

 Welcome to a documentation test site for:
Talk

Index

title: Talk Quickstart
permalink: /

Online comments are broken. Our open-source Talk tool rethinks how moderation,
comment display, and conversation function, creating the opportunity for safer,
smarter discussions around your work. Read more about our product features and
goals here [https://coralproject.net/talk]. The
documentation available here is pertaining to the technical details for
installing, configuring, and deploying Talk.

Talk is a Node [https://nodejs.org/] application with
dependencies managed by
Yarn [https://yarnpkg.com/en/docs/install] that connects to
MongoDB [https://docs.mongodb.com/manual/installation/] and
Redis [https://redis.io/topics/quickstart] databases in order
to persist data. The following versions are supported:

	Node 8+

	Yarn 1.3.2+

	MongoDB 3.2+

	Redis 3.2.5+

You can run Talk (and its dependencies) locally or from Docker [https://www.docker.com/community-edition#/download] containers. Docker is used in the local example below for the database and cache, however it is possible to run Talk without Docker by configuring your own MongoDB and Redis instances. We have tested Talk
and this documentation with Docker versions 17.06.2+.

An optional dependency for Talk is
Docker Compose [https://docs.docker.com/compose/install/]. It
can be used to setup your environment easily for testing. We have tested Talk
and this documentation with versions 1.14.0+.

Installation

Installation from Docker

To use Talk without major customization you can run the application using our
provided docker image.

Start by making a new directory and create a file called docker-compose.yml and copy the following:

For details on the syntax of docker-compose.yml files, check out:
https://docs.docker.com/compose/compose-file/compose-file-v2/

version: '2'
services:
 talk:
 image: coralproject/talk:4.5
 restart: always
 ports:
 - "3000:3000"
 depends_on:
 - mongo
 - redis
 environment:
 - NODE_ENV=development # remove this line in production
 - TALK_MONGO_URL=mongodb://mongo/talk
 - TALK_REDIS_URL=redis://redis
 - TALK_ROOT_URL=http://127.0.0.1:3000
 - TALK_PORT=3000
 - TALK_JWT_SECRET=password
 mongo:
 image: mongo:latest
 restart: always
 volumes:
 - mongo:/data/db
 redis:
 image: redis:latest
 restart: always
 volumes:
 - redis:/data
volumes:
 mongo:
 external: false
 redis:
 external: false

The environment variables listed above are the bare minimum needed to run the demo, for more configuration
variables, check out the Configuration section.

And you can then start it with:

docker-compose up -d

This process will take a minute or two, it has to download docker images for the
required databases and Talk as well as setup the environments.

Now that you’ve started the services started using compose, you should see
output that resembles the following:

Creating mongo_1 ...
Creating redis_1 ...
Creating mongo_1 ... done
Creating redis_1 ... done
Creating talk_1 ...
Creating talk_1 ... done

Once everything has completed, run docker-compose ps, and you should see something like:

 Name Command State Ports

mongo_1 docker-entrypoint.sh mongod Up 27017/tcp
redis_1 docker-entrypoint.sh redis ... Up 6379/tcp
talk_1 yarn start Up 0.0.0.0:3000->3000/tcp

You now have a Talk instance up and running! Continue on to the Setup section for details on how to complete the
initial setup and get started using Talk.

Installation from Source

To install Talk from Source, ensure that you have the version of Node as
specified above. First we will download and extract the latest codebase of Talk:

curl -sLo talk.tar.gz https://github.com/coralproject/talk/archive/master.tar.gz
mkdir -p talk
tar xzf talk.tar.gz -C talk --strip-components 1
cd talk

From here we need to fetch the dependencies and build the static assets using
Yarn:

yarn
yarn build

You can either setup the required databases by visiting the docs for MongoDB [https://docs.mongodb.com/manual/installation/] and
Redis [https://redis.io/topics/quickstart], or using the following commands which will leverage Docker:

docker run -p 127.0.0.1:6379:6379 -d redis
docker run -p 127.0.0.1:27017:27017 -d mongo

Didn’t work? Sometimes you may already have a container running on these ports,
run docker ps to see what other containers you have running and running
docker stop <id> on those containers to stop them.

This documentation assumes that you will be running MongoDB on
127.0.0.1:27017 and Redis on 127.0.0.1:6379. The above Docker commands bind
MongoDB and Redis on these interfaces for you.

We should then specify the configuration variables that can be used to run the
application locally in a file named .env. This will be read by the application
when running in development mode:

NODE_ENV=development
TALK_MONGO_URL=mongodb://127.0.0.1:27017/talk
TALK_REDIS_URL=redis://127.0.0.1:6379
TALK_ROOT_URL=http://127.0.0.1:3000
TALK_PORT=3000
TALK_JWT_SECRET=password

This is only the bare minimum needed to run the demo, for more configuration
variables, check out the Configuration section.

You can now start the application by running:

yarn watch:server

Continue onto the Setup section for details on how to complete the
installation and get started using Talk.

Setup

Create Admin Account

With Talk running, you can now navigate to
http://127.0.0.1:3000/admin/install
and walk through the initial setup steps.

	First, enter your Organization Name and Organization Contact Email. This will appear in emails when inviting new team members.

	Next, create your Admin user. You can specify an Email Address, Username, and Password

	Finally, enter your list of Permitted Domains, read here about whitelisting domains

During development, ensure you whitelist 127.0.0.1:3000 otherwise the
http://127.0.0.1:3000/ page will not
load.

Once the setup wizard has been completed you can log into Talk (http://127.0.0.1:3000/) using the email address and password for the Admin user account that you just created.

From here you can test out features in Talk, see comments in the admin interface where you can do moderation, and configure the user experience.
In the next step you’ll create some user comments to moderate.

Demo Embedded Comments

If you’ve followed the documentation above, you’ll now have a running copy of
Talk. To demonstrate what your own self-hosted copy of Talk can do, we created the demo below
that can be used to test the copy that is running now on your
machine.

In order for the demo to work, you must add
https://docs.coralproject.net/ to your
permitted domains list. You can do this by visiting
http://127.0.0.1:3000/admin/configure
now and selecting Tech Settings from the sidebar.

Once you have added the domain of these docs, you can click the button below.

 Start Demo

At this point you’ve successfully installed, configured, and ran your very own
instance of Talk! Continue through this documentation on this site to learn more
on how to configure, develop with, and contribute to Talk!

title: Installation from Docker
permalink: /installation-from-docker/

Docker [https://www.docker.com/community-edition#/download] 17.06.2+ and
Docker Compose [https://docs.docker.com/compose/install/] 1.14.0+ are required
to perform installation via Docker. This is the recommended way to deploy the
application when used in production.

Available as coralproject/talk [https://hub.docker.com/r/coralproject/talk/] on
Docker Hub. (latest/Dockerfile) [https://github.com/coralproject/talk/blob/master/Dockerfile]

Images are tagged using the following notation:

	x (where x is the major version number): any minor or patch updates will
be included in this. If you’re ok getting new features occasionally and all
the bug fixes, this is the tag for you. Any changes to this image tag will not
require a database migration.

	x.y (where y is the minor version number): any patch updates will be
included with this tag. If you like getting fixes and having features change
only when you want, this is the tag for you. (recommended)

	x.y.z (where z is the patch version): this tag never gets updated, and
essentially freezes your version, this should only be used when you are either
extending Talk or are sure of a specific version you want to freeze.

We provide tags with *-onbuild
(onbuild/Dockerfile) [https://github.com/coralproject/talk/blob/master/Dockerfile.onbuild]
that can be used for easy plugin integration and acts as a customization
endpoint. To use this image tag, refer to the
onbuild section.

Installing

To use Talk without major customization you can run the application using our
provided docker image. The following is a docker-compose.yml file that can
be used to setup Talk:

For details on the syntax of docker-compose.yml files, check out:
https://docs.docker.com/compose/compose-file/compose-file-v2/

version: '2'
services:
 talk:
 image: coralproject/talk:4.5
 restart: always
 ports:
 - "3000:3000"
 depends_on:
 - mongo
 - redis
 environment:
 - NODE_ENV=development # remove this line in production
 - TALK_MONGO_URL=mongodb://mongo/talk
 - TALK_REDIS_URL=redis://redis
 - TALK_ROOT_URL=http://127.0.0.1:3000
 - TALK_PORT=3000
 - TALK_JWT_SECRET=password
 mongo:
 image: mongo:latest
 restart: always
 volumes:
 - mongo:/data/db
 redis:
 image: redis:latest
 restart: always
 volumes:
 - redis:/data
volumes:
 mongo:
 external: false
 redis:
 external: false

This is the bare minimum needed to start Talk, for more configuration
variables, check out the Configuration section.

And you can then start it with:

docker-compose up -d

This process will take a minute or two, it has to download docker images for the
required databases and Talk as well as setup the environments.

Now that you’ve started the services started using compose, you should see
output that resembles the following:

Creating mongo_1 ...
Creating redis_1 ...
Creating mongo_1 ... done
Creating redis_1 ... done
Creating talk_1 ...
Creating talk_1 ... done

And when you run docker-compose ps, you should see something like:

 Name Command State Ports

mongo_1 docker-entrypoint.sh mongod Up 27017/tcp
redis_1 docker-entrypoint.sh redis ... Up 6379/tcp
talk_1 yarn start Up 0.0.0.0:3000->3000/tcp

At this stage, you should refer to the configuration for
configuration variables that are specific to your installation.

Onbuild

We provide *-onbuild images to assist and automate the customization of our
base installation with additional custom plugins. Images can be created with the
most basic of Dockerfile’s:

FROM coralproject/talk:4.5-onbuild

And running the following to build the docker image:

docker build -t my-awesome-talk-image --build-arg TALK_DEFAULT_LANG=es .

Don’t forget to replace my-awesome-talk-image with your own image name, and
specify your build variables with the --build-arg. Refer to Dockerfile.onbuild [https://github.com/coralproject/talk/blob/master/Dockerfile.onbuild] for the
available build variables.

This accomplishes a lot:

	Copies all the files alongside the Dockerfile into the application
directory in the Docker image.

	Installs any new dependencies that were required by any new plugins.

	Builds the new static bundles so that they are ready to serve when the image
is running.

	Specifies a build time variable TALK_DEFAULT_LANG. Refer
to Dockerfile.onbuild [https://github.com/coralproject/talk/blob/master/Dockerfile.onbuild] for the
available build variables.

This means that you can create a repository for your organization that simply
includes the above Dockerfile, a directory of plugins, and a plugins.json
file which specifies the activated plugins, and you can deploy Talk easily to
your containerized infrastructure. The versioning of our Docker tags as well
lets you do something like:

FROM coralproject/talk:4.5-onbuild

Which would pin your image to `4.5.x release’s.

title: Installation from Source
permalink: /installation-from-source/

To install Talk from Source, ensure that you have Node version 8+.
Installing via source is the recommended method when developing as it give you
the best tooling. We release versions using semantic versioning, and do so to
our GitHub Releases [https://github.com/coralproject/talk/releases] page.
There you can download archives of older versions or the latest release. The
examples following will download the latest code on our master branch.

Installing

First we will download and extract the latest codebase of Talk:

curl -sLo talk.tar.gz https://github.com/coralproject/talk/archive/master.tar.gz
mkdir -p talk
tar xzf talk.tar.gz -C talk --strip-components 1
cd talk

From here we need to fetch the dependencies and build the static assets using
Yarn:

yarn
yarn build

You can either setup the required databases by visiting the docs for MongoDB [https://docs.mongodb.com/manual/installation/] and
Redis [https://redis.io/topics/quickstart], or using the following commands which will leverage Docker:

docker run -p 127.0.0.1:6379:6379 -d redis
docker run -p 127.0.0.1:27017:27017 -d mongo

Didn’t work? Sometimes you may already have a container running on these ports,
run docker ps to see what other containers you have running and running
docker stop <id> on those containers to stop them.

This documentation assumes that you will be running MongoDB on
127.0.0.1:27017 and Redis on 127.0.0.1:6379. The above Docker commands bind
MongoDB and Redis on these interfaces for you.

We should then specify the configuration variables that can be used to run the
application locally in a file named .env. This will be read by the application
when running in development mode:

NODE_ENV=development
TALK_MONGO_URL=mongodb://127.0.0.1:27017/talk
TALK_REDIS_URL=redis://127.0.0.1:6379
TALK_ROOT_URL=http://127.0.0.1:3000
TALK_PORT=3000
TALK_JWT_SECRET=password

This is the bare minimum needed to start Talk, for more configuration
variables, check out the Configuration
section.

You can now start the application by running:

yarn watch:server

At this stage, you should refer to the configuration for
configuration variables that are specific to your installation.

title: Planning your Talk Architecture
permalink: /planning-architecture/

Talk is architected to be able to run on as little as 500MB of RAM. To do this however you will need to use the pre-compiled Docker container, as compiling the code and dependencies will cause a memory spike.

For the average small blog or newsroom, these are our recommended machines:

	Digital Ocean: ~$5/month for their 1GB droplet

	Google Cloud: ~$14/month for a g1 small

	AWS: ~$16/month for a t2small

From there, you’re free to separate app servers and DB servers, and scale up as much as you need.

One larger newsroom’s setup, as an example of Talk performing at scale, is:

Application servers: c4.xlarge (16 VM nginx + Talk VM machine pairs)
Mongo nodes: 3x c3.medium (large db cluster, 1 master, 2 read replicas)

If you need help with Talk performance or want custom scaling help or recommendations, let us know by logging a ticket and one of our engineers will get in touch with you: https://support.coralproject.net

title: Pre-Launch Checklist
permalink: /pre-launch-checklist/

	[] Where do you plan to host Talk?

	On your own bare metal servers

	In the cloud:

	AWS

	Google Cloud

	Digital Ocean

	[] Do you have a domain name for Talk?

	Recommended: You should host Talk on a subdomain on your main site (e.g. if your site is mysitefornews.org, you should serve Talk from a subdomain like talk.mysitefornews.org) to avoid issues with third-party cookie sharing.

	[] Do you have a MongoDB instance?

	A MongoDB Docker instance hosted alongside Talk?

	In an external MongoDB cluster?

	MongoDB Atlas [https://www.mongodb.com/cloud/atlas]

	mLab [https://mlab.com/]

	[] Do you need to migrate comments from a legacy system? We currently support Disqus, Livefyre, and Civil Comments.

	Use the Talk Import [https://github.com/coralproject/talk-importer] framework

	[] Do you want to provide single sign-on (SSO) by integrating with an external auth system?

	See Authenticating with Talk

	[] Do you want to use Social sign-on?

	Facebook

	Install talk-plugin-facebook-auth

	Google

	Install talk-plugin-google-auth

	Other

	See Authenticating with Talk

	[] Do you want to use our Toxic Comments Plugin to help you automatically moderate comments based on their likelihood of being toxic?

	Request a free API Key from Google [https://github.com/conversationai/perspectiveapi/blob/master/quickstart.md]

	Install talk-plugin-toxic-comments

	[] Do you want to automatically prevent spam using the Akismet Spam Detection Plugin?

	Request / pay for API Key from WordPress [https://akismet.com/]

	Install talk-plugin-akismet

	[] Do you want to setup Email Notifications?

	See Notifications

	[] Do you want to setup rich text (bold, italics, quotes)?

	Install talk-plugin-rich-text

	[] Do you want to display comment counts?

	Use the GraphQL CommentCountQuery [https://docs.coralproject.net/talk/api/graphql/#CommentCountQuery]

	Install talk-plugin-deep-reply-count if necessary.

	[] Do you want to translate Talk to a different language?

	See Translations and i18n

	[] Do you want to send all new comments or all reported comments to a Slack channel?

	See our blog for more information [https://coralproject.net/blog/slacking-on/]

	[] Has your community team configured Talk to match your community strategy?

	See our tutorial for more information [https://docs.coralproject.net/talk/when-youve-installed-talk/]

title: Required Configuration
permalink: /configuration/
class: configuration
toc: true

Talk requires configuration in order to customize the installation. The default
behavior is to load it’s configuration from the environment, following the
12 Factor App Manifesto [https://12factor.net/].
In development, you can specify configuration in a file named .env and it will
be loaded into the environment when you run yarn watch:server.

The above variables do not have defaults, and are required to start your
instance of Talk.

If you’ve already configured your application with the required configuration,
you can further customize it’s behavior by applying
Advanced Configuration.

TALK_MONGO_URL

The database connection string for the MongoDB database. This usually takes the
form of:

TALK_MONGO_URL=mongodb://<DATABASE USER>:<DATABASE PASSWORD>@<DATABASE HOST>:<DATABASE PORT>/<DATABASE NAME>

Refer to connection string uri format [https://docs.mongodb.com/manual/reference/connection-string/]
for the detailed url scheme of the MongoDB url.

TALK_REDIS_URL

The database connection string for the Redis database. This usually takes the
form of:

TALK_REDIS_URL=redis://user:<DATABASE PASSWORD>@<DATABASE HOST>:<DATABASE PORT>/<DATABASE NUMBER>

If we for example, had Redis running on our local machine without a password,
where I want to use database #2, I could set the TALK_REDIS_URL to:

TALK_REDIS_URL=redis://127.0.0.1:6379/2

Refer to uri scheme [http://www.iana.org/assignments/uri-schemes/prov/redis]
for the detailed url scheme of the Redis url.

TALK_ROOT_URL

The root url of the installed application externally available in the format:

TALK_ROOT_URL=<SCHEME>://<HOST>:<PORT?>/<PATHNAME>

For example, if we installed our application onto the talk.coralproject.net
domain, where we used a proxy like Caddy [https://caddyserver.com]
or Nginx [https://nginx.org] to perform SSL termination, then
TALK_ROOT_URL would be:

TALK_ROOT_URL=https://talk.coralproject.net/

Note that we omitted the PORT, as it was implied by setting the SCHEME to
https.

TALK_JWT_SECRET

Used to specify the application signing secret. You can specify this using a
simple string, we recommend using a password generator and pasting it’s output.
An example for TALK_JWT_SECRET could be:

TALK_JWT_SECRET=jX9y8G2ApcVLwyL{$6s3

Be default, we sign our tokens with HMAC using a SHA-256 hash algorithm. If you
want to change the signing algorithm, or use multiple signing/verifying keys,
refer to our Advanced Configuration documentation.

title: Advanced Configuration
permalink: /advanced-configuration/
class: configuration
toc: true

Talk requires configuration in order to customize the installation. The default
behavior is to load its configuration from the environment, following the
12 Factor App Manifesto [https://12factor.net/].
In development, you can specify configuration in a file named .env and it will
be loaded into the environment when you run yarn watch:server.

The variables above have defaults, and are optional to start your
instance of Talk.

If this is your first time configuring Talk, ensure you’ve also added the
Required Configuration as well,
otherwise the application will fail to start.

TALK_CACHE_EXPIRY_COMMENT_COUNT

Configure the duration for which comment counts are cached for, parsed by
ms [https://www.npmjs.com/package/ms]. (Default 1hr)

TALK_DEFAULT_LANG

This is a Build Variable and must be consumed during build. If using the
Docker-onbuild
image you can specify it with --build-arg TALK_DEFAULT_LANG=en.

Specify the default translation language. (Default en)

TALK_WHITELISTED_LANGUAGES

This is a Build Variable and must be consumed during build. If using the
Docker-onbuild
image you can specify it with --build-arg TALK_WHITELISTED_LANGUAGES=en.

Specify the comma separated whitelisted languages that you want the Talk
application to serve. This will override the available set of languages that
Talk will allow to be served.

If the TALK_DEFAULT_LANG is not included in this list of
whitelisted languages, then the first whitelisted language will become the
default language. If this parameter is empty, then all languages supported by
Talk will be whitelisted. (Default ‘’)

TALK_DEFAULT_STREAM_TAB

This is a Build Variable and must be consumed during build. If using the
Docker-onbuild
image you can specify it with --build-arg TALK_DEFAULT_STREAM_TAB=all.

Specify the default stream tab in the admin. (Default all)

TALK_DISABLE_AUTOFLAG_SUSPECT_WORDS

When TRUE, disables flagging of comments that match the suspect word filter. (Default FALSE)

TALK_DISABLE_EMBED_POLYFILL

This is a Build Variable and must be consumed during build. If using the
Docker-onbuild
image you can specify it with --build-arg TALK_DISABLE_EMBED_POLYFILL=TRUE.

When set to TRUE, the build process will not include the
babel-polyfill [https://babeljs.io/docs/usage/polyfill/]
in the embed.js target that is loaded on the page that loads the embed. (Default
FALSE)

TALK_DISABLE_STATIC_SERVER

When TRUE, it will not mount the static asset serving routes on the router.
This is used primarily in conjunction with TALK_STATIC_URI
when the static assets are being hosted on an external domain. (Default FALSE)

TALK_HELMET_CONFIGURATION

A JSON string representing the configuration passed to the
helmet [https://github.com/helmetjs/helmet] middleware. It
can be used to disable features like HSTS [https://helmetjs.github.io/docs/hsts/]
and others by simply providing the configuration as detailed on the
helmet docs [https://helmetjs.github.io/docs/]. (Default {})

For sites that do not have SSL enabled on all their pages across their domain,
it is critical that you specify the following to disable the
HSTS [https://helmetjs.github.io/docs/hsts/] headers from
being sent:

TALK_HELMET_CONFIGURATION={"hsts": false}

To disable these headers from being sent.

TALK_INSTALL_LOCK

When TRUE, disables the dynamic setup endpoint /admin/install from even
loading. This prevents hits to the database with enabled. This should always be
set to TRUE after you’ve deployed Talk. (Default FALSE)

TALK_JWT_ALG

The algorithm used to sign/verify JWTs used for session management. Read up
about alternative algorithms on the
jsonwebtoken [https://www.npmjs.com/package/jsonwebtoken#algorithms-supported]
package. (Default HS256)

Shared Secret

You would use a shared secret when you have no need to share the tokens with
other applications in your organization.

Supported signing algorithms:

	HS256

	HS384

	HS512

These must be provided in the form:

{
 "secret": "<my secret key>"
}

Asymmetric Secret

You would use a asymmetric secret when you want to share the token in your
organization, and would like to pass an existing auth token to Talk in order to
authenticate your users.

Supported signing algorithms:

	RS256

	RS384

	RS512

	ES256

	ES384

	ES512

These must be provided in the form:

{
 "public": "<the PEM encoded public key>",
 "private": "<the PEM encoded private key>"
}

Note that when using the asymmetric keys as discussed above, the certificates
must have their newlines replaced with \\n, this is to ensure that the
newlines are preserved after JSON decoding. Not doing so will result in parsing
errors.

To assist with this process, we have developed a tool that can generate new
certificates that match our required format: coralcert [https://github.com/coralproject/coralcert].
This tool can generate RSA and ECDSA certificates, check it’s README [https://github.com/coralproject/coralcert]
for more details.

TALK_JWT_AUDIENCE

The audience aud [https://tools.ietf.org/html/rfc7519#section-4.1.3]
claim for login JWT tokens. (Default talk)

TALK_JWT_CLEAR_COOKIE_LOGOUT

When FALSE, Talk will not clear the cookie with name
TALK_JWT_SIGNING_COOKIE_NAME when logging out
but will still blacklist the token. (Default TRUE)

TALK_JWT_COOKIE_NAME

The default cookie name to check for a valid JWT token to use for verifying a
user. (Default authorization)

TALK_JWT_COOKIE_NAMES

The different cookie names to check for a JWT token in, separated by a ,. By
default, we always use the value of TALK_JWT_COOKIE_NAME
and TALK_JWT_SIGNING_COOKIE_NAME for this
value. Any additional cookie names specified here will be appended to the list
of cookie names to inspect.

For example, the value of:

TALK_JWT_COOKIE_NAME=talk
TALK_JWT_SIGNING_COOKIE_NAME=talk
TALK_JWT_COOKIE_NAMES=coralproject.talk,coralproject.auth

Would mean we would check the following cookies (in order) for a valid token:

	talk

	coralproject.talk

	coralproject.auth

TALK_JWT_DISABLE_AUDIENCE

When TRUE, Talk will not verify or sign JWT’s with an audience
aud [https://tools.ietf.org/html/rfc7519#section-4.1.3]
claim, even if TALK_JWT_AUDIENCE is set. (Default FALSE)

TALK_JWT_DISABLE_ISSUER

When TRUE, Talk will not verify or sign JWT’s with an issuer
iss [https://tools.ietf.org/html/rfc7519#section-4.1.1]
claim, even if TALK_JWT_ISSUER is set. (Default FALSE)

TALK_JWT_EXPIRY

The expiry duration exp [https://tools.ietf.org/html/rfc7519#section-4.1.4]
for the tokens issued for logged in sessions, parsed by
ms [https://www.npmjs.com/package/ms]. (Default 1 day)

If the user logs out, then an entry is created in the token blacklist of it’s
jti [https://tools.ietf.org/html/rfc7519#section-4.1.7] for
set to be automatically removed at it’s expiry time. It is important for this
reason to create reasonable expiry lengths as to minimize the storage overhead.

TALK_JWT_ISSUER

The issuer iss [https://tools.ietf.org/html/rfc7519#section-4.1.1]
claim for login JWT tokens. (Defaults to value of TALK_ROOT_URL)

TALK_JWT_SECRET

Used to specify the application signing secret. You can specify this using a
simple string, we recommend using a password generator and pasting it’s output.
An example for TALK_JWT_SECRET could be:

TALK_JWT_SECRET=jX9y8G2ApcVLwyL{$6s3

You can also express this secret in the JSON syntax:

TALK_JWT_SECRET={"secret": "jX9y8G2ApcVLwyL{$6s3"}

Refer to the documentation for TALK_JWT_ALG for other signing
methods and other forms of the TALK_JWT_SECRET. If you are interested in using
multiple keys, then refer to TALK_JWT_SECRETS.

TALK_JWT_SECRETS

Used when specifying multiple secrets used for key rotations. This is a JSON
encoded array, where each element matches the JWT Secret pattern. When this is
used, you do not need to specify a TALK_JWT_SECRET as this
will take precedence. The first secret in TALK_JWT_SECRETS will be used for
signing, and must contain a private key if used with an asymmetric algorithm.

All secrets should specify a kid field which uniquely identifies a given key
and will sign all tokens with that kid for later identification. If a token
is not signed with the kid field in the header, and multiple secrets are used,
the token will fail to be verified. This field must match what’s provided to
Talk in the form of the kid field in the secret.

When the value of TALK_JWT_ALG is a HS* value, then the value
of the TALK_JWT_SECRETS should take the form:

TALK_JWT_SECRETS=[{"kid": "1", "secret": "my-super-secret"}, {"kid": "2", "secret": "my-other-super-secret"}]

Note that the secret is stored in a JSON object, keyed by secret. This is only
needed when specifying in the multiple secrets for TALK_JWT_SECRETS, but may
be used to specify the single TALK_JWT_SECRET.

When the value of TALK_JWT_ALG is not a HS* value, then
the value of the TALK_JWT_SECRETS should take the form:

TALK_JWT_SECRETS=[{"kid": "1", "private": "<my private key>", "public": "<my public key>"}, ...]

Refer to the documentation on the TALK_JWT_ALG for more
information on what to store in these parameters.

TALK_JWT_SIGNING_COOKIE_NAME

The default cookie name that is use to set a cookie containing a JWT that was
issued by Talk. (Defaults to value of TALK_JWT_COOKIE_NAME)

TALK_JWT_USER_ID_CLAIM

Specify the claim using dot notation for where the user id should be stored/read
to/from. (Default sub)

If for example, the JWT’s claims looks something like this:

{
 "user": {
 "id": "123123"
 }
}

Then we would set TALK_JWT_USER_ID_CLAIM to:

TALK_JWT_USER_ID_CLAIM=user.id

TALK_KEEP_ALIVE

The keepalive timeout that should be used to send keep alive messages through
the websocket to keep the socket alive, parsed by
ms [https://www.npmjs.com/package/ms]. (Default 30s)

TALK_RECAPTCHA_PUBLIC

Setting a reCAPTCHA Public and Secret key will enable and require reCAPTCHA upon multiple failed login attempts.

Client secret used for enabling reCAPTCHA powered logins. If
TALK_RECAPTCHA_SECRET and
TALK_RECAPTCHA_PUBLIC are not provided it will instead
default to providing only a time based lockout. Refer to
reCAPTCHA [https://www.google.com/recaptcha/intro/index.html] for information
on getting an account setup.

TALK_RECAPTCHA_SECRET

Server secret used for enabling reCAPTCHA powered logins. If
TALK_RECAPTCHA_SECRET and
TALK_RECAPTCHA_PUBLIC are not provided it will instead
default to providing only a time based lockout. Refer to
reCAPTCHA [https://www.google.com/recaptcha/intro/index.html] for information
on getting an account setup.

TALK_RECAPTCHA_WINDOW

The rate limit time interval that there can be TALK_RECAPTCHA_INCORRECT_TRIGGER incorrect attempts until the reCAPTCHA is
marked as required, parsed by
ms [https://www.npmjs.com/package/ms]. (Default 10m)

TALK_RECAPTCHA_INCORRECT_TRIGGER

The number of times that an incorrect login can be entered before within a time
perioud indicated by TALK_RECAPTCHA_WINDOW until the
reCAPTCHA is marked as required. (Default 5)

TALK_REDIS_CLIENT_CONFIGURATION

Configuration overrides for the redis client configuration in a JSON encoded
string. Configuration is overridden as the second parameter to the redis client
constructor, and is merged with default configuration. Refer to the
ioredis [https://github.com/luin/ioredis] docs on the
available options. (Default {})

TALK_REDIS_CLUSTER_CONFIGURATION

The JSON encoded form of the cluster nodes. Only required when
TALK_REDIS_CLUSTER_MODE is CLUSTER. See
https://github.com/luin/ioredis#cluster
for configuration details. (Default [])

TALK_REDIS_CLUSTER_MODE

The cluster mode of the redis client. Can be either NONE or CLUSTER.
(Default NONE)

TALK_REDIS_RECONNECTION_BACKOFF_FACTOR

The time factor that will be multiplied against the current attempt count
between attempts to connect to redis, parsed by
ms [https://www.npmjs.com/package/ms]. (Default 500 ms)

TALK_REDIS_RECONNECTION_BACKOFF_MINIMUM_TIME

The minimum time used to delay before attempting to reconnect to redis, parsed
by ms [https://www.npmjs.com/package/ms]. (Default 1 sec)

TALK_ROOT_URL_MOUNT_PATH

When set to TRUE, the routes will be mounted onto the <PATHNAME> component
of the TALK_ROOT_URL.
You would use this when your upstream proxy cannot strip the prefix from the
url. (Default FALSE)

If for example, you had the following configuration:

TALK_ROOT_URL=https://coralproject.net/talk/
TALK_ROOT_URL_MOUNT_PATH=TRUE

Then all the routes for the API will be expecting to be hit on /talk/, such as
/talk/api/v1/graph/ql instead of /api/v1/graph/ql. Most modern webservers
can perform the path stripping when serving an upstream proxy, but some CDN’s
cannot. You would use this option in the latter situation.

TALK_SMTP_FROM_ADDRESS

The email address to send emails from using the SMTP provider in the format:

TALK_SMTP_FROM_ADDRESS="The Coral Project" <support@coralproject.net>

Including the name and email address.

TALK_SMTP_HOST

The domain for the SMTP provider that you are using.

TALK_SMTP_PASSWORD

The password for the SMTP provider you are using.

TALK_SMTP_PORT

The port for the SMTP provider that you are using.

TALK_SMTP_USERNAME

The username of the SMTP provider you are using.

TALK_STATIC_URI

Used to set the uri where the static assets should be served from. This is used
when you want to upload the static assets through your build process to a
service like Google Cloud Storage or Amazon S3 and you would then specify the
CDN/Storage url. (Defaults to value of
TALK_ROOT_URL)

TALK_THREADING_LEVEL

This is a Build Variable and must be consumed during build. If using the
Docker-onbuild
image you can specify it with --build-arg TALK_THREADING_LEVEL=3.

Specify the maximum depth of the comment thread. (Default 3)

Note that a high value for TALK_THREADING_LEVEL will result in large
performance impacts.

TALK_WEBSOCKET_LIVE_URI

Used to override the location to connect to the websocket endpoint to
potentially another host. This should be used when you need to route websocket
requests out of your CDN in order to serve traffic more efficiently.

If the value of TALK_ROOT_URL
is a https url, then this defaults to wss://${location.host}${MOUNT_PATH}api/v1/live.
Otherwise, it defaults to ws://${location.host}${MOUNT_PATH}api/v1/live.

Where MOUNT_PATH is either / if TALK_ROOT_URL_MOUNT_PATH
is FALSE, or the path component of
TALK_ROOT_URL if it’s TRUE.

Warning: if used without managing the auth state manually, auth
cannot be persisted due to browser restrictions.

TRUST_THRESHOLDS

Configure the reliability thresholds for flagging and commenting. (Default
comment:2,-1;flag:2,-1)

The form of the environment variable:

TRUST_THRESHOLDS=comment:<RELIABLE COMMENTER>,<UNRELIABLE COMMENTER>;flag:<RELIABLE FLAGGER>,<UNRELIABLE FLAGGER>

The default value of:

TRUST_THRESHOLDS=comment:2,-1;flag:2,-1

Could be read as:

	When a commenter has one comment rejected, their next comment must be
pre-moderated once in order to post freely again. If they instead get rejected
again, then they must have two of their comments approved in order to get
added back to the queue.

	At the moment of writing, behavior is not attached to the flagging
reliability, but it is recorded.

TALK_DISABLE_IGNORE_FLAGS_AGAINST_STAFF

When TRUE, staff members will have their accounts and comments moderated the
same as any other user in the system. (Default FALSE)

TALK_EMAIL_SUBJECT_PREFIX

The prefix for the subject of emails sent. An email with the specified subject
of Email Confirmation would then be sent as [Talk] Email Confirmation.
(Default [Talk])

DISABLE_CREATE_MONGO_INDEXES

When TRUE, Talk will not attempt to create any indices. This is recommended
for production systems that have ran Talk at least once during setup while unset
or set to FALSE.

TALK_SETTINGS_CACHE_TIME

The duration of time that the settings object will be kept in the Redis cache,
parsed by ms [https://www.npmjs.com/package/ms]. (Default
1hr)

APOLLO_ENGINE_KEY

Used to set the key for use with
Apollo Engine [https://www.apollographql.com/engine/] for
tracing of GraphQL requests.

Note: Apollo Engine is a premium service, charges may apply.

 Talk Core

title: How Talk Works
permalink: /how-talk-works/

Talk is an open-source commenting platform. It has two pieces. One is the
embedded script, which allows newsrooms to have a unique comments section on
each story/post/page they have on their site, and allows their readers to
comment and discuss articles. The other is the Admin, which is where newsrooms
moderate their comments and manage and configure Talk.

Talk Core

As we’re building Talk, our vision was always to have it be very modular, so
there are features we have built and are opinionated about, but we allow
newsrooms and their developers to customize Talk easily so that it fits their
use cases and needs.

Talk Core is the core application of Talk - this contains all of the standard
commenting features that are necessary for a comment section, and ones that we
believe are important to be universal. If you would like to contribute to Talk,
be sure to check out our
Contributor’s Guide [https://github.com/coralproject/talk/blob/master/CONTRIBUTING.md].

Plugins

Plugins are additional functionality which are optional to use with Talk. You
can turn these on or off, depending on your specific needs. Plugins are either
part of our core plugins, which ship with Talk, or they are developed by 3rd
parties and either used privately and internally, or are open sourced for use
across the greater community. You can explore the plugins we offer by visiting our Plugin Directory.

Recipes

Recipes are plugin templates that are created by the Talk team and 3rd party
developers, in order to help contributors and newsrooms build plugins easily.
You can explore the recipes we offer by visiting our Plugin Recipes
page.

 Signing up for Talk

title: Commenter Features
permalink: /commenter-features/

Signing up for Talk

There are 2 ways that newsrooms can support signup/login functionality with Talk:

	Use Talk’s auth plugin out of the box (supports account registration with username and password, as well as features like forgot password)

	Create their own auth plugin to integrate with your own auth systems

We also provide a Facebook auth plugin that supports logging in with Facebook (you must provide your own Facebook App ID and Secret, which you can read more about here: https://developers.facebook.com)

Comments and Replies

Talk supports a standard comment hierarchy. There are top-level (or parent) comments, and then replies to that comment (or children comments).

Permalinks

All levels of comments and replies are able to be linked to via permalink. Permalinks are structured using a commentId query param:

https://<your asset url>?commentId=<the comment id>

Threading

Talk supports by default 3 levels of threading, meaning each top-level comment
has a depth of 3 replies; replies beyond that are not nested below the 3rd
level. You can adjust this using the
TALK_THREADING_LEVEL
configuration variable. We don’t recommend deep threading because it can cause
issues with styling, especially on mobile.

You can style threaded comments using these CSS classes:

talk-stream-comment-wrapper-level-${depth}
talk-stream-comment
talk-stream-comment-level-${depth}
talk-stream-highlighted-comment
talk-stream-pending-comment

Automatic Updates

Talk supports real-time loading and updating of comments, via subscriptions
(specifically GraphQL Subscriptions); this enables us to not have to refresh to
see new comments on a given comment stream.

Talk enables this via “Load More” buttons for both top-level comments (this
button appears at the top of the stream), and within conversation threads (this
button appears in situ for replies).

We’ve decided to go this route in order to make the viewing experience as smooth
as possible, so that the feed of comments doesn’t change as you’re reading just
because new comments are coming in. This could be especially disruptive on
breaking news and/or controversial stories with very active discussions.

Comment Character Limits

You can enable Talk to limit the character length for comments, for example,
some newsrooms we’ve worked with prefer a limit between 2000 and 5000
characters. Commenters will be alerted that they have gone over that number and
won’t be able to submit their comment until they’ve edited it. This can be a
useful tool to ensure commenters are concise with their comments.

Comment Reactions

Talk comes with a respect button out of the box. Why a “respect” button, you
ask?
Read more here [https://mediaengagement.org/research/engagement-buttons/].

We also have 2 more plugins, like and love, that you can turn on and
experiment with on your own Talk install.

And our plugin architecture makes it easy to create your own custom reaction
buttons too.

Reporting Comments

Readers can report comments if they feel they’re unsuitable. They can choose one
of the following reasons:

	This comment is offensive

	This looks like an ad/marketing

	I don’t agree with this comment

	Other

They can also include more information and this shows for moderators in the Flag
Detail area on the comments in the moderation queues.

Comments that are reported go to the Reported queue, with the exception of “I
don’t agree with this comment”. This option is a useful way to let other readers
vent their frustration, but since just disagreeing with something doesn’t mean
it’s not suitable, we leave it be.

Reporting Usernames

Usernames can also be reported by readers, if the username is inappropriate or
offensive. They can choose one of the following reasons:

	This username is offensive

	I don’t like this username

	This user is impersonating

	This looks like an ad/marketing

Reported usernames go to the Reported Usernames queue which is located in the
Community tab. If a username is rejected by a moderator, the commenter is
prompted to change their username and they are suspended from commenting,
replying or reacting to comments until they do so. They receive an email, and
also a message at the top of their comment streams that let’s them know they’re
suspended.

If the commenter changes their username, it goes back to the Reported Usernames
queue for approval. If the updated username is accepted by a moderator, the
commenter is no longer suspended and continue interacting with the community. If
the username is rejected, the commenter remains suspended until they change
their username to something appropriate.

Approved usernames that are reported do not show up in the Reported Usernames
queues any longer, since they have been specifically OK’ed by a moderator.

Ignoring Users

Commenters can ignore other commenters and essentially mute them entirely from
the comment platform. Commenters can manage their ignored users list in their My
Profile tab.

Featured Comments

Moderators can feature comments that they want to highlight and recommend to
their community. Featured comments show up on a separate tab, that is the
default for the comment stream. Featured comments within the stream show a
Featured badge.

Sorting the Stream

Readers can sort the stream in 4 ways based on their viewing preferences:

	Oldest first

	Newest first

	Most respect first (or most liked, most loved, etc., depending on what
reactions you use)

	Most replied first

We also make it easy to add more sorts via custom plugins.

Badges

Badges differentiate users and comments on the stream. By default, Talk has two
badges.

The Staff user badge that shows when a commenter has an Admin, Moderator, or
Staff role.

The Featured comment badge shows when a comment has been featured.

Another optional badge is the Subscriber badge (which is available as a
Recipe.

Badges are another easy part of Talk to customize by creating a new tag, then
setting some rules for when it should show, and how the badge should be styled.

My Profile

The My Profile tab is where commenters can go to see their comment history, as
well as reactions and replies to their comments. They can also see their email
address associated with Talk, and manage their Ignored Users list here.

Notifications & Error Messaging

Talk leverages notification and messages on the stream to alert users to
important information about their comment or their account.

Pre-moderation of comments

If a stream is set to Pre-mod, or a commenter’s Trust karma score has fallen to
negative, or if for any other reason their comment is being pre-moderated, they
will get a notification letting them know this when they post a comment.

Suspension because of Username

When a commenter has been suspended because their username is inappropriate,
they will see a message at the top of their streams stating this.

Timed Suspension

When a commenter has been suspended for a block of time (aka a “time-out”), they
will see a message at the top of their streams stating this.

Ban

When a commenter has been banned, they will see a message at the top of their
streams stating this.

 The Talk Admin

title: Moderator Features
permalink: /moderator-features/

The Talk Admin

The Admin is your moderators will moderate your comments, and your Admins will
configure and manage the different parts of Talk.

Moderate

This is the tab where Moderators will spend the majority of their time. They can
choose (via the dropdown) which story they would like to moderate, or moderate
site-wide.

Default Mod Queues

New

The New queue contains all comments that have not been moderated yet.

Reported

The Reported queue contains all comments that need moderator attention.

Approved

The Approved queue contains all approved comments.

Rejected

The Rejected queue contains all comments that have been rejected, either
manually by moderators or automatically, e.g. they have used a banned word.

All

The All queue contains all comments that have been submitted either article or
site-wide.

Moderation Badges

Pre-mod

The Pre-mod badge signifies comments that are being pre-modded.

User

The User badge signifies comments that have been reported by another user.

History

The History badge signifies comments that have been flagged because of a user’s
history.

Toxic

The Toxic badge signifies comments that are above the set Toxicity Probability
Threshold. Note you must have talk-plugin-toxic-comments enabled.
Read more about Toxic Comments here.

Suspect

The Suspect badge signifies comments that contain a Suspect Word.

Contains Link

The Contains Link badge signifies a comment that contains a link, which can
sometimes mean it is a spam or ad comment.

Flag Details View

At the bottom of each comment in the moderation queues, you can see more
information about a comment’s flags by clicking on More Detail.

Moderator Actions

Accept

Accepting a comment ensures that the comment is displayed on the stream.

Reject

Rejecting a comment removes the comment from the stream.

Feature

Featuring a comment adds that comment to the Featured Comments tab on the
stream.

Suspend User

Suspending a user allows a moderator to give a commenter a “time-out”; during
that time they won’t be allowed to post comments or react to comments.

Ban User

Banning a user allows a moderator to permanently disallow a commenter to
interact with their community. The commenters previous comments will remain on
the site. This action can only be un-done manually by a moderator.

Viewing a User’s Comment History

In order to get an idea of what sort of a commenter someone is, moderators can
click on the commenters username in any moderation queue and see details about
their history.

Username, Email and Member Since Date

This shows the basic details about a commenter.

Total Comments

This shows the number of comments that a commenter has made that currently
display on the site.

Reject Rate

This shows the % of comments a commenter has had rejected by moderators, or
automatically.

Reports

This shows if a commenter is a reliable flagger, an unreliable flagger, or a
neutral flagger. Read more about reliable and unreliable flaggers here.

Moderating from this View

Talk also allows you to moderate a commenters recent comments from this view.

Keyboard Shortcuts

Talk also supports a number of keyboard shortcuts that moderators can leverage
to moderate quickly:

Shortcut	Action
——–	————————–
j	Go to the next comment
k	Go to the previous comment
ctrl+f	Open search
t	Switch queues
z	Zen mode
?	Open this menu
d	Approve
f	Reject

Note: “Zen mode” allows a moderator to view and action only one comment at a time. Enjoy the silence!

Stories

In the Stories tab moderators can view all the stories that have Talk comments
embedded on them, as well as be able to Open or Close comment streams on
stories.

Community

The Community tab houses everything having to do with your team and your
commenters.

Moderating Usernames

Any usernames that have been reported will show in the Reported Usernames
sub-tab. Moderators can approve usernames if they’re suitable, or reject a
username. If a username is rejected, the commenter will be notified that they
need to change their username; until they do, they will be suspended from Talk.
The updated username then again appears in this queue for a decision by
moderators.

Managing People & Roles

All your team and commenters show in the People sub-tab. From here, you can
manage your team members’ roles (Admins, Moderators, Staff), as well as search
for commenters and take action on them (e.g. Ban/Un-ban, Suspend, etc.).

Configure

See Configuring Talk.

Moderating via the Comment Stream

Moderators can also choose to moderate comments in situ. If you are logged in as
a Moderator or Admin, you will see a caret dropdown on each comment that allows
you to Approve, Reject, or Feature comments, or Ban a User directly from the
comment stream.

 <no title>

title: User Roles in Talk
permalink: /roles/

We have four preset roles in Talk:

Commenter

	A standard community member

	Could receive a badge (eg. ‘Subscriber’) via a custom newsroom Plugin Recipe [https://docs.coralproject.net/talk/plugin-recipes/#recipe-subscriber]

	No moderation abilities

	No configuration abilities

Staff

	A standard community member

	Receives a Staff badge when they comment

	Comments are automatically approved

	No moderation abilities

	No configuration abilities

Moderator

	A standard community member

	Receives a Staff badge when they comment

	Comments are automatically approved

	Has full moderation privileges

	Can configure individual articles via the Configure tab on the article page

	No site-wide configuration abilities

Administrator

	A standard community member

	Receives a Staff badge when they comment

	Comments are automatically approved

	Has full moderation privileges

	Can configure individual articles via the Configure tab on the article page

	Can configure site settings via the Configure tab in the moderation interface

 What is the Perspective API?

title: Toxic Comments
permalink: /toxic-comments/

Leveraging Google’s Perspective API, you can now set a Toxicity Threshold for
Talk (0.8 or 80% is the default), which works like this:

	If a comment exceeds the threshold, the commenter is warned that their comment
may be toxic, and are given the chance to modify their comment before posting

	If the revised comment is below the Toxicity Threshold, it is posted and
displayed normally

	If the revised comment still exceeds the Toxicity Threshold, it is not
displayed on the stream and instead is sent to the Reported queue for
moderation

	If the moderator accepts the comment, it’s displayed on the stream; if it’s
rejected, it will not be displayed

	Moderators see a Toxic Probability Score on toxic comments in the Moderation
queues

Read more about Coral’s take on toxicity
on our blog [https://coralproject.net/blog/toxic-avenging/].

What is the Perspective API?

The likely toxicity of a comment is evaluated using scores generated from
Perspective API [http://perspectiveapi.com/]. This is part of
the Conversation AI [https://conversationai.github.io/]
research effort run by Jigsaw (a section of Google that works on global problems
around speech and access to information).

Perspective API uses machine learning, based on existing databases of
accepted/rejected comments, to guess the probability that a comment is abusive
and/or toxic. It is currently English only, but the system is designed to work
with multiple languages.

In order to activate our plugin, each news organization applies for an API key
from Jigsaw (click “Request API access” on this site.) Sites can also work with
Jigsaw to create an individualized data set specifically trained on their own
comment history.

Perspective API was released earlier this year, and is currently in alpha
(meaning that it is being continually refined and improved.) Jigsaw should
certainly be praised for devoting serious resources to this issue, and making
their work available for others, including us, to use.

We’ve talked with their team on several occasions, and have been impressed by
their dedication and commitment to this issue. These are smart people who are
trying to improve a broken part of the internet.

How do I add the Toxic Comments plugin?

To enable this behavior, visit the
talk-plugin-toxic-comments
plugin documentation.

Request an API Key

You can read more about Google’s Perspective API and/or request an API key here: http://perspectiveapi.com/.

 Configuring an Individual Stream

title: Configuring Talk
permalink: /configuring-talk/

Configuring an Individual Stream

There are two ways Admins can configure Talk - the first is via the Configure
tab on the comment stream.

Enable Pre-moderation

Allows toggling pre-moderation for the current comment stream.

Pre-moderation Comments Containing Links

Allows toggling of pre-moderating comments that have links.

Ask Readers a Question & Question Icons

Admins can choose to Ask Readers a Question in order to help guide the
discussion. Read more about why this is important on our blog [https://coralproject.net/blog/the-empty-box/].

There are a selection of icons to display different messaging other than a
question on a particular stream, like an announcement, or general information
about the story.

Closing a Stream

Closing a stream will prevent new comments. Previous comments will remain
displayed on the stream for readers to view.

Global Configuration

Global configuration settings are available via Admin > Configure. These
settings are site-wide and will affect all of your comment streams.

Stream Settings

Limit Comment Length

A maximum comment length across the site.

Comment Stream Description

Description text that will appear above every comment stream site-wide. We
recommend linking to your Code of Conduct or Community Guidelines. Read tips on how to write a Code of Conduct here [https://guides.coralproject.net/create-a-code-of-conduct/].

Closed Stream Message

A message that will display when streams are closed.

Edit Comment Timeframe

The timeframe in seconds in which commenters have to edit their comment.

Close Comments After

Default time after which all comment streams will close.

Moderation Settings

Require Email Verification

Require new users to verify their email address prior to commenting.

Enable Pre-moderation

Turn on pre-moderation across the site, meaning all comments will need to be
moderated before they will be displayed.

Pre-moderate Comments Containing Links

Turn on pre-moderation for comments with links across the site, meaning all
comments with links will need to be moderated before they will be displayed.

Banned Words List

A list of words that will trigger a comment to be automatically Rejected.

Suspect Words List

A list of words that will trigger a comment to be automatically Reported.
Comments with suspect words will display until a moderator takes action on them.

Technical Settings

Permitted Domains

A list of domains where your Talk instance is allowed to be embedded. Typical
use is localhost, staging.yourdomain.com, yourdomain.com, etc.

Embed Script

This is the unique Talk script that is to be used to embed Talk on your website.

Custom CSS URL

The link to your custom stylesheet for Talk. This will override any default
styles, so you can make Talk your own!

 User Karma Score

title: Trust
permalink: /trust/

Trust is a set of components within Talk that incorporate basic automated moderation features based on a user’s previous behavior.

User Karma Score

Using Trust’s calculations, Talk will automatically hold back, move to the Reported queue, and tag with a ‘History’ marker, any comments by users who have an Unreliable karma score. (This is for sites who practice post-moderation. If you set pre-moderation of all comments sitewide, this feature has limited use.)

All users start out with a Neutral karma score (0). If they have a comment approved by a moderator, their score increases by 1; if they have a comment rejected by a moderator, it decreases by 1. When a commenter’s score is labeled as Unreliable, their comments must be approved from the Reported queue before they are posted. Commenters are shown a message stating that a moderator will review their comment shortly.

Here are the default thresholds:

-1 and lower: Unreliable
0 to +1: Neutral
+2 and higher: Reliable (we don't do anything with this label right now)

So in this case, when a new commenter has their first comment rejected, their user karma score becomes -1, which triggers the Unreliable threshhold, and they must then have a comment approved by a moderator in order to post freely again. Until that occurs, all of their comments will be held back temporarily in the Reported queue, marked with a History tag.

If their next comment is also rejected, their user karma score is now -2, and they must have two comments approved in order to reach a Neutral score, and post without pre-approval.

We strongly recommend not telling your community how this system works, or where the threshholds lie. Firstly, they might try to game the system to meet approval, and secondly, it makes it harder for you to change the threshhold in the future. We suggest using language such as “We hold back comments for approval for a variety of reasons, including content, account history, and more.”

If you see that a high proportion of first-time commenters on your site are abusive, you might want to change the threshhold to 0, at least temporarily. You can configure your own Trust thresholds by using TRUST_THRESHOLDS in your site configuration.

Reliable and Unreliable Flaggers

Trust also calculates how reliable users are in terms of the comments they
report. This information is displayed to moderators in the User History drawer,
which is accessed by clicking on a user’s name in the Admin. Currently, no other action is taken based on this score.

If a user’s reports mostly match what moderators reject, their Report status
will display to moderators as Reliable in the user information drawer. If a
user’s reports mostly differ from what moderators reject, their Report status
will show as Unreliable.

If Talk doesn’t have enough reports to make a call, or the reports even out, their
status is Neutral.

Here are the default thresholds:

-1 and lower: Unreliable
0 to +1: Neutral
+2 and higher: Reliable

You can configure your own Trust thresholds by using TRUST_THRESHOLDS in your
configuration.

Note: Report Karma doesn’t include reports of “I don’t agree with this comment”.

 GPDR Feature Overview

title: GDPR Compliance
permalink: /integrating/gdpr/

In order to facilitate compliance with the
EU General Data Protection Regulation (GDPR) [https://www.eugdpr.org/], you
can enable the following plugins:

	talk-plugin-auth - to facilitate username and password changes

	talk-plugin-local-auth - to facilitate email changes and email association

	talk-plugin-profile-data - to facilitate account download and deletion

Even if GDPR will not apply to you, it is recommended to enable these
features as a best practice to provide your users with control over their own
data.

GPDR Feature Overview

Integrating our GDPR tools will give your users and organizations the following benefits:

	Download my comment data: Users can request a download of their comments. An email with a link is emailed to them to download a CSV with each comment they’ve made, what story it was made on, and the comment’s ID and timestamp.

	Delete my account: Users can request deletion of their account. Deleted account requests are pending for 24 hours to allow the user to download their comments, or to change their mind and reactivate their account before the expiry. Account deletions remove all of their comments from the site, all their comments and actions from the database, and their account info from our system.

	Add an email to an Oauth/external account: Users are prompted to add an email to their non-Talk account (Facebook, Google, external, etc) so that they can take part in GDPR and other features requiring email communication.

	Change my username: Users can update their username. This is capped at once every 2 weeks.

	Change my email: Users can change their email.

	Change my password: Users can change their password.

Custom Authentication Solutions

As many of the newsrooms who have integrated Talk have followed our guides on
Integrating Authentication, we have also
provided tools for those newsrooms to integrate GDPR features into their
existing workflows.

Account Data

Through the talk-plugin-profile-data
plugin we allow users to download and delete their account data easily. For
custom integrations, this isn’t always possible, so we instead provide some
GraphQL mutations designed to allow you to integrate it into your existing user
interfaces or exports.

	downloadUser(id: ID!) - lets you grab the direct link to download a users
account in a zip format. From there, you can integrate it into your existing
data export or simply proxy it to the user to allow them to download it
elsewhere in your UI.

	delUser(id: ID!) - lets you delete the specified user

Note: These mutations require an administrative token

If you would prefer to write your own user interfaces or integrate it into your
own, you can disable the client plugin for talk-plugin-profile-data
but keep the server side plugin active (See Server and Client Plugins for more information).

 recipe-avatar

title: Plugin Recipes
permalink: /plugin-recipes/
class: configuration
toc: true

Plugin Recipes are plugin templates used to help bootstrap the development of a
plugin. Recipes are available at the
coralproject/talk-recipes [https://github.com/coralproject/talk-recipes] repo.
When first developing a plugin with a recipe, you can simply visit the
aforementioned repository to find the desired recipe, and using the file
listings on the page, determine which files need to be modified to suit your
needs.

The following are the available recipes for use:

recipe-avatar

Source: talk-recipes/tree/master/plugins/avatar [https://github.com/coralproject/talk-recipes/tree/master/plugins/avatar]

Provides support for avatars hosted via third party, extends the User Model and
provides UI on the client-side too.

recipe-translations

Source: talk-recipes/tree/master/plugins/translations [https://github.com/coralproject/talk-recipes/tree/master/plugins/translations]

Provides an example for overriding application text through the translation
system.

recipe-subscriber

Source: talk-recipes/tree/master/plugins/subscriber [https://github.com/coralproject/talk-recipes/tree/master/plugins/subscriber]

Provides an example for adding SUBSCRIBER badges for users with the
SUBSCRIBER tag added to their user model through a direct server plugin with
the auth system.

recipe-author-name

Source: talk-recipes/tree/master/plugins/author-name [https://github.com/coralproject/talk-recipes/tree/master/plugins/author-name]

Enables the ability to hover over a commenter’s name and add plugin
functionality there. The Member Since plugin that is provided in this recipe is
an example of this.

 What is a plugin?

title: Creating a Basic Pride Reaction Plugin
permalink: /building-basic-plugin/

In this tutorial, we will build a basic reaction plugin.

What is a plugin?

Talk has two parts - the first is core. Our core code includes all commenting and moderation features that are necessary for a comment section, and ones that we believe are important to be universal. This code can be found in our Talk repo [https://github.com/coralproject/talk].

The other part is plugins. Plugins are additional functionality which are optional to use with Talk. You can turn these on or off, depending on your specific needs. Plugins are either part of our core plugins, which ship with Talk, or they are developed by 3rd parties and either used privately and internally, or are open sourced for use across the greater community.

Reactions

Talk exposes a friendly API to create new reactions. To explore the capabilities of Talk we are going to create a new reaction together step-by-step.

In Talk, there are currently three ways commenters can react to comments: Like, Love, and Respect. These reactions are separated into plugins so that you can customize which reactions you want to use by toggling them on or off - or by adding your own custom reactions, which is what we are going to do today.

We can create a new plugin from scratch or we can use the Talk CLI to generate a plugin template for us to use. CLI stands for Command Line Interface, meaning can access utilities via the command line that make it easy to interact and integrate with Talk.

Please note this tutorial assumes you have already installed and configured Talk locally.

Creating a new plugin using the Talk CLI

	Open your terminal

	Go to the Talk folder

	Enter ./bin/cli-plugins in the command line

[image: Using the Plugin CLI]

You will see 3 options: create, list and reconcile

	create: This is what we use to create new plugins. It will display a wizard and ask us a couple of questions in order to understand how we want to build our plugin.

	list: Shows a list of all plugins.

	reconcile: Reconciles local plugins and downloads their external dependencies.

In order to create our new plugin, enter this: ./bin/cli-plugins create.

The CLI will now ask us 4 questions:

[image: Generating our Plugin]

Explaining the questions of the cli-plugins create

	This is where you will submit the name of your plugin; our usual naming convention is talk-plugin-, so we will enter talk-plugin-pride for ours.

	Does this plugin extend the capabilities of the server? If your plugin needs to extend the schema of the database, or interact with route or services you will say yes. In this case, we will need to store the user’s comment reaction, so we will say yes

	Does this plugin extend the capabilities of the client? If your plugin adds visual content to Talk, you will say yes. In this case we need to add a button with which the users can react to the comments, so we will again put yes.

	Should we add it to plugins.json? Choosing yes will activate our plugin instantly. Select yes in this case.

So now a plugin has been created inside our local /plugins folder. We can see our plugin here now, listed as talk-plugin-pride.

The structure of our plugin

This is the structure of our plugin. Let’s see what each piece does.

[image: The Structure of a Plugin]

	index.js
The index file contains everything we export to the server. In this case, we see only one thing: module.exports = {}. This means we are currently not exporting anything to the server - but we will do this later.

	/client
The client folder contains all the necessary files to extend the client.

	index.js
In this file we will describe how we are going to extend our client. It is generally useful to indicate where the plugin will be embedded. In our case we want to put it in each comment. Later we will see how to do this. It also serves to add functionality such as how to use reducers and translations.

	.eslintrc.json
These are the ESLint rules. By default they are the ones that Talk uses.

	translations.yml
This file is not mandatory but we can use it to add translations of the copy that is shown to users.

	/components
These are the components. By default we will find the generated file MyPluginComponent.js and its CSS styles in ModulesMyPluginComponent.css

Now let’s run our Talk instance. We can see the plugin was generated and we can see it in our embed:

[image: Viewing our Plugin]

It is important to note that Talk does not dictate the architecture of the plugins. But for reasons of performance and consistency it is important that we follow certain basic guidelines.

To create components you must be familiar with React. If you’re not, I recommend the official guides, especially Components and Props - React [https://reactjs.org/docs/components-and-props.html].

It’s important to note that the files that were generated by default with the plugin creator can be deleted or reused. Whatever your preference!

Now that we know what all of our plugin files do, let’s create our plugin :sunglasses:

Building our plugin

The first thing we should think about is what our plugin consists of and what experience we want to offer. We know that we want there to be a button, that it can be clicked, and that it creates a reaction in the comment. So let’s build it.

Since our button is a component let’s create a new file inside that folder. Let’s call this PrideButton.js.

The minimum expression of our button looks like this:

import React from 'react';

class PrideButton extends React.Component {
 render() {
 return <button>Pride!</button>;
 }
}

export default PrideButton;

Alright, we have our button. So now we want to tell it where to show - in this case, we want it under every comment. To do this we are going to make use of slots. Slots are small places inside Talk where we can place plugins. We already have a slot in Talk where we can place reactions. This slot is called commentReactions.

To add it there, we will go to client/index.js and add the following lines:

import PrideButton from './components/PrideButton';

export default {
 slots: {
 commentReactions: [PrideButton],
 },
};

You will notice that we deleted the slot object MyPluginComponent. This is because we don’t want to show the little example code that the CLI generated for us. We can also delete any files we won’t us, or we can just leave them but not export them; if they’re not exported, they won’t be added to the Talk bundle.js.

Now, if we go to Talk we will see that our PrideButton is now there on each comment - now it’s time to tell the button what to do.

[image: Our Newly Created Pride Button]

Adding functionality with the Talk API

Talk exposes a series of tools that plugins can use. In this case we can use withReaction. withReaction is a HOC (High Order Component) that adds functionality to our components.

We will use it like so:

import React from 'react';
import { withReaction } from 'plugin-api/beta/client/hocs';

class PrideButton extends React.Component {
 render() {
 return <button>Pride!</button>;
 }
}

export default withReaction('pride')(PrideButton);

The first parameter we passed to withReactions is the name of the reaction. In our case, we will use ‘pride’. We must be consistent with this since this will impact storing our data later.

In our next step, let’s make clicking our button either generate a reaction or remove the reaction, in case they have already acted on the comment with the same reaction.

import React from 'react';
import { withReaction } from 'plugin-api/beta/client/hocs';

class PrideButton extends React.Component {
 handleClick = () => {
 const { postReaction, deleteReaction, alreadyReacted } = this.props;

 if (alreadyReacted) {
 deleteReaction();
 } else {
 postReaction();
 }
 };

 render() {
 return <button onClick={this.handleClick}>Pride!</button>;
 }
}

export default withReaction('pride')(PrideButton);

withReactions makes the component receive postReaction, deleteReaction and alreadyReacted:

	postReaction: Posts the reaction to the served

 Coral UI

title: Customizing Plugins with Coral UI
permalink: /customizing-plugins-coral-ui/

This is Part 2 of our Plugin Tutorial and assumes you’ve already completed Building a Basic Plugin.

Note: We will be using Sketch in this tutorial to generate our SVG code. You can download Sketch here: https://www.sketchapp.com/.

Coral UI

Within Talk, we have a set of tools we can leverage for our user interface, or UI. We simply call these tools Coral UI.

Within Coral UI, we have icons, buttons, alerts and other components. You can see all the elements available to use within client/coral-ui.

To get started using Coral UI, we’re going to import it into our component.

import { Icon, Button } from 'plugin-api/beta/client/components/ui';

const myButton = () =>
 <Button>
 <Icon name="favorite" />
 Favorito
 </Button>

The Coral UI Icon component uses icons from Material Design. You can see the entire list of icons and their respective names at Material icons - Material Design [https://material.io/icons/].

Using SVGs

For the Pride Plugin icon, none of the Material icons really seemed to fit so we decided to be a little creative and make our own from scratch.

To do this, we needed to create two states:

	The inactive icon (before someone has clicked/reacted)

	The active icon (after someone has clicked/reacted)

To add a little additional creativity here, we thought that the inactive icon could be grayscale and the active one could be in full color. And a rainbow would be a great idea!

[image: Mockups for our Pride icon]

Export / Copy SVG code

Sketch [https://www.sketchapp.com/] gives us a way to export the SVG code:

	Right click on the SVG

	Click “Copy SVG code” or “Copy SVG code”

[image: Exporting SVG Code from Sketch]

We can export it as a file or copy the inline code to our component. We personally prefer to have the inline code to have more control over the classes and the customization. In this case, we can pass different color palettes, grayscale and the other colors colored.

Then we can create RainBowIcon.js and write the following code:

import React from 'react';
import PropTypes from 'prop-types';

// Las paletas de colores que vamos a utilizar
const colorPalette = {
 grayscale: ['#C6C6C6', '#C6C6C6', '#7E7E7E', '#7C7C7C', '#7C7C7C', '#9F9F9F'],
 colored: ['#F5C15F', '#EB7835', '#EB5242', '#CB4AB0', '#49B1DE', '#61C482'],
};

const RainbowIcon = ({ paletteType = 'colored', palette = [] }) => {
 return (
 <svg
 width="19px"
 height="9px"
 viewBox="0 0 19 9"
 version="1.1"
 xmlns="http://www.w3.org/2000/svg"
 >
 <g stroke="none" strokeWidth="1" fill="none" fillRule="evenodd">
 <g transform="translate(-492.000000, -630.000000)">
 <g transform="translate(492.000000, 630.000000)">
 <path
 d="M9.5,0 C4.24785714,0 0,4.02428571 0,9 L2.71428571,9 C2.71428571,5.45142857 5.75428571,2.57142857 9.5,2.57142857 C13.2457143,2.57142857 16.2857143,5.45142857 16.2857143,9 L19,9 C19,4.02428571 14.7521429,0 9.5,0 Z"
 fill={palette[0] || colorPalette[paletteType][0]}
 />
 <path
 d="M9.5,1 C4.80071429,1 1,4.57714286 1,9 L3.42857143,9 C3.42857143,5.84571429 6.14857143,3.28571429 9.5,3.28571429 C12.8514286,3.28571429 15.5714286,5.84571429 15.5714286,9 L18,9 C18,4.57714286 14.1992857,1 9.5,1 Z"
 fill={palette[1] || colorPalette[paletteType][1]}
 />
 <path
 d="M9.5,2 C5.35357143,2 2,5.13 2,9 L4.14285714,9 C4.14285714,6.24 6.54285714,4 9.5,4 C12.4571429,4 14.8571429,6.24 14.8571429,9 L17,9 C17,5.13 13.6464286,2 9.5,2 Z"
 fill={palette[2] || colorPalette[paletteType][2]}
 />
 <path
 d="M9.5,3 C5.90642857,3 3,5.68285714 3,9 L4.85714286,9 C4.85714286,6.63428571 6.93714286,4.71428571 9.5,4.71428571 C12.0628571,4.71428571 14.1428571,6.63428571 14.1428571,9 L16,9 C16,5.68285714 13.0935714,3 9.5,3 Z"
 fill={palette[3] || colorPalette[paletteType][3]}
 />
 <path
 d="M9.5,4 C6.45928571,4 4,6.23571429 4,9 L5.57142857,9 C5.57142857,7.02857143 7.33142857,5.42857143 9.5,5.42857143 C11.6685714,5.42857143 13.4285714,7.02857143 13.4285714,9 L15,9 C15,6.23571429 12.5407143,4 9.5,4 Z"
 fill={palette[4] || colorPalette[paletteType][4]}
 />
 <path
 d="M9.5,5 C7.01214286,5 5,6.78857143 5,9 L6.28571429,9 C6.28571429,7.42285714 7.72571429,6.14285714 9.5,6.14285714 C11.2742857,6.14285714 12.7142857,7.42285714 12.7142857,9 L14,9 C14,6.78857143 11.9878571,5 9.5,5 Z"
 fill={palette[5] || colorPalette[paletteType][5]}
 />
 </g>
 </g>
 </g>
 </svg>
);
};

// This is important to do so we pass the correct properties to the component
RainbowIcon.propTypes = {
 paletteType: PropTypes.oneOf(['colored', 'grayscale']),
 palette: PropTypes.array,
};

export default RainbowIcon;

Most of the component is code generated by Sketch, except for the properties that we can control control with the palettes. The color of the rainbow lines will be given based on the order of the colors of the palette.

We have two props for our component: paletteType and palette:

paletteType: since we we have two palettes we’ve created, we can pass these directly as colored and greyscale

palette: if we want to pass an array of colors we can do it using this property

Ready! So now we have our icon. Now let’s modify the our button PrideButton.js to use our new icon.

import React from 'react';
import cn from 'classnames';
import styles from './PrideButton.css';
import { withReaction } from 'plugin-api/beta/client/hocs';
import RainbowIcon from './RainbowIcon';

class PrideButton extends React.Component {
 handleClick = () => {
 const { postReaction, deleteReaction, alreadyReacted } = this.props;

 if (alreadyReacted) {
 deleteReaction();
 } else {
 postReaction();
 }
 };

 render() {
 const { alreadyReacted } = this.props;
 return (
 <div className={cn(styles.container, 'talk-plugin-pride-container')}>
 <a
 className={cn(styles.button, 'talk-plugin-pride-button')}
 onClick={this.handleClick}
 >
 {alreadyReacted ? (
 <RainbowIcon />
) : (
 <RainbowIcon paletteType="grayscale" />
)}

 </div>
);
 }
}

export default withReaction('pride')(PrideButton);

We will use the property alreadyReacted to change the icon and render one in grayscale (using the property grayscale).

There are many pros and cons of using inline SVGs that are outside the scope of this tutorial. If you’d like to learn more, you can read 5 Gotchas You’re Gonna Face Getting Inline SVG Into Production [https://css-tricks.com/gotchas-on-getting-svg-into-production/] and its follow-up post Part 2 Gotchas [https://css-tricks.com/gotchas-getting-inline-svg-production-part-ii/].

You can view the source code up to this point here: talk-plugin-pride @ ae5c1a5 [https://github.com/coralproject/talk-plugin-pride/commit/ae5c1a5e26390b9374c87ce5530d60c10b5c325e].

To keep performance top of mine, and given that this portion of SVG code can not be cached, we will create separate SVG files for the two icon states.

We will create the folder assets and place our two files inside it: ColoredRainbowIcon.svg and GrayscaleRainbowIcon.svg. We can export them both with Sketch or simply copy the SVG code into each file.

Using an SVG in our components

We are going to import our SVG icons just as we did with our components, the only difference is the .svg at the end.

import ColoredRainbowIcon from '../assets/ColoredRainbowIcon.svg';
import GrayscaleRainbowIcon from '../assets/GrayscaleRainbowIcon.svg';

Since Webpack will give us the new url of the resource, we can us it like this:

 <img
 src={ColoredRainbowIcon}
 className={cn(styles.icon, `${plugin}-icon`)}
 />

Using media queries

Now of course we will need to support several devices and browsers, so we’ll need to make sure our plugin responds correctly. For this we can use media queries.

In this case, we want to make sure that on mobile devices that are less than 425px, the reaction label is not shown.

@media (max-width: 425px) {
 .label {
 display: none;
 }
}

If you look at our PostCSS configuration, you will notice that we use PreCSS. PreCSS allows us to optionally use a syntax that is similar to Sass and allows us to make use of variables:

@custom-media --viewport-medium (width <= 50rem);
@custom-selector :--heading h1, h2, h3, h4, h5, h6;

:root {
 --fontSize: 1rem;
 --mainColor: #12345678;
}

@media (--viewport-medium) {
 body {
 color: var(--mainColor);
 font-family: system-ui;
 font-size: var(--fontSize);
 line-height: calc(var(--fontSize) * 1.5);
 overflow-wrap: break-word;
 padding-inline: calc((var(--fontSize) / 2) + 1px);
 }
}

To learn more about PreCSS: https://github.com/jonathantneal/precss

Adding animations

To make the user experience even more fun, we wanted the user to see a small animation when they click on our Pride Button:

.reacted {
 animation: rainbow 1s 1;
}

@keyframes rainbow{
 20%{color: #EB5242;}
 40%{color: #F5C15F;}
 60%{color: #61C482;}
 80%{color: #49B1DE;}
 100%{color: #EB7835;}
}

Now lets add this styling through our classnames library:

<button
 className={cn(
 styles.button,
 {[styles.reacted]: alreadyReacted}
)}
 onClick={this.handleClick}
>

Perfect! Now every time a user clicks our reaction, the style is activated, and the animation is triggered.

This is what our completed Reaction now looks like:

import React from 'react';
import cn from 'classnames';
import styles from './PrideButton.css';
import { withReaction } from 'plugin-api/beta/client/hocs';
import ColoredRainbowIcon from '../assets/ColoredRainbowIcon.svg';
import GrayscaleRainbowIcon from '../assets/GrayscaleRainbowIcon.svg';

const plugin = 'talk-plugin-pride';

class PrideButton extends React.Component {
 handleClick = () => {
 const { postReaction, deleteReaction, alreadyReacted, user } = this.props;

 // If the current user does not exist, trigger sign in dialog.
 if (!user) {
 showSignInDialog();
 return;
 }

 if (alreadyReacted) {
 deleteReaction();
 } else {
 postReaction();
 }
 };

 render() {
 const { count, alreadyReacted } = this.props;
 return (
 <div className={cn(styles.container, `${plugin}-container`)}>
 <button
 className={cn(
 styles.button,
 {
 [`${styles.reacted} talk-plugin-pride-reacted`]: alreadyReacted,
 },
 `${plugin}-button`
)}
 onClick={this.handleClick}
 >
 Pride
 {alreadyReacted ? (
 <img
 src={ColoredRainbowIcon}
 className={cn(styles.icon, `${plugin}-icon`)}
 />
) : (
 <img
 src={GrayscaleRainbowIcon}
 className={cn(styles.icon, `${plugin}-icon`)}
 />
)}
 {count > 0 && count}
 </button>
 </div>
);
 }
}

export default withReaction('pride')(PrideButton);

To view the completed source code, look here: https://github.com/coralproject/talk-plugin-pride

 1. Take this opportunity for a fresh start

title: What To Do When You’ve Installed Talk
permalink: /when-youve-installed-talk/

You’ve installed Talk on your server, and you’re preparing to launch it on your site. The real community work starts now, before you go live. You have a unique opportunity pre-launch to set your community up for success.

Contents:

	Take this opportunity for a fresh start

	Publicly state the purpose and rules of your community

	Decide where you will and won’t put comments

	Have clear moderation strategies

	Get journalists on your side

	Launch with care

1. Take this opportunity for a fresh start

The launch of a new tool is a great opportunity for a reset, to welcome in new community members, and to make clear what the space is for. We have a ten-page workbook [https://guides.coralproject.net/workbook/] that you can download/print to help define your goals and vision for the community. It takes about 30 minutes to complete, asks clear, simple questions, and at the end you will have an outline of your community strategy to set you up for success.

2. Publicly state the purpose and rules of your community

If you don’t launch with a clear strategy for your community, the most disruptive members will end up defining it for you. Go here to learn how to create an effective community strategy. [https://guides.coralproject.net/write-a-community-mission-statement/] If your community is to succeed, you will need to make clear at the start what is and isn’t acceptable, and enforce the rules clearly and consistently. Read more about that here. [https://guides.coralproject.net/manage-a-successful-community/] Every successful community has an easy-to-read code of conduct, with a summary of the rules on every page that the comments appear. Here’s how to write your code. [https://guides.coralproject.net/create-a-code-of-conduct/]

In Talk, the summary of your community code goes into the box at the top of the comments. You enter that text by clicking on the Configure tab at the top, and scroll down to Include Comment Stream Description:

[image: [IMAGE] A screenshot of the Configure options in Talk, with a pink arrow pointing to the place where Comment Stream Description can be added]

3. Decide where you will and won’t put comments

One the most important lessons we wish more newsrooms understood is this: on-site comments don’t have to be all or nothing.

If your goal is to create a civil, productive space for online discourse, you should only make promises about the space that you can keep. If you have very few resources to dedicate to your community, that might mean only opening a small number of articles for discussion each day – or only having a weekly comments discussion about the week’s news, similar to the Guardian Social’s Catch Up of the Week where they interact in, and highlight the best of, the comments. [https://www.theguardian.com/commentisfree/live/2017/apr/21/how-do-you-feel-about-another-general-election-join-our-live-look-at-the-week]

Some topics that you cover will be more challenging to create civil discourse around than others, and opening the comments on them could require a lot of hands-on moderation to ensure the kinds of interactions that you want – we’ve found in the U.S. that conversations around issues of race, immigration, and breaking news involving potential assailants or terrorism, can quickly break down and lead to abusive and negative interactions. You will know best which are the most controversial topics in your community, and you can model the threats you are likely to face as a result. [https://guides.coralproject.net/threat-modeling-for-communities/] For these topics, we recommend that you have a plan ahead of time to address the problems that are likely to come up.

Your plans might include:

	Watching the comments on these articles carefully, and posting a public note using the ‘Ask a Question’ box stating that you will delete comments, suspend/ban people, or close comments altogether if the conversation devolves (and then following through on that.) Here’s where you can add that text from the article page:

[image: [IMAGE] A screenshot of the Configure menu from the comments view]

	Setting the comments on these articles to pre-moderation, then writing a note in the Ask a Question box stating that all comments have to be approved before publication; The Washington Post does this in some breaking news situations. You can set the comments on a single story to pre-moderation via the Configure tab on the article’s comments.

[image: [IMAGE] A screenshot of the pre-moderate option in the Configure tab]

	Not allowing comments on these topics at all. Following a series of racist responses, for instance, the CBC in Canada chose not to open comments at all on articles about indigenous Canadians. That’s a perfectly valid response if you don’t have the resources to ensure a civil discussion – if people really want to talk about it, they can go elsewhere. In this situation, we recommend publishing a note at the bottom of all articles where this applies, explaining your decision and directing people to where they can send letters to the editor or continue the discussion off site, so that your community members understand what is happening.

Other options for contentious topics instead of comments:

	Use a form to request answers on a specific question related to the article, and select only the best answers for display. This is how the Spotlight team at Boston Globe solicited responses to their series on racism in Boston, using our Ask tool. (Learn more about Ask here. [https://coralproject.net/ask]) This also allows people to submit their thoughts anonymously.

	Host a focused, more controlled online discussion about the topic over a fixed period of time, during which you apply more vigilant moderation than usual. You can write a note in the Ask A Question space described above to make that clear, such as “We will host an online conversation about this topic here on Friday between 11am and 3pm EST. Moderators will be present throughout, and our journalists will answer your questions about the topic. “This allows community members to approach the topic more calmly than their initial reactions on reading the story, in a space where you can dedicate temporary, more intensive resources to ensuring civility (perhaps with pre-moderation), while still signaling your commitment to engagement around an important topic.

4. Have clear moderation strategies

The most important predictors of the success of an online community are:

	Does everyone understand and agree with the basic rules?

	Are the rules visibly enforced? No matter how benign the topic might seem, disruptive behavior will occur in your community (we’ve seen online communities about classical music and bonsai tree ownership become hotbeds of abuse and aggression.) Whether or not the behavior repeats in your community depends on your response. Once you’ve created your code of conduct and displayed it clearly (see above), you then need to dedicate resources to moderating your communities quickly, effectively, and consistently.

Quickly:

	Create Banned/Suspect word lists specific to your needs, to prevent the worst words being posted, and to auto-report comments you should keep an eye on.[image:]

We have a starter list of more than 1700 words/phrases that most sites choose to ban. Email support@coralproject.net to request it.

	If you don’t have a very high comment volume and use Slack in your newsroom, you could integrate Slack moderation to keep tabs on new/reported comments. Read more about our free Slack moderation plugin. [https://coralproject.net/blog/slacking-on/]

	Utilize our Toxic Comments plugin [https://coralproject.net/blog/toxic-avenging/], developed with Google Jigsaw, to improve commenter behavior and use AI to help identify and prevent the most abusive comments from appearing on your site.

	Enable our Akismet plugin to keep spam from appearing in your comments.

	Use keyboard shortcuts in the moderation queue to moderate quickly (type ‘?’ in the moderation view to see the list of shortcuts), and if there is a sudden deluge of comments, ask for someone in your newsroom to help you moderate. Talk will notify you in the moderation interface if someone else moderates a comment that’s already on your screen.

	Click on a community member’s name in the moderation interface to review all their comments, and see if there is a clear pattern of abuse among their Rejected comments. You can also select all their recent comments and delete them in bulk.[image: A screenshot of the moderation interface with the user drawer on display. Pink arrows indicate the user name, which can be clicked to open the drawer, and the drawer itself.]

	Give people who need to step away from the conversation a ‘time out’ by suspending their account via the User drawer (click on the user’s name anywhere in the moderation interface), and write a personalized note to them to explain why you took this action. Ban any users whose behavior is clearly offensive and/or abusive to an extreme degree.

[image: A close up of the User Drawer with a large pink arrow indicating the Actions menu where users can be suspended or banned]

	Reject the worst comments on the article page itself by using the small caret in the corner of each comment.

[image: A screenshot of the comments stream with a moderation menu popped out and a large pink arrow pointing to the caret where moderators can unfold the moderation menu]

	If you find new commenters are causing a lot of trouble with their first comments, consider changing the User Karma threshold from negative one to zero, forcing every new commenter’s first comment into pre-moderation.

Effectively

	If you’re using the Toxic Comments plugin, make sure that its threshold is set at the level that catches most comments with fewest false positives (default is 80%). You can see the Likely to be Toxic level of every comment by clicking “More Details” on the comment card in the moderation view.

	Publicly discourage behavior in the comments that doesn’t cross the line but suggests that the tone or focus could shift quickly in a direction you don’t want. Point to relevant sections of your community guidelines. Read more about defining and discouraging this kind of behavior here. [https://guides.coralproject.net/manage-a-successful-community/]

	If people are sharing links to conspiracy sites or other unreliable sources, consider setting either the article (via the Configure tab on the article page) or the whole site (via Configure in the Admin view) to Pre-moderate Links, and delete any comments that link to sites that exceed your guidelines.

[image: An image showing the Pre-moderate Links option in the moderation console]

[image: A screenshot of the Configure tab in the comments stream with the Pre-Moderate Links option circled in pink]

	If the conversation is getting out of hand, set the article to Pre-moderation (via the Configure tab on the comments, see above) and tell your community members you’ve done it, via Ask a Question (see above). If the conversation doesn’t improve, or you feel that it is beyond redemption, consider closing the article to comments altogether via the Configure tab or the Stories tab in the moderation view, and telling the community why you have done so.

	Make sure that your community has an opportunity to give feedback and shape your guidelines. Create a page on your site for meta-discussions about your policies – this could either be one static page, or an ongoing series of updates (see below). Encourage your community to interrogate your standards, and participate in improving them. This will help give your community a sense of co-ownership over the space, and encourage them to help enforce its codes.

Consistently

	Create a clear series of guidelines [https://guides.coralproject.net/create-a-code-of-conduct/] that your community members can easily reference, and set up your moderation strategy ahead of time. [https://guides.coralproject.net/how-to-moderate-effectively/]

	When you ban/suspend a community member, include language in the email they are sent through Talk that explains which aspect/s of your guidelines they have ignored.

	Make sure that any new member of your moderation team receives training before they begin, that you make sure that everyone in your moderation team is watching each other for signs of secondary trauma [https://www.counseling.org/docs/trauma-disaster/fact-sheet-9---vicarious-trauma.pdf], and that everyone knows they can step away at any time if things get difficult. Here’s a piece on how to create an effective moderation team. [https://guides.coralproject.net/creating-a-successful-community-management-team/] You can read more about the emotional labor of moderation here. [https://guides.coralproject.net/supporting-emotional-labor-in-moderation/]

5. Get journalists on your side

Most journalists don’t like comments. Also, most journalists read comments. [https://mediaengagement.org/research/journalists-and-online-comments/]

If your goal is to bring community closer to your journalism, you need to change the minds of people in your newsroom about the value of your onsite community. There are two reasons to do this: to improve the community, and to improve the journalism.

For the community: As a study from the Center for Media Engagement (CME) shows [https://mediaengagement.org/research/journalist-involvement/], comments are more civil when a journalist engages in the space. A separate study that we commissioned from the CME [https://mediaengagement.org/research/comment-section-survey-across-20-news-sites/] demonstrates that the majority of commenters across sites of all sizes want journalists to engage in the comments.

For the journalism: there is real potential value in the comments [https://guides.coralproject.net/why-community-work-is-important/], in helping journalists find tips and sources, in finding important clarifications and corrections, in building a loyal audience, and in involving your community in your mission. These are some of your most dedicated readers. They deserve your attention. That said, journalists need to be prepared for how to engage effectively.

As this guide on engaging in the comments [http://niemanreports.org/articles/getting-the-most-out-of-comments-a-guide-for-journalists/] states, the main principles for how to act in the comments should be

	Thank

	Engage (through Featured comments, replying to the commenter)

	Share (via social media and, where appropriate, in follow-up articles)

If you are going to ask journalists moderate comments, we recommend that they don’t moderate their own but instead pair with someone else to moderate each other’s, before the author of the piece goes into the comments to engage. In that way, the worst abuse and criticism can be removed by someone who is less likely to take it personally. You should also instruct journalists on how to escalate potentially credible threats to a senior editor, and make it clear that it’s ok to step away if the task starts to affect them personally. There are more tips on supporting the emotional health of people who moderate comments here. [https://guides.coralproject.net/supporting-emotional-labor-in-moderation/]

6. Launch with care

We strongly recommend launching Talk on just one article, talking about the change that will be coming to the rest of the site, describing the features, and letting your community kick the tires on the new system before it is released everywhere. Doing this will allow your community members to get used to the change, to make suggestions, to enter into conversation with you about the switch, and to help make them feel included and less surprised about the change when it goes sitewide. It will also allow you to get used to the moderation interface without being overwhelmed. Here’s how The Washington Post used their community to test the new system. [https://www.washingtonpost.com/news/ask-the-post/2017/06/15/everybody-talk-round-2-of-testing-for-the-coral-projects-comment-software/?utm_term=.10f68bbb671a]

If you can’t release Talk in this way, we recommend that you announce the launch of the new system in a standalone article, describing the features in Talk (especially ‘Ignore User’, My Profile, Notifications, and Report functions. Screenshots with arrows can help - if you’re a Mac user, try Skitch [https://evernote.com/products/skitch]), explaining why you’ve moved to Talk, describing the benefits Talk brings, and the changes you will be looking for/promises you will make to the community moving forward. You should take more time than usual to guide people, answer questions, and collect suggestions for improvements (we’d love to hear them.) Here’s how The Intercept did this. [https://theintercept.com/2017/12/18/comments-coral-project/]

For the first month or so, we recommend including a link to the launch article mentioned above in the Comments Stream Description box on every Talk page. This will give community members a place to go to discuss the new system, so that they are more likely to be on topic on the articles themselves. We continue to add more features to Talk every few weeks. For significant feature changes, we suggest writing a follow-up article to introduce them to your community, pointing out the features and encouraging more feedback on the system itself, and on how you are managing the community.

A regular space for conversation about the conversation is always welcome in any successful community, and is a great source of ideas for improvement.

We hope you enjoy using Talk, and that it helps your communities to thrive. If you have any questions or suggestions for this piece, or would like to try Talk on your site, please contact us. [https://coralproject.net/contact]

 Database Migrations

title: Migrating to v4.1.0
permalink: /migration/4.1/

Database Migrations

We have unified the database verifications that were introduced in 3.x.x into
the migration system. This unification unfortunately required a database
migration bump.

Source

When running via source, you can run the following to start the migration
process:

./bin/cli migration run

This will prompt you to perform a database backup before starting the migration
process. Data loss is entirely possible otherwise.

Docker Compose

If you are running Talk with docker-compose, you can use the following command
to perform the migration:

docker-compose run --rm talk cli migration run

This will prompt you to perform a database backup before starting the migration
process. Data loss is entirely possible otherwise.

 Dependencies

title: Migrating to v4.0.0
permalink: /migration/4/

Since our v3.* release, this is the most significant set of changes introduced
into Talk so far, as a major database migration and template change are both required to
run it.

Dependencies

If you are running via source, once you update your code, it’s always important
to run the following in order to update your dependencies:

yarn

If you are running via Docker, you just have to replace your version number with
the desired version from Dockerhub.

Database Migrations

We have introduced several new fields that require the database to be modified.
To run these migrations, ensure that all nodes of Talk are stopped. It is not
well defined what will happen if a Talk application begins writing data mid
migration.

Running the following will start the migration process:

./bin/cli migration run

This will prompt you to perform a database backup before starting the migration
process. Data loss is entirely possible otherwise.

The migration itself may take some time to complete, as we’re reformatting
documents rather than performing a nice table alter. If the process crashes
during the migration, simply re-run it. The migration operations are designed
to act atomically, and be idempotent to documents already updated.

Template Change

In v4.0.0, we introduced extensive support for compressing our javascript
bundles. To support this, we had to modify our routing. All static files are now
served out of a /static prefix, so you will have to change your embed code:

Old:

https://your-talk-url.com/embed.js

New:

https://your-talk-url.com/static/embed.js

This should be changed in your embed code on the site where you are embedding
Talk.

 Deprecation Notices

title: Migrating from v3.x.x
permalink: /migration/3/

Deprecation Notices

It was previously recommended to use the user service function:

Users.findOrCreateExternalUser(...);

If you are developing a social plugin, you should migrate this function to:

Users.upsertSocialUser(...);

If you are developing an external auth integration (where the integration
provides) a custom displayName, you should migrate to:

Users.upsertExternalUser(...);

Troubleshooting Username Status

You may be affected by a side-effect of the above mentioned deprecated function
Users.findOrCreateExternalUser(...); if the following are true:

	You have upgraded from Talk < 3 to >= 4 and have completed a database
migration

	You have used a custom auth plugin in the past

	You have disabled or not included the talk-plugin-auth as a client plugin

	You have received reports that some users can not comment, and are instead
given a message You are not authorized to perform this action.

If this is the case, you can execute the following one time MongoDB query to
repair the affected users.

db.users.update(
 {
 "status.username.status": {
 $in: ["UNSET", "CHANGED"]
 }
 },
 {
 $set: {
 "status.username.status": "SET"
 },
 $push: {
 "status.username.history": {
 status: "SET",
 assigned_by: null,
 created_at: ISODate()
 }
 }
 },
 {
 multi: true
 }
);

Note: You must resolve and/or update your custom auth code to resolve the
above mentioned deprecation notices before running the above mentioned MongoDB
query

 How can I get help, submit a bug, or suggest a feature?

title: FAQ
permalink: /faq/

How can I get help, submit a bug, or suggest a feature?

There are a few avenues to get in touch with us and others in the community for help.

To log a bug or request a feature, submit a Support ticket (support@coralproject.net) and someone from our team will get back to you.

You can also request help on Github by submitting an issue [https://github.com/coralproject/talk/issues]. This also increases your chances of having someone from the community respond to help.

And you can also search our Coral Community [https://community.coralproject.net] to see if your issue has been solved, or to get tips from the community.

How can our dev team contribute to Talk?

We are lucky to work with newsroom dev teams and individual contributors who span the world, and come from newsrooms of all sizes. You can read our Contribution Guide [https://github.com/coralproject/talk/blob/master/CONTRIBUTING.md] to get started, but feel free to reach out to us via Github too.

What if we want to add a feature you don’t have?

Talk is open source, so you’re free to develop additional functionality and submit a pull request [https://github.com/coralproject.net/talk].

Do you have GDPR features?

Yes! Please read our GDPR documentation for more information and instructions to get started.

Can I import my existing comments?

Yes! We have a community-supported import framework [https://github.com/coralproject/talk-importer] that you can use to migrate your existing comments.

What support is available?

Our team is small, so it’s difficult for us to provide support packages. However, you can always email us at support@coralproject.net, and we can help answer your questions. In some cases, we can provide premium support packages either with our team, or through partners. You can inquire about this via the support email address above.

Is there a hosted version I can purchase by monthly subscription?

Yes! We are happy to announce that as of July 2018, we provide a SaaS version of Talk, called the Coral Cloud. For a monthly subscription, you get your own hosted Talk instance to embed on your news and blog articles. Reach out to us if you’re interested in this option.

Where is our data when we use Talk?

If you are hosting Talk on your own:

	Your data is stored in a MongoDB database that you provide

	The Coral Team doesn’t have any access to your data

If you are using Coral Cloud Hosting for Talk:

	Your data is stored in a dedicated MongDB database that is provisioned for your in the Cloud

	Your data is completely isolated from other customer’s data

	The Coral Team and its third party database hosting providers use strict access controls and auditing to protected your data from unauthorized access by team members

Does Talk have any automated moderation features to protect against spam and trolling?

Talk features a couple of plugins that provide advanced moderation:

	The Toxic Comments plugin integrates with the Perspective API from Google [https://www.perspectiveapi.com/] to detect the likelihood of toxicity of comments in real-time

	The Akismet plugin detects and blocks spam comments

How much can I customize Talk?

	The CSS of the Talk comment stream can be customized by adding your own CSS via an external stylesheet

	The functionality of Talk can be extended through the plugin framework

How much does Talk cost?

	The Talk software is freely available under the Apache 2.0 open source license

	Associated costs are those for the infrastructure required to run Talk (i.e. cloud hosting fee or bare-metal server costs)

	The Coral Project offers a SaaS version of Talk. Please get in touch with us to discuss pricing for your custom requirements.

 How do I find out what version I’m running?

title: Troubleshooting Tips
permalink: /troubleshooting-tips/

How do I find out what version I’m running?

If you visit https://

 <no title>

 404
 Page not found :(

 The requested page could not be found. Try searching above for your page.

 How can I get help integrating Talk into my newsroom?

title: Contact
permalink: /contact/

How can I get help integrating Talk into my newsroom?

We’re here to help with newsrooms of all sizes. Email our Support Team
(support@coralproject.net) to set up a meeting.

How do I request a feature or submit a bug?

The best way is to submit a GitHub issue [https://github.com/coralproject/talk/issues]. Make sure you give plenty of details, our Core Team can usually respond within a few hours on weekdays.

How can our dev team contribute to Talk?

We are lucky to work with newsroom dev teams and individual contributors who span the world, and come from newsrooms of all sizes. You can read our Contribution Guide [https://github.com/coralproject/talk/blob/master/CONTRIBUTING.md] to get started, but feel free to reach out to us via GitHub, or get in touch with us directly via support@coralproject.net.

 <no title>

 Actions

title: Client Plugin API
permalink: /api/client/
toc: true
class: configuration

We created a set of utilities to make it easier to create and add functionality to plugins.
Feel free to check all the utilities here: talk/plugin-api.

Actions

Admin

	viewUserDetail

Auth

	setAuthToken

	handleSuccessfulLogin

	logout

Notification

	notify

Stream

	setSort

	showSignInDialog

Import

import {notify} 'plugin-api/beta/actions';

Usage

// Trigger a notification
notify('success', t('suspenduser.notify_suspend_until', username, timeago(until))

// mapDispatchToProps
const mapDispatchToProps = dispatch => ({
 ...bindActionCreators(
 {
 notify,
 },
 dispatch
),
});

Components

	Slot
You probably won’t need to use the <Slot/> component in your plugin. But there’s a chance you might want to add a Slot so another plugin gets injected in your plugin.

Props

	fill : <String | Array> Name of the slot

	defaultComponent : <Element | Array> The default component if no plugin component is provided to the Slot

	size : <Number | Array> - How many components this Slot should show - Slot size or an Array of slot size

	passthrough: - The properties that you want to pass to the Slot, therefore to the plugins.

 GraphQL Schema

title: GraphQL API Reference
permalink: /api/graphql/

We provide all services that Talk can provide via the GraphQL API documented
below. For a primer about GraphQL, visit http://graphql.org/.

If you’re already familiar with GraphQL, visit
GraphQL API Overview to see how to
interact with Talk’s GraphQL endpoint.

GraphQL Schema

{% graphqldocs _data/introspection.json %}

 Development

title: GraphQL API Overview
permalink: /api/overview/

We provide all services that Talk can provide via the GraphQL API documented
on our GraphQL API Reference. If you’ve never heard
about GraphQL before, visit http://graphql.org/ to learn the basics first.

Development

During development mode (when Talk has NODE_ENV=development) Talk will enable
the GraphiQL IDE at the following route:

${ROOT_URL}api/v1/graph/iql

This is pretty powerful, as it lets you explore the API documentation on the
sidebar as well as send off requests.

Making your first request

To learn a bit about how to interact with Talk, we’ll query for comments on a
page of Talk. I have Talk running locally, (If you don’t and want to, checkout
our Talk Quickstart).

The GraphQL endpoint we have can be used with any HTTP client available, but our
examples below will use the common curl tool:

curl --request POST \
 --url http://localhost:3000/api/v1/graph/ql \
 --header 'Content-Type: application/json' \
 --data '{"query":"query GetComments($url: String!) { asset(url: $url) { title url comments { nodes { body user { username } } } }}","variables":{"url":"http://localhost:3000/"},"operationName":"GetComments"}'

When you unpack that, it’s really quite simple. We’re executing a POST request
to the /api/v1/graph/ql route of the local Talk server with the GraphQL
request we want to make. It’s composed of the query, variables, and
operationName.

query GetComments($url: String!) {
 asset(url: $url) {
 title
 url
 comments {
 nodes {
 body
 user {
 username
 }
 }
 }
 }
}

The query itself is quite straightforward, we are grabbing the asset with the
specified $url, and grabbing it’s title and the comments also (You can also
look at our GraphQL API Reference for our entire schema).

We can then also specify our variables to the query being executed (in this
case, the url for the page where we have comments on our local install of Talk):

{
 "url": "http://localhost:3000/"
}

It’s also sometimes common to have multiple queries within a query, which is
where the operationName comes into play, where we simply specify the named
query that we want to execute (in this case, GetComments).

To get a deeper understanding of GraphQL queries, read up on
GraphQL Queries and Mutations [http://graphql.org/learn/queries/].

Understanding the response

Once you completed the above GraphQL query with curl, you’ll get a response
sort of like this:

{
 "data": {
 "asset": {
 "title": "Coral Talk",
 "url": "http://localhost:3000/",
 "comments": {
 "nodes": [
 {
 "body": "Second comment!",
 "user": {
 "username": "wyattjoh"
 }
 },
 {
 "body": "First comment!",
 "user": {
 "username": "wyattjoh"
 }
 }
]
 }
 }
 }
}

All of the parameters you requested should be available under the data
property. Any errors that you get would appear in a errors array at the top
level, like this:

{
 "data": {
 "asset": null
 },
 "errors": [
 {
 "message": "asset_url is invalid",
 "locations": [
 {
 "line": 2,
 "column": 3
 }
],
 "path": [
 "asset"
]
 }
]
}

You should know that any property that is marked with a ! is considered
required, and non-nullable, which means you can always guarantee on it being
there in your request if there were no errors.

Authorizing a request

Some queries you may notice seem to return null or an error of
NOT_AUTHORIZED. It’s likely the case that you are making a request to a
route that requires authorization. You can perform authorization a few ways in
Talk:

	As a Bearer Token

	As a Query Parameter

	As a Cookie

Essentially, you need to get access to a JWT token that you can use to authorize
your requests. Generating one is simple, you can use the CLI tools in Talk to do
that.

first, find your user account
./bin/cli users list

then, create a token for that account
./bin/cli token create ${USER_ID} example-token

Where USER_ID is the ID of your user account you found using the users list
command.

Once you have your access token, you can substitute it as ${TOKEN} in your
curl request as follows:

Bearer Token

curl --request POST \
 --url http://localhost:3000/api/v1/graph/ql \
 --header 'Content-Type: application/json' \
 --header "Authorization: Bearer ${TOKEN}"
 --data '{"query":"query GetComments($url: String!) { asset(url: $url) { title url comments { nodes { body user { username } } } }}","variables":{"url":"http://localhost:3000/"},"operationName":"GetComments"}'

Query Parameter

curl --request POST \
 --url http://localhost:3000/api/v1/graph/ql?access_token=${TOKEN} \
 --header 'Content-Type: application/json' \
 --data '{"query":"query GetComments($url: String!) { asset(url: $url) { title url comments { nodes { body user { username } } } }}","variables":{"url":"http://localhost:3000/"},"operationName":"GetComments"}'

Cookie

curl --request POST \
 --url http://localhost:3000/api/v1/graph/ql \
 --header 'Content-Type: application/json' \
 --cookie "authorization=${TOKEN}"
 --data '{"query":"query GetComments($url: String!) { asset(url: $url) { title url comments { nodes { body user { username } } } }}","variables":{"url":"http://localhost:3000/"},"operationName":"GetComments"}'

 Hooks

title: Server Plugin API
permalink: /api/server/
toc: true
class: configuration

The server functionality of our plugin lives inside the index.js plugin folder
that exports the configuration of our plugin.

 my-plugin/
 ├── client/
 │ └── ... <-- client side plugin files
 └── index.js <-- base + server plugin index

Hooks

Each plugin should export a single object with all hooks available on it.

Note: You will have access to the whole core and other plugin’s typeDefs,
context, loaders, mutators, resolvers, hooks. This is intentional, as it
encourages composing plugins to merge functionality, like a Slack plugin which
provides a Slack notify context function as well as having the loader for
comments.

The following are the hooks available:

typeDefs

enum COLOUR {
 RED
 BLUE
}

type Person {
 name: String!
 colour: COLOUR!
}

type RootMutation {
 createPerson(name: String!): Person
}

type RootQuery {
 people: [Person!]
}

type Subscription {
 leader: Person
}

Thanks to gql-merge [https://www.npmjs.com/package/gql-merge] the contents of
typeDefs should be a string that will be merged with the existing type
definitions. enum’s will be appended to, types will be appended, and new types
will be added.

context

{
 Slack: (context) => ({
 notify: (message) => {
 // return a promise after we're done sending notifications.
 }
 })
}

Any property provided here will be added to the context parameter available
inside all resolvers, loaders, mutators, and of course, other context based
plugins.

The top level item must accept a context for the request which it should use to
configure the context plugin before it would be mounted at context.plugins.
This plugin above would mount at: context.plugins.Slack, or, if you’re using
object destructuring [https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment], {plugins: {Slack}}.

Sort

A special context hook, Sort will allow plugin authors to provide new
methods to sort data. An example is as follows:

{
 Sort: () => ({
 Comments: { // <-- (1)
 likes: { // <-- (2)
 startCursor(ctx, nodes, {cursor}) { // <-- (3)
 return cursor != null ? cursor : 0;
 },
 endCursor(ctx, nodes, {cursor}) { // <-- (4)
 return nodes.length ? (cursor != null ? cursor : 0) + nodes.length : null;
 },
 sort(ctx, query, {cursor, sort}) { // <-- (5)
 if (cursor) {
 query = query.skip(cursor);
 }

 return query.sort({
 'action_counts.like': sort === 'DESC' ? -1 : 1,
 created_at: sort === 'DESC' ? -1 : 1,
 });
 },
 },
 },
 }),
}

This has a bunch of special features:

	Comments is the name of the type being sorted, this is pluralized and
capitalized.

	likes is the sortBy field in lowercase.

	startCursor will retrieve the start cursor based on the current set of
nodes and the current cursor.

	endCursor will retrieve the end cursor based on the current set of nodes
and the current cursor.

	sort will mutate the query to apply the sort operations.

All the startCursor, endCursor, and sort functions must be provided in
order for the sorting to apply properly.

loaders

(context) => ({
 People: {
 load: () => db.people.find({user: context.user})
 }
})

Loaders should be provided as a function which returns a map which is used in
the resolvers function. These must return a promise or a value.

mutators

(context) => ({
 People: {
 create: (name) => {
 return db.people.insert({user: context.user, name});
 }
 }
})

Mutators should be provided as a function which returns a map which is used in
the resolvers function. These must return a promise or a value.

resolvers

{
 Person: {
 name(obj, args, context) {
 return obj.name;
 },
 colour(obj, args, context) {
 // Bill likes the colour red, everyone else likes blue.
 return obj.name === 'bill' ? 'RED' : 'BLUE';
 }
 },
 RootQuery: {
 people(obj, args, {loaders: {People}}) {
 return People.load();
 }
 },
 RootMutation: {
 createPerson(obj, {name}, {mutators: {People}}) {
 return People.create(name);
 }
 }
}

Should return a resolver map as described in the
Apollo Docs [http://dev.apollodata.com/tools/graphql-tools/resolvers#Resolver-map].

This will merge with the existing resolvers in core and from previous plugins.

hooks

{
 RootMutation: {
 createPerson: {
 post: async (obj, args, {plugins: {Slack}}, info, person) {
 if (!person) {
 return person;
 }

 await Slack.notify(`A new person just was created with name ${person.name}`);

 return person;
 }
 }
 }
}

Hooks here are pretty special, for each resolver field, you can specify a
pre/post hook that will execute pre and post field resolution.

If your post function accepts four parameters, then it can modify the field
result. It is required that the function resolves a promise (or returns) with
the modified value or simply the original if you didn’t modify it.

setupFunctions

setupFunctions: {
 leader: (options, args) => ({
 leader: {
 filter: (person) => person.place === 1
 },
 }),
}

Setup functions allow you to create filters that control which pubsub.publish() events
send data to the client. If the type in question contains args, clients may subscribe using those arguments to further filter their subscription.

For more information, see the Apollo Docs [https://github.com/apollographql/graphql-subscriptions].

tokenUserNotFound

tokenUserNotFound: async ({jwt, token}) => {
 let profile = await someExternalService(token);
 if (!profile) {
 return null;
 }

 let user = await UserModel.findOneAndUpdate({
 id: profile.id
 }, {
 id: profile.id,
 username: profile.username,
 lowercaseUsername: profile.username.toLowerCase(),
 roles: [],
 profiles: []
 }, {
 setDefaultsOnInsert: true,
 new: true,
 upsert: true
 });

 return user;
}

The tokenUserNotFound hook allows auth integrations to hook into the event
when a valid token is provided but a user can’t be found in the database that
matches the provided id.

The function is async, and should return the user object that was created in the
database, or null if the user wasn’t found. The jwt parameter of the object
is the unpacked token, while token is the original jwt token string.

tags

The tags hook allows a plugin to define tags that are code controlled (added
or enabled by code). Below is an example pulled from the core off topic plugin
on how to create a hook for the OFF_TOPIC name:

[
 {
 name: 'OFF_TOPIC',
 permissions: {
 public: true,
 self: true,
 roles: []
 },
 models: ['COMMENTS'],
 created_at: new Date()
 }
]

You can refer to models/schema/tag.js for the available schema to match when
creating models to enable/disable specific features.

router

(router) => {
 router.get('/api/v1/people', (req, res) => {
 res.json({people: [{name: 'Bob'}]});
 });
}

The Router hook allows you to create a function that accepts the base express
router where you can mount any amount of middleware/routes to do any form of
action needed by external applications.

passport

const FacebookStrategy = require('passport-facebook').Strategy;
const UsersService = require('services/users');
const {ValidateUserLogin, HandleAuthPopupCallback} = require('services/passport');

module.exports = {
 passport(passport) {
 passport.use(new FacebookStrategy({
 clientID: process.env.TALK_FACEBOOK_APP_ID,
 clientSecret: process.env.TALK_FACEBOOK_APP_SECRET,
 callbackURL: `${process.env.TALK_ROOT_URL}/api/v1/auth/facebook/callback`,
 passReqToCallback: true,
 profileFields: ['id', 'displayName', 'picture.type(large)']
 }, async (req, accessToken, refreshToken, profile, done) => {

 let user;
 try {
 const { id, provider, displayName } = profile;
 user = await UsersService.upsertSocialUser(
 req.context,
 id,
 provider,
 displayName
);
 } catch (err) {
 return done(err);
 }

 return ValidateUserLogin(profile, user, done);
 }));
 },
 router(router) {

 // Note that we have to import the passport instance here, it is
 // instantiated after all the strategies have been mounted.
 const {passport} = require('services/passport');

 /**
 * Facebook auth endpoint, this will redirect the user immediately to facebook
 * for authorization.
 */
 router.get('/facebook', passport.authenticate('facebook', {display: 'popup', authType: 'rerequest', scope: ['public_profile']}));

 /**
 * Facebook callback endpoint, this will send the user a html page designed to
 * send back the user credentials upon successful login.
 */
 router.get('/facebook/callback', (req, res, next) => {

 // Perform the facebook login flow and pass the data back through the opener.
 passport.authenticate('facebook', HandleAuthPopupCallback(req, res, next))(req, res, next);
 });
 }
};

translations

const path = require('path');

module.exports = {
 translations: path.join(__dirname, 'translations.yml'),
};

Where the translations.yml contains:

en:
 embedlink:
 copy: "Copy Permalink"

Which overrides the copy for the embedlink.copy template. You can
also provide other languages as well by using the correct language
prefix.

When creating a plugin using this translations hook to override copy
from another plugin, be sure to list it after the plugin it’s overriding
in the plugins.json file.

websockets

module.exports = {
 websockets: {
 onConnect: (connectionParams, connection) => {
 // Do something with the connection params or connection, like
 // logging it out, or incrementing a metric.
 },
 onDisconnect: (connection) => {
 // Do something with the connection params or connection, like
 // logging it out, or decrementing a metric.
 },
 },
}

This websockets hook can be used to attach methods to the
onConnect and onDisconnect events on a server. The intention for
this hook is to allow administrators instrument the active websocket
connections.

schemaLevelResolveFunction

module.exports = {
 schemaLevelResolveFunction: (root, args, ctx, info) => {
 // The GraphQL Operation Name. Example: CoralEmbedStream_Embed
 const name = info.operation.name !== null ? info.operation.name.value : null;
 // Maybe increment a metric based on the operation name...

 // You must _always_ return the root.
 return root;
 },
};

The schemaLevelResolveFunction provides a function that is attached
at the schema level, so that all queries that are made will go through. This
can be used to create a better view of the graph landscape by creating metrics
of resolved query names.

Full Example

Contents of plugins.json:

{
 "server": [
 "people"
]
}

Located in plugins/people/index.js:

module.exports = {
 typeDefs: `
 enum COLOUR {
 RED
 BLUE
 }

 type Person {
 name: String!
 colour: COLOUR!
 }

 type RootMutation {
 createPerson(name: String!): Person
 }

 type RootQuery {
 people: [Person!]
 }

 type Subscription {
 leader: Person
 }
 `,
 context: {
 Slack: () => ({
 notify: (message) => {
 // return a promise after we're done sending notifications.
 }
 })
 },
 loaders: ({user}) => ({
 People: {
 load: () => db.people.find({user})
 }
 }),
 mutators: ({user}) => ({
 People: {
 create: (name) => {
 return db.people.insert({user, name});
 }
 }
 }),
 resolvers: {
 Person: {
 name(obj, args, context) {
 return obj.name;
 },
 colour(obj, args, context) {
 // Bill likes the colour red, everyone else likes blue.
 return obj.name === 'bill' ? 'RED' : 'BLUE';
 }
 },
 RootQuery: {
 people(obj, args, {loaders: {People}}) {
 return People.load();
 }
 },
 RootMutation: {
 createPerson(obj, {name}, {mutators: {People}}) {
 return People.create(name);
 }
 }
 },
 hooks: {
 RootMutation: {
 createPerson: {
 post: async (obj, args, {plugins: {Slack}}, info, person) => {
 if (!person) {
 return person;
 }

 await Slack.notify(`A new person just was created with name ${person.name}`);

 return person;
 }
 }
 }
 },
 setupFunctions: {
 leader: (options, args) => ({
 leader: {
 filter: (person) => person.place === 1
 }
 }
 }
};

 Anatomy of the Slot Component

title: Plugin Slots API
permalink: /api/slots/
toc: true
class: configuration

Plugins make use of “slots” in order to change Talk’s interface.

By default, Talk has various plugins provided by default. We can see this in plugins.default.json:

{
 "server": [
 "talk-plugin-auth",
 "talk-plugin-featured-comments",
 "talk-plugin-offtopic",
 "talk-plugin-respect"
],
 "client": [
 "talk-plugin-auth",
 "talk-plugin-author-menu",
 "talk-plugin-comment-content",
 "talk-plugin-featured-comments",
 "talk-plugin-flag-details",
 "talk-plugin-ignore-user",
 "talk-plugin-member-since",
 "talk-plugin-moderation-actions",
 "talk-plugin-offtopic",
 "talk-plugin-permalink",
 "talk-plugin-respect",
 "talk-plugin-sort-most-replied",
 "talk-plugin-sort-most-respected",
 "talk-plugin-sort-newest",
 "talk-plugin-sort-oldest",
 "talk-plugin-viewing-options"
]
}

Let’s only focus on the plugins which are listed under client - these are the plugins that use slots to inject certain functionality into the Talk UI.

For example, if we look at the Respect plugin (talk-plugin-respect), we can see its client/index.js looks like this:

import RespectButton from './RespectButton';
import translations from './translations.yml';

export default {
 translations,
 slots: {
 commentReactions: [RespectButton],
 },
};

Inside the slots property, we specify which slots the plugin will use. Above we are saying that the RespectButton component is being injected into the slot commentReactions.

Slots can receive an Array of components, so we can use one plugin or many for one slot.

Anatomy of the Slot Component

In Talk core, we have 32 slots available for us to use. The component Slot has a fill property where we establish the name of the slot. It looks like this:

<Slot
 fill="commentReactions"
 {...props}
/>

You won’t have to use this to build plugins, but it’s helpful to find where to embed your plugin.

Slot List

	adminCommentDetailArea

	adminCommentMoreDetails

	adminCommentLabels

	adminModerationSettings

	adminOrganizationSettings

	adminStreamSettings

	adminTechSettings

	adminCommentInfoBar

	adminCommentContent

	adminSideActions

	adminModeration

	adminModerationIndicator

	commentInputDetailArea

	commentAvatar

	commentAuthorName

	commentAuthorTags

	commentTimestamp

	commentInfoBar

	commentContent

	commentReactions

	commentActions

	commentInputArea

	commentTombstone

	draftArea

	streamSettings

	historyCommentTimestamp

	profileSections

	embed

	stream

	streamFilter

	streamQuestionArea

	login

	userProfile

	userDetailCommentContent

Where should I insert my plugin?

The first thing we should consider is what components will be affected by our plugin’s functionality. For example, if we want to add functionality to all the comments that are rendered in a total list of comments, we would use the component Comment.

The slots that are able to add functionality to comments start with comment, like commentContent, or commentReactions, as you can see above.

Disabling plugins via plugins_config

Typically, you will manage plugins via your plugins.json file. If you want to remove a plugin, you would simply delete it there. However, we can also do this directly with the plugins_config.

Let’s look at our example article, views/article.ejs. Here we see we have the Talk embed, and within the embed, we can also send a configuration object. To disable a plugin visually, we can pass true to the property disable_components. Like so:

plugins_config: {
 'talk-plugin-love': {
 disable_components: true,
 },
}

Sending information to slots and plugins

Inside our plugins_config, we can also send properities and our plugins will receive them. For example, if we send this:

plugins_config: {
 test: 'data'
}

The plugin will receive a config object with the properties we’ve passed. If we do a console.log with this.props, we would see:

config: {test: 'data'}

Debugging slots and plugins

You can debug slots and plugins simply by passing the debug property with value true:

plugins_config: {
 debug: true
}

This will turn on a visual aid to show you all of Talk’s available slots and their names. Just move your mouse around!

Slot ClassNames

Slots autogenerate their classes with the prefix talk-slot, followed by the name of the slot in kebab case.

For example, the class autogenerated for the slot commentContent is talk-slot-comment-content.

 Why do we need to create a plugin?

title: Asset Management
permalink: /integrating/asset-management/

One of the most frequent questions that we get asked by organizations trying to
integrate Talk is: How do we hook our CMS up to Talk so that articles are in
sync?

This guide is designed to explain the steps to take your base installation of
Talk and configure it to allow only assets pushed into it from your CMS, and
keep your URL/title in sync. We won’t cover here how to install the plugin, as
it is covered in our Plugins Overview.

Why do we need to create a plugin?

By default, Talk will use “Lazy Asset Creation” to dynamically generate Assets
in Talk in order to make it easier for lighter installations. In order to have
more strict control over this flow, we will create a plugin that will:

	Disable “Lazy Asset Creation” by Overriding a Resolver.

	Create Assets from our CMS by Creating a New Asset Route.

	Facilitate updates from our CMS to keep Talk in sync by Creating an Asset Update Route.

We will then modify our embed so that we can Target the Asset.

But first we should grab our basic plugin structure:

clone our example repo (that comes with all the code below!)
git clone https://github.com/coralproject/talk-plugin-asset-manager-example.git

checkout the step-1 tag that starts us off with the basic file structure of
the plugin.
git checkout step-1

Overriding a Resolver

First we’ll replace the content of the resolver.js file with the following:

// We'll need to modify the behavior of how assets are
// "resolved" in Talk, so we override the base asset resolver
// for the RootQuery type.
module.exports = {
 RootQuery: {
 asset: async (root, args, ctx) => {
 // We'll grab the id of the asset being requested
 // such that we'll be able to lookup the asset.
 const { id } = args;
 if (!id) {
 // If the ID isn't provided, we don't want to do
 // anything.
 return null;
 }

 // A mouthful for sure, but we need to use the loader
 // that is available on the graph context in order to
 // lookup the asset by ID.
 const asset = await ctx.loaders.Assets.getByID.load(id);
 if (!asset) {
 // If the asset can't be found, we don't want to do
 // anything.
 return null;
 }

 // Send the asset back.
 return asset;
 },
 },
};

This serves to override the default asset resolver. You can of course, override
any other field in the schema to perform whatever action your business needs
require, including adding additional resolvers! You can refer to our
GraphQL API Docs to see what other fields you can
override.

Without this, Talk will continue to use the “Lazy Asset Creation” to handle
resolving the asset edge, which is what we want to change.

Note, you can also get to this point by running git checkout step-2!

Creating a New Asset Route

In order to create Assets now, we have to get our CMS to push those into Talk,
the easiest way to do this is by creating a custom route. We won’t cover
specific CMS integrations, but will assume that there is some type of webhook
system you are able to utilize that will trigger when a new article is created.

We’ll replace the contents of the router.js file with the following:

// This file we'll create routes that will facilitate asset creation and
// updates.

const authz = require('middleware/authorization');

module.exports = router => {
 // We'll respond to a POST request on the following route where the request
 // must have a valid ADMIN access token.
 router.post(
 '/api/v1/plugin/asset-manager-example',
 authz.needed('ADMIN'),
 async (req, res, next) => {
 // Get the graph context from the request.
 const { context } = req;

 // Grab from the graph context, the AssetModel that we can use to create
 // the new Asset. Lots of object destructuring here, but this lets us keep
 // the important business logic cleaner.
 const { connectors: { models: { Assets } } } = context;

 try {
 // Now we can create the asset that was passed to us in the body of the
 // request as JSON. Check the schema of the Asset model by looking at:
 // https://github.com/coralproject/talk/blob/master/models/asset.js
 await Assets.create(req.body);

 // Let your webhook callback know we got it!
 return res.status(204).end();
 } catch (err) {
 return next(err);
 }
 }
);
};

This request handler when mounted on Talk will allow your CMS to send a POST
request to ${TALK_ROOT_URL}/api/v1/plugin/asset-manager-example with the
Asset as a JSON payload. In order to protect the endpoint from abuse, we add the
authorization middleware. This middleware essentially says, you must be an
admin to hit this route. We need to generate a token that can be used by your
CMS using the Talk cli tool:

find or create an admin user that can be used as the basis for the token
./bin/cli users list

create a token for the user with the given id
./bin/cli token create ${USER_ID} cms-token

You can attach the generated token to the request a few ways:

	HTTP Header:

 curl ${TALK_ROOT_URL}/api/v1/plugin/asset-manager-example \
 -XPOST \
 -H "Authorization: Bearer ${TOKEN}" \
 -H "Content-Type: application/json" \
 --data "${ASSET_JSON}"

	Query Parameter:

 curl ${TALK_ROOT_URL}/api/v1/plugin/asset-manager-example?access_token=${TOKEN}
 -XPOST \
 -H "Content-Type: application/json" \
 --data "${ASSET_JSON}"

Where ${ASSET_JSON} is the JSON for your Asset matching the
AssetSchema [https://github.com/coralproject/talk/blob/master/models/asset.js].

Note, you can also get to this point by running git checkout step-3!

Creating an Asset Update Route

Now imagine the situation where you decide that you want to change the url slug
of the page, or update the title, now Talk is out of sync! Let’s fix that.

Update your router.js to the following:

// This file we'll create routes that will facilitate asset creation and
// updates.

const authz = require('middleware/authorization');

module.exports = router => {
 // We'll respond to a POST request on the following route where the request
 // must have a valid ADMIN access token.
 router.post(
 '/api/v1/plugin/asset-manager-example',
 authz.needed('ADMIN'),
 async (req, res, next) => {
 // Get the graph context from the request.
 const { context } = req;

 // Grab from the graph context, the AssetModel that we can use to create
 // the new Asset. Lots of object destructuring here, but this lets us keep
 // the important business logic cleaner.
 const { connectors: { models: { Assets } } } = context;

 try {
 // Now we can create the asset that was passed to us in the body of the
 // request as JSON. Check the schema of the Asset model by looking at:
 // https://github.com/coralproject/talk/blob/master/models/asset.js
 await Assets.create(req.body);

 // Let your webhook callback know we got it!
 return res.status(204).end();
 } catch (err) {
 return next(err);
 }
 }
);

 // We'll respond to a PUT request on the following route where the request
 // must also have a valid ADMIN access token.
 router.put(
 '/api/v1/plugin/asset-manager-example/:id',
 authz.needed('ADMIN'),
 async (req, res, next) => {
 // Get the graph context from the request.
 const { context } = req;

 // Grab from the graph context, the AssetModel that we can use to update
 // the Asset. Lots of object destructuring here, but this lets us keep
 // the important business logic cleaner.
 const { connectors: { models: { Assets } } } = context;

 try {
 // Now we can lookup the asset we're updating and apply out updates to
 // the model atomically.
 const asset = await Assets.findOneAndUpdate(
 { id: req.params.id },
 req.body,
 {
 // We want to validate the model being updated.
 runValidators: true,
 }
);
 if (!asset) {
 // The asset indicated by the ID wasn't found, let the webhook know!
 return res.status(404).end();
 }

 // Let your webhook callback know we got it!
 return res.status(204).end();
 } catch (err) {
 return next(err);
 }
 }
);
};

As you can see from the previous step of Creating a New Asset Route
, we have added the new PUT route to the router. This is a simple addition
that allows your CMS to call into Talk when the asset has updated it’s title,
it’s url (or really anything in the AssetSchema [https://github.com/coralproject/talk/blob/master/models/asset.js]) to keep the Talk Admin and links up to date.

Following the previous example, you can issue the request as follows:

curl ${TALK_ROOT_URL}/api/v1/plugin/asset-manager-example/${ASSET_ID} \
 -XPUT \
 -H "Authorization: Bearer ${TOKEN}" \
 -H "Content-Type: application/json" \
 --data "${ASSET_JSON}"

The difference from the previous curl example, is that this one changes the
method from a POST to a PUT, and we add the ${ASSET_ID} to the end of the
url.

Note, you can also get to this point by running git checkout step-4!

Target the Asset

Now that we have a way to create and update Assets, we now need a way to
reference it. One of the most important fields in the Asset model, is the id.
This id can be one generated from your CMS, or some other system, but must
be kept consistent.

When you install Talk, and visit the admin panel, we can see under
/admin/configure in the tab for Tech Settings, an embed snippet:

<div id="coral_talk_stream"></div>
<script src="${TALK_ROOT_URL}static/embed.js" async onload="
 Coral.Talk.render(document.getElementById('coral_talk_stream'), {
 talk: '${TALK_ROOT_URL}'
 });
"></script>

We’ll modify this to the following:

<div id="coral_talk_stream"></div>
<script src="${TALK_ROOT_URL}static/embed.js" async onload="
 Coral.Talk.render(document.getElementById('coral_talk_stream'), {
 talk: '${TALK_ROOT_URL}',
 asset_id: '${ASSET_ID}'
 });
"></script>

Adding the asset_id parameter to the render function will accomplish a very
important task. It will provide Talk with the specific ID of the asset to
associate with the displayed page. This is important because even if you update
the URL in the future, the embed will still reference the correct Asset. The
${ASSET_ID} should be replaced by your CMS with the correct Asset id using
your desired scripting/templating tools.

At this point, you should have a fully built Talk plugin that can be paired with
some work on your CMS to create a fully integrated asset management pipeline!

To view the fully completed source code, visit
https://github.com/coralproject/talk-plugin-asset-manager-example.

 Passport Middleware

title: Authenticating with Talk
permalink: /integrating/authentication/

You can integrate Talk with any external authentication service that will enable
seamless single sign-on for users within your organization. There are a few
methods of doing so:

	Passport Middleware

	Custom Token Integration

Both methods work, but there are product decisions that will affect the overall
choice.

Passport Middleware

You would choose the Passport Middleware route when you are OK using an auth
that is triggered from inside Talk that is not connected to an external auth
state (you don’t use the auth anywhere else now). A great example of this is our
talk-plugin-facebook-auth plugin.

Custom Token Integration

You can integrate Talk with any authentication service to enable single sign-on
for users. The steps to do that are:

	Create a service that generates JWT tokens [https://jwt.io/introduction/].

	Push the token into the embed.

	Implement the tokenUserNotFound hook to
process the token.

Create JWT Token

You should create an external service that is responsible for generating a JWT
for use with Talk. The token can be generated as easy as checking out the
following node app: https://github.com/coralproject/talk-token-example

Using that demo application, you’ll see how you can:

	Create a node application that can issue JWT’s that are compatible with Talk.

	Provide a validation endpoint that can be used by Talk to validate the token
and get the user via the tokenUserNotFound
hook.

It’s also important to note a few requirements for proper integration with Talk.
The generated JWT must contain the following claims:

	jti [https://tools.ietf.org/html/rfc7519#section-4.1.7]: a unique identifier for the token (like a uuid/v4)

	exp [https://tools.ietf.org/html/rfc7519#section-4.1.4]: the expiry date of the token as a unix timestamp

	sub [https://tools.ietf.org/html/rfc7519#section-4.1.2]: the user identifier that can be used to lookup the user in the mongo
database

	The user may not yet exist in the database, but that’s the responsibility
of the tokenUserNotFound hook.

	iss [https://tools.ietf.org/html/rfc7519#section-4.1.1]: the issuer for the token must match the value of TALK_JWT_ISSUER

	aud [https://tools.ietf.org/html/rfc7519#section-4.1.3]: the audience for the token must match the value of TALK_JWT_AUDIENCE

Push token into embed

We’re assuming that your CMS is capable of authenticating a user account, or
at least having the user’s details available to send off to the token creation
service we created/used in the previous step.

Using the token that was created for the user, you simply have to amend the
template where Talk is rendering to read as the following:

Coral.Talk.render(document.getElementById('coralStreamEmbed'), {
 // ...
 auth_token: '<your generated JWT token issued for this user>',
});

Which will pass down the token to Talk and will fire the next steps
tokenUserNotFound hook to complete the auth flow.

Implement tokenUserNotFound

This is the only piece of code you’ll have to write that lives inside Talk.
The role of this code is to live as a plugin and provide Talk with a way of
taking the token that you gave it, and turning into a user.

Using the example application we were working with in the JWT issuing step
above, we’ll need to ensure that the configuration is consistent in-between both
Talk and the JWT issuer. Namely, the following environment variables from our
example issuer and Talk must match:

Talk	Token Issuer Example
——	———————-
TALK_JWT_ISSUER	JWT_ISSUER
TALK_JWT_AUDIENCE	JWT_AUDIENCE
TALK_JWT_SECRET	JWT_SECRET*

* Note that secrets is a pretty complex topic, refer to the
TALK_JWT_SECRET configuration
reference, the basic takeaway is that the secret used to sign the tokens issued
by the issuer must be able to be verified by Talk.

For an example of implementing the plugin, refer to tokenUserNotFound
reference.

 Creating a Custom Moderation Queue

title: Configuring the Talk Admin
permalink: /integrating/configuring-admin/

Using plugins and configuration variables, you can modify the way the Admin looks and how moderation works.

Creating a Custom Moderation Queue

Talk can support custom pluggable mod queues, meaning you can write a plugin that has some logic and determines which comments should appear there. This works by adding a field modQueues in the index.js of your client side plugin, like so:

 modQueues: {
 newQueueKey: {

 // name
 name: 'My Queue Name',

 // material design icon
 icon: 'star',

 // Filter by tags
 tags: ['MY_TAG'],

 // Filter by statuses
 statuses: ['NONE', 'PREMOD', 'ACCEPTED', 'REJECTED'],

 // Filter by comment containing action_type
 action_type: 'FLAG',

 },
 },

So if we wanted to make a Featured queue, we could do this like so:

 modQueues: {
 featured: {
 tags: ['FEATURED'],
 icon: 'star',
 name: 'Featured',
 },
 },

For more information, see here: https://github.com/coralproject/talk/pull/849

Flag Details

To show more detailed information about reporting/flags, you can enable talk-plugin-flag-details.

 Rich Text Editor

title: Configuring the Talk Comment Stream
permalink: /integrating/configuring-comment-stream/

Using plugins and configuration variables, you can modify the way the Talk comment stream behaves. Here are some common configuration options:

Rich Text Editor

To enable our default rich text editor plugin, you’ll need to:

	Enable talk-plugin-rich-text as a server-side and client-side plugin

	If you have talk-plugin-comment-content enabled, you will need to disable this (this supports hyperlinks in the comment body)

Out of the box, our Talk Editor supports Bold, Italic, and Blockquote.

If you want to support another editor, you can create a plugin and replace the client-side one with the editor of your choice.

Sorting/Filtering the Stream

To enable sorting and filtering plugins, you will first need to enable the viewing options plugin:

talk-plugin-viewing-options

Then you can enable these sorting options:

talk-plugin-sort-most-replied
talk-plugin-sort-most-respected
talk-plugin-sort-newest
talk-plugin-sort-oldest

And/or this filtering option:

talk-plugin-offtopic

Comment Timestamp Display

You can customize the way timestamps display to commenters on both the comment stream and their My Profile tab. The default display is via relative timestamps, e.g. “2 minutes ago”, “20 days ago”, “3 months ago”.

Customizing this will require creating a plugin that leverages the two plugin slots commentTimestamp and historyCommentTimestamp to replace this with a custom component.

For more information, please see https://github.com/coralproject/talk/pull/979.

Comment Author Menu

The comment author menu can house plugins related to the comment author. We have recipes for showing the commenter’s “member since” date, and to show a subscriber badge. These will require some integration on your side to connect them to the data source that houses this information.

talk-plugin-member-since

talk-plugin-subscriber

To get started, check out our Talk Recipes: https://github.com/coralproject/talk-recipes

Ignoring Users

To enable the ignore user functionality, you will need to enable a few things.

First, you’ll enable talk-plugin-author-menu, as this houses the Ignore button.

And then we will enable the Ignore User plugin: talk-plugin-ignore-user.

Featured Comments

To enable the featuring of comments, you’ll need to activate talk-plugin-featured-comments. If you would like the Featured Comments tab to be the default tab you land on for the stream, you will need to set the default tab ENV variable:

TALK_DEFAULT_STREAM_TAB=talk-plugin-featured-comments

Reactions

Talk supports a myriad of commenter reactions, such as:

talk-plugin-like
talk-plugin-love
talk-plugin-respect

If you want to build your own reaction plugin, check out our Plugins docs and tutorials.

 <no title>

title: Tracking Talk Events and Metrics
permalink: /integrating/event-tracking-metrics/

Talk supports event emitting via Redux, Apollo and GraphQL. This means that common actions taken within Talk, such as successfully posting a comment, posting a reaction, or changing a setting, are automatically emitted from Talk. To send these events to your analytics tool of choice, however, will require some integration on your part.

First, we want to uncomment the tracking code in article.ejs (https://github.com/coralproject/talk/blob/93bda87ad061a2dc5eb8dc5b65a579a20efb76f7/views/article.ejs#L34). This will enable events to be sent via the Talk embed that is on your article pages. This will start a stream of events to the browser console, so that you can see which events are available.

 events: function(events) {
 events.onAny(function(eventName, data) {
 // logs all available events.
 console.log(eventName, data);
 });
 },

Now, we want to add our code that sends the events to our analytics system. In this case, we’re sending the PostComment.success event. The particular way you send this will depend on what tool you’re using. Refer to your tool’s API and docs to determine this.

 events: function(events) {
 events.onAny(function(eventName, data) {
 console.log(eventName, data);
 if (eventName === 'mutation.PostComment.success') {
 my_event_tracker.send('postComment', data);
 }
 });
 },

You can continue this process for any specific events you’d like to track. You can also remove the console.log to stop events being emitted to the browser and instead only send the events to your analytics tool.

PR for Reference: https://github.com/coralproject/talk/pull/785

 Configuring SMTP

title: Notifications
permalink: /integrating/notifications/

Talk currently supports 3 types of email notifications.

	When someone replies to my comment

	When a staff member replies to my comment

	When my comment gets featured

Talk support 3 options for notification frequency: immediately, hourly or daily. Commenters can also opt-out of email notifications. Notifications are set to OFF by default.

Commenters cannot enable notifications until they have verified their email.

Note: Notifications are not currently supported for users that sign-up via Facebook or Google auth, or don’t have an email attached to their account for any other reason.

Configuring SMTP

You must setup SMTP to use notifications. The following ENV variables must be set:

TALK_SMTP_FROM_ADDRESS=email@email.com
TALK_SMTP_USERNAME=username
TALK_SMTP_PASSWORD=password
TALK_SMTP_HOST=smtp.domain.net
TALK_SMTP_PORT=2525

Enabling Notifications

Enabling the talk-plugin-notifications creates a NotificationManager that creates and manages events send from the event emitter that is linked to the Graph API PubSub system.

Adding the talk-plugin-notifications plugin will also enable the notifications plugin hook. Any plugin that registers before the talk-plugin-notifications plugin will get picked up by.

See https://github.com/coralproject/talk/blob/8b669a31c551a042f0f079d8cfc16825673eb8f0/plugins/talk-plugin-notifications-reply/index.js for an example.

Notification Categories

Talk currently supports the following Notifications options out of the box:

talk-plugin-notifications-category-reply
talk-plugin-notifications-category-staff-reply
talk-plugin-notifications-category-featured

Notification Digests

Talk supports hourly and daily digests out the box, if you would like to create your own, refer to the below:

https://github.com/coralproject/talk/blob/9cc9969320dca47bb0f8f81e8d944ae4d19e548b/plugins/talk-plugin-notifications/server/connect.js#L69-L102

Connect API

This exposes the graph/connectors.js via the connect hook.

 module.exports = {
 connect(connectors) {
 // use `connectors`, contents of https://github.com/coralproject/talk/blob/b758dc91cb1f1969ecd895b6059306b318995b33/graph/connectors.js#L104
 }
 }

See https://github.com/coralproject/talk/blob/90290cfa2de88e62f687e1ed0235ba6dfe4cde26/plugins/talk-plugin-notifications/server/connect.js for an example.

Email Templates

Email templates are text based and support translations. If you would like to create a new email template, you can register it via the Connect API, see https://github.com/coralproject/talk/blob/8b669a31c551a042f0f079d8cfc16825673eb8f0/plugins/talk-plugin-notifications/server/connect.js#L12-L28###

 <no title>

title: Styling Talk with CSS
permalink: /integrating/styling-css/

You can add your own stylesheet in Admin > Configure > Tech Settings.

If you would like to change the styling of any elements in Talk, we provide global classnames with the prefix talk-. The easiest way to find the classname for the element you’re looking for is to use the web inspector, and then update your stylesheet accordingly.

Plugins also have their own stylesheets located in the client directory.

Here is an example stylesheet that we use on our Coral Blog [https://coralproject.net/blog]:

/*
 * You can use this stylesheet as a place to get started
 * for styling your own version of Talk!
 * Author: Sam Hankins, Coral Project, 2018
 * License: Apache 2.0
 */

* {
 /* font-family: inherit; */
}

html, body {
 width:auto;
 height:auto;
}

body {
 font-family: Helvetica, 'Helvetica Neue', Verdana, sans-serif;
 width: 100%;
 font-size: 14px;
 margin: 0px;
 padding: 0px 0px 100px 0px;
 height: auto !important;
}

#talk-embed-stream-container {
 padding: 4px;
}

.expandForSignin {
 min-height: 600px;
}

.coralButton {
 margin: 5px 10px 5px 0px;
 background: none;
 padding: 0px;
 border: none;
 font-size: inherit;
}

.coralButton:hover {
 border-radius: 2px;
 color: #767676;
}

.coralButton i {
 margin-right: 3px;
}

.coralHr {
 border: 0;
 height: 0;
 border-top: 1px solid rgba(0, 0, 0, 0.1);
 border-bottom: 1px solid rgba(255, 255, 255, 0.3);
}

.screen-reader-text {
 clip: rect(1px, 1px, 1px, 1px);
 height: 1px;
 width: 1px;
 overflow: hidden;
 position: absolute !important;
}

/* Notification styles */
#coral-notif {
 position: fixed;
 border: 0;
 background: rgb(105,105,105);
 color: white;
 border-radius: 2px;
 font-weight: bold;
}

/* Info Box Styles */

.talk-plugin-infobox-info {
 top: 0;
 border: 0;
 background: #DEEDFF;
 color: #2a2a2a;
 width: 100%;
 text-align: left;
 padding: 10px;
 margin-bottom: 10px;
 display: block;
 box-sizing: border-box;
 border-radius: 2px;
}

.talk-plugin-infobox-info em{
 font-style: italic;
}

.talk-plugin-infobox-info strong{
 font-weight: bold;
}

.talk-plugin-infobox-info blockquote{
 border-left: solid 2px #2a2a2a;
 padding-left: 10px;
}

.talk-plugin-infobox-info a{
 color: #2a2a2a;
}

/* Question Box Styles */

.talk-stream-comments-container {
 position: relative;
}

/* Comment styles */
.comment {
 margin-bottom: 10px;
 position: relative;
}

.talk-plugin-commentcontent-text {
 margin-bottom: 7px;
 font-size: 16px;
 font-weight: 100;
 line-height: 1.3;
}

/* Tag Labels */

.talk-plugin-tag-label {
 background-color: #4C1066;
 color: white;
 display: inline-block;
 border-radius: 2px;
 font-size: 12px;
 padding: 5px 6px;
}

/* Comment Action Styles */

.commentActionsRight, .replyActionsRight {
 display: flex;
 justify-content: flex-end;
}
.commentActionsLeft, .replyActionsLeft {
 display: flex;
 justify-content: flex-start;
 float: left;
}

button.comment__action-button,
.comment__action-button button {
 cursor: pointer;
}

button.comment__action-button[disabled],
.comment__action-button[disabled] button {
 cursor: inherit;
}

.comment__action-button--nowrap {
 white-space: nowrap;
}

.likedButton {
 color: rgb(0,134,227);
}

.flaggedIcon {
 color: #F00;
}

/* Flag Styles */

.talk-plugin-flags-popup-form {
 margin-bottom: 10px;
}

.talk-plugin-flags-popup-header {
 font-weight: bold;
 font-size: 1rem;
 margin-bottom: 10px;
}

.talk-plugin-flags-popup-radio {
 margin:5px;
}

.talk-plugin-flags-popup-radio-label {
 margin:5px;
 font-weight: 400;
 font-size: .9rem;
}

.talk-plugin-flags-popup-counter {
 float: left;
 margin-top: 21px;
 color: #999;
}

.talk-plugin-flags-popup-button {
 float: right;
 margin-top: 10px;
}

.talk-plugin-flags-reason-text {
 margin-left: 20px;
 margin-top: 5px;
 width: 75%;
 font-size: 16px;
 border: 1px solid #ccc;
 max-width: calc(100% - 40px);
}

/* Close comments */

.close-comments-message {
 box-sizing: border-box;
 width: 100%;
 height: 100px;
}

.close-comments-confirm-wrapper {
 float: right;
}

.close-comments-alert {
 background-color: #d65344;
 color: white;
 font-size: 1.33rem;
 padding: 5px;
}

.close-comments-alert i.material-icons {
 font-size: 16px !important;
}

/* Load More */

.talk-load-more {
 text-align: center;
}

.talk-load-more button {
 width: 100%;
 text-align: center;
 color: #FFF;
 background-color: #2376D8;
 border-radius: 2px;
 cursor: pointer;
 padding: 10px;
 border-radius: 2px;
 line-height: 1em;
 text-transform: capitalize;
 display: inline-block;
}

.talk-load-more:hover button {
 background-color: #4399FF;
}

.talk-new-comments {
 width: 100%;
 text-align: center;
 margin: 4px 0;
}

.talk-load-more-replies {
 width: 100%;
 padding-left: 20px;
 box-sizing: border-box;
}

.talk-load-more-replies .talk-load-more-button {
 background-color: transparent;
 color: #979797;
 border: #979797 solid 1px;
 border-radius: 2px;
}

.talk-load-more-replies .talk-load-more:hover button {
 background-color: #979797;
 color: white;
}

.hidden {
 visibility: hidden;
 display: none;
}

 Languages

title: Translations and i18n
permalink: /integrating/translations-i18n/

We’re so proud to have received submissions from a lot of 3rd party contributors translating Talk into their own languages.

Languages

You can see what languages Talk currently supports here: https://github.com/coralproject/talk/tree/master/locales

You can set the default language Talk uses by setting TALK_DEFAULT_LANG in your ENV.

Changing the Language

To change Talk’s language, to see what translations are missing, or to troubleshoot translations, you can update the language in the local storage of your browser, by typing this into your browser console:

localStorage.setItem('locale', 'fr')

That would set the language to French.

Contributing a Translation

To add a new Talk translation, simply translate the en.yml file (https://github.com/coralproject/talk/blob/master/locales/en.yml) into a new yml file with the language code of your choice. You can find supported language codes here: http://www.localeplanet.com/icu/iso639.html

If you are a developer contributing a new language, you’ll need to add the required i18n support in the i18n files (or you can leave that to us if you like). If you’re a non-developer, you can submit the translation via GitHub if you feel comfortable doing that, or feel free to email it to us via our Support: support@coralproject.net

If you want to suggest a new language or put a placeholder for a translation you’re working on, feel free to create a GitHub issue: https://github.com/coralproject/talk/issues/new

 <no title>

title: talk-plugin-akismet
permalink: /plugin/talk-plugin-akismet/
layout: plugin
plugin:
name: talk-plugin-akismet
provides:
- Server
- Client

Enables spam detection from Akismet [https://akismet.com/]. Comments will be passed to the Akismet API for spam detection. If a comment
is determined to be spam, it will prompt the user, indicating that the comment might be considered spam. If the user continues after this
point with the still spam-like comment, the comment will be reported as containing spam, and sent for moderator approval.

Note: Akismet [https://akismet.com/] is a premium service, charges may apply.

Configuration:

	TALK_AKISMET_API_KEY (required) - The Akismet API key located on your account page.

	TALK_AKISMET_SITE (required) - The URL where you are embedding the comment stream on to provide context to Akismet. If you’re hosting talk on https://talk.mynews.org/, and your news site is https://mynews.org/, then you should set this parameter to https://mynews.org/

 GDPR Compliance

title: talk-plugin-auth
permalink: /plugin/talk-plugin-auth/
layout: plugin
plugin:
name: talk-plugin-auth
default: true
provides:
- Client

This provides the base plugin that is the basis for all auth based plugins that
utilize our internal authentication system.

To sync Talk auth with your own auth systems, you can use this plugin as a
template.

GDPR Compliance

In order to facilitate compliance with the
EU General Data Protection Regulation (GDPR) [https://www.eugdpr.org/], you
should review our GDPR Compliance guidelines.

 <no title>

title: talk-plugin-author-menu
permalink: /plugin/talk-plugin-author-menu/
layout: plugin
plugin:
name: talk-plugin-author-menu
default: true
provides:
- Client

Enables plugins to integrate into the embed stream at the author name location.
We have recipes for showing the commenter’s “member since” date, and to show a
subscriber badge. These will require some integration on your side to connect
them to the data source that houses this information.

	talk-plugin-member-since

	talk-plugin-subscriber

To get started, check out our Talk Recipes [https://github.com/coralproject/talk-recipes].

 <no title>

title: talk-plugin-comment-content
permalink: /plugin/talk-plugin-comment-content/
layout: plugin
plugin:
name: talk-plugin-comment-content
default: true
provides:
- Client

Pluginizes the text of a comment to support custom treatment of this text. This
plugin currently parses the given text to see if it contains a link, and makes
them clickable using
react-linkify [https://www.npmjs.com/package/react-linkify].

 <no title>

title: talk-plugin-deep-reply-count
permalink: /plugin/talk-plugin-deep-reply-count/
layout: plugin
plugin:
name: talk-plugin-deep-reply-count
provides:
- Server

The Deep Reply Count plugin will add a new graph edge, Comment.deepReplyCount
that will return the count of all descendant replies.

Warning: Enabling the talk-plugin-deep-reply-count plugin introduces a significant
performance impact on larger sites, use with care.

 GDPR Compliance

title: talk-plugin-facebook-auth
permalink: /plugin/talk-plugin-facebook-auth/
layout: plugin
plugin:
name: talk-plugin-facebook-auth
depends:
- name: talk-plugin-auth
provides:
- Server
- Client

Enables sign-in via Facebook via the server side passport middleware.

Configuration:

	TALK_FACEBOOK_APP_ID (required) - The Facebook App ID for your Facebook
Login enabled app. You can learn more about getting a Facebook App ID at the
Facebook Developers Portal [https://developers.facebook.com] or by visiting
the Creating an App ID [https://developers.facebook.com/docs/apps/register]
guide. This is only required while the talk-plugin-facebook-auth plugin is
enabled.

	TALK_FACEBOOK_APP_SECRET (required) - The Facebook App Secret for your
Facebook Login enabled app. You can learn more about getting a Facebook App
Secret at the Facebook Developers Portal [https://developers.facebook.com]
or by visiting the
Creating an App ID [https://developers.facebook.com/docs/apps/register]
guide. This is only required while the talk-plugin-facebook-auth plugin is
enabled.

GDPR Compliance

In order to facilitate compliance with the
EU General Data Protection Regulation (GDPR) [https://www.eugdpr.org/], you
should review our GDPR Compliance guidelines.

 <no title>

title: talk-plugin-featured-comments
permalink: /plugin/talk-plugin-featured-comments/
layout: plugin
plugin:
name: talk-plugin-featured-comments
default: true
provides:
- Server
- Client

Enables the ability for Moderators to feature and un-feature comments via the
Stream and the Admin. Featured comments show in a first-place tab on the Stream
if there are any featured comments on that story.

When paired with the talk-plugin-moderator-actions
plugin, moderators will have the option of featuring comments from the comment
stream.

 <no title>

title: talk-plugin-flag-details
permalink: /plugin/talk-plugin-flag-details/
layout: plugin
plugin:
name: talk-plugin-flag-details
default: true
provides:
- Client

Pluginizes the Flag Details area of comments in the Moderation Queues to display
data. Some basic details are already included on flags by default.

 GDPR Compliance

title: talk-plugin-google-auth
permalink: /plugin/talk-plugin-google-auth/
layout: plugin
plugin:
name: talk-plugin-google-auth
depends:
- name: talk-plugin-auth
provides:
- Server
- Client

Enables sign-in via Google+ via the server side passport middleware.

You will need to enable the Google+ API in the dashboard and create credentials
for a new OAuth client ID web application. The authorized JavaScript origin
should be set to the Talk domain, and the authorized redirect URI should be set
to http://<example.com>/api/v1/auth/google/callback. This is only required while
the talk-plugin-google-auth plugin is enabled.

Configuration:

	TALK_GOOGLE_CLIENT_ID (required) - The Google OAuth2 client ID for your
Google login web app. You can learn more about getting a Google Client ID at
the Google API Console [https://console.developers.google.com/apis/].

	TALK_GOOGLE_CLIENT_SECRET (required) - The Google OAuth2 client ID for
your Google login web app. You can learn more about getting a Google Client
ID at the Google API Console [https://console.developers.google.com/apis/].

GDPR Compliance

In order to facilitate compliance with the
EU General Data Protection Regulation (GDPR) [https://www.eugdpr.org/], you
should review our GDPR Compliance guidelines.

 <no title>

title: talk-plugin-ignore-user
permalink: /plugin/talk-plugin-ignore-user/
layout: plugin
plugin:
name: talk-plugin-ignore-user
default: true
provides:
- Client

Enables ability for users to ignore (or “mute”) other users. If a user is
ignored, you will not see any of their comments. You can un-ignore a user via
the My Profile tab.

 <no title>

title: talk-plugin-like
permalink: /plugin/talk-plugin-like/
layout: plugin
plugin:
name: talk-plugin-like
provides:
- Server
- Client

Enables a like reaction button.

 Features

title: talk-plugin-local-auth
permalink: /plugin/talk-plugin-local-auth/
layout: plugin
plugin:
name: talk-plugin-local-auth
default: true
provides:
- Client
- Server

This plugin will eventually contain all the local authentication code that is
responsible for creating, resetting, and managing accounts provided locally
through an email and password based login.

Features

	Email Change: Allows users to change their existing email address on their account.

	Local Account Association: Allows users that have signed up with an external auth strategy (such as Google) the ability to associate a email address and password for login. Note: Existing users with external authentication will be prompted to setup a local account when they sign in and when new users create an account.

GDPR Compliance

In order to facilitate compliance with the
EU General Data Protection Regulation (GDPR) [https://www.eugdpr.org/], you
should review our GDPR Compliance guidelines.

 <no title>

title: talk-plugin-love
permalink: /plugin/talk-plugin-love/
layout: plugin
plugin:
name: talk-plugin-love
provides:
- Server
- Client

Enables a love reaction button.

 <no title>

title: talk-plugin-member-since
permalink: /plugin/talk-plugin-member-since/
layout: plugin
plugin:
name: talk-plugin-member-since
default: true
depends:
- name: talk-plugin-author-menu
provides:
- Client

It will show the date that the member/user joined when you hover over the
username as retrieved from the createdAt time on the user.

 <no title>

title: talk-plugin-moderator-actions
permalink: /plugin/talk-plugin-moderator-actions/
layout: plugin
plugin:
name: talk-plugin-moderator-actions
default: true
provides:
- Client

Enables in-stream moderation so that Moderators can reject, approve comments,
as well as ban users, directly from the comment stream. When
talk-plugin-featured-comments is
enabled, it will also give the User’s an option to feature from the stream.

 <no title>

title: talk-plugin-notifications-category-featured
permalink: /plugin/talk-plugin-notifications-category-featured/
layout: plugin
plugin:
name: talk-plugin-notifications-category-featured
depends:
- name: talk-plugin-notifications
- name: talk-plugin-featured-comments
provides:
- Server
- Client

When a comment is featured (via the
talk-plugin-featured-comments
plugin), the user will receive a notification email.

 <no title>

title: talk-plugin-notifications-category-reply
permalink: /plugin/talk-plugin-notifications-category-reply/
layout: plugin
plugin:
name: talk-plugin-notifications-category-reply
depends:
- name: talk-plugin-notifications
provides:
- Server
- Client

Replies made to each user will trigger an email to be sent with the notification
details if enabled.

 <no title>

title: talk-plugin-notifications-category-staff
permalink: /plugin/talk-plugin-notifications-category-staff/
layout: plugin
plugin:
name: talk-plugin-notifications-category-staff
depends:
- name: talk-plugin-notifications
provides:
- Server
- Client

Replies made to each user by a staff member will trigger an email to be sent
with the notification details if enabled.

 <no title>

title: talk-plugin-notifications-digest-daily
permalink: /plugin/talk-plugin-notifications-digest-daily/
layout: plugin
plugin:
name: talk-plugin-notifications-digest-daily
depends:
- name: talk-plugin-notifications
provides:
- Server
- Client

Enables a digesting option for users to digest their notifications on an DAILY
basis, where the notification batching occurs every day at midnight in the
America/New_York timezone.

 <no title>

title: talk-plugin-notifications-digest-hourly
permalink: /plugin/talk-plugin-notifications-digest-hourly/
layout: plugin
plugin:
name: talk-plugin-notifications-digest-hourly
depends:
- name: talk-plugin-notifications
provides:
- Server
- Client

Enables a digesting option for users to digest their notifications on an HOURLY
basis, where the notification batching occurs every hour in the
America/New_York timezone.

 Email Subjects

title: talk-plugin-notifications
permalink: /plugin/talk-plugin-notifications/
layout: plugin
plugin:
name: talk-plugin-notifications
provides:
- Server
- Client

Enables the Notification system for sending out enabled email notifications to
users when they interact with Talk. By itself, this plugin will not send
anything. You need to enable one of the talk-plugin-notifications-category-* plugins.

Configuration:

	TALK_DISABLE_REQUIRE_EMAIL_VERIFICATIONS_NOTIFICATIONS - When TRUE, it will disable the verification email check before sending notifications for those emails. Note that organizations implementing a custom authentication system must disable this feature, as they don’t use our integrated auth. (Default FALSE).

	TALK_CLIENT_FORCE_NOTIFICATION_SETTINGS - When TRUE, the settings pane for notifications will show always, even if the user does not have a local profile. (Default FALSE).

You can enable other notification options by adding more
talk-plugin-notification-* plugins!

Email Subjects

While it seems in your notification category plugin you can set the subject
line by adjusting the translation, Talk’s default behavior is to add a prefix
before the subject of each email sent. This is always set to the
TALK-EMAIL-SUBJECT-PREFIX
configuration variable. You should change this parameter if you want to affect
how the subject is rendered.

 <no title>

title: talk-plugin-offtopic
permalink: /plugin/talk-plugin-offtopic/
layout: plugin
plugin:
name: talk-plugin-offtopic
default: true
provides:
- Server
- Client

Allows the comment authors to tag their comment as Off-Topic which will add a
visible badge on the frontend to other users that their comment is off-topic.

 <no title>

title: talk-plugin-permalink
permalink: /plugin/talk-plugin-permalink/
layout: plugin
plugin:
name: talk-plugin-permalink
default: true
provides:
- Client

Enables a Link button that will provide a permalink to the comment that can be
shared with others.

 Download My Profile

title: talk-plugin-profile-data
layout: plugin
permalink: /plugin/talk-plugin-profile-data/
plugin:
name: talk-plugin-profile-data
default: true
provides:
- Client
- Server

Provides a series of profile data management utilities to users via their
profile tab.

Download My Profile

Enables the ability for users to download their profile data in a zip file from
their profile tab in the comment stream. Once clicked, an email will be sent
that contains a download link. Only one link can be generated every 7 days, and
the link will be valid for 24 hours.

The downloaded zip file will contain all the users comments in a CSV format
including those that have been rejected, withheld, or still in pre-moderation.

GDPR Compliance

In order to facilitate compliance with the
EU General Data Protection Regulation (GDPR) [https://www.eugdpr.org/], you
should review our GDPR Compliance guidelines. This
plugin can work with its client plugin disabled and then directly integrated
with existing workflows for an organization of any size through use of the API
that this plugin provides.

 <no title>

title: talk-plugin-remember-sort
permalink: /plugin/talk-plugin-remember-sort/
layout: plugin
plugin:
name: talk-plugin-remember-sort
provides:
- Client

Enables saving a user’s last sort selection as they browse other articles.

 <no title>

title: talk-plugin-respect
permalink: /plugin/talk-plugin-respect/
layout: plugin
plugin:
name: talk-plugin-respect
default: true
provides:
- Server
- Client

Enables a respect reaction button.

 Installation

title: talk-plugin-rich-text
permalink: /plugin/talk-plugin-rich-text/
layout: plugin
plugin:
name: talk-plugin-rich-text
provides:
- Client
- Server

Enables secure rich text support server-side.

Installation

Add "talk-plugin-rich-text" to the plugins.json in your Talk installation.
This plugin provides a server and a client side implementation.

Note: Possible plugin conflict

The plugin talk-plugin-comment-content will prevent this plugin from rendering comments with rich text styling and is not needed if this plugin is enabled.

Server implementation

How does this work?

This plugin uses the comment.metadata field to store the richTextBody. By
adding richTextBody to the schema we can later on resolve it as part of the
comment. The original comment.body is never touched. Using the metadata
field allow us to build plugins that are not invasive to the core and also test
the capabilities of our plugin framework. We encourage you to see the files and
check how easy is to build plugins! If you have any feedback, please let us
know.

Configuration

There is a config.js in the root folder. This file contains the recommended
settings.

highlightLinks

A boolean to highlight links. Set it to false to turn it off.

linkify

Settings for highlighting links. These will only apply if higlightLinks is set to true.

dompurify

Rules to sanitize html input. We use DOMPurify [https://github.com/cure53/DOMPurify] to prevent web attacks and XSS. Here is the complete list of settings [https://github.com/cure53/DOMPurify]

jsdom

In order to run html in the server we need jsdom [https://github.com/jsdom/jsdom]. Usually you wouldn’t need to modify this settings.

Client implementation

How does this work?

This plugin contains 2 important components:

	The Editor (./components/Editor.js)

	The Comment Content Renderer (./components/CommentContent.js)

The editor component utilizes the contentEditable [https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Editable_content] and execCommand API.

If you check our index.js you will notice that we inject this editor in the
commentBox slot. We do this to replace the core comment box with this one.

Now, in order to render the new styled comments we need a comment renderer. For
this task we will have to replace our core comment renderer by using the
commentContent slot.

If you are not familiar with GraphQL client/index.js will look complicated,
but fear not! With those functions we specify what to expect from the server
schema, how to perform optimistic updates and how keep the client store updated
with the latest changes.

We encourage you to see the files and check how easy is to build plugins! If you
have any feedback, please let us know.

 <no title>

title: talk-plugin-slack-notifications
permalink: /plugin/talk-plugin-slack-notifications/
layout: plugin
plugin:
name: talk-plugin-slack-notifications
provides:
- Server

Enables all new comments that are written to be posted to a Slack channel as
well. Configure an
Incoming Webhook [https://api.slack.com/incoming-webhooks]
app and provide that url in the form of the SLACK_WEBHOOK_URL
detailed below.

Warning: On high volume sites, this means every single comment will flow into
Slack, if this isn’t what you want, be sure to use the provided plugin as a
recipe to further customize the behavior.

Configuration:

	SLACK_WEBHOOK_URL (required) - The webhook url that will be
used to post new comments to.

 <no title>

title: talk-plugin-sort-most-liked
permalink: /plugin/talk-plugin-sort-most-liked/
layout: plugin
plugin:
name: talk-plugin-sort-most-liked
depends:
- name: talk-plugin-like
- name: talk-plugin-viewing-options
provides:
- Server
- Client

Provides a sort for the comments with the most like reactions first.

 <no title>

title: talk-plugin-sort-most-loved
permalink: /plugin/talk-plugin-sort-most-loved/
layout: plugin
plugin:
name: talk-plugin-sort-most-loved
depends:
- name: talk-plugin-love
- name: talk-plugin-viewing-options
provides:
- Server
- Client

Provides a sort for the comments with the most love reactions first.

 <no title>

title: talk-plugin-sort-most-replied
permalink: /plugin/talk-plugin-sort-most-replied/
layout: plugin
plugin:
name: talk-plugin-sort-most-replied
default: true
depends:
- name: talk-plugin-viewing-options
provides:
- Server
- Client

Provides a sort for the comments with the most replies first.

 <no title>

title: talk-plugin-sort-most-respected
permalink: /plugin/talk-plugin-sort-most-respected/
layout: plugin
plugin:
name: talk-plugin-sort-most-respected
default: true
depends:
- name: talk-plugin-respect
- name: talk-plugin-viewing-options
provides:
- Server
- Client

Provides a sort for the comments with the most respect reactions first.

 <no title>

title: talk-plugin-sort-newest
permalink: /plugin/talk-plugin-sort-newest/
layout: plugin
plugin:
name: talk-plugin-sort-newest
default: true
depends:
- name: talk-plugin-viewing-options
provides:
- Server
- Client

Provides a sort for the newest comments first.

 <no title>

title: talk-plugin-sort-oldest
permalink: /plugin/talk-plugin-sort-oldest/
layout: plugin
plugin:
name: talk-plugin-sort-oldest
default: true
depends:
- name: talk-plugin-viewing-options
provides:
- Server
- Client

Provides a sort for the oldest comments first.

 <no title>

title: talk-plugin-subscriber
permalink: /plugin/talk-plugin-subscriber/
layout: plugin
plugin:
name: talk-plugin-subscriber
provides:
- Server
- Client

Enables a Subscriber badge to be added to comments where the author has the
SUBSCRIBER tag. This must match with a custom auth integration that adds the
tag to the users that are subscribed to the service.

 <no title>

title: talk-plugin-toxic-comments
permalink: /plugin/talk-plugin-toxic-comments/
layout: plugin
plugin:
name: talk-plugin-toxic-comments
provides:
- Server
- Client

Using the Perspective API [http://perspectiveapi.com/], this
plugin will warn users and reject comments that exceed the predefined toxicity
threshold. For more information on what Toxic Comments are, check out the
Toxic Comments documentation.

Configuration:

	TALK_PERSPECTIVE_API_KEY (required) - The API Key for Perspective. You
can register and get your own key at http://perspectiveapi.com/.

	TALK_TOXICITY_THRESHOLD - If the comments toxicity exceeds this threshold,
the comment will be rejected. (Default 0.8)

	TALK_PERSPECTIVE_API_ENDPOINT - API Endpoint for hitting the
perspective API. (Default https://commentanalyzer.googleapis.com/v1alpha1)

	TALK_PERSPECTIVE_TIMEOUT - The timeout for sending a comment to
be processed before it will skip the toxicity analysis, parsed by
ms [https://www.npmjs.com/package/ms]. (Default 300ms)

	TALK_PERSPECTIVE_DO_NOT_STORE - Whether the API is permitted to store comment and context from this request. Stored comments will be used for future research and community model building purposes to improve the API over time. (Default true) Perspective API - Analize Comment Request [https://github.com/conversationai/perspectiveapi/blob/master/api_reference.md#analyzecomment-request]

 <no title>

title: talk-plugin-viewing-options
permalink: /plugin/talk-plugin-viewing-options/
layout: plugin
plugin:
name: talk-plugin-viewing-options
default: true
provides:
- Client

Pluginizes the sorting/viewing options for a comment stream.

 Server and Client Plugins

title: Plugins Overview
permalink: /plugins/
toc: true

Plugins are the integration point between the Talk core code and custom
functionality. We provide methods to inject behavior into the server side and
the client side application to affect different parts of the application
life cycle.

Server and Client Plugins

When you’re adding a plugin to Talk, you can specify it in the client and/or
the server section. If you only want to enable the server side component of a
plugin, you simply only specify the plugin in the server section. If you only
want the client side plugin, the client section.

Plugins listed in the Plugins Directory will
indicate if they have/support a client/server plugin, and should be activated
accordingly.

Plugin Registration

In order for a plugin to be active in a Talk install, it must be registered.
The parsing order for the plugin registration is as follows:

	TALK_PLUGINS_JSON environment variable

	plugins.json file

	plugins.default.json file

If you need to “disable all plugins”, you can simply provide {} as the
contents of TALK_PLUGINS_JSON or the plugins.json.

The format for this is thus:

{
 "server": [
 "people"
]
}

Where we have a server key with an array of plugins that match the folder
name in the plugins/ folder. For example, the above config would
require a plugin from plugins/people, which must provide a index.js file
that returns an object that matches the Plugin Specification.

If the package is external (available on NPM) you can specify the string for
the version by using an object instead, for example:

{
 "server": [
 {"people": "^1.2.0"}
]
}

External plugins can be resolved by running:

./bin/cli plugins reconcile

This achieves two things:

	It will traverse into local plugin folders and install their dependencies.
Note that if the plugin is already installed and available in the
node_modules folder, it will not be fetched again unless there is a version
mismatch. This will result in the project package.json and yarn.lock
files to be modified, this is normal as this ensures that repeated deployments
(with the same config) will have the same config, these changes should not be
committed to source control.

	It will seek out dependencies that are listed in the object notation and try
to install them from npm.

Plugin Dependencies

You may also include additional external dependencies in your local packages by
specifying a package.json at your plugin root which will result in a
node_modules folder being generated at the plugin root with your specific
dependencies.

Deployment Solutions

Plugins can be deployed with a production instance of Talk.

Source

Source deployments can just modify the plugins.json file and include any
local plugins into the plugins/ directory. After including the config, you
need to reconcile the plugins and build the static assets:

get plugin dependencies and remote plugins
./bin/cli plugins reconcile

build static assets (including enabled client side plugins)
yarn build

Then the application can be started as is.

Docker

If you deploy using Docker, you can extend from the *-onbuild image, an
example Dockerfile for your project could be:

FROM coralproject/talk:4.5-onbuild

Where the directory for your instance would contain a plugins.json file
describing the plugin requirements and a plugins directory containing any
other local plugins that should be included.

Onbuild triggers will execute when the image is building with your custom
configuration and will ensure that the image is ready to use by building all
assets inside the image as well.

For more information on the onbuild image, refer to the
Installation from Docker documentation.

Recipes

Recipes are plugin templates provided by the Coral Core team. Developers can use
these recipes to build their own plugins. You can find all the Talk recipes
here: github.com/coralproject/talk-recipes [https://github.com/coralproject/talk-recipes/].

 <no title>

title: Plugins Directory
permalink: /plugins-directory/
layout: plugins
data: plugins
class: plugins

Talk provides a growing ecosy