

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Documentation and examples

This file describes how to generate Convex.jl’s documentation and examples. If
you just want to read the documentation, or try out the examples, please visit
the website: https://www.juliaopt.org/Convex.jl/stable/. You can download a
zip file of Jupyter notebooks of all the examples there as well.

The examples and documentation are constructed together. Run

julia --project=docs -e 'using Pkg; Pkg.instantiate(); include("docs/make.jl")'

to generate the examples notebooks (which will be placed in docs/notebooks)
and the documentation itself, which is generated into the doc/build folder,
and can be previewed by opening a webserver there. Note that this command can
take some time. To generate the documentation without updating the examples,
set ENV["CONVEX_SKIP_EXAMPLES"]="true" before including docs/make.jl.

To generate a single Jupyter notebook, run e.g.

Literate.notebook(file_path, notebook_dir, execute=false) # or execute = true, to run the code

Then the notebook can be opened with IJulia.

To just generate a single markdown file, run e.g.

fix_math_md(content) = replace(content, r"\$\$(.*?)\$\$"s => s"```math\1```")
Literate.markdown(file_path, output_directory; preprocess = fix_math_md)

This won’t execute the code however; that is done by Documenter, so the above
docs/make.jl file is needed. This can be slow because all the examples will be
re-run. By re-including docs/make.jl into a running session, however, compile
times can be minimized.

The fix_math_md function allows us to use $$ for LaTeX display in the
Literate.jl files by replacing it with the tags expected by Documenter.jl when
we generate the markdown.

Advanced Features

DCP warnings

When an expression is created which is not of DCP
form [https://dcp.stanford.edu/], a warning is emitted. For example,

x = Variable()
y = Variable()
x*y

To disable this, run

Convex.emit_dcp_warnings() = false

to redefine the method. See Convex.emit_dcp_warnings for more details.

Dual Variables

Convex.jl also returns the optimal dual variables for a problem. These
are stored in the dual field associated with each constraint.

using Convex, SCS

x = Variable()
constraint = x >= 0
p = minimize(x, constraint)
solve!(p, SCS.Optimizer)

Get the dual value for the constraint
p.constraints[1].dual
or
constraint.dual

Warmstarting

If you’re solving the same problem many times with different values of
a parameter, Convex.jl can initialize many solvers with the solution to
the previous problem, which sometimes speeds up the solution time. This
is called a warm start.

To use this feature, pass the optional argument
warmstart=true to the solve! method.

initialize data
n = 1000
y = rand(n)
x = Variable(n)

first solve
lambda = Variable(Positive())
fix!(lambda, 100)
problem = minimize(sumsquares(y - x) + lambda * sumsquares(x - 10))
@time solve!(problem, SCS.Optimizer)

now warmstart
if the solver takes advantage of warmstarts,
this run will be faster
fix!(lambda, 105)
@time solve!(problem, SCS.Optimizer, warmstart=true)

Fixing and freeing variables

Convex.jl allows you to fix a variable x to a value by calling the fix!
method. Fixing the variable essentially turns it into a constant. Fixed
variables are sometimes also called parameters.

fix!(x, v) fixes the variable x to the value v.

fix!(x) fixes x to its current value, which might be the value obtained by
solving another problem involving the variable x.

To allow the variable x to vary again, call free!(x).

Fixing and freeing variables can be particularly useful as a tool for performing
alternating minimization on nonconvex problems. For example, we can find an
approximate solution to a nonnegative matrix factorization problem with
alternating minimization as follows. We use warmstarts to speed up the solution.

initialize nonconvex problem
n, k = 10, 1
A = rand(n, k) * rand(k, n)
x = Variable(n, k)
y = Variable(k, n)
problem = minimize(sum_squares(A - x*y), x>=0, y>=0)

initialize value of y
set_value!(y, rand(k, n))
we'll do 10 iterations of alternating minimization
for i=1:10
 # first solve for x
 # with y fixed, the problem is convex
 fix!(y)
 solve!(problem, SCS.Optimizer, warmstart = i > 1 ? true : false)
 free!(y)

 # now solve for y with x fixed at the previous solution
 fix!(x)
 solve!(problem, SCS.Optimizer, warmstart = true)
 free!(x)
end

Custom Variable Types

By making subtypes of Convex.AbstractVariable that conform to the appropriate
interface (see the Convex.AbstractVariable docstring for details), one can
easily provide custom variable types for specific constructions. These aren’t
always necessary though; for example, one can define the following function
probabilityvector:

using Convex

function probabilityvector(d::Int)
 x = Variable(d, Positive())
 add_constraint!(x, sum(x) == 1)
 return x
end

and then use, say, p = probabilityvector(3) in any Convex.jl problem. The
constraints that the entries of p are non-negative and sum to 1 will be
automatically added to any problem p is used in.

Custom types are necessary when one wants to dispatch on custom variables, use
them as callable types, or provide a different implementation. Continuing with
the probability vector example, let’s say we often use probability vectors
variables in taking expectation values, and we want to use function notation for
this. To do so, we define

using Convex
mutable struct ProbabilityVector <: Convex.AbstractVariable
 head::Symbol
 id_hash::UInt64
 size::Tuple{Int, Int}
 value::Convex.ValueOrNothing
 vexity::Convex.Vexity
 function ProbabilityVector(d)
 this = new(:ProbabilityVector, 0, (d,1), nothing, Convex.AffineVexity())
 this.id_hash = objectid(this)
 this
 end
end

Convex.constraints(p::ProbabilityVector) = [sum(p) == 1]
Convex.sign(::ProbabilityVector) = Convex.Positive()
Convex.vartype(::ProbabilityVector) = Convex.ContVar

(p::ProbabilityVector)(x) = dot(p, x)

Then one can call p = ProbabilityVector(3) to construct a our custom variable
which can be used in Convex, which already encodes the appropriate constraints
(non-negative and sums to 1), and which can act on constants via p(x). For
example,

using SCS
p = ProbabilityVector(3)
x = [1.0, 2.0, 3.0]
prob = minimize(p(x))
solve!(prob, SCS.Optimizer)
evaluate(p) # [1.0, 0.0, 0.0]

Subtypes of AbstractVariable must have the fields head, id_hash, and
size, and id_hash must be populated as shown in the example. Then they must also

	either have a field value, or implement Convex._value and
Convex.set_value!

	either have a field vexity, or implement Convex.vexity and
Convex.vexity! (though the latter is only necessary if you wish to
support Convex.fix! and Convex.free!

	have a field constraints or implement Convex.constraints (optionally,
implement Convex.add_constraint! to be able to add constraints to your
variable after its creation),

	either have a field sign or implement Convex.sign, and

	either have a field vartype, or implement Convex.vartype (optionally,
implement Convex.vartype! to be able to change a variables’ vartype
after construction.)

Printing and the tree structure

A Convex problem is structured as a tree, with the root being the problem
object, with branches to the objective and the set of constraints. The objective
is an AbstractExpr which itself is a tree, with each atom being a node and
having children which are other atoms, variables, or constants. Convex
provides children methods from
AbstractTrees.jl [https://github.com/Keno/AbstractTrees.jl] so that the
tree-traversal functions of that package can be used with Convex.jl problems and
structures. This is what allows powers the printing of problems, expressions,
and constraints. The depth to which the tree corresponding to a problem,
expression, or constraint is printed is controlled by the global variable
Convex.MAXDEPTH, which defaults to 3. This can be changed by e.g.
setting

Convex.MAXDEPTH[] = 5

Likewise, Convex.MAXWIDTH, which defaults to 15, controls the “width”
of the printed tree. For example, when printing a problem with 20 constraints,
only the first MAXWIDTH of the constraints will be printed. Vertical dots,
“⋮”, will be printed indicating that some constraints were omitted in the
printing.

A related setting is Convex.MAXDIGITS, which controls
printing the internal IDs of atoms: if the string representation of an
ID is longer than double the value of MAXDIGITS, then it is
shortened by printing only the first and last MAXDIGITS characters.

The AbstractTrees methods can also be used to analyze the structure
of a Convex.jl problem. For example,

using Convex, AbstractTrees
x = Variable()
p = maximize(log(x), x >= 1, x <= 3)
for leaf in AbstractTrees.Leaves(p)
 println("Here's a leaf: $(summary(leaf))")
end

We can also iterate over the problem in various orders. The following descriptions
are taken from the AbstractTrees.jl docstrings, which have more information.

PostOrderDFS

Iterator to visit the nodes of a tree, guaranteeing that children
will be visited before their parents.

for (i, node) in enumerate(AbstractTrees.PostOrderDFS(p))
 println("Here's node $i via PostOrderDFS: $(summary(node))")
end

PreOrderDFS

Iterator to visit the nodes of a tree, guaranteeing that parents
will be visited before their children.

for (i, node) in enumerate(AbstractTrees.PreOrderDFS(p))
 println("Here's node $i via PreOrderDFS: $(summary(node))")
end

StatelessBFS

Iterator to visit the nodes of a tree, guaranteeing that all nodes of a level
will be visited before their children.

for (i, node) in enumerate(AbstractTrees.StatelessBFS(p))
 println("Here's node $i via StatelessBFS: $(summary(node))")
end

Reference

Convex.MAXDEPTH
Convex.MAXWIDTH
Convex.MAXDIGITS

Optimization with Complex Variables

Convex.jl also supports optimization with complex variables. Below, we
present a quick start guide on how to use Convex.jl for optimization
with complex variables, and then list the operations supported on
complex variables in Convex.jl. In general, any operation available in
Convex.jl that is well defined and DCP compliant on complex variables
should be available. We list these functions below. organized by the
type of cone (linear, second-order, or semidefinite) used to represent
that operation.

Internally, Convex.jl transforms the complex-domain problem to a larger
real-domain problem using a bijective mapping. It then solves the
real-domain problem and transforms the solution back to the complex
domain.

Complex Variables

Complex Variables in Convex.jl are declared in the same way as the
variables are declared but using the different keyword
ComplexVariable.

 # Scalar complex variable
 z = ComplexVariable()

 # Column vector variable
 z = ComplexVariable(5)

 # Matrix variable
 z = ComplexVariable(4, 6)

 # Complex Positive Semidefinite variable
 z = HermitianSemidefinite(4)

Linear Program Representable Functions (complex variables)

All of the linear functions that are listed under
Linear Program Representable Functions operate
on complex variables as well. In addition, several specialized functions
for complex variables are available:

operation	description	vexity	slope	notes
——————-	—————————————	——	———-	—————————-
real(z)	real part of complex of variable	affine	increasing	none
imag(z)	imaginary part of complex variable	affine	increasing	none
conj(x)	element-wise complex conjugate	affine	increasing	none
innerproduct(x,y)	real(trace(x'*y))	affine	increasing	PR: one argument is constant

Second-Order Cone Representable Functions (complex variables)

Most of the second order cone function listed under
Second-Order Cone Representable Functions
operate on complex variables as well. Notable exceptions include:

	inverse

	square

	quadoverlin

	sqrt

	geomean

	huber

One new function is available:

operation	description	vexity	slope	notes
———	—————-	——	———-	—–
abs2(z)	square(abs(z))	convex	increasing	none

Semidefinite Program Representable Functions (complex variables)

All SDP-representable functions listed under
Semidefinite Program Representable Functions
work for complex variables.

Exponential + SDP representable Functions (complex variables)

Complex variables also support logdet function.

Optimizing over quantum states

The complex and Hermitian matrix variables, along with the
kron and partialtrace operations, enable the
definition of a wide range of problems in quantum information theory. As
a simple example, let us consider a state ρ over a composite
Hilbert space $\mathcal{H}_A\otimes\mathcal{H}_B$, where both component
spaces are isomorphic to \mathbb{C}^2. Assume that ρ is a product
state, with its component in \mathcal{H}_A given as A, a
complex-valued matrix. We can optimize over the second component B to
meet some requirement. Here we simply fix the second component too, but
via the partialtrace operator:

using Convex, SCS
A = [0.47213595 0.11469794+0.48586827im; 0.11469794-0.48586827im 0.52786405]
B = ComplexVariable(2, 2)
ρ = kron(A, B)
constraints = [partialtrace(ρ, 1, [2; 2]) == [1 0; 0 0]
 tr(ρ) == 1
 ρ in :SDP]
p = satisfy(constraints)
solve!(p, SCS.Optimizer; silent_solver = true)
p.status

Since we fix both components as trace-1 positive semidefinite matrices,
the last two constraints are actually redundant in this case.

Contributing

We’d welcome contributions to the Convex.jl package. Here are some
short instructions on how to get started. If you don’t know what you’d
like to contribute, you could

	take a look at the current
issues [https://github.com/jump-dev/Convex.jl/issues] and pick
one. (Feature requests are probably the easiest to tackle.)

	add a usage
example [https://github.com/jump-dev/Convex.jl/tree/master/examples].

Then submit a pull request (PR). (Let us know if it’s a work in
progress by putting [WIP] in the name of the PR.)

Adding examples

	Take a look at our exising usage
examples [https://github.com/jump-dev/Convex.jl/tree/master/examples]
and add another in similar style.

	Submit a PR. (Let us know if it’s a work in progress by putting
[WIP] in the name of the PR.)

	We’ll look it over, fix up anything that doesn’t work, and merge
it!

Adding atoms

Here are the steps to add a new function or operation (atom) to
Convex.jl. Let’s say you’re adding the new function f.

	Take a look at the nuclear norm
atom [https://github.com/jump-dev/Convex.jl/blob/master/src/atoms/sdp_cone/nuclearnorm.jl]
for an example of how to construct atoms, and see the norm
atom [https://github.com/jump-dev/Convex.jl/blob/master/src/atoms/second_order_cone/norm.jl]
for an example of an atom that depends on a parameter.

	Copy paste (eg) the nuclear norm file, replace anything saying
nuclear norm with the name of the atom f, fill in monotonicity,
curvature, etc. Save it in the appropriate subfolder of
src/atoms/.

	Add as a comment a description of what the atom does and its
parameters.

	The most mathematically interesting part is the conic_form!
function. Following the example in the nuclear norm atom, you’ll
see that you can just construct the problem whose optimal value is
$f(x)$, introducing any auxiliary variables you need, exactly as
you would normally in Convex.jl, and then call cache_conic_form!
on that problem.

	Add a test for the atom so we can verify it works in
src/problem_depot/problem/<cone>, where <cone> matches the subfolder of
src/atoms. See How to write a ProblemDepot problem for details
on how to write the tests.

	Submit a PR, including a description of what the atom does and its
parameters. (Let us know if it’s a work in progress by putting
[WIP] in the name of the PR.)

	We’ll look it over, fix up anything that doesn’t work, and merge
it!

Fixing the guts

If you want to do a more major bug fix, you may need to understand how
Convex.jl thinks about conic form. To do this, start by reading the
Convex.jl paper [http://arxiv.org/pdf/1410.4821.pdf]. You may find our
JuliaCon 2014 talk [https://www.youtube.com/watch?v=SoI0lEaUvTs&t=128s]
helpful as well; you can find the ipython notebook presented in the talk
here [https://github.com/JuliaCon/presentations/tree/master/CVX].

Then read the conic form code:

	We define data structures for conic objectives and conic
constraints, and simple ways of combining them, in
conic_form.jl [https://github.com/jump-dev/Convex.jl/blob/master/src/conic_form.jl]

	We load the internal conic form representation into the
MathOptInterface [https://github.com/jump-dev/MathOptInterface.jl]
model in the function
load_MOI_model! [https://github.com/jump-dev/Convex.jl/blob/master/src/solution.jl#L151].

	We solve problems (that is, pass the standard form of the problem
to a solver, and put the solution back into the values of the
appropriate variables) in
solve! [https://github.com/jump-dev/Convex.jl/blob/master/src/solution.jl#L205].

You’re now armed and dangerous. Go ahead and open an issue (or comment
on a previous one) if you can’t figure something out, or submit a PR if
you can figure it out. (Let us know if it’s a work in progress by
putting [WIP] in the name of the PR.)

PRs that comment the code more thoroughly will also be welcomed.

Credits

Convex.jl was created, developed, and maintained by:

	Jenny Hong [http://www.stanford.edu/%7Ejyunhong/]

	Karanveer Mohan [http://www.stanford.edu/%7Ekvmohan/]

	Madeleine Udell [http://www.stanford.edu/%7Eudell/]

	David Zeng [http://www.stanford.edu/%7Edzeng0/]

Convex.jl is currently developed and maintained by the Julia
community; see Contributors [https://github.com/JuliaOpt/Convex.jl/graphs/contributors]
for more.

The Convex.jl developers also thank:

	the JuliaOpt [http://www.juliaopt.org/] team: Iain
Dunning [http://iaindunning.com/], Joey
Huchette [http://www.mit.edu/%7Ehuchette/] and Miles
Lubin [http://www.mit.edu/%7Emlubin/]

	Stephen Boyd [http://www.stanford.edu/%7Eboyd/], co-author of the
book Convex
Optimization [http://www.stanford.edu/%7Eboyd/books.html]

	Steven Diamond [http://www.stanford.edu/%7Estevend2/], developer of
CVXPY [https://github.com/cvxgrp/cvxpy] and of a DCP tutorial
website [http://dcp.stanford.edu/] to teach disciplined convex
programming.

	Michael Grant [http://www.cvxr.com/bio], developer of
CVX [http://www.cvxr.com].

	John Duchi [http://www.stanford.edu/%7Ejduchi] and Hongseok
Namkoong for developing the representation of power cones in
terms of SOCP
constraints [https://github.com/JuliaOpt/Convex.jl/raw/master/docs/supplementary/rational_to_socp.pdf]
used in this package.

FAQ

Where can I get help?

For usage questions, please contact us via the
Julia Discourse [https://discourse.julialang.org/c/domain/opt]. If you’re
running into bugs or have feature requests, please use the Github Issue
Tracker [https://github.com/JuliaOpt/Convex.jl/issues].

How does Convex.jl differ from JuMP?

Convex.jl and JuMP are both modelling languages for mathematical
programming embedded in Julia, and both interface with solvers via
MathOptInterface, so many of the same solvers are available in
both. Convex.jl converts problems to a standard conic form. This
approach requires (and certifies) that the problem is convex and DCP
compliant, and guarantees global optimality of the resulting solution.
JuMP allows nonlinear programming through an interface that learns about
functions via their derivatives. This approach is more flexible (for
example, you can optimize non-convex functions), but can’t guarantee
global optimality if your function is not convex, or warn you if you’ve
entered a non-convex formulation.

For linear programming, the difference is more stylistic. JuMP’s syntax
is scalar-based and similar to AMPL and GAMS making it easy and fast to
create constraints by indexing and summation (like
sum{x[i], i=1:numLocation}). Convex.jl allows (and prioritizes) linear
algebraic and functional constructions (like max(x,y) < A*z); indexing
and summation are also supported in Convex.jl, but are somewhat slower
than in JuMP. JuMP also lets you efficiently solve a sequence of
problems when new constraints are added or when coefficients are
modified, whereas Convex.jl parses the problem again whenever the
[solve!]{.title-ref} method is called.

Where can I learn more about Convex Optimization?

See the freely available book Convex
Optimization [http://web.stanford.edu/%7Eboyd/cvxbook/] by Boyd and
Vandenberghe for general background on convex optimization. For help
understanding the rules of Disciplined Convex Programming, we recommend
this DCP tutorial website [http://dcp.stanford.edu/].

Are there similar packages available in other languages?

Indeed! You might use CVXPY [http://www.cvxpy.org] in Python, or
CVX [http://cvxr.com/] in Matlab.

How does Convex.jl work?

For a detailed discussion of how Convex.jl works, see our
paper [http://www.arxiv.org/abs/1410.4821].

How do I cite this package?

If you use Convex.jl for published work, we encourage you to cite the
software using the following BibTeX citation: :

@article{convexjl,
 title = {Convex Optimization in {J}ulia},
 author ={Udell, Madeleine and Mohan, Karanveer and Zeng, David and Hong, Jenny and Diamond, Steven and Boyd, Stephen},
 year = {2014},
 journal = {SC14 Workshop on High Performance Technical Computing in Dynamic Languages},
 archivePrefix = "arXiv",
 eprint = {1410.4821},
 primaryClass = "math-oc",
}

Convex.jl - Convex Optimization in Julia

Convex.jl is a Julia package for Disciplined Convex
Programming [http://dcp.stanford.edu/] (DCP). Convex.jl makes it easy to
describe optimization problems in a natural, mathematical syntax, and to solve
those problems using a variety of different (commercial and open-source)
solvers. Convex.jl can solve

	linear programs

	mixed-integer linear programs and mixed-integer second-order cone programs

	dcp-compliant convex programs including

	second-order cone programs (SOCP)

	exponential cone programs

	semidefinite programs (SDP)

Convex.jl supports many solvers, including
COSMO [https://github.com/oxfordcontrol/COSMO.jl],
Mosek [https://github.com/JuliaOpt/Mosek.jl],
Gurobi [https://github.com/JuliaOpt/gurobi.jl],
ECOS [https://github.com/JuliaOpt/ECOS.jl],
SCS [https://github.com/karanveerm/SCS.jl] and
GLPK [https://github.com/JuliaOpt/GLPK.jl], through
MathOptInterface [https://github.com/JuliaOpt/MathOptInterface.jl].

Note that Convex.jl was previously called CVX.jl. This package is under active
development; we welcome bug reports and feature requests. For usage questions,
please contact us via the Julia
Discourse [https://discourse.julialang.org/c/domain/opt].

Extended formulations and the DCP ruleset

Convex.jl works by transforming the problem—which possibly has nonsmooth,
nonlinear constructions like the nuclear norm, the log determinant, and so
forth—into a linear optimization problem subject to conic constraints. This
reformulation often involves adding auxiliary variables, and is called an
“extended formulation”, since the original problem has been extended with
additional variables. These formulations rely on the problem being modelled by
combining Convex.jl’s “atoms” or primitives according to certain rules which
ensure convexity, called the disciplined convex programming (DCP)
ruleset [http://cvxr.com/cvx/doc/dcp.html]. If these atoms are combined in a way
that does not ensure convexity, the extended formulations are often invalid. As
a simple example, consider the problem

minimize(abs(x), x >= 1, x <= 2)

Obviously, the optimum occurs at x=1, but let us imagine we want to solve this
problem via Convex.jl using a linear programming (LP) solver. Since abs is a
nonlinear function, we need to reformulate the problem to pass it to the LP
solver. We do this by introducing an auxiliary variable t and instead solving

minimize(t, x >= 1, x <= 2, t >= x, t >= -x)

That is, we add the constraints t >= x and t >= -x, and replace abs(x) by
t. Since we are minimizing over t and the smallest possible t satisfying
these constraints is the absolute value of x, we get the right answer. That
is, this reformulation worked because we were minimizing abs(x), and that is a
valid way to use the primitive abs.

If we were maximizing abs, Convex.jl would print

Warning: Problem not DCP compliant: objective is not DCP

Why? Well, let us consider the same reformulation for a maximization problem.
The original problem is now

maximize(abs(x), x >= 1, x <= 2)

and trivially the optimum is 2, obtained at x=2. If we do the same
replacements as above, however, we arrive at the problem

maximize(t, x >= 1, x <= 2, t >= x, t >= -x)

whose solution is infinity. In other words, we got the wrong answer by using the
reformulation, since the extended formulation was only valid for a minimization
problem. Convex.jl always performs these reformulations, but they are only
guaranteed to be valid when the DCP ruleset is followed. Therefore, Convex.jl
programatically checks the whether or not these rules were satisfied and warns
if they were not. One should not take these DCP warnings lightly!

Installation

Installing Convex.jl is a one step process. Open up Julia and type :

using Pkg
Pkg.update()
Pkg.add("Convex")

This does not install any solvers. If you don’t have a solver installed
already, you will want to install a solver such as
SCS [https://github.com/JuliaOpt/SCS.jl] by running :

Pkg.add("SCS")

To solve certain problems such as mixed integer programming problems you
will need to install another solver as well, such as
GLPK [https://github.com/JuliaOpt/GLPK.jl]. If you
wish to use other solvers, please read the section on
Solvers.

Operations

Convex.jl currently supports the following functions. These functions
may be composed according to the DCP [http://dcp.stanford.edu]
composition rules to form new convex, concave, or affine expressions.
Convex.jl transforms each problem into an equivalent conic program in
order to pass the problem to a specialized solver. Depending on the
types of functions used in the problem, the conic constraints may
include linear, second-order, exponential, or semidefinite constraints,
as well as any binary or integer constraints placed on the variables.
Below, we list each function available in Convex.jl organized by the
(most complex) type of cone used to represent that function, and
indicate which solvers may be used to solve problems with those cones.
Problems mixing many different conic constraints can be solved by any
solver that supports every kind of cone present in the problem.

In the notes column in the tables below, we denote implicit constraints
imposed on the arguments to the function by IC, and parameter
restrictions that the arguments must obey by PR. (Convex.jl will
automatically impose ICs; the user must make sure to satisfy PRs.)
Elementwise means that the function operates elementwise on vector
arguments, returning a vector of the same size.

Linear Program Representable Functions

An optimization problem using only these functions can be solved by any
LP solver.

operation	description	vexity	slope	notes		
————————————————–	———	———	————————————————————————————————-	——————————		
x+y or x.+y	addition	affine	increasing	none		
x-y or x.-y	subtraction	affine	increasing in x decreasing in y	none none		
x*y	multiplication	affine	increasing if constant term ≥ 0 decreasing if constant term ≤ 0 not monotonic otherwise	PR: one argument is constant		
x/y	division	affine	increasing	PR: y is scalar constant		
dot(*)(x, y)	elementwise multiplication	affine	increasing	PR: one argument is constant		
dot(/)(x, y)	elementwise division	affine	increasing	PR: one argument is constant		
x[1:4, 2:3]	indexing and slicing	affine	increasing	none		
diag(x, k)	k-th diagonal of a matrix	affine	increasing	none		
diagm(x)	construct diagonal matrix	affine	increasing	PR: x is a vector		
x'	transpose	affine	increasing	none		
vec(x)	vector representation	affine	increasing	none		
dot(x,y)	$\sum_i x_i y_i$	affine	increasing	PR: one argument is constant		
kron(x,y)	Kronecker product	affine	increasing	PR: one argument is constant		
vecdot(x,y)	dot(vec(x),vec(y))	affine	increasing	PR: one argument is constant		
sum(x)	$\sum_{ij} x_{ij}$	affine	increasing	none		
sum(x, k)	sum elements across dimension k	affine	increasing	none		
sumlargest(x, k)	sum of k largest elements of x	convex	increasing	none		
sumsmallest(x, k)	sum of k smallest elements of x	concave	increasing	none		
dotsort(a, b)	dot(sort(a),sort(b))	convex	increasing	PR: one argument is constant		
reshape(x, m, n)	reshape into $m \times n$	affine	increasing	none		
minimum(x)	$\min(x)$	concave	increasing	none		
maximum(x)	$\max(x)$	convex	increasing	none		
[x y] or [x; y] hcat(x, y) or vcat(x, y)	stacking	affine	increasing	none		
tr(x)	$\mathrm{tr} \left(X \right)$	affine	increasing	none		
partialtrace(x,sys,dims)	Partial trace	affine	increasing	none		
partialtranspose(x,sys,dims)	Partial transpose	affine	increasing	none		
conv(h,x)	$h \in \mathbb{R}^m$, $x \in \mathbb{R}^n$, $h\star x \in \mathbb{R}^{m+n-1}$; entry i is given by $\sum_{j=1}^m h_jx_{i-j+1}$ with $x_k=0$ for k out of bounds	affine	increasing if $h\ge 0$ decreasing if $h\le 0$ not monotonic otherwise	PR: h is constant		
min(x,y)	$\min(x,y)$	concave	increasing	none		
max(x,y)	$\max(x,y)$	convex	increasing	none		
pos(x)	$\max(x,0)$	convex	increasing	none		
neg(x)	$\max(-x,0)$	convex	decreasing	none		
invpos(x)	$1/x$	convex	decreasing	IC: $x>0$		
abs(x)	$\left	x\right	$	convex	increasing on $x \ge 0$ decreasing on $x \le 0$	none
opnorm(x, 1)	maximum absolute column sum: $\max_{1 ≤ j ≤ n} \sum_{i=1}^m \left	x_{ij}\right	$	convex	increasing on $x \ge 0$ decreasing on $x \le 0$	
opnorm(x, Inf)	maximum absolute row sum: $\max_{1 ≤ i ≤ m} \sum_{j=1}^n \left	x_{ij}\right	$	convex	increasing on $x \ge 0$ decreasing on $x \le 0$	

Second-Order Cone Representable Functions

An optimization problem using these functions can be solved by any SOCP
solver (including ECOS, SCS, Mosek, Gurobi, and CPLEX). Of course, if an
optimization problem has both LP and SOCP representable functions, then
any solver that can solve both LPs and SOCPs can solve the problem.

operation	description	vexity	slope	notes						
———————	—————————————————————————	—————————–	——————————————————————-	———————————————————————————————————————-						
norm(x, p)	$(\sum	x_i	^p)^{1/p}$	convex	increasing on $x \ge 0$ decreasing on $x \le 0$	PR: p >= 1				
quadform(x, P; assume_psd=false)	$x^T P x$	convex in x affine in P	increasing on $x \ge 0$ decreasing on $x \le 0$ increasing in P	PR: either x or P must be constant; if x is not constant, then P must be symmetric and positive semidefinite. Pass assume_psd=true to skip checking if P is positive semidefinite.						
quadoverlin(x, y)	$x^T x/y$	convex	increasing on $x \ge 0$ decreasing on $x \le 0$ decreasing in y	IC: $y > 0$						
sumsquares(x)	$\sum x_i^2$	convex	increasing on $x \ge 0$ decreasing on $x \le 0$	none						
sqrt(x)	\sqrt{x}	concave	decreasing	IC: $x>0$						
square(x), x^2	x^2	convex	increasing on $x \ge 0$ decreasing on $x \le 0$	PR : x is scalar						
dot(^)(x,2)	$x.^2$	convex	increasing on $x \ge 0$ decreasing on $x \le 0$	elementwise						
geomean(x, y)	\sqrt{xy}	concave	increasing	IC: $x\ge0$, $y\ge0$						
huber(x, M=1)	$\begin{cases} x^2 &	x	\leq M \ 2M	x	- M^2 &	x	> M \end{cases}$	convex	increasing on $x \ge 0$ decreasing on $x \le 0$	PR: $M>=1$

Note that for p=1 and p=Inf, the function norm(x,p) is a linear-program representable, and does not need a SOCP solver, and for a matrix x, norm(x,p) is defined as norm(vec(x), p).

Exponential Cone Representable Functions

An optimization problem using these functions can be solved by any
exponential cone solver (SCS).

operation	description	vexity	slope	notes
——————-	———————————–	———	—————	———–
logsumexp(x)	$\log(\sum_i \exp(x_i))$	convex	increasing	none
exp(x)	$\exp(x)$	convex	increasing	none
log(x)	$\log(x)$	concave	increasing	IC: $x>0$
entropy(x)	$\sum_{ij} -x_{ij} \log (x_{ij})$	concave	not monotonic	IC: $x>0$
logisticloss(x)	$\log(1 + \exp(x_i))$	convex	increasing	none

Semidefinite Program Representable Functions

An optimization problem using these functions can be solved by any SDP
solver (including SCS and Mosek).

operation	description	vexity	slope	notes
————————————————	—————————————————————-	————————————————————————	—————	——————————————————————
nuclearnorm(x)	sum of singular values of x	convex	not monotonic	none
opnorm(x, 2) (operatornorm(x))	max of singular values of x	convex	not monotonic	none
eigmax(x)	max eigenvalue of x	convex	not monotonic	none
eigmin(x)	min eigenvalue of x	concave	not monotonic	none
matrixfrac(x, P)	$x^TP^{-1}x$	convex	not monotonic	IC: P is positive semidefinite
sumlargesteigs(x, k)	sum of top k eigenvalues of x	convex	not monotonic	IC: P symmetric
T in GeomMeanHypoCone(A, B, t)	$T \preceq A #_t B = A^{1/2} (A^{-1/2} B A^{-1/2})^t A^{1/2}$	concave	increasing	IC: $A \succeq 0$, $B \succeq 0$, $t \in [0,1]$
T in GeomMeanEpiCone(A, B, t)	$T \succeq A #_t B = A^{1/2} (A^{-1/2} B A^{-1/2})^t A^{1/2}$	convex	not monotonic	IC: $A \succeq 0$, $B \succeq 0$, $t \in [-1, 0] \cup [1, 2]$
quantum_entropy(X)	$-\textrm{Tr}(X \log X)$	concave	not monotonic	IC: $X \succeq 0$; uses natural log
quantum_relative_entropy(A, B)	$\textrm{Tr}(A \log A - A \log B)$	convex	not monotonic	IC: $A \succeq 0$, $B \succeq 0$; uses natural log
trace_logm(X, C)	$\textrm{Tr}(C \log X)$	concave in X	not monotonic	IC: $X \succeq 0$, $C \succeq 0$, C constant; uses natural log
trace_mpower(A, t, C)	$\textrm{Tr}(C A^t)$	concave in A for $t \in [0,1]$, convex for $t \in [-1,0] \cup [1,2]$	not monotonic	IC: $X \succeq 0$, $C \succeq 0$, C constant, $t \in [-1, 2]$
lieb_ando(A, B, K, t)	$\textrm{Tr}(K’ A^{1-t} K B^t)$	concave in A,B for $t \in [0,1]$, convex for $t \in [-1,0] \cup [1,2]$	not monotonic	IC: $A \succeq 0$, $B \succeq 0$, K constant, $t \in [-1, 2]$
T in RelativeEntropyEpiCone(X, Y, m, k, e)	$T \succeq e’ X^{1/2} \log(X^{1/2} Y^{-1} X^{1/2}) X^{1/2} e$	convex	not monotonic	IC: e constant; uses natural log

Exponential + SDP representable Functions

An optimization problem using these functions can be solved by any
solver that supports exponential constraints and semidefinite
constraints simultaneously (SCS).

operation	description	vexity	slope	notes
————-	—————————	———	————	——————————–
logdet(x)	log of determinant of x	concave	increasing	IC: x is positive semidefinite

Promotions

When an atom or constraint is applied to a scalar and a higher
dimensional variable, the scalars are promoted. For example, we can do
max(x, 0) gives an expression with the shape of x whose elements are
the maximum of the corresponding element of x and 0.

Problem Depot

Convex.jl has a submodule, ProblemDepot which holds a collection of convex optimization problems. The problems are used by Convex itself to test and benchmark its code, but can also be used by solvers to test and benchmark their code. These tests have been used with many solvers at ConvexTests.jl [https://github.com/ericphanson/ConvexTests.jl].

ProblemDepot has two main methods for accessing these problems: Convex.ProblemDepot.run_tests and Convex.ProblemDepot.benchmark_suite.

For example, to test the solver SCS on all the problems of the depot except the mixed-integer problems (which it cannot handle), run

using Convex, SCS, Test
const MOI = Convex.MOI
@testset "SCS" begin
 Convex.ProblemDepot.run_tests(; exclude=[r"mip"]) do p
 solve!(p, MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0, "eps_abs" => 1e-6))
 end
end

How to write a ProblemDepot problem

The problems are organized into folders in src/problem_depot/problems. Each is written as a function, annotated by @add_problem, and a name, which is used to group the problems. For example, here is a simple problem:

@add_problem affine function affine_negate_atom(handle_problem!, ::Val{test}, atol, rtol, ::Type{T}) where {T, test}
 x = Variable()
 p = minimize(-x, [x <= 0])
 if test
 @test vexity(p) == AffineVexity()
 end
 handle_problem!(p)
 if test
 @test p.optval ≈ 0 atol=atol rtol=rtol
 @test evaluate(-x) ≈ 0 atol=atol rtol=rtol
 end
end

The @add_problem call adds the problem to the registry of problems in Convex.ProblemDepot.PROBLEMS, which in turn is used by Convex.ProblemDepot.run_tests and Convex.ProblemDepot.benchmark_suite. Next, affine is the grouping of the problem; this problem came from one of the affine tests, and in particular is testing the negation atom. Next is the function signature:

function affine_negate_atom(handle_problem!, ::Val{test}, atol, rtol, ::Type{T}) where {T, test}

this should be the same for every problem, except for the name, which is a description of the problem. It should include what kind of atoms it uses (affine in this case), so that certain kinds of atoms can be ruled out by the exclude keyword to Convex.ProblemDepot.run_tests and Convex.ProblemDepot.benchmark_suite; for example, many solvers cannot solve mixed-integer problems, so mip is included in the name of such problems.

Then begins the body of the problem. It is setup like any other Convex.jl problem, only handle_problem! is called instead of solve!. This allows particular solvers to be used (via e.g. choosing handle_problem! = p -> solve!(p, solver)), or for any other function of the problem. Tests should be included and gated behind if test blocks, so that tests can be skipped for benchmarking, or in the case that the problem is not in fact solved during handle_problem!.

The fact that the problems may not be solved during handle_problem! brings with it a small complication: any command that assumes the problem has been solved should be behind an if test check. For example, in some of the problems, real(evaluate(x)) is used, for a variable x; perhaps as

x_re = real(evaluate(x))
if test
 @test x_re = ...
end

However, if the problem x is used in has not been solved, then evaluate(x) === nothing, and real(nothing) throws an error. So instead, this should be rewritten as

if test
 x_re = real(evaluate(x))
 @test x_re = ...
end

Benchmark-only problems

To add problems for benchmarking without tests, place problems in src/problem_depot/problems/benchmark, and include benchmark in the name. These problems will be automatically skipped during run_tests calls. For example, to benchmark the time it takes to add an SDP constraint, we have the problem

@add_problem constraints_benchmark function sdp_constraint(handle_problem!, args...)
 p = satisfy()
 x = Variable(44, 44) # 990 vectorized entries
 push!(p.constraints, x ⪰ 0)
 handle_problem!(p)
 nothing
end

However, this “problem” has no tests or interesting content for testing, so we skip it during testing.
Note, we use args... in the function signature so that it may be called with the standard function signature

f(handle_problem!, ::Val{test}, atol, rtol, ::Type{T}) where {T, test}

Reference

Convex.ProblemDepot.run_tests
Convex.ProblemDepot.benchmark_suite
Convex.ProblemDepot.foreach_problem
Convex.ProblemDepot.PROBLEMS

Quick Tutorial

Consider a constrained least squares problem

\begin{aligned}
\begin{array}{ll}
\text{minimize} & \|Ax - b\|_2^2 \\
\text{subject to} & x \geq 0
\end{array}
\end{aligned}

with variable $x\in \mathbf{R}^{n}$, and problem data
$A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^{m}$.

This problem can be solved in Convex.jl as follows: :

Make the Convex.jl module available
using Convex, SCS

Generate random problem data
m = 4; n = 5
A = randn(m, n); b = randn(m)

Create a (column vector) variable of size n x 1.
x = Variable(n)

The problem is to minimize ||Ax - b||^2 subject to x >= 0
This can be done by: minimize(objective, constraints)
problem = minimize(sumsquares(A * x - b), [x >= 0])

Solve the problem by calling solve!
solve!(problem, SCS.Optimizer; silent_solver = true)

Check the status of the problem
problem.status # :Optimal, :Infeasible, :Unbounded etc.

Get the optimum value
problem.optval

Reference

The AbstractVariable interface:

Convex.AbstractVariable
Convex._value
Convex.set_value!
Convex.constraints
Convex.add_constraint!
Convex.vexity
Convex.vexity!
Convex.sign
Convex.sign!
Convex.VarType
Convex.vartype
Convex.vartype!

Functions:

Convex.fix!
Convex.free!
Convex.evaluate
Convex.solve!
Convex.emit_dcp_warnings

Release notes

v0.15.3 (February 11, 2023)

	Add support for LDLFactorizations v0.10 #496 [https://github.com/jump-dev/Convex.jl/pull/496].

	Replace randn(m, 1) with randn(m) to be more Julian #498 [https://github.com/jump-dev/Convex.jl/pull/498].

	Add support for indexing expressions with CartesianIndex #500 [https://github.com/jump-dev/Convex.jl/pull/500].

v0.15.2 (August 10, 2022)

	Add support for LDLFactorizations v0.9 #493 [https://github.com/jump-dev/Convex.jl/pull/493].

	Fix use of deprecated functions from AbstractTrees #494 [https://github.com/jump-dev/Convex.jl/pull/494].

v0.15.1 (March 28, 2022)

	Use OrderedDict internally for reproducible results, issue: #488 [https://github.com/jump-dev/Convex.jl/issues/488], fix: #489 [https://github.com/jump-dev/Convex.jl/pull/489].

v0.15.0 (March 2, 2022)

Breaking changes

	Minimum required version of Julia is now v1.6

	Updated to MathOptInterface v1.0

	As a consequence, many previously deprecated solver calls may stop working.
For example, instead of () -> SCS.Optimizer(verbose = 0), use
MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0).

v0.14.18 (November 14, 2021)

	Fix typo in logisticloss for length-1 expressions which caused errors (reported in #458 [https://github.com/jump-dev/Convex.jl/issues/458], fixed in #469 [https://github.com/jump-dev/Convex.jl/pull/469]).

v0.14.17 (November 14, 2021)

	Updated to become compatible with MathOptInterface v0.10, which enables compatibility with the latest version of many solvers
(#467 [https://github.com/jump-dev/Convex.jl/pull/467], #468 [https://github.com/jump-dev/Convex.jl/pull/468]).

v0.14.16 (September 25, 2021)

	Improve numerical stability when evaluating logsumexp (#457 [https://github.com/jump-dev/Convex.jl/pull/462]). Thanks @JinraeKim!

v0.14.15 (September 15, 2021)

	Use sparse factorization for checking for positive semi-definiteness in quadform when possible (#457 [https://github.com/jump-dev/Convex.jl/pull/457]). Thanks @mtanneau!

	Add assume_psd=false argument to skip checking for positive semi-definiteness in quadform (#456 [https://github.com/jump-dev/Convex.jl/pull/456]).

v0.14.14 (September 8, 2021)

	Increase the tolerance used in checking if a matrix is positive-semi definite in quadform (#453 [https://github.com/jump-dev/Convex.jl/pull/453]). Thanks @numbermaniac!

v0.14.13 (July 25, 2021)

	fix quadform for positive semi-definite matrices (fixes a regression introduced in v0.14.11 that required strictly positive semi-definite inputs) #450 [https://github.com/jump-dev/Convex.jl/pull/450].

v0.14.12 (July 19, 2021)

	fix size of result of evaluate on IndexAtoms #448 [https://github.com/jump-dev/Convex.jl/pull/448]. Thanks @hurak!

v0.14.11 (July 5, 2021)

	fix quadform in the complex case #444 [https://github.com/jump-dev/Convex.jl/pull/444]. Thanks @lrnv!

v0.14.10 (May 20, 2021)

	declare compatibility with BenchmarkTools v1.0 #441 [https://github.com/jump-dev/Convex.jl/pull/441]

v0.14.9 (May 18, 2021)

	fix some tests in lp_dual_abs_atom #439 [https://github.com/jump-dev/Convex.jl/pull/439]. Thanks @moehle!

v0.14.8 (May 4, 2021)

	a complete port of cvxquad [https://github.com/hfawzi/cvxquad] thanks to @dstahlke, yielding new functions quantum_relative_entropy, quantum_entropy, trace_logm, trace_mpower, and lieb_ando, and cones GeomMeanHypoCone, GeomMeanEpiCone, and RelativeEntropyEpiCone (#418 [https://github.com/jump-dev/Convex.jl/pull/418]). Thanks a ton for the awesome contribution @dstahlke!

v0.14.7 (April 22, 2021)

	declare compatibility with BenchmarkTools v0.7 #434 [https://github.com/jump-dev/Convex.jl/pull/434]

v0.14.6 (March 28, 2021)

	Use MOI.instantiate to create the optimizer, which allows users to pass an MOI.OptimizerWithAttributes [https://jump.dev/MathOptInterface.jl/stable/apireference/#MathOptInterface.OptimizerWithAttributes] to configure solver settings #431 [https://github.com/jump-dev/Convex.jl/pull/431]. Thanks @odow!

v0.14.5 (March 14, 2021)

	allow sumlargest(x,k), sumsmallest(x,k), and sumlargesteigs(x,k) for k=0 (simply returns Constant(0)). (#429 [https://github.com/jump-dev/Convex.jl/pull/429]).

v0.14.4 (March 14, 2021)

	fixed a bug where the values of variables were being converted to Float64 even if the problem was solved in high precision. (#427 [https://github.com/jump-dev/Convex.jl/pull/427]).

v0.14.3 (March 10, 2021)

	update compatibility bounds for BenchmarkTools 0.6

v0.14.2 (February 15, 2021)

	added lasso, ridge, and elastic net regression examples (#420 [https://github.com/jump-dev/Convex.jl/pull/420]). Thanks to @PaulSoderlind!

v0.14.1 (January 24, 2021)

	there was a bug causing conj to act in-place (reported in #416 [https://github.com/jump-dev/Convex.jl/issues/416]), which has been fixed (#417 [https://github.com/jump-dev/Convex.jl/pull/417]). This bug appears to have existed since the introduction of conj in Convex.jl v0.5.0.

v0.14.0 (January 17, 2021)

Breaking changes

	Changes to the sign of atoms:

	The sign of sumlargesteigs has been changed from Positive() to NoSign(), to allow non-positive-semidefinite inputs (#409 [https://github.com/jump-dev/Convex.jl/pull/409]). This has the potential to break code that required that sign to be positive. If you run into this problem, please file an issue so we can figure out a workaround.

	The sign of eigmin and eigmax has been changed from Positive() to NoSign() (#413 [https://github.com/jump-dev/Convex.jl/pull/413]). This is a bugfix because in general eigmin and eigmax do not need to return a positive quantity (for non-positive-semidefinite inputs). Again, this has the potential to break code that required that sign to be positive. If you run into this problem, please file an issue so we can figure out a workaround.

	Removal of deprecations:

	lambdamin and lambdamax has been deprecated to eigmin and eigmax since Convex v0.13.0. This deprecation has been removed, so your code must be updated to call eigmin or eigmax instead (#412 [https://github.com/jump-dev/Convex.jl/pull/412]).

	norm(x, p) where x is a matrix expression has been deprecated to opnorm(x,p) since Convex v0.8.0. This deprecation has been removed, so your code must be updated to call opnorm(x, p) instead (#412 [https://github.com/jump-dev/Convex.jl/pull/412]). Currently, norm(x,p) for a matrix
expression x will error, but in Convex.jl v0.15.0 it will return norm(vec(x), p).

	Convex.clearmemory() has been deprecated and unnecessary since Convex v0.12.5. This deprecation has been removed, so if this function is in your code, just delete it (#412 [https://github.com/jump-dev/Convex.jl/pull/412]).

	vecnorm(x, p) has been deprecated to norm(vec(x), p) since Convex v0.8.0. This deprecation has been removed, so your code must be updated to call norm(vec(x),p) instead (#412 [https://github.com/jump-dev/Convex.jl/pull/412]).

	Other changes:

	Convex.DCP_WARNINGS was introduced in Convex v0.13.1 to allow turning off Convex.jl’s DCP warnings. This has been removed in favor of the function Convex.emit_dcp_warnings() (Commit 481fa02 [https://github.com/jump-dev/Convex.jl/commit/481fa02b84bfec6bf7c809ea93d6ba8004193b83]).

Other changes

	updated nuclearnorm and sumlargesteigs to allow complex variables, and allow the argument of sumlargesteigs to be non-positive-semi-definite (#409 [https://github.com/jump-dev/Convex.jl/pull/409]). Thanks to @dstahlke!

v0.13.8 (December 2, 2020)

	add unary + for Sign and ComplexSign to allow single-argument hcat and vcat to work (#405 [https://github.com/jump-dev/Convex.jl/pull/405]). Thanks to @dstahlke!

v0.13.7 (September 11, 2020)

	fix #403 [https://github.com/jump-dev/Convex.jl/issues/403] by adding the keyword argument silent_solver to solve!.

v0.13.6 (September 8, 2020)

	fix #401 [https://github.com/jump-dev/Convex.jl/issues/401] by allowing diagm(x).

v0.13.5 (August 25, 2020)

	fix #398 [https://github.com/jump-dev/Convex.jl/issues/398] by allowing fix!’d variables in quadform.

v0.13.4 (July 27, 2020)

	You can now create your own variable types by subtyping AbstractVariable.
See the
docs [https://www.juliaopt.org/Convex.jl/dev/advanced/#Custom-Variable-Types-1]
for more information. You can also add constraints directly to a variable
using add_constraint! (#358 [https://github.com/JuliaOpt/Convex.jl/pull/358]).

	Accessors vexity(x::Variable), sign(x::Variable), and
evaluate(x::Variable) should now be the preferred way to access properties
of a variable; likewise use set_value! to set the initial value of a
variable (#358 [https://github.com/JuliaOpt/Convex.jl/pull/358]).

	To create integer or binary constraints, use the VarType enum (e.g.
Variable(BinVar)). Access or set this via vartype and vartype! (#358 [https://github.com/JuliaOpt/Convex.jl/pull/358]).

v0.13.3 (March 22, 2020)

	Make add_constraint! [https://github.com/jump-dev/Convex.jl/pull/381]
actually add the constraint to the problem.

v0.13.2 (March 14, 2020)

	Add Convex.MAXDIGITS [https://github.com/jump-dev/Convex.jl/pull/379]. Thanks to @riccardomurri!

v0.13.1 (March 6, 2020)

	Allow disabling DCP warnings (#372 [https://github.com/JuliaOpt/Convex.jl/pull/372])

	Restore export of Constraint (#371 [https://github.com/JuliaOpt/Convex.jl/pull/371])

v0.13.0 (February 28, 2020)

Major changes

	The intermediate layer has changed from MathProgBase.jl to
MathOptInterface.jl [https://github.com/JuliaOpt/MathOptInterface.jl]
(#330 [https://github.com/JuliaOpt/Convex.jl/pull/330]). To solve problems,
one should pass a MathOptInterface optimizer constructor, such as
SCS.Optimizer, or MOI.OptimizerWithAttributes(SCS.Optimizer, "verbose" => 0).

	lambdamin and lambdamax have been deprecated in favor of eigmin and
eigmax (#357 [https://github.com/JuliaOpt/Convex.jl/pull/357]).

	Many “internal” functions and types are no longer exported, such as the atoms,
types corresponding to constraints and vexities, etc.
(#357 [https://github.com/JuliaOpt/Convex.jl/pull/357]).

	evaluate(x::Variable) and evaluate(c::Constant) now return scalars and
vectors as appropriate, instead of (1,1)- and (d,1)-matrices
(#359 [https://github.com/JuliaOpt/Convex.jl/pull/359]). This affects
functions which used to return (1,1)-matrices; e.g., now
evaluate(quadform(...)) yields a scalar.

Solvers

Convex.jl transforms each problem into an equivalent cone
program [http://mathprogbasejl.readthedocs.org/en/latest/conic.html] in
order to pass the problem to a specialized solver. Depending on the
types of functions used in the problem, the conic constraints may
include linear, second-order, exponential, or semidefinite constraints,
as well as any binary or integer constraints placed on the variables.

By default, Convex.jl does not install any solvers. Many users use the solver
SCS [https://github.com/JuliaOpt/SCS.jl], which is able to solve problems with
linear, second-order cone constraints (SOCPs), exponential constraints and
semidefinite constraints (SDPs). Likewise,
COSMO [https://github.com/oxfordcontrol/COSMO.jl] is a pure-Julia solver which
can handle every cone that Convex.jl itself supports. Any other solver in
JuliaOpt [http://www.juliaopt.org/] may also be used, so long as it supports
the conic constraints used to represent the problem. Many other solvers in the
JuliaOpt ecosystem can be used to solve (mixed integer) linear programs (LPs and
MILPs). Mosek and Gurobi can be used to solve SOCPs (even with binary or integer
constraints), and Mosek can also solve SDPs. For up-to-date information about
solver capabilities, please see the table here [http://www.juliaopt.org/]
describing which solvers can solve which kind of problems. See also
ConvexTests.jl [https://ericphanson.github.io/ConvexTests.jl/dev/] to see the
results of running test problems with Convex.jl for many solvers.

Installing these solvers is very simple. Just follow the instructions in
the documentation for that solver.

To use a specific solver, you can use the following syntax

solve!(p, Gurobi.Optimizer)
solve!(p, Mosek.Optimizer)
solve!(p, GLPK.Optimizer)
solve!(p, ECOS.Optimizer)
solve!(p, SCS.Optimizer)

(Of course, the solver must be installed first.) For example, we can use
GLPK to solve a MILP:

using GLPK
solve!(p, GLPK.Optimizer)

Many of the solvers also allow options to be passed using
MOI.OptimizerWithAttributes. For example, to set a time limit (in
milliseconds) with GLPK, use:

using Convex, GLPK
const MOI = Convex.MOI

solve!(
 p,
 MOI.OptimizerWithAttributes(GLPK.Optimizer, "tm_lim" => 60_000.0)
)

As another example, if we wish to turn off printing for the SCS solver
(i.e., run in quiet mode), we can do so as follows:

using Convex, SCS
const MOI = Convex.MOI

opt = MOI.OptimizerWithAttributes(SCS.Optimizer, MOI.Silent() => false)
solve!(p, opt)

Another option is to use the solver-independent silent_solver
keyword argument to solve!:

solve!(p, SCS.Optimizer; silent_solver=true)

See each solver’s documentation for more information on solver-dependent
options.

To turn off the problem status warning issued by Convex when a solver is
not able to solve a problem to optimality, use the keyword argument
verbose=false of the solve method:

solve!(p, SCS.Optimizer, verbose=false)

Basic Types

The basic building block of Convex.jl is called an expression, which
can represent a variable, a constant, or a function of another
expression. We discuss each kind of expression in turn.

Variables

The simplest kind of expression in Convex.jl is a variable. Variables in
Convex.jl are declared using the Variable keyword, along
with the dimensions of the variable.

Scalar variable
x = Variable()

Column vector variable
x = Variable(5)

Matrix variable
x = Variable(4, 6)

Variables may also be declared as having special properties, such as
being

	(entrywise) positive: x = Variable(4, Positive())

	(entrywise) negative: x = Variable(4, Negative())

	integral: x = Variable(4, IntVar)

	binary: x = Variable(4, BinVar)

	(for a matrix) being symmetric, with nonnegative eigenvalues (ie,
positive semidefinite): z = Semidefinite(4)

The order of the arguments is the size, the sign, and then the
Convex.VarType (i.e., integer, binary, or continuous), and any may be omitted
to use the default.
The current value of a variable x can be accessed with evaluate(x). After
solve!ing a problem, the value of each variable used in the problem is set to
its optimal value.

See also Custom Variable Types for how to implement your own variable
types.

Constants

Numbers, vectors, and matrices present in the Julia environment are
wrapped automatically into a Constant expression when used
in a Convex.jl expression.

Expressions

Expressions in Convex.jl are formed by applying any atom (mathematical
function defined in Convex.jl) to variables, constants, and other
expressions. For a list of these functions, see
Operations. Atoms are applied to expressions using
operator overloading. For example, 2+2 calls Julia’s built-in
addition operator, while 2+x calls the Convex.jl addition method and
returns a Convex.jl expression. Many of the useful language features in
Julia, such as arithmetic, array indexing, and matrix transpose are
overloaded in Convex.jl so they may be used with variables and
expressions just as they are used with native Julia types.

Expressions that are created must be DCP-compliant. More information on
DCP can be found here [http://dcp.stanford.edu/]. :

x = Variable(5)
The following are all expressions
y = sum(x)
z = 4 * x + y
z_1 = z[1]

Convex.jl allows the values of the expressions to be evaluated directly.

x = Variable()
y = Variable()
z = Variable()
expr = x + y + z
problem = minimize(expr, x >= 1, y >= x, 4 * z >= y)
solve!(problem, SCS.Optimizer)

Once the problem is solved, we can call evaluate() on expr:
evaluate(expr)

Constraints

Constraints in Convex.jl are declared using the standard comparison
operators <=, >=, and ==. They specify relations that must hold
between two expressions. Convex.jl does not distinguish between strict
and non-strict inequality constraints.

x = Variable(5, 5)
Equality constraint
constraint = x == 0
Inequality constraint
constraint = x >= 1

Matrices can also be constrained to be positive semidefinite.

x = Variable(3, 3)
y = Variable(3, 1)
z = Variable()
constrain [x y; y' z] to be positive semidefinite
constraint = ([x y; y' z] in :SDP)
or equivalently,
constraint = ([x y; y' z] ⪰ 0)

Constraints can also be added to variables after their construction, to automatically apply constraints
to any problem which uses the variable. For example,

x = Variable(3)
add_constraint!(x, sum(x) == 1)

Now, in any problem in which x is used, the constraint sum(x) == 1 will be added.

Objective

The objective of the problem is a scalar expression to be maximized or
minimized by using maximize or minimize respectively. Feasibility
problems can be expressed by either giving a constant as the objective,
or using problem = satisfy(constraints).

Problem

A problem in Convex.jl consists of a sense (minimize, maximize, or
satisfy), an objective (an expression to which the sense verb is to be
applied), and zero or more constraints that must be satisfied at the
solution. Problems may be constructed as

problem = minimize(objective, constraints)
or
problem = maximize(objective, constraints)
or
problem = satisfy(constraints)

Constraints can be added at any time before the problem is solved.

No constraints given
problem = minimize(objective)
Add some constraint
problem.constraints += constraint
Add many more constraints
problem.constraints += [constraint1, constraint2, ...]

A problem can be solved by calling solve!

solve!(problem, solver)

passing a solver such as SCS.Optimizer() from the package SCS as the
second argument. After the problem is solved, problem.status records
the status returned by the optimization solver, and can be :Optimal,
:Infeasible, :Unbounded, :Indeterminate or :Error. If the status
is :Optimal, problem.optval will record the optimum value of the
problem. The optimal value for each variable x participating in the
problem can be found in evaluate(x). The optimal value of an expression
can be found by calling the evaluate() function on the expression as
follows: evaluate(expr).

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

