
Cookiecutter V2 Context Specification
Documentation

Release 0.0.1

E.R. Uber

Nov 15, 2017

Contents:

1 Introduction 1

2 Format Proposal 3
2.1 Required Metadata Template Fields . 3

2.1.1 name Field . 3
2.1.2 cookiecutter_version Field . 4
2.1.3 variables Field . 4
2.1.4 The Minium Cookiecutter Template . 4

2.2 Optional Metadata Template Fields . 4
2.2.1 description Field (Optional) . 5
2.2.2 version Field (Optional) . 5
2.2.3 authors Field (Optional) . 5
2.2.4 license Field (Optional) . 5
2.2.5 keywords Field (Optional) . 5
2.2.6 url Field (Optional) . 6
2.2.7 Example Cookiecutter Template . 6

2.3 Variables Array . 6
2.3.1 Required Variable Fields . 6
2.3.2 Optional Variable Fields . 7

3 Extra Context Overwrite Considerations 13
3.1 Overwrite Considerations Regarding ‘default’ & ‘choices’ Fields 13

3.1.1 Use Case #1 - Update ‘default’ field - ‘choices’ gets updated 13
3.1.2 Use Case #2 - Update ‘choices’ field - ‘default’ field gets updated 14
3.1.3 Use Case #3 - Update both ‘choices’ & ‘default’ fields . 15
3.1.4 Use Case #4 - Update ‘default’ field, but its not in the ‘choices’ list 15

3.2 Special Overwrite Syntax for Renaming a Variable . 16
3.3 Special Overwrite Syntax for Removing a Field from a Variable . 16

4 Document Repository 19

5 Appendix 21

i

ii

CHAPTER 1

Introduction

This document describes a new Cookiecutter version 2 template format based on two sources:

1. A proof-of-concept submitted via Cookiecutter Pull Request #848 by hackebrot. Specific format information
from this pull request is contained herein as notes by hackebrot.

2. Additional format features and functionality described herein are based on implementation and usage experi-
ence associated with a specific reference implementation of Cookiecutter by eruber that supports this proposed
template format.

This document is not meant to serve as a formal template format specification; it exists simply to describe the template
format proposed and its evolution based on solving practical issues encountered when using the format to implement
a large complex project template.

All errors (via omission or commission), oversights, and/or misguided implementation decisions reflected herein, rest
solely on the shoulders of the primary author, eruber.

1

https://github.com/audreyr/cookiecutter/pull/848
https://github.com/hackebrot
https://github.com/hackebrot
https://github.com/eruber/cookiecutter/tree/new-2.0-context
https://github.com/eruber
https://github.com/eruber

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

2 Chapter 1. Introduction

CHAPTER 2

Format Proposal

The Cookiecutter version 1 template is a simple JSON file defining a dictionary of key/value pairs that identify vari-
ables used in a jinja2 context.

The version 2 template adds additional template metadata that exists outside the jinja2 context, but is expected to
support features in the future that will enhance the overall user experience.

2.1 Required Metadata Template Fields

Currently the minimum number of required metadata fields is three:

• name

• cookiecutter_version

• variables

2.1.1 name Field

The name field is a string identifying the name of the template.

For example:

"name": "the-most-famous-template-of-all",

Note: hackebrot: We can use this for dumping the JSON context for –replay. Currently we make a good guess based
on the directory name of the cloned git repository, which is not great for local templates or relative paths. This could
be something like an ID.

3

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

2.1.2 cookiecutter_version Field

The cookiecutter_version field is a string identifying version information

The current implementation assumes this field identifies the minimum version of Cookiecutter required to process the
template, as in:

"cookiecutter_version": "2.0.0",

There are other meanings of this field to consider, see the note below.

Note: hackebrot: This either indicats the version of cookiecutter that this template requires or the version of the spec
itself. Not entirely sure what’s better in this case and if we want to separate them. Going forward this will allow us
to exit early if the used cookiecutter CLI is not the latest one, but the template depends on a new built-in extension or
new fields.

2.1.3 variables Field

The variables field is an array of objects implementated as an array of ordered dictionaries (OrderedDict). Each
element of the array, being an OrderedDict, is a set of key/value pairs associated with a unique variable that is part of
the jinja2 context.

The various required and optional key/value pairs associated with a variable will be identified in the Variables Array
section later in this document.

Note: hackebrot: The elements of this array represent a single variable, similarly to what you currently find in a
cookiecutter.json file.

2.1.4 The Minium Cookiecutter Template

Based on what has been disclosed so far, an example of a minium legal (though relatively useless) Cookiecutter version
2 template would look like this:

{
"name": "template-name",
"cookiecutter_version": "2.0.0",
"variables": []

}

2.2 Optional Metadata Template Fields

The following fields are optional:

• description

• version

• authors

• license

4 Chapter 2. Format Proposal

https://docs.python.org/3.6/library/collections.html#collections.OrderedDict

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

• keywords

• url

2.2.1 description Field (Optional)

The description field is a string containing a human readable description of the template.

Note: hackebrot: This can be used for user facing aspects, like a welcome message when running cookiecutter.

2.2.2 version Field (Optional)

The version field is a string containing a version identifier; ideally conforming the the Semantic Versioning specifica-
tion (semver). This version identifier is used to version control the template.

Note: hackebrot: This will help us generate helpful error messages.

2.2.3 authors Field (Optional)

The authors is an array of strings that identify the template’s maintainers.

Note: hackebrot: Again this will help users in case they encounter issues. Currently users tend to raise issues on the
cookiecutter project rather than the template. I would like to emphasize that template authors need to make sure that
their templates work.

2.2.4 license Field (Optional)

The license field is a string identifying the license for the template code.

Note: hackebrot: The template itself is not runnable software, but contains source code. So I would argue that it
should specify a license. Obviously this is not binding if the repository is missing a LICENSE file or w/e the license
in question requires. We don’t need this for a Minimal Viable Product.

2.2.5 keywords Field (Optional)

The keywords field is an array of strings similar in spirit to PyPI keywords.

Note: hackebrot: Providing keywords in a template makes it easier for tools, such as the new Cookiecutter Explorer
in Visual Studio or Cibopath, to search for templates. Currently users need to go to the template repo and scan through
the README or even the template code to see if a template uses certain frameworks.

2.2. Optional Metadata Template Fields 5

http://semver.org/

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

2.2.6 url Field (Optional)

The url field is a string URL for the template project.

Note: hackebrot: We can use this to point users to the project if they encounter an error. This would certainly be
optional.

2.2.7 Example Cookiecutter Template

Below is an example Cookiecutter template showing all the required and optional metadata fields; note that the vari-
ables array is still empty, but not for long:

{
"name": "python-project-skeleton-template",
"cookiecutter_version": "2.0.0",

"description": "Cookiecutter template for a general purpose Python project
→˓skeleton",

"authors": ["E.R. Uber"],
"version": "0.3.7",
"license": "MIT",
"keywords": ["cookiecutter","python", "project", "template", "skeleton"],
"url": "http://python-project-skeleton.readthedocs.io/en/latest/index.html",

"variables": []
}

2.3 Variables Array

The variables field is an array of ordered dictionaries (OrderedDict). Each dictionary represents a varible in the jinja2
context.

2.3.1 Required Variable Fields

The following fields are required to be defined for each variable:

• name

• default

name Variable Field

The name variable field is a string defining the name of the variable in the jinja2 context.

For example:

{
"name": "project_repo",
...

}

6 Chapter 2. Format Proposal

https://docs.python.org/3.6/library/collections.html#collections.OrderedDict

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

Note: hackebrot: This is nothing different from what we have in the current cookiecutter.json as keys. These must
not be templated!

default Variable Field

The default variable field can be of any legal default value type and is the default value of the variable named in the
previous section.

The various legal types supported will be addressed in a later section.

For example, the variable named ‘project_repo’, may have a default value of “cookiecutter-template-converter” as in:

{
"name": "project_repo",
"default": "cookiecutter-template-converter",
...

}

Note: hackebrot: Again this is what we already have as values. If a default is a string, we must assume it is templated,
so we render it before prompting the user.

2.3.2 Optional Variable Fields

The following variable fields are optional:

• type

• description

• prompt

• prompt_user

• hide_input

• choices

• skip_if

• do_if

• if_yes_skip_to

• if_no_skip_to

• validation

• validation_flags

• validation_msg

type Variable Field (Optional)

The type variable field is a string that defines the type of the variable.

The type field’s default value is: string.

2.3. Variables Array 7

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

Note: hackebrot: This defaults to string, which reflects the current behaviour (right now we cast every value to
string, so we can render it). Having a type allows us not only to make use of Click types for prompts, but we can also
cast the values after they have been rendered.

The reference implementation supports the following default value types:

• string

• boolean

• yes_no

• int

• json

• float

• uuid

Note: eruber: The proof-of-concept proposal omitted types float and uuid, but they were added to the Cookiecut-
ter reference implementation since they are both inherently supported by the underlying user prompt functionality
provided by Click.

description Variable Field (Optional)

The description variable field is a string used to describe what the variable means.

The description field’s default value is: None.

Note: hackebrot: We can show this if the users runs verbose mode, to make it even clearer for what a variable is
used for and potentially indicate what the requirements for a field are.

Note: eruber: It would appear that in Cookiecutter v1.6.0 (upon which the reference implementation of Cookiecutter
v2 is based) does not pass the command line –verbose option to the main cookiecutter API call (its just used to control
the logging level). So in the reference implementation, it is hardwired to True. Thus if a description is defined, it will
be emitted prior to a user prompt.

The reason the Cookiecutter reference implementation does pass the verbose option into the Cookiecutter API is
because the reference implementation has a set of implementation guidelines and one of those guidelines was NOT to
change the Cookiecutter API.

prompt Variable Field (Optional)

The prompt variable field is a string that will be used to prompt the user for input.

The prompt field’s default value is rendered by jinja2 as:

'Please enter a value for "{variable.name}"'

8 Chapter 2. Format Proposal

http://click.pocoo.org/6/
http://click.pocoo.org/6/

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

Note: hackebrot: Currently we show variable [default]:, but a template author could provide a more friendly message
allowing for a better user experience.

prompt_user Variable Field (Optional)

The prompt_user variable field is a boolean that if true will show user prompts; and if false will not prompt the user
for input.

The prompt_user field’s default value is: True

Note: hackebrot: This can be used to hide prompts from a user if the template author wishes to use these fields but
retrieve the information from somewhere else, for example the current year. This is currently supported with a hack
by prepending a variable name with _.

Note: eruber: The reference implementation also still honors this hack – a variable name prefixed with an underscore
does not generate a user prompt – it has the same effect as “prompt_user” : false being specified in the template.

hide_input Variable Field (Optional)

The hide_input variable field is a boolean - when specified as true will allow user input, but will not echo the user’s
keystrokes back to the console. This makes it suitable for entering sensitive information like passwords.

The hide_input field’s default value is: False

Note: eruber: Though not documented in the his pull request write-up, the actual proof-of-concept code for con-
text.py by hackebrot does implement the hide_input field - and thus, so does the Cookiecutter reference implementa-
tion.

choices Variable Field (Optional)

The choices variable field is an array of string, boolean, or number which lists valid choice values for that variable.

The choices field’s default value is: []

Note: hackebrot: This is currently supported with lists in cookiecutter.json. However this field would be optional for
a variable and is different from type in the sense that a choice will still be processed to have the specified type when
stored to the context

skip_if Variable Field (Optional)

The skip_if variable field is a string that holds conditionals based on other fields. The conditional logic is rendered by
jinja2.

The skip_if field’s default value is: ‘’

2.3. Variables Array 9

https://github.com/hackebrot/cookiecutter/blob/new-context-format/cookiecutter/context.py
https://github.com/hackebrot/cookiecutter/blob/new-context-format/cookiecutter/context.py
https://github.com/hackebrot

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

If the conditional in the skip_if string evaluates to True, then this variable is skipped – the user will see no prompt to
enter data for this variable.

Note: hackebrot: This one is a bit tricky. In it’s current form it would be a string containing a jinja2 template. When
prompting the user this is rendered and checked for equality against “True”. This allows us to skip variables based on
previously entered information.

do_if Variable Field (Optional)

The do_if variable field is a string that holds conditionals based on other fields. The conditional logic is rendered by
jinja2.

The do_if field’s default value is: ‘’

If the conditional in the do_if string evaluates to True, then this variable is NOT skipped – the user will be prompted
to enter data for this variable.

Note: eruber: This field was added to the reference implementation to offer a balance to the skip_if field – sometimes
its just more convenient to express the logic in terms of what variable should be processed rather than what variable
should be skipped.

if_yes_skip_to Variable Field (Optional)

The if_yes_skip_to variable field is a string that names a variable to process next if the value of the current variable is
True (yes).

This field is used with yes_no type variables to allow conditional processing that can skip multiple variables.

The if_yes_skip_to field’s default value is: None

Note: eruber: Added to the Cookiecutter reference implementation. Having only a skip_if mechanism became
logically complex when trying to skip multiple variables. This field makes skipping over mulitple variables very easy.

if_no_skip_to Variable Field (Optional)

The if_no_skip_to variable field is a string that names a variable to process next if the value of the current variable is
False (no).

This field is used with yes_no type variables to allow conditional processing that can skip multiple variables.

The if_no_skip_to field’s default value is: None

Note: eruber: Added to the Cookiecutter reference implementation as a logical balance to the if_yes_skip_to field.

validation Variable Field (Optional)

The validation variable field is a string containing a regular expression used to validate the user input.

The validation field’s default value is: None

10 Chapter 2. Format Proposal

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

Note: hackebrot: This would allow us to have some additional checks for accepting user input. Think of PEP8
compliant names for Python modules. Rather than using a post_gen_project hook and abort generation, we could ask
the user to try entering another value.

validation_flags Variable Field (Optional)

The validation_flags variable field is a list of strings. Each item in the list names a validation flag that can be specified
to control the behaviour of the validation field’s validation check. Specifying a flag in this list is equivalent to setting
the validation flag to True, not specifying a flag is equivalent to setting it to False.

The validation_flags field’s default value is: []

The default value of this variable has no effect on the validation check.

The validation flags supported are:

• ascii - enabling re.ASCII

• debug - enabling re.DEBUG

• ignorecase - enabling re.IGNORECASE

• locale - enabling re.LOCALE

• mulitline - enabling re.MULTILINE

• dotall - enabling re.DOTALL

• verbose - enabling re.VERBOSE

See: https://docs.python.org/3/library/re.html#re.compile

Note: eruber: This field was added to the Cookiecutter reference implementation to complete the validation field’s
functionality.

For example, to perform input vaildation that ignores case and enables verbose, do this:

"validation": "SOME-REALLY-MIND-ALTERING-REGULAR-EXPRESSION",
"validation_flags": ["ignorecase", "verbose"]

validation_msg Variable Field (Optional)

The validation_msg variable field is a string that can be used to specify a more user friendly message to be issued
when input validation fails.

The validation_msg field’s default value is: None

Note: eruber: This field was added to the Cookiecutter reference implementation when it became apparent that
the normal validation failure message that emits the validation regular expression, can at times, use some additional
validation input hints – especially if the validation regular expression is complex. See the example below.

For example, to support validation of a semantic version number with all of its features, the following variable might
be defined:

2.3. Variables Array 11

https://docs.python.org/3/library/re.html#re.compile

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

{
"name": "project_version",
"default": "0.0.1",
"description": "Enter the project's semantic version number (see: semver.org).",
"prompt": "A semantic version number is of the basic form: MAJOR.MINOR.PATCHLEVEL

→˓",
"validation": "^([0-9]|[1-9]+[0-9]*)\\.([0-9]|[1-9]+[0-9]*)\\.([0-9]|[1-9]+[0-

→˓9]*)(-)?(-[0-9A-Za-z-\\.]*)*(\\+)?(\\+[0-9A-Za-z-\\.]*)*$",
"validation_msg": "Follow the form X.Y.Z where X, Y, and Z are non-negative

→˓integers, and MUST NOT contain leading zeroes.",
"type": "string"

}

As you can see the validation’s regular expression is somewhat daunting, so if a validation_msg is specified it will be
issued in addition to the default validation failure message that emits the regular expression.

A console session that illustrates would look like:

Enter the project's semantic version number (see: semver.org).
A semantic version number is of the basic form: MAJOR.MINOR.PATCHLEVEL [0.0.1]: 0.01.
→˓001
Input validation failure against regex: '^([0-9]|[1-9]+[0-9]*)\.([0-9]|[1-9]+[0-9]*)\.
→˓([0-9]|[1-9]+[0-9]*)(-)?(-[0-9A-Za-z-\.]*)*(\+)?(\+[0-9A-Za-z-\.]*)*$', try again!
Follow the form X.Y.Z where X, Y, and Z are non-negative integers, and MUST NOT
→˓contain leading zeroes.
A semantic version number is of the basic form: MAJOR.MINOR.PATCHLEVEL [0.0.1]: 0.1.1

12 Chapter 2. Format Proposal

CHAPTER 3

Extra Context Overwrite Considerations

This section identifies further functionality in the Cookiecutter reference implemenation because the new template
format requires new solutions in the area of context overwriting.

Context overwriting occurs when the [EXTRA_CONTEXT] is specified on the command line as explained in the
Cookiecutter docs section Injecting Extra Context.

Note: eruber: Note that because the new template’s jinja2 context is an array of OrderedDict elements – one for each
variable in the jinja2 context; the EXTRA_CONTEXT specified by the user, must also be an array of OrderedDict
elements – one for each variable that the EXTRA_CONTEXT wishes to overwrite.

3.1 Overwrite Considerations Regarding ‘default’ & ‘choices’ Fields

When a variable is defined that has both the default and the choices fields, these two fields influence each other. If one
of these fields is updated, but not the other field, then the other field will be automatically updated by the overwrite
logic.

If both fields are updated, then the default value will be moved to the first location of the choices field if it exists
elsewhere in the list; if the default value is not in the list, it will be added to the first location in the choices list.
The overwrite logic will take care of this even though the extra context choices list does not explicitly specify this
behavior.

3.1.1 Use Case #1 - Update ‘default’ field - ‘choices’ gets updated

For example, if default and choices fields of a variable named “director_name” look like this:

{
"name": "director_name",
...
"default": "Allan Smithe",

13

http://cookiecutter.readthedocs.io/en/latest/advanced/injecting_context.html

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

"choices": ["Allan Smithe", "Ridley Scott", "Victor Fleming", "John Ford", "John
→˓Houston"],

'''
}

and the extra context dictionary specified by the user looks like this (injecting an update to the default field):

'extra_context': [
{

'name': 'director_name',
'default': 'John Ford',

}
]

then the overwrite logic will leave the fields looking like this:

{
"name": "director_name",
...
"default": "John Ford",
"choices", ["John Ford", "Allan Smithe", "Ridley Scott", "Victor Fleming", "John

→˓Houston"],
...

}

3.1.2 Use Case #2 - Update ‘choices’ field - ‘default’ field gets updated

For example, if default and choices fields of a variable named “director_name” look like this:

{
"name": "director_name",
...
"default": "Allan Smithe",
"choices": ["Allan Smithe", "Ridley Scott", "Victor Fleming", "John Ford", "John

→˓Houston"],
...

}

and the extra context dictionary looks like this (injecting an update to the choices field):

'extra_context': [
{

'name': 'director_name',
'choices': ['Ridley Scott', 'Allan Smithe', 'Victor Fleming', 'John Ford',

→˓'John Houston'],
}

]

then the overwrite logic will leave the fields looking like this:

{
"name": "director_name",
...
"default": "Ridley Scott",
"choices": ["Ridley Scott", "Allan Smithe", "Victor Fleming", "John Ford", "John

→˓Houston"],

14 Chapter 3. Extra Context Overwrite Considerations

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

...
}

3.1.3 Use Case #3 - Update both ‘choices’ & ‘default’ fields

For example, if default and choices fields of a variable named “director_name” look like this:

{
"name": "director_name",
...
"default": "Allan Smithe",
"choices": ["Allan Smithe", "Ridley Scott", "Victor Fleming", "John Ford", "John

→˓Houston"],
...

}

and the extra context looks like this (injecting updates to both the default and the choices fields):

'extra_context': [
{

'name': 'director_name',
'default': 'Victor Fleming',
'choices': ['Ridley Scott', 'Allan Smithe', 'Victor Fleming', 'John Ford',

→˓'John Houston'],
}

]

then the overwrite logic will leave the choices and default fields updated as follows:

{
"name": "director_name",
...
"default": "Victor Fleming",
"choices": ["Victor Fleming", "Allan Smithe", "Ridley Scott", "John Ford", "John

→˓Houston"],
...

}

3.1.4 Use Case #4 - Update ‘default’ field, but its not in the ‘choices’ list

For example, if default and choices fields of a variable named “director_name” look like this:

{
"name": "director_name",
...
"default": "Allan Smithe",
"choices": ["Allan Smithe", "Ridley Scott", "Victor Fleming", "John Ford", "John

→˓Houston"],
...

}

and the extra context looks like this (injecting a director name that is not in the choices list):

3.1. Overwrite Considerations Regarding ‘default’ & ‘choices’ Fields 15

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

'extra_context': [
{

'name': 'director_name',
'default': 'Otto Preminger',

}
]

then the overwrite logic will leave the choices and default fields updated as follows:

{
"name": "director_name",
...
"default": "Otto Preminger",
"choices": ["Otto Preminger", "Allan Smithe", "Ridley Scott", "Victor Fleming",

→˓"John Ford", "John Houston"],
...

}

3.2 Special Overwrite Syntax for Renaming a Variable

Because the algorithm chosen to find a variable’s dictionary entry (in the variables list of OrderDicts) uses the variable’s
‘name’ field; it could not be used to simultaneously hold a new ‘name’ field value.

Therefore the following extra context dictionary entry snytax was introduced to allow the ‘name’ field of a variable
to be changed:

{
'name': 'CURRENT_VARIABLE_NAME::NEW_VARIABLE_NAME',

}

The variable’s current name is post-fixed with a double colon (::) followed by the new name of the variable.

For example, to change a variable’s ‘name’ field from ‘director_credit’ to ‘producer_credit’, would require:

{
'name': 'director_credit::producer_credit',

}

The overwrite logic also takes care of updating in other references to the variable’s name that might exists elsewhere
in the variable – for example, if the variable’s name were used in an a skip_if field.

3.3 Special Overwrite Syntax for Removing a Field from a Variable

It is possible that a previous extra context overwrite requires that a subsequent variable field be removed.

In order to accomplish this a remove field token is used in the extra context as follows:

{
'name': 'director_cut',
'skip_if': '<<REMOVE::FIELD>>',

}

In the example above, the extra context overwrite results in the variable named ‘director_cut’ having it’s ‘skip_if’
field removed.

16 Chapter 3. Extra Context Overwrite Considerations

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

Of course the name field and the default field cannot be removed from a variable, their existence is mandatory. Any
attempt to remove one of these fields will result in an exception.

3.3. Special Overwrite Syntax for Removing a Field from a Variable 17

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

18 Chapter 3. Extra Context Overwrite Considerations

CHAPTER 4

Document Repository

The source for this document is on GitHub.

19

https://github.com/eruber/cookiecutter-v2-template-proposal

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

20 Chapter 4. Document Repository

CHAPTER 5

Appendix

This appendix houses the primary Cookiecutter project template that drove the implementation decisions made in the
reference implementation referenced in this guide:

{
"name": "python-project-skeleton-template",
"cookiecutter_version": "2.0.0",
"_inception": "Transformed by cctconvert 1.0.1 Fri Nov 3 20:17:29 2017",
"description": "Cookiecutter template for a general purpose Python project

→˓skeleton",
"authors": ["E.R. Uber"],
"license": "MIT",
"keywords": ["cookiecutter", "python", "project", "template", "skeleton"],
"url": "https://github.com/eruber/python-project-skeleton",
"variables": [

{
"name": "author_name",
"default": "E.R. Uber",
"description": "Identify the author of this project.",
"prompt": "Enter the author's name",
"type": "string"

},
{

"name": "author_email",
"default": "eruber@gmail.com",
"prompt": "Enter the author's email address",
"type": "string"

},
{

"name": "project_name",
"default": "Project Skeleton",
"prompt": "Enter a short, space delimited, name for the project",
"type": "string"

},
{

"name": "project_version",

21

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

"default": "0.0.1",
"description": "Enter the project's semantic version number (see: semver.

→˓org).",
"prompt": "A semantic version number is of the basic form: MAJOR.MINOR.

→˓PATCHLEVEL",
"validation": "^([0-9]|[1-9]+[0-9]*)\\.([0-9]|[1-9]+[0-9]*)\\.([0-9]|[1-

→˓9]+[0-9]*)(-)?(-[0-9A-Za-z-\\.]*)*(\\+)?(\\+[0-9A-Za-z-\\.]*)*$",
"validation_msg": "Follow the form X.Y.Z where X, Y, and Z are non-

→˓negative integers, and MUST NOT contain leading zeroes.",
"type": "string"

},
{

"name": "project_dist",
"default": "{{ cookiecutter.project_name.lower().replace(' ', '-') }}-{{

→˓cookiecutter.project_version }}",
"prompt_user": false,
"type": "string"

},
{

"name": "project_repo",
"default": "python-{{ cookiecutter.project_name.lower().replace(' ', '-')

→˓}}",
"prompt": "Enter the project's repository name",
"type": "string"

},
{

"name": "project_pkg",
"default": "{{ cookiecutter.project_repo.replace('-', '_') }}",
"prompt": "Enter the project's Python package name",
"type": "string"

},
{

"name": "project_description",
"default": "A general purpose Python project skeleton",
"prompt": "Enter a short description of the project",
"type": "string"

},
{

"name": "project_license",
"default": "Apache2",
"prompt": "Select the project's Open Source License",
"type": "string",
"choices": [

"Apache2",
"BSD3",
"ISC",
"MIT",
"GNU-GPL-v3"

]
},
{

"name": "project_cmdline_interface",
"default": "none",
"description": "Select a Command Line Interface for the project.",
"prompt": "If the project will have no Command Line Interface, select none

→˓",
"type": "string",
"choices": [

22 Chapter 5. Appendix

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

"none",
"click"

]
},
{

"name": "project_graphical_inteface",
"default": "none",
"description": "Select a Graphical User Interface for the project.",
"prompt": "If the project will have no Graphical User Interface, select

→˓none",
"type": "string",
"choices": [

"none",
"tk",
"wxwidgets",
"kivy"

]
},
{

"name": "project_shell_interface",
"default": "none",
"description": "Select a Shell Interface for the project.",
"prompt": "If the project will have no Shell Interface, select none",
"type": "string",
"choices": [

"none",
"cmd",
"shellocity"

]
},
{

"name": "project_machine_interface",
"default": "none",
"description": "Select a Machine Interface for the project.",
"prompt": "If the project will have no Machine Interface, select none",
"type": "string",
"choices": [

"none",
"api"

]
},
{

"name": "project_configuration_enabled",
"default": true,
"prompt": "Will this project require a configuration file?",
"type": "yes_no",
"if_no_skip_to": "project_uses_existing_logging_facilities"

},
{

"name": "project_config_format",
"default": "toml",
"prompt": "Select a configuration file format.",
"type": "string",
"choices": [

"toml",
"yaml",
"json",
"ini"

23

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

]
},
{

"name": "project_uses_existing_logging_facilities",
"default": false,
"prompt": "Will this project use existing external logging facilities?",
"type": "yes_no",
"if_yes_skip_to": "github_username"

},
{

"name": "project_logging_enabled",
"default": true,
"prompt": "Will this project provide its own logging facilities?",
"type": "yes_no",
"if_no_skip_to": "github_username"

},
{

"name": "project_console_logging_enabled",
"default": true,
"prompt": "Will the project's logging facilities include logging to the

→˓console?",
"type": "yes_no",
"if_no_skip_to": "project_file_logging_enabled",
"do_if": "{{cookiecutter.project_logging_enabled == True}}"

},
{

"name": "project_console_logging_level",
"default": "WARN",
"prompt": "Select the minimum logging level to log to the console.",
"type": "string",
"choices": [

"WARN",
"INFO",
"DEBUG",
"ERROR"

],
"do_if": "{{cookiecutter.project_logging_enabled == True}}"

},
{

"name": "project_file_logging_enabled",
"default": true,
"prompt": "Will the project's logging facilities include logging to a

→˓file?",
"type": "yes_no",
"if_no_skip_to": "github_username",
"do_if": "{{cookiecutter.project_logging_enabled == True}}"

},
{

"name": "project_file_logging_level",
"default": "DEBUG",
"prompt": "Select the minimum logging level to log to a file",
"type": "string",
"choices": [

"DEBUG",
"INFO",
"WARN",
"ERROR"

],

24 Chapter 5. Appendix

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

"do_if": "{{cookiecutter.project_logging_enabled == True}}"
},
{

"name": "project_file_logging_type",
"default": "log_to_single_file",
"prompt": "Select what type of file logging should be used",
"type": "string",
"choices": [

"log_to_single_file",
"log_to_rotating_file"

],
"do_if": "{{cookiecutter.project_logging_enabled == True}}"

},
{

"name": "github_username",
"default": "eruber",
"prompt": "Enter your GitHub User Name",
"type": "string"

},
{

"name": "test_framework",
"default": "pytest",
"description": "Select what type of test framework to use.",
"prompt": "Selecting none will generate no test framework support",
"type": "string",
"choices": [

"pytest",
"none"

]
},
{

"name": "test_coverage_enabled",
"default": true,
"prompt": "Will this project's testing report on test coverage?",
"type": "yes_no"

},
{

"name": "ci_travis_enabled",
"default": true,
"prompt": "Will this project use Continuous Integration facilities

→˓provided by Travis?",
"type": "yes_no"

},
{

"name": "ci_appveyor_enabled",
"prompt": "Will this project use Continuous Integration facilities

→˓provided by AppVeyor?",
"default": true,
"type": "yes_no"

},
{

"name": "project_coding_standards",
"default": "flake8",
"description": "Select a coding standards support tool.",
"prompt": "Selecing none will have the effect of running no code quality

→˓scans",
"type": "string",
"choices": [

25

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

"flake8",
"pylama",
"none"]

},
{

"name": "project_complexity_enabled",
"prompt": "Should a pytest plugin to run McCabe Code Complexity Checker

→˓be added to this project?",
"default": true,
"type": "yes_no",
"do_if": "{{ cookiecutter.test_framework == 'pytest' }}"

},
{

"name": "deploy_pypi_enabled",
"default": true,
"prompt": "Will this project ultimately be deloyed to Python's Package

→˓Index site?",
"type": "yes_no"

},
{

"name": "deploy_readthedocs_enabled",
"default": true,
"prompt": "Will this project's documentation ultimately be deployed to

→˓ReadTheDocs.org?",
"type": "yes_no"

},
{

"name": "_derived",
"type": "json",
"default": {

"author": "{{ cookiecutter.author_name }} <{{ cookiecutter.author_
→˓email }}>",

"incept_date": "{% now 'local', '%c' %}",
"project_file_logging_rotating_file_count": "5",
"github": {

"url": "https://github.com/{{ cookiecutter.github_username }}/{{
→˓cookiecutter.project_repo }}"

},
"ci": {

"travis": {
"username": "{{ cookiecutter.github_username }}",
"url": "https://travis-ci.org/{{ cookiecutter.travis_username

→˓}}/{{ cookiecutter.project_repo }}"
},
"appveyor": {

"username": "{{ cookiecutter.github_username }}",
"url": "https://travis-ci.org/{{ cookiecutter.travis_username

→˓}}/{{ cookiecutter.project_repo }}"
}

},
"deploy": {

"pypi": {
"username": "{{ cookiecutter.github_username }}",
"url": "https://pypi.python.org/pypi"

},
"readthedocs": {

"username": "{{ cookiecutter.github_username }}",
"url_project": "https://readthedocs.org/projects/{{

→˓cookiecutter.project_repo }}/",

26 Chapter 5. Appendix

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

"url_docs": "http://{{ cookiecutter.project_repo }}.
→˓readthedocs.io/en/latest/"

}
}

},
"prompt_user": false

}
]

}

• genindex

27

Cookiecutter V2 Context Specification Documentation, Release 0.0.1

28 Chapter 5. Appendix

Index

A
Authors Field (Optional Metadata), 5

C
Cookiecutter Template Examples

Minimum, 4
Showing All Metadata Fields, 6

D
Description Field (Optional Metadata), 5

K
Keywords Field (Optional Metadata), 5

L
License Field (Optional Metadata), 5

M
Mandatory Cookiecutter Metadata Fields, 3
Metadata - Cookiecutter Version Field, 3
Metadata - Name Field, 3

O
Optional Cookiecutter Metadata Fields, 4
overwrite

choices field, 13
default field, 13
removing field from variable, 16
renaming variable name, 16

U
URL Field (Optional Metadata), 5

V
Variables Array Entry

Choices Field (Optional), 9
Default Field (Required), 7
Description Field (Optional), 8

Do_if Field (Optional), 10
Hide_Input Field (Optional), 9
If_No_Skip_To Field (Optional), 10
If_Yes_Skip_To Field (Optional), 10
Name Field (Required), 6
Optional Fields, 7
Prompt Field (Optional), 8
Prompt_User Field (Optional), 9
Required Fields, 6
Skip_If Field (Optional), 9
Type Field (Optional), 7
Validation Field (Optional), 10
Validation_Flags Field (Optional), 11
Validation_Msg Field (Optional), 11

Variables Array Field, 4
Variables Array Field Section, 6
Version Field (Optional Metadata), 5

29

	Introduction
	Format Proposal
	Required Metadata Template Fields
	name Field
	cookiecutter_version Field
	variables Field
	The Minium Cookiecutter Template

	Optional Metadata Template Fields
	description Field (Optional)
	version Field (Optional)
	authors Field (Optional)
	license Field (Optional)
	keywords Field (Optional)
	url Field (Optional)
	Example Cookiecutter Template

	Variables Array
	Required Variable Fields
	Optional Variable Fields

	Extra Context Overwrite Considerations
	Overwrite Considerations Regarding `default' & `choices' Fields
	Use Case #1 - Update `default' field - `choices' gets updated
	Use Case #2 - Update `choices' field - `default' field gets updated
	Use Case #3 - Update both `choices' & `default' fields
	Use Case #4 - Update `default' field, but its not in the `choices' list

	Special Overwrite Syntax for Renaming a Variable
	Special Overwrite Syntax for Removing a Field from a Variable

	Document Repository
	Appendix

