb",Name]}) ->
  bdd_restrat:step(Config, _Given, {step_when, _N, ["REST requests the",eurl:path(g(path),Name),"page"]});



Validate Object



This routine will call back the the modules own validate!



step(_Config, Result, {step_then, _N, ["the cmdb is properly formatted"]}) ->
  crowbar_rest:step(_Config, Result, {step_then, _N, ["the", cmdb, "object is properly formatted"]});



Create Object



Creates a new object using the require components.  The routine builds the JSON for the object (see above) and then calls the shared create method.



step(Config, _Global, {step_given, _N, ["there is a cmdb",CMDB,"of type", Type]}) ->
  JSON = json(CMDB, g(description), Type, 200),
  crowbar_rest:create(Config, g(path), JSON);



Remove Object


step(Config, _Given, {step_finally, _N, ["REST removes the cmdb",CMDB]}) ->
  crowbar_rest:destroy(Config, g(path), CMDB);






Reference Features


Scenario: CMDB List
  Given there is a cmdb "my_special_cmdb"
  When REST gets the cmdb list
  Then there should be a value "my_special_cmdb"
    And there should be a value "chef"
    And there should be a value "bddcmdb"
  Finally REST removes the cmdb "my_special_cmdb"

Scenario: REST JSON check
  Given there is a cmdb "cmdb_json_test"
  When REST gets the cmdb "cmdb_json_test"
  Then the cmdb is properly formatted
  Finally REST removes the cmdb "cmdb_json_test"

Scenario: REST Add
  Given there is not a cmdb "cmdb_add_test"
  When REST adds the cmdb "cmdb_add_test"
  Then there is a cmdb "cmdb_add_test"
  Finally REST removes the cmdb "cmdb_add_test"

Scenario: REST Delete
  Given there is a cmdb "cmdb_delete_test"
  When REST deletes the cmdb "cmdb_delete_test"
  Then there is a not cmdb "cmdb_delete_test"







          

      

      

    


    
        © Copyright .
      Created using Sphinx 1.3.1.
    

  

