
Contributing to BigchainDB

BigchainDB Contributors

May 13, 2020

Contents

1 Contents 3
1.1 Ways to Contribute . 3
1.2 Developer Setup, Coding & Contribution Process . 5
1.3 Policies . 21

i

ii

Contributing to BigchainDB

There are many ways you can contribute to BigchainDB. It includes several sub-projects.

• BigchainDB Server

• BigchainDB Python Driver

• BigchainDB JavaScript Driver

• BigchainDB Java Driver

• cryptoconditions (a Python package by us)

• py-abci (a Python package we use)

• BigchainDB Enhancement Proposals (BEPs)

Contents 1

https://github.com/bigchaindb/bigchaindb
https://github.com/bigchaindb/bigchaindb-driver
https://github.com/bigchaindb/js-bigchaindb-driver
https://github.com/bigchaindb/java-bigchaindb-driver
https://github.com/bigchaindb/cryptoconditions
https://github.com/davebryson/py-abci
https://github.com/bigchaindb/BEPs

Contributing to BigchainDB

2 Contents

CHAPTER 1

Contents

1.1 Ways to Contribute

1.1.1 Report a Bug

To report a bug, go to the relevant GitHub repository, click on the Issues tab, click on the New issue button, and read
the instructions.

1.1.2 Write an Issue

To write an issue, go to the relevant GitHub repository, click on the Issues tab, click on the New issue button, and read
the instructions.

1.1.3 Make a Feature Request or Proposal

To make a feature request or proposal, write a BigchainDB Enhancement Proposal (BEP).

1.1.4 Write a BigchainDB Enhancement Proposal (BEP)

If you have an idea for a new feature or enhancement, and you want some feedback before you write a full BigchainDB
Enhancement Proposal (BEP), then feel free to:

• ask in the bigchaindb/bigchaindb Gitter chat room or

• open a new issue in the bigchaindb/BEPs repo and give it the label BEP idea.

If you want to discuss an existing BEP, then open a new issue in the bigchaindb/BEPs repo and give it the label discuss
existing BEP.

3

https://gitter.im/bigchaindb/bigchaindb
https://github.com/bigchaindb/BEPs/issues/new
https://github.com/bigchaindb/BEPs/issues/new

Contributing to BigchainDB

Steps to Write a New BEP

1. Look at the structure of existing BEPs in the bigchaindb/BEPs repo. Note the section headings. BEP-2 (our
variant of the consensus-oriented specification system [COSS]) says more about the expected structure and
process.

2. Write a first draft of your BEP. It doesn’t have to be long or perfect.

3. Push your BEP draft to the bigchaindb/BEPs repo and make a pull request. BEP-1 (our variant of C4) outlines
the process we use to handle all pull requests. In particular, we try to merge all pull requests quickly.

4. Your BEP can be revised by pushing more pull requests.

1.1.5 Write Docs

If you’re writing code, you should also update any related docs. However, you might want to write docs only, such as:

• General explainers

• Tutorials

• Courses

• Code explanations

• How BigchainDB relates to other blockchain things

• News from recent events

You can certainly do that!

• The docs for BigchainDB Server live under bigchaindb/docs/ in the bigchaindb/bigchaindb repo.

• There are docs for the Python driver under bigchaindb-driver/docs/ in the bigchaindb/
bigchaindb-driver repo.

• There are docs for the JavaScript driver under bigchaindb/js-bigchaindb-driver in the
bigchaindb/js-bigchaindb-driver repo.

• The source code for the BigchainDB website is in a private repo, but we can give you access if you ask.

The BigchainDB Transactions Specs (one for each spec version) are in the bigchaindb/BEPs repo.

You can write the docs using Markdown (MD) or RestructuredText (RST). Sphinx can understand both. RST is more
powerful.

ReadTheDocs will automatically rebuild the docs whenever a commit happens on the master branch, or on one of
the other branches that it is monitoring.

1.1.6 Answer Questions

People ask questions about BigchainDB in the following places:

• Gitter

– bigchaindb/bigchaindb

– bigchaindb/js-bigchaindb-driver

• Twitter

• Stack Overflow “bigchaindb”

Feel free to hang out and answer some questions. People will be thankful.

4 Chapter 1. Contents

https://github.com/bigchaindb/BEPs
https://github.com/bigchaindb/BEPs/tree/master/2
https://github.com/bigchaindb/BEPs
https://github.com/bigchaindb/BEPs/tree/master/1
https://github.com/bigchaindb/BEPs/tree/master/tx-specs/
https://gitter.im/bigchaindb/bigchaindb
https://gitter.im/bigchaindb/js-bigchaindb-driver
https://twitter.com/bigchaindb
https://stackoverflow.com/search?q=bigchaindb

Contributing to BigchainDB

1.2 Developer Setup, Coding & Contribution Process

1.2.1 Write Code

Know What You Want to Write Code to Do

Do you want to write code to resolve an open issue (bug)? Which one?

Do you want to implement a BigchainDB Enhancement Proposal (BEP)? Which one?

You should know why you want to write code before you go any farther.

Refresh Yourself about the C4 Process

C4 is the Collective Code Construction Contract. It’s quite short: re-reading it will only take a few minutes.

Set Up Your Local Machine. Here’s How.

• Make sure you have Git installed.

• Get a text editor. Internally, we like:

– Vim

– PyCharm

– Visual Studio Code

– Atom

– GNU Emacs (Trent is crazy)

– GNU nano (Troy has lost his mind)

• If you plan to do JavaScript coding, get the latest JavaScript stuff (npm etc.).

• If you plan to do Python coding, get the latest Python, and get the latest pip.

Warning: Don’t use apt or apt-get to get the latest pip. It won’t work properly. Use get-pip.py from the pip
website.

• Use the latest pip to get the latest virtualenv:

$ pip install virtualenv

• Create a Python Virttual Environment (virtualenv) for doing BigchainDB Server development. There are many
ways to do that. Google around and pick one. An old-fashioned but fine way is:

$ virtualenv -p $(which python3.6) NEW_ENV_NAME
$. NEW_ENV_NAME/bin/activate

Be sure to use Python 3.6.x as the Python version for your virtualenv. The virtualenv creation process will
actually get the latest pip, wheel and setuptools and put them inside the new virtualenv.

1.2. Developer Setup, Coding & Contribution Process 5

https://github.com/bigchaindb/BEPs/tree/master/1
https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/

Contributing to BigchainDB

Before You Start Writing Code

Read BEP-24 so you know what to do to ensure that your changes (i.e. your future pull request) can be merged. It’s
easy and will save you some hassle later on.

Start Writing Code

Use the Git Fork and Pull Request Workflow. Tip: You could print that page for reference.

Your Python code should follow our Python Style Guide. Similarly for JavaScript.

Make sure pre-commit actually checks commits. Do:

$ pip install pre-commit # might not do anything if it is already installed,
→˓ which is okay
$ pre-commit install

That will load the pre-commit settings in the file .pre-commit-config.yaml. Now every time you do git
commit <stuff>, pre-commit will run all those checks.

To install BigchainDB Server from the local code, and to keep it up to date with the latest code in there, use:

$ pip install -e .[dev]

The -e tells it to use the latest code. The . means use the current directory, which should be the one containing
setup.py. The [dev] tells it to install some extra Python packages. Which ones? Open setup.py and look for
dev in the extras_require section.

Remember to Write Tests

We like to test everything, if possible. Unit tests and also integration tests. We use the pytest framework to write
Python tests. Read all about it.

Most tests are in the tests/ folder. Take a look around.

Running a Local Node/Network for Dev and Test

This is tricky and personal. Different people do it different ways. We documented some of those on separate pages:

• Dev node setup and running all tests with Docker Compose

• Dev node setup and running all tests as processes

• Dev network setup with stack.sh

• Dev network setup with Ansible

• More to come?

Create the PR on GitHub

Git push your branch to GitHub so as to create a pull request against the branch where the code you want to change
lives.

Travis and Codecov will run and might complain. Look into the complaints and fix them before merging. Travis gets
its configuration and setup from the files:

6 Chapter 1. Contents

https://github.com/bigchaindb/BEPs/tree/master/24
https://github.com/susam/gitpr
https://github.com/bigchaindb/bigchaindb/blob/master/PYTHON_STYLE_GUIDE.md
https://pre-commit.com/
https://docs.pytest.org/en/latest/
run-node-with-docker-compose.html
run-node-as-processes.html
run-dev-network-stack.html
run-dev-network-ansible.html

Contributing to BigchainDB

• Some environment variables, if they are used. See https://docs.travis-ci.com/user/environment-variables/

• .travis.yml

• tox.ini - What is tox? See tox.readthedocs.io

• .ci/ (as in Travis CI = Continuous Integration)

– travis-after-success.sh

– travis-before-install.sh

– travis-before-script.sh

– travis-install.sh

– travis_script.sh

Read about the Travis CI build lifecycle to understand when those scripts run and what they do. You can have even
more scripts!

Codecov gets its configuration from the file codeocov.yaml which is also documented at docs.codecov.io. Codecov
might also use setup.cfg.

Merge!

Ideally, we like your PR and merge it right away. We don’t want to keep you waiting.

If we want to make changes, we’ll do them in a follow-up PR.

1.2.2 Notes on Running a Local Dev Node with Docker Compose

Setting up a single node development environment with docker-compose

Using the BigchainDB 2.0 developer toolbox

We grouped all useful commands under a simple Makefile.

Run a BigchainDB node in the foreground:

$ make run

There are also other commands you can execute:

• make start: Run BigchainDB from source and daemonize it (stop it with make stop).

• make stop: Stop BigchainDB.

• make logs: Attach to the logs.

• make test: Run all unit and acceptance tests.

• make test-unit-watch: Run all tests and wait. Every time you change code, tests will be run again.

• make cov: Check code coverage and open the result in the browser.

• make doc: Generate HTML documentation and open it in the browser.

• make clean: Remove all build, test, coverage and Python artifacts.

• make reset: Stop and REMOVE all containers. WARNING: you will LOSE all data stored in BigchainDB.

1.2. Developer Setup, Coding & Contribution Process 7

https://docs.travis-ci.com/user/environment-variables/
https://tox.readthedocs.io/en/latest/
https://docs.travis-ci.com/user/customizing-the-build/
https://github.com/codecov/support/wiki/Codecov-Yaml
https://docs.codecov.io/v4.3.6/docs/codecov-yaml

Contributing to BigchainDB

Using docker-compose directly

The BigchainDB Makefile is a wrapper around some docker-compose commands we use frequently. If you
need a finer granularity to manage the containers, you can still use docker-compose directly. This part of the
documentation explains how to do that.

$ docker-compose build bigchaindb
$ docker-compose up -d bdb

The above command will launch all 3 main required services/processes:

• mongodb

• tendermint

• bigchaindb

To follow the logs of the tendermint service:

$ docker-compose logs -f tendermint

To follow the logs of the bigchaindb service:

$ docker-compose logs -f bigchaindb

To follow the logs of the mongodb service:

$ docker-compose logs -f mdb

Simple health check:

$ docker-compose up curl-client

Post and retrieve a transaction – copy/paste a driver basic example of a CREATE transaction:

$ docker-compose -f docker-compose.yml run --rm bdb-driver ipython

TODO: A python script to post and retrieve a transaction(s).

Running Tests

Run all the tests using:

$ docker-compose run --rm --no-deps bigchaindb pytest -v

Run tests from a file:

$ docker-compose run --rm --no-deps bigchaindb pytest /path/to/file -v

Run specific tests:

$ docker-compose run --rm --no-deps bigchaindb pytest /path/to/file -k "<test_name>" -
→˓v

8 Chapter 1. Contents

Contributing to BigchainDB

Building Docs

You can also develop and build the BigchainDB docs using docker-compose:

$ docker-compose build bdocs
$ docker-compose up -d bdocs

The docs will be hosted on port 33333, and can be accessed over localhost, 127.0.0.1 OR http:/HOST_IP:33333.

1.2.3 Notes on Running a Local Dev Node as Processes

The following doc describes how to run a local node for developing BigchainDB Tendermint version.

There are two crucial dependencies required to start a local node:

• MongoDB

• Tendermint

and of course you also need to install BigchainDB Sever from the local code you just developed.

Install and Run MongoDB

MongoDB can be easily installed, just refer to their installation documentation for your distro. We know MongoDB 3.4
and 3.6 work with BigchainDB. After the installation of MongoDB is complete, run MongoDB using sudo mongod

Install and Run Tendermint

Installing a Tendermint Executable

The version of BigchainDB Server described in these docs only works well with Tendermint 0.31.5 (not a higher
version number). Install that:

$ sudo apt install -y unzip
$ wget https://github.com/tendermint/tendermint/releases/download/v0.31.5/tendermint_
→˓v0.31.5_linux_amd64.zip
$ unzip tendermint_v0.31.5_linux_amd64.zip
$ rm tendermint_v0.31.5_linux_amd64.zip
$ sudo mv tendermint /usr/local/bin

Installing Tendermint Using Docker

Tendermint can be run directly using the docker image. Refer here for more details.

Installing Tendermint from Source

Before we can begin installing Tendermint one should ensure that the Golang is installed on system and $GOPATH
should be set in the .bashrc or .zshrc. An example setup is shown below

1.2. Developer Setup, Coding & Contribution Process 9

http:/localhost:33333
http:/127.0.0.1:33333
https://docs.mongodb.com/manual/installation/
https://hub.docker.com/r/tendermint/tendermint/

Contributing to BigchainDB

$ echo $GOPATH
/home/user/Documents/go
$ go -h
Go is a tool for managing Go source code.

Usage:

go command [arguments]

The commands are:

build compile packages and dependencies
clean remove object files

...

• We can drop GOPATH in PATH so that installed Golang packages are directly available in the shell. To do that
add the following to your .bashrc

export PATH=${PATH}:${GOPATH}/bin

Follow the Tendermint docs to install Tendermint from source.

If the installation is successful then Tendermint is installed at $GOPATH/bin. To ensure Tendermint’s installed fine
execute the following command,

$ tendermint -h
Tendermint Core (BFT Consensus) in Go

Usage:
tendermint [command]

Available Commands:
gen_validator Generate new validator keypair
help Help about any command
init Initialize Tendermint

...

Running Tendermint

• We can initialize and run tendermint as follows,

$ tendermint init
...

$ tendermint node --consensus.create_empty_blocks=false

The argument --consensus.create_empty_blocks=false specifies that Tendermint should not commit
empty blocks.

• To reset all the data stored in Tendermint execute the following command,

$ tendermint unsafe_reset_all

10 Chapter 1. Contents

https://tendermint.com/docs/introduction/install.html#from-source

Contributing to BigchainDB

Install BigchainDB

To install BigchainDB from source (for dev), clone the repo and execute the following command, (it is better that you
create a virtual env for this)

$ git clone https://github.com/bigchaindb/bigchaindb.git
$ cd bigchaindb
$ pip install -e .[dev] # or pip install -e '.[dev]' # for zsh

Running All Tests

To execute tests when developing a feature or fixing a bug one could use the following command,

$ pytest -v

NOTE: MongoDB and Tendermint should be running as discussed above.

One could mark a specific test and execute the same by appending -m my_mark to the above command.

Although the above should prove sufficient in most cases but in case tests are failing on Travis CI then the following
command can be used to possibly replicate the failure locally,

$ docker-compose run --rm --no-deps bdb pytest -v --cov=bigchaindb

NOTE: before executing the above command the user must ensure that they reset the Tendermint container by execut-
ing tendermint usafe_reset_all command in the Tendermint container.

1.2.4 Run a BigchainDB network

NOT for Production Use

You can use the following instructions to deploy a single or multi node BigchainDB network for dev/test using the
extensible stack script(s).

Currently, this workflow is only supported for the following Operating systems:

• Ubuntu >= 16.04

• CentOS >= 7

• Fedora >= 24

• MacOSX

Minimum Requirements

Minimum resource requirements for a single node BigchainDB dev setup. The more the better:

• Memory >= 512MB

• VCPUs >= 1

1.2. Developer Setup, Coding & Contribution Process 11

Contributing to BigchainDB

Download the scripts

Note: If you’re working on BigchainDB Server code, on a branch based on recent code, then you already
have local recent versions of stack.sh and unstack.sh in your bigchaindb/pkg/scripts/ directory. Otherwise
you can get them using:

$ export GIT_BRANCH=master
$ curl -fOL https://raw.githubusercontent.com/bigchaindb/bigchaindb/${GIT_BRANCH}/pkg/
→˓scripts/stack.sh

Optional
$ curl -fOL https://raw.githubusercontent.com/bigchaindb/bigchaindb/${GIT_BRANCH}/pkg/
→˓scripts/unstack.sh

Quick Start

If you run stack.sh out of the box i.e. without any configuration changes, you will be able to deploy a 4 node
BigchainDB network with Docker containers, created from master branch of bigchaindb/bigchaindb repo
and Tendermint version 0.22.8.

Note: Run stack.sh with either root or non-root user with sudo enabled.

$ bash stack.sh
...Logs..
.........
.........
Finished stacking!

Configure the BigchainDB network

The stack.sh script has multiple deployment methods and parameters and they can be explored using: bash
stack.sh -h

$ bash stack.sh -h

Usage: $ bash stack.sh [-h]

Deploys the BigchainDB network.

ENV[STACK_SIZE]
Set STACK_SIZE environment variable to the size of the network you desire.
Network mimics a production network environment with single or multiple BDB
nodes. (default: 4).

ENV[STACK_TYPE]
Set STACK_TYPE environment variable to the type of deployment you desire.
You can set it one of the following: ["docker", "local", "cloud"].
(default: docker)

ENV[STACK_TYPE_PROVIDER]
Set only when STACK_TYPE="cloud". Only "azure" is supported.
(default:)

ENV[STACK_VM_MEMORY]
(Optional) Set only when STACK_TYPE="local". This sets the memory

(continues on next page)

12 Chapter 1. Contents

Contributing to BigchainDB

(continued from previous page)

of the instance(s) spawned. (default: 2048)

ENV[STACK_VM_CPUS]
(Optional) Set only when STACK_TYPE="local". This sets the number of VCPUs
of the instance(s) spawned. (default: 2)

ENV[STACK_BOX_NAME]
(Optional) Set only when STACK_TYPE="local". This sets the box Vagrant box

→˓name
of the instance(s) spawned. (default: ubuntu/xenial64)

ENV[STACK_REPO]
(Optional) To configure bigchaindb repo to use, set STACK_REPO environment
variable. (default: bigchaindb/bigchaindb)

ENV[STACK_BRANCH]
(Optional) To configure bigchaindb repo branch to use set STACK_BRANCH

→˓environment
variable. (default: master)

ENV[TM_VERSION]
(Optional) Tendermint version to use for the setup. (default: 0.22.8)

ENV[MONGO_VERSION]
(Optional) MongoDB version to use with the setup. (default: 3.6)

ENV[AZURE_CLIENT_ID]
Only required when STACK_TYPE="cloud" and STACK_TYPE_PROVIDER="azure". Steps

→˓to generate:
https://github.com/Azure/vagrant-azure#create-an-azure-active-directory-aad-

→˓application

ENV[AZURE_TENANT_ID]
Only required when STACK_TYPE="cloud" and STACK_TYPE_PROVIDER="azure". Steps

→˓to generate:
https://github.com/Azure/vagrant-azure#create-an-azure-active-directory-aad-

→˓application

ENV[AZURE_SUBSCRIPTION_ID]
Only required when STACK_TYPE="cloud" and STACK_TYPE_PROVIDER="azure". Steps

→˓to generate:
https://github.com/Azure/vagrant-azure#create-an-azure-active-directory-aad-

→˓application

ENV[AZURE_CLIENT_SECRET]
Only required when STACK_TYPE="cloud" and STACK_TYPE_PROVIDER="azure". Steps

→˓to generate:
https://github.com/Azure/vagrant-azure#create-an-azure-active-directory-aad-

→˓application

ENV[AZURE_REGION]
(Optional) Only applicable, when STACK_TYPE="cloud" and STACK_TYPE_PROVIDER=

→˓"azure".
Azure region for the BigchainDB instance. Get list of regions using Azure CLI.
e.g. az account list-locations. (default: westeurope)

ENV[AZURE_IMAGE_URN]
(continues on next page)

1.2. Developer Setup, Coding & Contribution Process 13

Contributing to BigchainDB

(continued from previous page)

(Optional) Only applicable, when STACK_TYPE="cloud" and STACK_TYPE_PROVIDER=
→˓"azure".

Azure image to use. Get list of available images using Azure CLI.
e.g. az vm image list --output table. (default: Canonical:UbuntuServer:16.04-

→˓LTS:latest)

ENV[AZURE_RESOURCE_GROUP]
(Optional) Only applicable, when STACK_TYPE="cloud" and STACK_TYPE_PROVIDER=

→˓"azure".
Name of Azure resource group for the instance.
(default: bdb-vagrant-rg-2018-05-30)

ENV[AZURE_DNS_PREFIX]
(Optional) Only applicable, when STACK_TYPE="cloud" and STACK_TYPE_PROVIDER=

→˓"azure".
DNS Prefix of the instance. (default: bdb-instance-2018-05-30)

ENV[AZURE_ADMIN_USERNAME]
(Optional) Only applicable, when STACK_TYPE="cloud" and STACK_TYPE_PROVIDER=

→˓"azure".
Admin username of the the instance. (default: vagrant)

ENV[AZURE_VM_SIZE]
(Optional) Only applicable, when STACK_TYPE="cloud" and STACK_TYPE_PROVIDER=

→˓"azure".
Azure VM size. (default: Standard_D2_v2)

ENV[SSH_PRIVATE_KEY_PATH]
Only required when STACK_TYPE="cloud" and STACK_TYPE_PROVIDER="azure".

→˓Absolute path of
SSH keypair required to log into the Azure instance.

-h
Show this help and exit.

The parameter that differentiates between the deployment type is STACK_TYPE which currently, supports an opin-
ionated deployment of BigchainDB on docker, local and cloud.

STACK_TYPE: docker

This configuration deploys a docker based BigchainDB network on the dev/test machine that you are running stack.
sh on. This is also the default STACK_TYPE config for stack.sh.

Example

Deploy a 4 node docker based BigchainDB network on your host.

#Optional, since 4 is the default size.
$ export STACK_SIZE=4

#Optional, since docker is the default type.
$ export STACK_TYPE=docker

(continues on next page)

14 Chapter 1. Contents

Contributing to BigchainDB

(continued from previous page)

#Optional, repo to use for the network deployment
Default: bigchaindb/bigchaindb
$ export STACK_REPO=bigchaindb/bigchaindb

#Optional, codebase to use for the network deployment
Default: master
$ export STACK_BRANCH=master

#Optional, since 0.22.8 is the default tendermint version.
$ export TM_VERSION=0.22.8

#Optional, since 3.6 is the default MongoDB version.
$ export MONGO_VERSION=3.6

$ bash stack.sh

Note: For MacOSX users, the script will not install Docker for Mac, it only detects if docker is installed on the
system, if not make sure to install Docker for Mac. Also make sure Docker API Version > 1.25. To check Docker API
Version:

docker version --format '{{.Server.APIVersion}}'

STACK_TYPE: local

This configuration deploys a VM based BigchainDB network on your host/dev. All the services are running as pro-
cesses on the VMs. For local deployments the following dependencies must be installed i.e.

• Vagrant

– Vagrant plugins.

* vagrant-cachier

* vagrant-vbguest

* vagrant-hosts

* vagrant-azure

· vagrant plugin install vagrant-cachier vagrant-vbguest
vagrant-hosts vagrant-azure

• Virtualbox

Example

Deploy a 4 node VM based BigchainDB network.

$ export STACK_TYPE=local

Optional, since 4 is the default size.
$ export STACK_SIZE=4

Optional, default is 2048
$ export STACK_VM_MEMORY=2048

#Optional, default is 1
(continues on next page)

1.2. Developer Setup, Coding & Contribution Process 15

https://docs.docker.com/docker-for-mac/
https://www.virtualbox.org/wiki/Downloads

Contributing to BigchainDB

(continued from previous page)

$ export STACK_VM_CPUS=1

#Optional, default is ubuntu/xenial64. Supported/tested images: bento/centos-7,
→˓fedora/25-cloud-base
$ export STACK_BOX_NAME=ubuntu/xenial64

#Optional, repo to use for the network deployment
Default: bigchaindb/bigchaindb
$ export STACK_REPO=bigchaindb/bigchaindb

#Optional, codebase to use for the network deployment
Default: master
$ export STACK_BRANCH=master

#Optional, since 0.22.8 is the default tendermint version
$ export TM_VERSION=0.22.8

#Optional, since 3.6 is the default MongoDB version.
$ export MONGO_VERSION=3.6

$ bash stack.sh

STACK_TYPE: cloud

This configuration deploys a docker based BigchainDB network on a cloud instance. Currently, only Azure is sup-
ported. For cloud deployments the following dependencies must be installed i.e.

• Vagrant

– Vagrant plugins.

* vagrant-cachier

* vagrant-vbguest

* vagrant-hosts

* vagrant-azure

· vagrant plugin install vagrant-cachier vagrant-vbguest
vagrant-hosts vagrant-azure

Example: stack

Deploy a 4 node docker based BigchainDB network on an Azure instance.

• Create an Azure Active Directory(AAD) Application

• Generate or specify an SSH keypair to login to the Azure instance.

– Example:

$ ssh-keygen -t rsa -C "<name>" -f /path/to/key/<name>

• Configure parameters for stack.sh

16 Chapter 1. Contents

https://github.com/Azure/vagrant-azure#create-an-azure-active-directory-aad-application

Contributing to BigchainDB

After creating the AAD application with access to Azure Resource
Group Manager for your subscription, it will return a JSON object

$ export AZURE_CLIENT_ID=<value from azure.appId>

$ export AZURE_TENANT_ID=<value from azure.tenant>

Can be retrieved via
az account list --query "[?isDefault].id" -o tsv
$ export AZURE_SUBSCRIPTION_ID=<your Azure subscription ID>

$ export AZURE_CLIENT_SECRET=<value from azure.password>

$ export STACK_TYPE=cloud

Currently on azure is supported
$ export STACK_TYPE_PROVIDER=azure

$ export SSH_PRIVATE_KEY_PATH=</path/to/private/key>

Optional, Azure region of the instance. Default: westeurope
$ export AZURE_REGION=westeurope

Optional, Azure image urn of the instance. Default: Canonical:UbuntuServer:16.04-
→˓LTS:latest
$ export AZURE_IMAGE_URN=Canonical:UbuntuServer:16.04-LTS:latest

Optional, Azure resource group. Default: bdb-vagrant-rg-yyyy-mm-dd(current date)
$ export AZURE_RESOURCE_GROUP=bdb-vagrant-rg-2018-01-01

Optional, DNS prefix of the Azure instance. Default: bdb-instance-yyyy-mm-
→˓dd(current date)
$ export AZURE_DNS_PREFIX=bdb-instance-2018-01-01

Optional, Admin username of the Azure instance. Default: vagrant
$ export AZURE_ADMIN_USERNAME=vagrant

Optional, Azure instance size. Default: Standard_D2_v2
$ export AZURE_VM_SIZE=Standard_D2_v2

$ bash stack.sh

Delete/Unstack a BigchainDB network

Export all the variables exported for the corresponding stack.sh script and run unstack.sh to
delete/remove/unstack the BigchainDB network/stack.

$ bash unstack.sh

OR

-s implies soft unstack. i.e. Only applicable for local and cloud based
networks. Only deletes/stops the docker(s)/process(es) and does not
delete the instances created via Vagrant or on Cloud. Default: hard
$ bash unstack.sh -s

1.2. Developer Setup, Coding & Contribution Process 17

Contributing to BigchainDB

1.2.5 Run a BigchainDB network with Ansible

NOT for Production Use

You can use the following instructions to deploy a single or multi node BigchainDB network for dev/test using Ansible.
Ansible will configure the BigchainDB node(s).

Currently, this workflow is only supported for the following distributions:

• Ubuntu >= 16.04

• CentOS >= 7

• Fedora >= 24

• MacOSX

Minimum Requirements

Minimum resource requirements for a single node BigchainDB dev setup. The more the better:

• Memory >= 512MB

• VCPUs >= 1

Clone the BigchainDB repository

$ git clone https://github.com/bigchaindb/bigchaindb.git

Install dependencies

• Ansible

You can also install ansible and other dependencies, if any, using the boostrap.sh script inside the BigchainDB
repository. Navigate to bigchaindb/pkg/scripts and run the bootstrap.sh script to install the dependen-
cies for your OS. The script also checks if the OS you are running is compatible with the supported versions.

Note: bootstrap.sh only supports Ubuntu >= 16.04, CentOS >= 7 and Fedora >=24 and MacOSX.

$ cd bigchaindb/pkg/scripts/
$ bash bootstrap.sh --operation install

BigchainDB Setup Configuration(s)

Local Setup

You can run the Ansible playbook bigchaindb-start.yml on your local dev machine and set up the BigchainDB
node where BigchainDB can be run as a process or inside a Docker container(s) depending on your configuration.

Before, running the playbook locally, you need to update the hosts and stack-config.yml configuration, which
will notify Ansible that we need to run the play locally.

18 Chapter 1. Contents

http://docs.ansible.com/ansible/latest/intro_installation.html

Contributing to BigchainDB

Update Hosts

Navigate to bigchaindb/pkg/configuration/hosts inside the BigchainDB repository.

$ cd bigchaindb/pkg/configuration/hosts

Edit all configuration file:

Delete any existing configuration in this file and insert
Hostname of dev machine
<HOSTNAME> ansible_connection=local

Update Configuration

Navigate to bigchaindb/pkg/configuration/vars inside the BigchainDB repository.

$ cd bigchaindb/pkg/configuration/vars/stack-config.yml

Edit bdb-config.yml configuration file as per your requirements, sample configuration file(s):

stack_type: "docker"
stack_size: "4"

OR

stack_type: "local"
stack_type: "1"

BigchainDB Setup

Now, You can safely run the bigchaindb-start.yml playbook and everything will be taken care of by
Ansible. To run the playbook please navigate to the bigchaindb/pkg/configuration directory inside
the BigchainDB repository and run the bigchaindb-start.yml playbook.

$ cd bigchaindb/pkg/configuration/

$ ansible-playbook bigchaindb-start.yml -i hosts/all --extra-vars "operation=start
→˓home_path=$(pwd)"

After successful execution of the playbook, you can verify that BigchainDB docker(s)/process(es) is(are) running.

Verify BigchainDB process(es):

$ ps -ef | grep bigchaindb

OR

Verify BigchainDB Docker(s):

$ docker ps | grep bigchaindb

1.2. Developer Setup, Coding & Contribution Process 19

Contributing to BigchainDB

You can now send transactions and verify the functionality of your BigchainDB node. See the BigchainDB Python
Driver documentation for details on how to use it.

Note: The bdb_root_url can be be one of the following:

BigchainDB is running as a process
bdb_root_url = http://<HOST-IP>:9984

OR

BigchainDB is running inside a docker container
bdb_root_url = http://<HOST-IP>:<DOCKER-PUBLISHED-PORT>

Note: BigchainDB has other drivers as well.

Experimental: Running Ansible a Remote Dev/Host

Remote Setup

You can also run the Ansible playbook bigchaindb-start.yml on remote machine(s) and set up the BigchainDB
node where BigchainDB can run as a process or inside a Docker container(s) depending on your configuration.

Before, running the playbook on a remote host, you need to update the hosts and stack-config.yml configu-
ration, which will notify Ansible that we need to run the play on a remote host.

Update Hosts

Navigate to bigchaindb/pkg/configuration/hosts inside the BigchainDB repository.

$ cd bigchaindb/pkg/configuration/hosts

Edit all configuration file:

Delete any existing configuration in this file and insert
<Remote_Host_IP/Hostname> ansible_ssh_user=<USERNAME> ansible_sudo_pass=<PASSWORD>

Note: You can add multiple hosts to the all configuration file. Non-root user with sudo enabled password is needed
because ansible will run some tasks that require those permissions.

Note: You can also use other methods to get inside the remote machines instead of password based SSH. For other
methods please consult Ansible Documentation.

Update Configuration

Navigate to bigchaindb/pkg/configuration/vars inside the BigchainDB repository.

$ cd bigchaindb/pkg/configuration/vars/stack-config.yml

Edit stack-config.yml configuration file as per your requirements, sample configuration file(s):

stack_type: "docker"
stack_size: "4"

(continues on next page)

20 Chapter 1. Contents

https://docs.bigchaindb.com/projects/py-driver/en/latest/index.html
https://docs.bigchaindb.com/projects/py-driver/en/latest/index.html
http://docs.bigchaindb.com/projects/server/en/latest/drivers-clients/index.html
http://docs.ansible.com/ansible/latest/intro_getting_started.html

Contributing to BigchainDB

(continued from previous page)

OR

stack_type: "local"
stack_type: "1"

After, the configuration of remote hosts, run the Ansible playbook and verify your deployment.

1.3 Policies

1.3.1 Contributor Code of Conduct

As contributors and maintainers of this project, and in the interest of fostering an open and welcoming community, we
pledge to respect all people who contribute to the project.

We are committed to making participation in this project a harassment-free experience for everyone, regardless of level
of experience, gender, gender identity and expression, sexual orientation, disability, personal appearance, body size,
race, ethnicity, age, religion, nationality, or species–no picking on Wrigley for being a buffalo!

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery

• Personal attacks

• Trolling or insulting/derogatory comments

• Public or private harassment

• Publishing other’s private information, such as physical or electronic addresses, without explicit permission

• Deliberate intimidation

• Other unethical or unprofessional conduct

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

By adopting this Code of Conduct, project maintainers commit themselves to fairly and consistently applying these
principles to every aspect of managing this project. Project maintainers who do not follow or enforce the Code of
Conduct may be permanently removed from the project team.

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community.

Instances of abusive, harassing, or otherwise unacceptable behavior directed at yourself or another community member
may be reported by contacting a project maintainer at contact@bigchaindb.com. All complaints will be reviewed and
investigated and will result in a response that is appropriate to the circumstances. Maintainers are obligated to maintain
confidentiality with regard to the reporter of an incident.

This Code of Conduct is adapted from the Contributor Covenant, version 1.3.0, available at http://contributor-covenant.
org/version/1/3/0/

1.3. Policies 21

mailto:contact@bigchaindb.com
http://contributor-covenant.org
http://contributor-covenant.org/version/1/3/0/
http://contributor-covenant.org/version/1/3/0/

Contributing to BigchainDB

1.3.2 Python Style Guide

This guide starts out with our general Python coding style guidelines and ends with a section on how we write & run
(Python) tests.

General Python Coding Style Guidelines

Our starting point is PEP8, the standard “Style Guide for Python Code.” Many Python IDEs will check your code
against PEP8. (Note that PEP8 isn’t frozen; it actually changes over time, but slowly.)

BigchainDB uses Python 3.5+, so you can ignore all PEP8 guidelines specific to Python 2.

We use pre-commit to check some of the rules below before every commit but not everything is realized yet. The
hooks we use can be found in the .pre-commit-config.yaml file.

Python Docstrings

PEP8 says some things about docstrings, but not what to put in them or how to structure them. PEP257 was one pro-
posal for docstring conventions, but we prefer Google-style docstrings instead: they’re easier to read and the napoleon
extension for Sphinx lets us turn them into nice-looking documentation. Here are some references on Google-style
docstrings:

• Google’s docs on Google-style docstrings

• napoleon’s docs include an overview of Google-style docstrings

• Example Google-style docstrings (from napoleon’s docs)

Maximum Line Length

PEP8 has some maximum line length guidelines, starting with “Limit all lines to a maximum of 79 characters” but
“for flowing long blocks of text with fewer structural restrictions (docstrings or comments), the line length should be
limited to 72 characters.”

We discussed this at length, and it seems that the consensus is: try to keep line lengths less than 79/72 characters,
unless you have a special situation where longer lines would improve readability. (The basic reason is that 79/72
works for everyone, and BigchainDB is an open source project.) As a hard limit, keep all lines less than 119 characters
(which is the width of GitHub code review).

Single or Double Quotes?

Python lets you use single or double quotes. PEP8 says you can use either, as long as you’re consistent. We try to stick
to using single quotes, except in cases where using double quotes is more readable. For example:

print('This doesn\'t look so nice.')
print("Doesn't this look nicer?")

Breaking Strings Across Multiple Lines

Should we use parentheses or slashes (\) to break strings across multiple lines, i.e.

22 Chapter 1. Contents

https://www.python.org/dev/peps/pep-0008/
http://pre-commit.com/
https://github.com/bigchaindb/bigchaindb/blob/master/.pre-commit-config.yaml
https://www.python.org/dev/peps/pep-0257/
https://google.github.io/styleguide/pyguide.html?showone=Comments#Comments
http://www.sphinx-doc.org/en/stable/ext/napoleon.html
http://www.sphinx-doc.org/en/stable/ext/napoleon.html
https://google.github.io/styleguide/pyguide.html?showone=Comments#Comments
http://sphinxcontrib-napoleon.readthedocs.org/en/latest/index.html
http://sphinxcontrib-napoleon.readthedocs.org/en/latest/example_google.html
https://www.python.org/dev/peps/pep-0008/#id17

Contributing to BigchainDB

my_string = ('This is a very long string, so long that it will not fit into just one
→˓line '

'so it must be split across multiple lines.')
or
my_string = 'This is a very long string, so long that it will not fit into just one
→˓line ' \

'so it must be split across multiple lines.'

It seems the preference is for slashes, but using parentheses is okay too. (There are good arguments either way.
Arguing about it seems like a waste of time.)

How to Format Long import Statements

If you need to import lots of names from a module or package, and they won’t all fit in one line (without making the
line too long), then use parentheses to spread the names across multiple lines, like so:

from Tkinter import (
Tk, Frame, Button, Entry, Canvas, Text,
LEFT, DISABLED, NORMAL, RIDGE, END,

)

Or

from Tkinter import (Tk, Frame, Button, Entry, Canvas, Text,
LEFT, DISABLED, NORMAL, RIDGE, END)

For the rationale, see PEP 328.

Using the % operator or format() to Format Strings

Given the choice:

x = 'name: %s; score: %d' % (name, n)
or
x = 'name: {}; score: {}'.format(name, n)

we use the format() version. The official Python documentation says, “This method of string formatting is the new
standard in Python 3, and should be preferred to the % formatting described in String Formatting Operations in new
code.”

Running the Flake8 Style Checker

We use Flake8 to check our Python code style. Once you have it installed, you can run it using:

flake8 --max-line-length 119 bigchaindb/

Writing and Running (Python) Tests

The content of this section was moved to bigchaindb/tests/README.md.

Note: We automatically run all tests on all pull requests (using Travis CI), so you should definitely run all tests locally
before you submit a pull request. See the above-linked README file for instructions.

1.3. Policies 23

https://www.python.org/dev/peps/pep-0328/#rationale-for-parentheses
https://docs.python.org/2/library/stdtypes.html#str.format
http://flake8.pycqa.org/en/latest/index.html
https://github.com/bigchaindb/bigchaindb/blob/master/tests/README

Contributing to BigchainDB

1.3.3 Our Release Process

Notes

BigchainDB follows the Python form of Semantic Versioning (i.e. MAJOR.MINOR.PATCH), which is almost identi-
cal to regular semantic versioning, but there’s no hyphen, e.g.

• 0.9.0 for a typical final release

• 4.5.2a1 not 4.5.2-a1 for the first Alpha release

• 3.4.5rc2 not 3.4.5-rc2 for Release Candidate 2

Note 1: For Git tags (which are used to identify releases on GitHub), we append a v in front. For example, the Git tag
for version 2.0.0a1 was v2.0.0a1.

Note 2: For Docker image tags (e.g. on Docker Hub), we use longer version names for Alpha, Beta and Release
Candidate releases. For example, the Docker image tag for version 2.0.0a2 was 2.0.0-alpha2.

We use 0.9 and 0.9.0 as example version and short-version values below. You should replace those with the correct
values for your new version.

We follow BEP-1, which is our variant of C4, the Collective Code Construction Contract, so a release is just a tagged
commit on the master branch, i.e. a label for a particular Git commit.

The following steps are what we do to release a new version of BigchainDB Server. The steps to release the Python
Driver are similar but not the same.

Steps

1. Create a pull request where you make the following changes:

• Update CHANGELOG.md

• Update all Docker image tags in all Kubernetes YAML files (in the k8s/ directory). For example, in the
files:

– k8s/bigchaindb/bigchaindb-ss.yaml and

– k8s/dev-setup/bigchaindb.yaml

find the line of the form image: bigchaindb/bigchaindb:0.8.1 and change the version num-
ber to the new version number, e.g. 0.9.0. (This is the Docker image that Kubernetes should pull from
Docker Hub.) Keep in mind that this is a Docker image tag so our naming convention is a bit different; see
Note 2 in the Notes section above.

• In bigchaindb/version.py:

– update __version__ to e.g. 0.9.0 (with no .dev on the end)

– update __short_version__ to e.g. 0.9 (with no .dev on the end)

• In the docs about installing BigchainDB (and Tendermint), and in the associated scripts, recommend/install
a version of Tendermint that actually works with the soon-to-be-released version of BigchainDB. You can
find all such references by doing a search for the previously-recommended version number, such as 0.
31.5.

• In setup.py, maybe update the development status item in the classifiers list. For example, one
allowed value is "Development Status :: 5 - Production/Stable". The allowed values
are listed at pypi.python.org.

2. Wait for all the tests to pass!

24 Chapter 1. Contents

https://packaging.python.org/tutorials/distributing-packages/#choosing-a-versioning-scheme
http://semver.org/
https://github.com/bigchaindb/BEPs/tree/master/1
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://pypi.python.org/pypi?%3Aaction=list_classifiers
https://pypi.python.org/pypi?%3Aaction=list_classifiers

Contributing to BigchainDB

3. Merge the pull request into the master branch.

4. Go to the bigchaindb/bigchaindb Releases page on GitHub and click the “Draft a new release” button.

5. Fill in the details:

• Tag version: version number preceded by v, e.g. v0.9.1

• Target: the last commit that was just merged. In other words, that commit will get a Git tag with the value
given for tag version above.

• Title: Same as tag version above, e.g v0.9.1

• Description: The body of the changelog entry (Added, Changed, etc.)

6. Click “Publish release” to publish the release on GitHub.

7. On your local computer, make sure you’re on the master branch and that it’s up-to-date with the master
branch in the bigchaindb/bigchaindb repository (e.g. git pull upstream master). We’re going to use
that to push a new bigchaindb package to PyPI.

8. Make sure you have a ~/.pypirc file containing credentials for PyPI.

9. Do make release to build and publish the new bigchaindb package on PyPI. For this step you need to
have twine installed. If you get an error like Makefile:135: recipe for target 'clean-pyc'
failed then try doing

sudo chown -R $(whoami):$(whoami) .

10. Log in to readthedocs.org and go to the BigchainDB Server project, then:

• Click on “Builds”, select “latest” from the drop-down menu, then click the “Build Version:” button.

• Wait for the build of “latest” to finish. This can take a few minutes.

• Go to Admin –> Advanced Settings and make sure that “Default branch:” (i.e. what “latest” points to) is set to
the new release’s tag, e.g. v0.9.1. (It won’t be an option if you didn’t wait for the build of “latest” to finish.)
Then scroll to the bottom and click “Save”.

• Go to Admin –> Versions and under Choose Active Versions, do these things:

1. Make sure that the new version’s tag is “Active” and “Public”

2. Make sure the stable branch is not active.

3. Scroll to the bottom of the page and click “Save”.

1. Go to Docker Hub and sign in, then:

• Click on “Organizations”

• Click on “bigchaindb”

• Click on “bigchaindb/bigchaindb”

• Click on “Build Settings”

• Find the row where “Docker Tag Name” equals latest and change the value of “Name” to the name (Git tag)
of the new release, e.g. v0.9.0.

• If the release is an Alpha, Beta or Release Candidate release, then a new row must be added. You can do that
by clicking the green “+” (plus) icon. The contents of the new row should be similar to the existing rows of
previous releases like that.

• Click on “Tags”

• Delete the “latest” tag (so we can rebuild it)

1.3. Policies 25

https://github.com/bigchaindb/bigchaindb/releases
https://readthedocs.org/accounts/login/
https://hub.docker.com/

Contributing to BigchainDB

• Click on “Build Settings” again

• Click on the “Trigger” button for the “latest” tag and make sure it worked by clicking on “Tags” again

• If the release is an Alpha, Beta or Release Candidate release, then click on the “Trigger” button for that tag as
well.

Congratulations, you have released a new version of BigchainDB Server!

26 Chapter 1. Contents

	Contents
	Ways to Contribute
	Developer Setup, Coding & Contribution Process
	Policies

