

 Navigation

 	
 index

 	cookies 1.0.0 documentation

About cookies.py

What is this and what is it for?

cookies.py is a Python module for working with HTTP cookies: parsing and
rendering ‘Cookie:’ request headers and ‘Set-Cookie:’ response headers,
and exposing a convenient API for creating and modifying cookies. It can be
used as a replacement of Python’s Cookie.py (aka http.cookies).

Features

	Rendering according to the excellent new RFC 6265
(rather than using a unique ad hoc format inconsistently relating to
unrealistic, very old RFCs which everyone ignored). Uses URL encoding to
represent non-ASCII by default, like many other languages’ libraries

	Liberal parsing, incorporating many complaints about Cookie.py barfing
on common cookie formats which can be reliably parsed (e.g. search ‘cookie’
on the Python issue tracker)

	Well-documented code, with chapter and verse from RFCs
(rather than arbitrary, undocumented decisions and huge tables of magic
values, as you see in Cookie.py).

	Test coverage at 100%, with a much more comprehensive test suite
than Cookie.py

	Single-source compatible with the following Python versions:
2.6, 2.7, 3.1, 3.2 and PyPy (2.7).

	Cleaner, less surprising API:

old Cookie.py - this code is all directly from its docstring
>>> from Cookie import SmartCookie
>>> C = SmartCookie()
>>> # n.b. it's "smart" because it automatically pickles Python objects,
>>> # which is actually quite stupid for security reasons!
>>> C["rocky"] = "road"
>>> C["rocky"]["path"] = "/cookie"
>>> # So C["rocky"] is a string, except when it's a dict...
>>> # and why do I have to write [""] to access a fixed set of attrs?
>>> # Look at the atrocious way I render out a request header:
>>> C.output(attrs=[], header="Cookie:")
'Cookie: rocky=road'

new cookies.py
>>> from cookies import Cookies, Cookie
>>> cookies = Cookies(rocky='road')
>>> # Can also write explicitly: cookies['rocky'] = Cookie['road']
>>> cookies['rocky'].path = "/cookie"
>>> cookies.render_request()
'Cookie: rocky=road'

	Friendly to customization, extension, and reuse of its parts.
Unlike Cookie.py, it doesn’t lock all implementation inside its own classes
(forcing you to write ugly wrappers as Django, Trac, Werkzeug/Flask, web.py
and Tornado had to do). You can suppress minor parse exceptions with
parameters rather than subclass wrappers. You can plug in your own parsers,
renderers and validators for new or existing cookie attributes. You can
render the data out in a dict. You can easily use the underlying imperative
API or even lift the parser’s regexps for your own parser or project. They
are very well documented and relate directly to RFCs, so you know exactly
what you are getting and why. It’s MIT-licensed so do
what you want (but I’d love to know what use you are getting from it!)

	One file, so you can just drop cookies.py into your project if you like

	MIT license, so you can use it in whatever you want with no strings

Things this is not meant to do

While this is intended to be a good module for handling cookies, it does not
even try to do any of the following:

	Maintain backward compatibility with Cookie.py, which would mean
inheriting its confusions and bugs

	Implement RFCs 2109 or 2965, which have always been ignored by almost
everyone and are now obsolete as well

	Handle every conceivable output from terrible legacy apps, which is not
possible to do without lots of silent data loss and corruption (the
parser does try to be liberal as possible otherwise, though)

	Provide a means to store pickled Python objects in cookie values
(that’s a big security hole)

This doesn’t compete with the cookielib (http.cookiejar) module in the Python
standard library, which is specifically for implementing cookie storage and
similar behavior in an HTTP client such as a browser. Things cookielib does
that this doesn’t:

	Write to or read from browsers’ cookie stores or other proprietary
formats for storing cookie data in files

	Handle the browser/client logic like deciding which cookies to send or
discard, etc.

If you are looking for a cookie library but neither this one nor cookielib
will help, you might also consider the implementations in WebOb or Bottle.

API Guide

Okay, so this is supposed to be a very nice module for parsing, manipulating
and rendering HTTP cookie data. So how do you use this thing?

Two interfaces are exposed: a collection class named Cookies, and a class
named Cookie to represent each particular name, value and set of
attributes. If you want to, you can just ignore Cookie and just use Cookies
as a dictionary of objects with name and value attributes.

Cookie objects

Each individual Cookie object can be queried and manipulated as a normal Python
object with name and value attributes (and other attributes corresponding to
cookie attributes). Normally this is all you’ll need, but the following
describes most of the available facilities.

A Cookie object can be created explicitly.

>>> from cookies import Cookie
>>> cookie = Cookie('a', 'b')
>>> cookie.name
'a'
>>> cookie.value
'b'
>>> cookie.value = 'f'
>>> cookie.value
'f'

You can also explicitly create a Cookie object with
special attributes set in the constructor.

>>> cookie = Cookie('a', 'b', comment="need to track a")
>>> cookie.comment
'need to track a'

You can also make a single Cookie by parsing a string:

>>> cookie = Cookie.from_string('Set-Cookie: x=y')
>>> (cookie.name, cookie.value) == ('x', 'y')
True
>>> cookie2 = Cookie.from_string('yak=mov')
>>> (cookie2.name, cookie2.value) == ('yak', 'mov')
True

But here there is an important caveat. Since Cookie.from_string only ever
returns a Cookie instance, you can’t use it to parse request headers which may
contain multiple name/value pairs (as in ‘Cookie: a=b; c=d’). It would be lame
if your program crashed or did something dumb depending on this sort of
difference, so use Cookies.from_request, to ensure you get consistent behavior
regardless of your input.

>>> try:
... cookie3 = Cookie.from_string('Cookie: duh=frob')
... except Exception as e:
... print(type(e))
<class 'cookies.InvalidCookieError'>
>>> from cookies import Cookies
>>> cookies = Cookies.from_request('Cookie: duh=frob')
>>> cookies['duh'].value == 'frob'
True

(See the next section for more on Cookies collection objects.)

You can also make a cookie object from a dict that maps attribute names to
values. This will parse the values as strings, which can be convenient when
you don’t have an existing string to parse.

>>> from datetime import datetime
>>> cookie = Cookie.from_dict({'name': 'x', 'value': 'y', 'expires': 'Thu, 23 Jan 2003 00:00:00 GMT'})
>>> (cookie.name, cookie.value, cookie.expires) == ('x', 'y', datetime(2003, 1, 23, 0, 0))
True
>>> cookie = Cookie.from_dict(dict(name='x', value='y'))
>>> (cookie.name, cookie.value) == ('x', 'y')
True

You can also do the reverse operation with to_dict():

>>> cookie = Cookie('x', 'y', comment='no')
>>> sorted(cookie.to_dict().items())
[('Comment', 'no'), ('name', 'x'), ('value', 'y')]

If you just want the attributes other than name and value, you can export those
to a dict with the attributes() method, which produces a mapping of attribute
names to encoded values and is also used internally for rendering:

>>> cookie.attributes()
{'Comment': 'no'}

When you set cookie attributes, the library tries to make sure that it is
decoded appropriately during parse, has a usable kind of value in Python, and
is encoded appropriately during render. For example, the expires attribute
represents a date which might come in in any of many standard and non-standard
formats. From Python, it should be a datetime object. When rendering, it should
always be produced in the standard format.

The following example uses the parse_date function to create the datetime
(though that parsing can also be done indirectly by using from_dict or
from_string).

>>> from cookies import parse_date
>>> a = Cookie('a', 'blah')
>>> a.expires = parse_date("Wed, 23-Jan-1992 00:01:02 GMT")
>>> a.render_response()
'a=blah; Expires=Thu, 23 Jan 1992 00:01:02 GMT'

>>> # asctime format is also handled...
>>> b = Cookie('b', 'blr')
>>> b.expires = parse_date("Sun Nov 6 08:49:37 1994")
>>> b.render_response()
'b=blr; Expires=Sun, 06 Nov 1994 08:49:37 GMT'

Cookie objects can be meaningfully compared; they are equal or unequal based on
their attributes. If one has an attribute the other is missing, they are not
equal.

>>> x = Cookie('a', 'b')
>>> y = Cookie('a', 'b')
>>> x == y
True
>>> x is y
False
>>> z = Cookie('a', 'b', secure=True)
>>> z.secure == True
True
>>> not x.secure
True
>>> x == z
False
>>> x.name == z.name and x.value == z.value
True

Cookies objects

Often you just want to parse a batch of cookies and start looking at them.

The following example shows a typical case: how a web app might handle the
value it gets in the HTTP_COOKIE CGI (or WSGI) variable. Since this is
a request header, use the from_request() method.

>>> from cookies import Cookies
>>> cookies = Cookies.from_request("a=b; c=d; e=f")

The resulting Cookies object can be used just like a dict of Cookie objects.

>>> sorted(cookies.keys())
['a', 'c', 'e']
>>> 'a' in cookies
True
>>> try:
... cookies['x']
... except KeyError:
... print("didn't exist")
didn't exist
>>> a = cookies['a']
>>> # Each item in a Cookies object is a Cookie.
>>> type(a)
<class 'cookies.Cookie'>
>>> del cookies['a']
>>> try: cookies['a']
... except KeyError: print("deleted")
deleted

Calling cookies.parse_request() will add more cookies to the same object, so
you can build it up incrementally. However, it won’t overwrite existing cookies
with the same name, to ensure that only the first one is taken.

>>> cookies['c'].value == 'd'
True
>>> _ = cookies.parse_request('x=y; c=mumbles')
>>> cookies['x'].value == 'y'
True
>>> cookies['c'].value == 'd'
True

You can also use parse_response to add cookies from ‘Set-Cookie’ response
headers in the same incremental way, with the same provisos. (This has to be
a different method, because response headers are different from request headers
and must be parsed differently.)

>>> cookies = Cookies.from_response("Set-Cookie: z=b")
>>> _ = cookies.parse_response("Set-Cookie: y=a")
>>> cookies['z'].value == 'b'
True
>>> cookies['y'].value == 'a'
True

If you have some cookie objects that were already produced and should just be
added to a dict, or you just want to make some new ones quickly, either or both
can be done quickly with the add() method. Ordered arguments to the add()
method are interpreted as cookie objects, and added under their names. Keyword
arguments are interpreted as values for new cookies to be constructed with the
given name.

>>> cookies = Cookies()
>>> cookies.add(Cookie('a','b'))
>>> cookies.add(x='y')
>>> cookies.add(Cookie('c','d'), e='f')
>>> sorted(cookies.keys())
['a', 'c', 'e', 'x']
>>> sorted(cookie.value for cookie in cookies.values())
['b', 'd', 'f', 'y']

Other than parsing strings into Cookie objects, or modifying them, you might
also want to generate rendered output. For this, use render_request() or
render_response(), depending on the sort of headers you want to render.
You can render all the headers at once - either as separate lines, or all on
one line.

>>> cookies = Cookies()
>>> cookies.add(Cookie('mom', 'strong'))
>>> cookies.add(Cookie('dad', 'pretty'))
>>> sorted(cookies.render_request().split("\r\n"))
['dad=pretty', 'mom=strong']

Combined format separates cookies with semicolons, the other one separates with
CRLF line endings.

>>> s = cookies.render_request(combined=True)
>>> s == 'dad=pretty; mom=strong'
... or s == 'mom=strong; dad=pretty'
True

Each individual cookie can be rendered either in the format for an HTTP
request, or the format for an HTTP response. Attribute values can be
manipulated in natural ways and the rendered output changes appropriately; but
rendered request headers don’t include attributes (as they shouldn’t):

>>> from datetime import datetime
>>> cookies = Cookies(a='foo', b='bar')
>>> cookies['a'].render_request()
'a=foo'
>>> cookies['b'].max_age = 42
>>> cookies['b'].render_response()
'b=bar; Max-Age=42'
>>> cookies['b'].max_age += 10
>>> cookies['b'].render_response()
'b=bar; Max-Age=52'

Set attributes on individual cookies.
>>> cookies['a'].expires = datetime(2003, 1, 23, 0, 0, 0)
>>> cookies.add(c='d')
>>> cookies['c'].path = "/"
>>> cookies['c'].path
'/'

Render request headers
>>> rendered = cookies.render_request()
>>> sorted(rendered.split("\r\n"))
['a=foo', 'b=bar', 'c=d']

Render response headers - more detail.
>>> rendered = cookies.render_response()
>>> lines = sorted(rendered.split("\r\n"))
>>> lines[0]
'a=foo; Expires=Thu, 23 Jan 2003 00:00:00 GMT'
>>> lines[1]
'b=bar; Max-Age=52'
>>> lines[2]
'c=d; Path=/'

Cookies objects can also be compared to each other: this is the same as
comparing all their individual cookies.

>>> c1 = Cookies(a='b', c='d')
>>> c2 = Cookies(a='b', c='d')
>>> c3 = Cookies(a='b')
>>> c1 == c2
True
>>> c2 == c3
False

Extension Mechanisms

Many aspects of the Cookie class can be customized to get different behavior.
For example, new attributes can be supported or existing attributes can be
treated differently by changing the attribute_renderers, attribute_parsers, and
attribute_validators dicts. See the source for defaults and details.

In addition to the provided extension mechanisms, much of the functionality
is exposed in a lower-level imperative API which you can use to do things
imperatively or make your own object interfaces. Also, the regexps used in
the parser are exposed individually to help you with unusual tasks like
writing special tests or handling new attributes. Check out the source for
more information.

 Copyright 2012, Sasha Hart.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	cookies 1.0.0 documentation

Index

 Copyright 2012, Sasha Hart.
 Created using Sphinx 1.3.5.

 guide.html

 Navigation

 		
 index

 		cookies 1.0.0 documentation »

API Guide

Okay, so this is supposed to be a very nice module for parsing, manipulating
and rendering HTTP cookie data. So how do you use this thing?

Two interfaces are exposed: a collection class named Cookies, and a class
named Cookie to represent each particular name, value and set of
attributes. If you want to, you can just ignore Cookie and just use Cookies
as a dictionary of objects with name and value attributes.

Cookie objects

Each individual Cookie object can be queried and manipulated as a normal Python
object with name and value attributes (and other attributes corresponding to
cookie attributes). Normally this is all you’ll need, but the following
describes most of the available facilities.

A Cookie object can be created explicitly.

>>> from cookies import Cookie
>>> cookie = Cookie('a', 'b')
>>> cookie.name
'a'
>>> cookie.value
'b'
>>> cookie.value = 'f'
>>> cookie.value
'f'

You can also explicitly create a Cookie object with
special attributes set in the constructor.

>>> cookie = Cookie('a', 'b', comment="need to track a")
>>> cookie.comment
'need to track a'

You can also make a single Cookie by parsing a string:

>>> cookie = Cookie.from_string('Set-Cookie: x=y')
>>> (cookie.name, cookie.value) == ('x', 'y')
True
>>> cookie2 = Cookie.from_string('yak=mov')
>>> (cookie2.name, cookie2.value) == ('yak', 'mov')
True

But here there is an important caveat. Since Cookie.from_string only ever
returns a Cookie instance, you can’t use it to parse request headers which may
contain multiple name/value pairs (as in ‘Cookie: a=b; c=d’). It would be lame
if your program crashed or did something dumb depending on this sort of
difference, so use Cookies.from_request, to ensure you get consistent behavior
regardless of your input.

>>> try:
... cookie3 = Cookie.from_string('Cookie: duh=frob')
... except Exception as e:
... print(type(e))
<class 'cookies.InvalidCookieError'>
>>> from cookies import Cookies
>>> cookies = Cookies.from_request('Cookie: duh=frob')
>>> cookies['duh'].value == 'frob'
True

(See the next section for more on Cookies collection objects.)

You can also make a cookie object from a dict that maps attribute names to
values. This will parse the values as strings, which can be convenient when
you don’t have an existing string to parse.

>>> from datetime import datetime
>>> cookie = Cookie.from_dict({'name': 'x', 'value': 'y', 'expires': 'Thu, 23 Jan 2003 00:00:00 GMT'})
>>> (cookie.name, cookie.value, cookie.expires) == ('x', 'y', datetime(2003, 1, 23, 0, 0))
True
>>> cookie = Cookie.from_dict(dict(name='x', value='y'))
>>> (cookie.name, cookie.value) == ('x', 'y')
True

You can also do the reverse operation with to_dict():

>>> cookie = Cookie('x', 'y', comment='no')
>>> sorted(cookie.to_dict().items())
[('Comment', 'no'), ('name', 'x'), ('value', 'y')]

If you just want the attributes other than name and value, you can export those
to a dict with the attributes() method, which produces a mapping of attribute
names to encoded values and is also used internally for rendering:

>>> cookie.attributes()
{'Comment': 'no'}

When you set cookie attributes, the library tries to make sure that it is
decoded appropriately during parse, has a usable kind of value in Python, and
is encoded appropriately during render. For example, the expires attribute
represents a date which might come in in any of many standard and non-standard
formats. From Python, it should be a datetime object. When rendering, it should
always be produced in the standard format.

The following example uses the parse_date function to create the datetime
(though that parsing can also be done indirectly by using from_dict or
from_string).

>>> from cookies import parse_date
>>> a = Cookie('a', 'blah')
>>> a.expires = parse_date("Wed, 23-Jan-1992 00:01:02 GMT")
>>> a.render_response()
'a=blah; Expires=Thu, 23 Jan 1992 00:01:02 GMT'

>>> # asctime format is also handled...
>>> b = Cookie('b', 'blr')
>>> b.expires = parse_date("Sun Nov 6 08:49:37 1994")
>>> b.render_response()
'b=blr; Expires=Sun, 06 Nov 1994 08:49:37 GMT'

Cookie objects can be meaningfully compared; they are equal or unequal based on
their attributes. If one has an attribute the other is missing, they are not
equal.

>>> x = Cookie('a', 'b')
>>> y = Cookie('a', 'b')
>>> x == y
True
>>> x is y
False
>>> z = Cookie('a', 'b', secure=True)
>>> z.secure == True
True
>>> not x.secure
True
>>> x == z
False
>>> x.name == z.name and x.value == z.value
True

Cookies objects

Often you just want to parse a batch of cookies and start looking at them.

The following example shows a typical case: how a web app might handle the
value it gets in the HTTP_COOKIE CGI (or WSGI) variable. Since this is
a request header, use the from_request() method.

>>> from cookies import Cookies
>>> cookies = Cookies.from_request("a=b; c=d; e=f")

The resulting Cookies object can be used just like a dict of Cookie objects.

>>> sorted(cookies.keys())
['a', 'c', 'e']
>>> 'a' in cookies
True
>>> try:
... cookies['x']
... except KeyError:
... print("didn't exist")
didn't exist
>>> a = cookies['a']
>>> # Each item in a Cookies object is a Cookie.
>>> type(a)
<class 'cookies.Cookie'>
>>> del cookies['a']
>>> try: cookies['a']
... except KeyError: print("deleted")
deleted

Calling cookies.parse_request() will add more cookies to the same object, so
you can build it up incrementally. However, it won’t overwrite existing cookies
with the same name, to ensure that only the first one is taken.

>>> cookies['c'].value == 'd'
True
>>> _ = cookies.parse_request('x=y; c=mumbles')
>>> cookies['x'].value == 'y'
True
>>> cookies['c'].value == 'd'
True

You can also use parse_response to add cookies from ‘Set-Cookie’ response
headers in the same incremental way, with the same provisos. (This has to be
a different method, because response headers are different from request headers
and must be parsed differently.)

>>> cookies = Cookies.from_response("Set-Cookie: z=b")
>>> _ = cookies.parse_response("Set-Cookie: y=a")
>>> cookies['z'].value == 'b'
True
>>> cookies['y'].value == 'a'
True

If you have some cookie objects that were already produced and should just be
added to a dict, or you just want to make some new ones quickly, either or both
can be done quickly with the add() method. Ordered arguments to the add()
method are interpreted as cookie objects, and added under their names. Keyword
arguments are interpreted as values for new cookies to be constructed with the
given name.

>>> cookies = Cookies()
>>> cookies.add(Cookie('a','b'))
>>> cookies.add(x='y')
>>> cookies.add(Cookie('c','d'), e='f')
>>> sorted(cookies.keys())
['a', 'c', 'e', 'x']
>>> sorted(cookie.value for cookie in cookies.values())
['b', 'd', 'f', 'y']

Other than parsing strings into Cookie objects, or modifying them, you might
also want to generate rendered output. For this, use render_request() or
render_response(), depending on the sort of headers you want to render.
You can render all the headers at once - either as separate lines, or all on
one line.

>>> cookies = Cookies()
>>> cookies.add(Cookie('mom', 'strong'))
>>> cookies.add(Cookie('dad', 'pretty'))
>>> sorted(cookies.render_request().split("\r\n"))
['dad=pretty', 'mom=strong']

Combined format separates cookies with semicolons, the other one separates with
CRLF line endings.

>>> s = cookies.render_request(combined=True)
>>> s == 'dad=pretty; mom=strong'
... or s == 'mom=strong; dad=pretty'
True

Each individual cookie can be rendered either in the format for an HTTP
request, or the format for an HTTP response. Attribute values can be
manipulated in natural ways and the rendered output changes appropriately; but
rendered request headers don’t include attributes (as they shouldn’t):

>>> from datetime import datetime
>>> cookies = Cookies(a='foo', b='bar')
>>> cookies['a'].render_request()
'a=foo'
>>> cookies['b'].max_age = 42
>>> cookies['b'].render_response()
'b=bar; Max-Age=42'
>>> cookies['b'].max_age += 10
>>> cookies['b'].render_response()
'b=bar; Max-Age=52'

Set attributes on individual cookies.
>>> cookies['a'].expires = datetime(2003, 1, 23, 0, 0, 0)
>>> cookies.add(c='d')
>>> cookies['c'].path = "/"
>>> cookies['c'].path
'/'

Render request headers
>>> rendered = cookies.render_request()
>>> sorted(rendered.split("\r\n"))
['a=foo', 'b=bar', 'c=d']

Render response headers - more detail.
>>> rendered = cookies.render_response()
>>> lines = sorted(rendered.split("\r\n"))
>>> lines[0]
'a=foo; Expires=Thu, 23 Jan 2003 00:00:00 GMT'
>>> lines[1]
'b=bar; Max-Age=52'
>>> lines[2]
'c=d; Path=/'

Cookies objects can also be compared to each other: this is the same as
comparing all their individual cookies.

>>> c1 = Cookies(a='b', c='d')
>>> c2 = Cookies(a='b', c='d')
>>> c3 = Cookies(a='b')
>>> c1 == c2
True
>>> c2 == c3
False

Extension Mechanisms

Many aspects of the Cookie class can be customized to get different behavior.
For example, new attributes can be supported or existing attributes can be
treated differently by changing the attribute_renderers, attribute_parsers, and
attribute_validators dicts. See the source for defaults and details.

In addition to the provided extension mechanisms, much of the functionality
is exposed in a lower-level imperative API which you can use to do things
imperatively or make your own object interfaces. Also, the regexps used in
the parser are exposed individually to help you with unusual tasks like
writing special tests or handling new attributes. Check out the source for
more information.

 © Copyright 2012, Sasha Hart.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		cookies 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Sasha Hart.
 Created using Sphinx 1.3.5.

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

