

    
      
          
            
  
Context loop (cl)

Simple context manager utility for asyncio event loop.
Context loop helps with async pieces of code to be scheduled and run within synchronous code.

Can be used with synchronous and asynchronous frameworks like Django, Flask
or Tornado and Twisted.


Contents:


	Context loop
	Features

	Installation

	Documentation

	Quick Example





	Public API

	Credits
	Development

	Contributors





	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines










LICENSE

MIT License

Copyright (c) 2018, Paweł Zadrożny @pawelzny <pawel.zny@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.







          

      

      

    

  

    
      
          
            
  
Context loop


	Info

	Context loop.



	Author

	Paweł Zadrożny @pawelzny <pawel.zny@gmail.com>





[image: CI Status]
 [https://circleci.com/gh/pawelzny/context-loop][image: Documentation Status]
 [http://context-loop.readthedocs.io/en/latest/?badge=latest][image: PyPI Repository Status]
 [https://pypi.org/project/context-loop/][image: Release Status]
 [https://github.com/pawelzny/context-loop][image: Project Status]
 [https://pypi.org/project/context-loop/][image: Supported python versions]
 [https://pypi.org/project/context-loop/][image: Supported interpreters]
 [https://pypi.org/project/context-loop/][image: License]
 [https://github.com/pawelzny/context-loop/blob/master/LICENSE]
Features


	Work with sync and async frameworks


	Schedule tasks to existing loop or create new one


	No need to understand how async works


	No callbacks required


	Run async tasks whenever and wherever you want







Installation

pip install context-loop





Package: https://pypi.org/project/context-loop/




Documentation

Read full documentation at http://context-loop.readthedocs.io/en/stable/




Quick Example

>>> async def coro():
...     return await something_from_future()
...
>>> import cl.Loop
>>> with cl.Loop(coro(), coro(), coro()) as loop:
...    result = loop.run_until_complete()
...
>>> result
['success', 'success', 'success']











          

      

      

    

  

    
      
          
            
  
Public API


	
class cl.loop.Loop(*futures, loop=None, return_exceptions=False)

	Asyncio Event loop context manager.

Context manager which get existing event loop or if none exist
will create new one.

All coroutines are converted to task and scheduled to execute in near future.
Scheduling is safe for long running tasks.


	Example

	




Create coroutine using @asyncio.coroutine decorator or
with async/await syntax

>>> async def wait_for_it(timeout):
...     await asyncio.sleep(timeout)
...     return 'success sleep for {} seconds'.format(timeout)
...





Use context manager to get result from one or more coroutines

>>> with Loop(wait_for_it(5), wait_for_it(3), return_exceptions=True) as loop:
...     result = loop.run_until_complete()
...
>>> result
['success sleep for 3 seconds', 'success sleep for 5 seconds']





When single coroutine has been scheduled to run, only single value will
be returned.

>>> with Loop(wait_for_it(4)) as loop:
...     result = loop.run_until_complete()
...
>>> result
'success sleep for 4 seconds'






	Parameters

	
	futures (asyncio.Future, asyncio.coroutine) – One or more coroutine or future.


	loop (asyncio.AbstractEventLoop) – Optional existing loop.


	return_exceptions (Boolean) – If True will return exceptions as result.


	stop_when_done (Boolean) – If True will close the loop on context exit.









	
futures = None

	Gathered futures.






	
gather(*futures: typing.Union[asyncio.futures.Future, <function coroutine at 0x7fc0e075e730>])

	Gather list of futures/coros and return single Task ready to schedule.


	Example

	




Prepare all futures to execution

>>> async def do_something():
...     return 'something'
...
>>> async def do_something_else():
...     return 'something_else'
...





Gather all tasks and then pass to context loop

>>> loop = Loop(return_exceptions=True)
>>> loop.gather(do_something(), do_something_else())
>>> with loop as l:
...     result = l.run_until_complete()
...






	Parameters

	futures (asyncio.Future, asyncio.coroutine) – One or more coroutine or future.



	Returns

	Futures grouped into single future



	Return type

	asyncio.Task, asyncio.Future










	
run_until_complete()

	Run loop until all futures are done.

Schedule futures for execution and wait until all are done.
Return value from future, or list of values if multiple
futures had been passed to constructor or gather method.

All results will be in the same order as order of futures passed to constructor.


	Example

	




>>> async def slow():
...     await ultra_slow_task()
...     return 'ultra slow'
...
>>> async def fast():
...     await the_fastest_task_on_earth()
...
>>> with Loop(slow(), fast()) as loop:
...     result = loop.run_until_complete()
...
>>> result
['ultra slow', None]






	Returns

	Value from future or list of values.



	Return type

	None, list, Any










	
cancel()

	Cancel pending futures.

If any of futures are already done its result will be lost.
Result of loop execution will be None.


	Example

	




>>> async def nuke_loop():
...     loop.cancel()
...
>>> loop = Loop()
>>> loop.gather(nuke_loop())
>>> with loop as lo:
...     result = lo.run_until_complete()
...
>>> result
None

















          

      

      

    

  

    
      
          
            
  
Credits


Development


	Paweł Zadrożny @pawelzny <pawel.zny@gmail.com>







Contributors

None yet. Why not be the first?

Read more how to contribute on Contributing.







          

      

      

    

  

    
      
          
            
  
Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:


Types of Contributions


Report Bugs

Report bugs at https://github.com/pawelzny/context-loop/issues

If you are reporting a bug, please include:


	Your operating system name and version.


	Any details about your local setup that might be helpful in troubleshooting.


	Detailed steps to reproduce the bug.







Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.




Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.




Write Documentation

authentication could always use more documentation, whether as part of the
official authentication docs, in docstrings, or even on the web in blog posts,
articles, and such.




Submit Feedback

The best way to send feedback is to file an issue at
https://github.com/pawelzny/context-loop/issues

If you are proposing a feature:


	Explain in detail how it would work.


	Keep the scope as narrow as possible, to make it easier to implement.


	Remember that this is a volunteer-driven project, and that contributions
are welcome :)









Get Started!

Ready to contribute? Here’s how to set up context-loop for local development.


	Fork the context-loop repo on GitHub.


	Clone your fork locally:

$ git clone git@github.com:your_name_here/context-loop.git









3. Install your local copy into a virtualenv. Assuming you have PipEnv installed,
this is how you set up your fork for local development:

$ cd context-loop/
$ make install-dev






	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally.



	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ make test-all





To get flake8 and tox, just pip install them into your virtualenv.



	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature







	Submit a pull request through the GitHub website.







Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:


	The pull request should include tests.


	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.


	The pull request should work for Python 3.5, 3.6 and for PyPy3.5. Check
https://circleci.com/gh/pawelzny/context-loop
and make sure that the tests pass for all supported Python versions.










          

      

      

    

  

    
      
          
            

   Python Module Index


   
   c
   


   
     		 	

     		
       c	

     
       	[image: -]
       	
       cl	
       

     
       	
       	   
       cl.loop	
       

   



          

      

      

    

  

    
      
          
            

Index



 C
 | F
 | G
 | L
 | R
 


C


  	
      	cancel() (cl.loop.Loop method)


  

  	
      	cl.loop (module)


  





F


  	
      	futures (cl.loop.Loop attribute)


  





G


  	
      	gather() (cl.loop.Loop method)


  





L


  	
      	Loop (class in cl.loop)


  





R


  	
      	run_until_complete() (cl.loop.Loop method)


  







          

      

      

    

  _static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/comment.png





_static/down-pressed.png





_static/down.png





nav.xhtml

    
      Table of Contents


      
        		
          Context loop (cl)
        


        		
          Context loop
          
            		
              Features
            


            		
              Installation
            


            		
              Documentation
            


            		
              Quick Example
            


          


        


        		
          Public API
        


        		
          Credits
          
            		
              Development
            


            		
              Contributors
            


          


        


        		
          Contributing
          
            		
              Types of Contributions
              
                		
                  Report Bugs
                


                		
                  Fix Bugs
                


                		
                  Implement Features
                


                		
                  Write Documentation
                


                		
                  Submit Feedback
                


              


            


            		
              Get Started!
            


            		
              Pull Request Guidelines
            


          


        


      


    
  

_static/minus.png





_static/plus.png





_static/file.png





_static/up.png





_static/up-pressed.png





