

 Navigation

 	
 index

 	
 next |

 	consulate 0.6.0 documentation

consulate

Consulate is a Python client library and set of application for the Consul
service discovery and configuration system.

[image: Version] [http://badge.fury.io/py/consulate] [image: Downloads] [https://pypi.python.org/pypi/consulate] [image: License] [https://consulate.readthedocs.org]

Installation

consulate may be installed via the Python package index with the tool of
your choice. I prefer pip:

pip install consulate

Requirements

	requests

API Documentation

	Consul
	Usage Examples

	API

	ACL

	Agent

	Catalog

	Event

	Health

	KV
	Examples of Use

	API

	Session

	Status

Version History

See Version History

Issues

Please report any issues to the Github project at https://github.com/gmr/consulate/issues

Source

consulate source is available on Github at https://github.com/gmr/consulate

License

consulate is released under the 3-Clause BSD license [https://github.com/gmr/consulate/blob/master/LICENSE].

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Gavin M. Roy.
 Created using Sphinx 1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	consulate 0.6.0 documentation

Consul

The consulate.Consul class is core interface for interacting with
all parts of the Consul [http://consul.io] API.

Usage Examples

Here is an example where the initial consulate.Consul is created,
connecting to Consul at localhost on port 8500. Once connected, a list
of all service checks is returned.

import consulate

Create a new instance of a consulate session
session = consulate.Consul()

Get all of the service checks for the local agent
checks = session.agent.checks()

This next example creates a new Consul passing
in an authorization token and then sets a key in the Consul KV service:

import consulate

session = consulate.Consul(token='5d24c96b4f6a4aefb99602ce9b60d16b')

Set the key named release_flag to True
session.kv['release_flag'] = True

API

	
class consulate.Consul(host='localhost', port=8500, datacenter=None, token=None, scheme='http', adapter=None, verify=True, cert=None)

	Access the Consul HTTP API via Python.

The default values connect to Consul via localhost:8500 via http. If
you want to connect to Consul via a local UNIX socket, you’ll need to
override both the scheme, port and the adapter like so:

consul = consulate.Consul('/path/to/socket', None, scheme='http+unix',
 adapter=consulate.adapters.UnixSocketRequest)
services = consul.agent.services()

	Parameters:	
	host (str [https://docs.python.org/2/library/functions.html#str]) – The host name to connect to (Default: localhost)

	port (int [https://docs.python.org/2/library/functions.html#int]) – The port to connect on (Default: 8500)

	datacenter (str [https://docs.python.org/2/library/functions.html#str]) – Specify a specific data center

	token (str [https://docs.python.org/2/library/functions.html#str]) – Specify a ACL token to use

	scheme (str [https://docs.python.org/2/library/functions.html#str]) – Specify the scheme (Default: http)

	adapter (class) – Specify to override the request adapter
(Default: consulate.adapters.Request)

	verify (bool/str) – Specify how to verify TLS certificates

	cert (tuple [https://docs.python.org/2/library/functions.html#tuple]) – Specify client TLS certificate and key files

	
acl

	Access the Consul
ACL [https://www.consul.io/docs/agent/http.html#acl] API

	Return type:	consulate.api.acl.ACL

	
agent

	Access the Consul
Agent [https://www.consul.io/docs/agent/http.html#agent] API

	Return type:	consulate.api.agent.Agent

	
catalog

	Access the Consul
Catalog [https://www.consul.io/docs/agent/http.html#catalog] API

	Return type:	consulate.api.catalog.Catalog

	
event

	Access the Consul
Events [https://www.consul.io/docs/agent/http.html#events] API

	Return type:	consulate.api.event.Event

	
health

	Access the Consul
Health [https://www.consul.io/docs/agent/http.html#health] API

	Return type:	consulate.api.health.Health

	
kv

	Access the Consul
KV [https://www.consul.io/docs/agent/http.html#kv] API

	Return type:	consulate.api.kv.KV

	
lock

	Wrapper for easy KV locks.

Example:

import consulate

consul = consulate.Consul()
with consul.lock.acquire('my-key'):
 print('Locked: {}'.format(consul.lock.key))
 # Do stuff

	Return type:	Lock

	
session

	Access the Consul
Session [https://www.consul.io/docs/agent/http.html#session] API

	Return type:	consulate.api.session.Session

	
status

	Access the Consul
Status [https://www.consul.io/docs/agent/http.html#status] API

	Return type:	consulate.api.status.Status

 Copyright 2014, Gavin M. Roy.
 Created using Sphinx 1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	consulate 0.6.0 documentation

ACL

	
class consulate.api.acl.ACL(uri, adapter, datacenter=None, token=None)

	The ACL endpoints are used to create, update, destroy, and query ACL
tokens.

	
clone(acl_id)

	Clone an existing ACL returning the new ACL ID

	Parameters:	acl_id (str [https://docs.python.org/2/library/functions.html#str]) – The ACL id

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Raises:	consulate.exceptions.Forbidden

	Raises:	consulate.exceptions.NotFound

	
create(name, acl_type='client', rules=None)

	The create endpoint is used to make a new token. A token has a name,
a type, and a set of ACL rules.

The name property is opaque to Consul. To aid human operators, it
should be a meaningful indicator of the ACL’s purpose.

acl_type is either client or management. A management token is
comparable to a root user and has the ability to perform any action
including creating, modifying, and deleting ACLs.

By contrast, a client token can only perform actions as permitted by
the rules associated. Client tokens can never manage ACLs. Given this
limitation, only a management token can be used to make requests to
the create endpoint.

rules is a HCL string defining the rule policy. See
`https://consul.io/docs/internals/acl.html`_ for more information on
defining rules.

The call to create will return the ID of the new ACL.

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the ACL to create

	acl_type (str [https://docs.python.org/2/library/functions.html#str]) – One of “client” or “management”

	rules (str [https://docs.python.org/2/library/functions.html#str]) – The rules HCL string

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	Raises:	consulate.exceptions.Forbidden

	
destroy(acl_id)

	Delete the specified ACL

	Parameters:	acl_id (str [https://docs.python.org/2/library/functions.html#str]) – The ACL id

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Raises:	consulate.exceptions.Forbidden

	Raises:	consulate.exceptions.NotFound

	
info(acl_id)

	Return a dict of information about the ACL

	Parameters:	acl_id (str [https://docs.python.org/2/library/functions.html#str]) – The ACL id

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	consulate.exceptions.Forbidden

	Raises:	consulate.exceptions.NotFound

	
list()

	Return a list of all ACLs

	Return type:	list

	Raises:	consulate.exceptions.Forbidden

	
update(acl_id, name, acl_type='client', rules=None)

	Update an existing ACL, updating its values or add a new ACL if
the ACL Id specified is not found.

	Parameters:	
	acl_id (str [https://docs.python.org/2/library/functions.html#str]) – The ACL id

	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the ACL

	acl_type (str [https://docs.python.org/2/library/functions.html#str]) – The ACL type

	rules (str [https://docs.python.org/2/library/functions.html#str]) – The ACL rules document

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Raises:	consulate.exceptions.Forbidden

 Copyright 2014, Gavin M. Roy.
 Created using Sphinx 1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	consulate 0.6.0 documentation

Agent

	
class consulate.api.agent.Agent(uri, adapter, datacenter=None, token=None)

	The Consul agent is the core process of Consul. The agent maintains
membership information, registers services, runs checks, responds to
queries and more. The agent must run on every node that is part of a
Consul cluster.

	
class Check(uri, adapter, datacenter=None, token=None)

	One of the primary roles of the agent is the management of system
and application level health checks. A health check is considered to be
application level if it associated with a service. A check is defined
in a configuration file, or added at runtime over the HTTP interface.

There are two different kinds of checks:

	
	Script + Interval: These checks depend on invoking an external

	application which does the health check and
exits with an appropriate exit code,
potentially generating some output. A script
is paired with an invocation interval
(e.g. every 30 seconds). This is similar to
the Nagios plugin system.

	
	TTL: These checks retain their last known state for a given TTL.

	The state of the check must be updated periodically
over the HTTP interface. If an external system fails to
update the status within a given TTL, the check is set to
the failed state. This mechanism is used to allow an
application to directly report it’s health. For example,
a web app can periodically curl the endpoint, and if the
app fails, then the TTL will expire and the health check
enters a critical state. This is conceptually similar to a
dead man’s switch.

	
deregister(check_id)

	Remove a check from the local agent. The agent will take care
of deregistering the check with the Catalog.

	Parameters:	check_id (str [https://docs.python.org/2/library/functions.html#str]) – The check id

	
register(name, script=None, check_id=None, interval=None, ttl=None, notes=None, http=None)

	Add a new check to the local agent. Checks are either a script
or TTL type. The agent is responsible for managing the status of
the check and keeping the Catalog in sync.

The name field is mandatory, as is either script and
interval, http and interval or ttl.
Only one of script and interval, http and interval
or ttl should be provided. If an check_id is not
provided, it is set to name. You cannot have duplicate
check_id entries per agent, so it may be necessary to provide
a check_id. The notes field is not used by Consul, and is
meant to be human readable.

If a script is provided, the check type is a script, and Consul
will evaluate the script every interval to update the status.
If a http URL is provided, Consul will poll the URL every
interval to update the status - only 2xx results are considered
healthy.
If a ttl type is used, then the ttl update APIs must be
used to periodically update the state of the check.

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – The check name

	http (str [https://docs.python.org/2/library/functions.html#str]) – The URL to poll for health checks

	script (str [https://docs.python.org/2/library/functions.html#str]) – The path to the script to run

	check_id (str [https://docs.python.org/2/library/functions.html#str]) – The optional check id

	interval (int [https://docs.python.org/2/library/functions.html#int]) – The interval to run the check

	ttl (int [https://docs.python.org/2/library/functions.html#int]) – The ttl to specify for the check

	notes (str [https://docs.python.org/2/library/functions.html#str]) – Administrative notes.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Raises:	ValueError

	
ttl_fail(check_id)

	This endpoint is used with a check that is of the TTL type.
When this endpoint is accessed, the status of the check is set
to “critical”, and the TTL clock is reset.

	Parameters:	check_id (str [https://docs.python.org/2/library/functions.html#str]) – The check id

	
ttl_pass(check_id)

	This endpoint is used with a check that is of the TTL type.
When this endpoint is accessed, the status of the check is set to
“passing”, and the TTL clock is reset.

	Parameters:	check_id (str [https://docs.python.org/2/library/functions.html#str]) – The check id

	
ttl_warn(check_id)

	This endpoint is used with a check that is of the TTL type.
When this endpoint is accessed, the status of the check is set
to “warning”, and the TTL clock is reset.

	Parameters:	check_id (str [https://docs.python.org/2/library/functions.html#str]) – The check id

	
class Agent.Service(uri, adapter, datacenter=None, token=None)

	One of the main goals of service discovery is to provide a catalog
of available services. To that end, the agent provides a simple
service definition format to declare the availability of a service, a
nd to potentially associate it with a health check. A health check is
considered to be application level if it associated with a service. A
service is defined in a configuration file, or added at runtime over
the HTTP interface.

	
deregister(service_id)

	Deregister the service from the local agent. The agent will
take care of deregistering the service with the Catalog. If there
is an associated check, that is also deregistered.

	Parameters:	service_id (str [https://docs.python.org/2/library/functions.html#str]) – The service id to deregister

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
register(name, service_id=None, address=None, port=None, tags=None, check=None, interval=None, ttl=None, httpcheck=None)

	Add a new service to the local agent.

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the service

	service_id (str [https://docs.python.org/2/library/functions.html#str]) – The id for the service (optional)

	address (str [https://docs.python.org/2/library/functions.html#str]) – The service IP address

	port (int [https://docs.python.org/2/library/functions.html#int]) – The service port

	tags (list) – A list of tags for the service

	check (str [https://docs.python.org/2/library/functions.html#str]) – The path to the check script to run

	interval (str [https://docs.python.org/2/library/functions.html#str]) – The check execution interval

	ttl (str [https://docs.python.org/2/library/functions.html#str]) – The TTL for external script check pings

	httpcheck (str [https://docs.python.org/2/library/functions.html#str]) – An URL to check every interval

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	Raises:	ValueError

	
Agent.__init__(uri, adapter, datacenter=None, token=None)

	Create a new instance of the Agent class

	Parameters:	
	uri (str [https://docs.python.org/2/library/functions.html#str]) – Base URI

	adapter (consul.adapters.Request) – Request adapter

	datacenter (str [https://docs.python.org/2/library/functions.html#str]) – datacenter

	token (str [https://docs.python.org/2/library/functions.html#str]) – Access Token

	
Agent.checks()

	return the all the checks that are registered with the local agent.
These checks were either provided through configuration files, or
added dynamically using the HTTP API. It is important to note that
the checks known by the agent may be different than those reported
by the Catalog. This is usually due to changes being made while there
is no leader elected. The agent performs active anti-entropy, so in
most situations everything will be in sync within a few seconds.

	Return type:	list

	
Agent.force_leave(node)

	Instructs the agent to force a node into the left state. If a node
fails unexpectedly, then it will be in a “failed” state. Once in this
state, Consul will attempt to reconnect, and additionally the services
and checks belonging to that node will not be cleaned up. Forcing a
node into the left state allows its old entries to be removed.

	
Agent.join(address, wan=False)

	This endpoint is hit with a GET and is used to instruct the agent
to attempt to connect to a given address. For agents running in
server mode, setting wan=True causes the agent to attempt to join
using the WAN pool.

	Parameters:	
	address (str [https://docs.python.org/2/library/functions.html#str]) – The address to join

	wan (bool [https://docs.python.org/2/library/functions.html#bool]) – Join a WAN pool as a server

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
Agent.members()

	Returns the members the agent sees in the cluster gossip pool.
Due to the nature of gossip, this is eventually consistent and the
results may differ by agent. The strongly consistent view of nodes
is instead provided by Consulate.catalog.nodes.

	Return type:	list

	
Agent.services()

	return the all the services that are registered with the local
agent. These services were either provided through configuration
files, or added dynamically using the HTTP API. It is important to
note that the services known by the agent may be different than those
]reported by the Catalog. This is usually due to changes being made
while there is no leader elected. The agent performs active
anti-entropy, so in most situations everything will be in sync
within a few seconds.

	Return type:	list

 Copyright 2014, Gavin M. Roy.
 Created using Sphinx 1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	consulate 0.6.0 documentation

Catalog

	
class consulate.api.catalog.Catalog(uri, adapter, dc=None, token=None)

	The Consul agent is the core process of Consul. The agent maintains
membership information, registers services, runs checks, responds to
queries and more. The agent must run on every node that is part of a
Consul cluster.

	
datacenters()

	Return all the datacenters that are known by the Consul server.

	Return type:	list

	
deregister(node, datacenter=None, check_id=None, service_id=None)

	Directly remove entries in the catalog. It is usually recommended
to use the agent local endpoints, as they are simpler and perform
anti-entropy.

The behavior of the endpoint depends on what keys are provided. The
endpoint requires node to be provided, while datacenter will
be defaulted to match that of the agent. If only node is provided,
then the node, and all associated services and checks are deleted. If
check_id is provided, only that check belonging to the node is
removed. If service_id is provided, then the service along with
it’s associated health check (if any) is removed.

	Parameters:	
	node (str [https://docs.python.org/2/library/functions.html#str]) – The node for the action

	datacenter (str [https://docs.python.org/2/library/functions.html#str]) – The optional datacenter for the node

	check_id (str [https://docs.python.org/2/library/functions.html#str]) – The optional check_id to remove

	service_id (str [https://docs.python.org/2/library/functions.html#str]) – The optional service_id to remove

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
node(node_id)

	Return the node data for the specified node

	Parameters:	node_id (str [https://docs.python.org/2/library/functions.html#str]) – The node ID

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
nodes()

	Return all of the nodes for the current datacenter.

	Return type:	list

	
register(node, address, datacenter=None, service=None, check=None)

	A a low level mechanism for directly registering or updating
entries in the catalog. It is usually recommended to use the agent
local endpoints, as they are simpler and perform anti-entropy.

The behavior of the endpoint depends on what keys are provided. The
endpoint requires Node and Address to be provided, while Datacenter
will be defaulted to match that of the agent. If only those are
provided, the endpoint will register the node with the catalog.

If the Service key is provided, then the service will also be
registered. If ID is not provided, it will be defaulted to Service.
It is mandated that the ID be node-unique. Both Tags and Port can
be omitted.

If the Check key is provided, then a health check will also be
registered. It is important to remember that this register API is
very low level. This manipulates the health check entry, but does
not setup a script or TTL to actually update the status. For that
behavior, an agent local check should be setup.

The CheckID can be omitted, and will default to the Name. Like
before, the CheckID must be node-unique. The Notes is an opaque
field that is meant to hold human readable text. If a ServiceID is
provided that matches the ID of a service on that node, then the
check is treated as a service level health check, instead of a node
level health check. Lastly, the status must be one of “unknown”,
“passing”, “warning”, or “critical”. The “unknown” status is used to
indicate that the initial check has not been performed yet.

It is important to note that Check does not have to be provided
with Service and visa-versa. They can be provided or omitted at will.

Example service dict:

'Service': {
 'ID': 'redis1',
 'Service': 'redis',
 'Tags': ['master', 'v1'],
 'Port': 8000,
}

Example check dict:

'Check': {
 'Node': 'foobar',
 'CheckID': 'service:redis1',
 'Name': 'Redis health check',
 'Notes': 'Script based health check',
 'Status': 'passing',
 'ServiceID': 'redis1'
}

	Parameters:	
	node (str [https://docs.python.org/2/library/functions.html#str]) – The node name

	address (str [https://docs.python.org/2/library/functions.html#str]) – The node address

	datacenter (str [https://docs.python.org/2/library/functions.html#str]) – The optional node datacenter

	service (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – An optional node service

	check (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – An optional node check

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
service(service_id)

	Return the service details for the given service

	Parameters:	service_id (str [https://docs.python.org/2/library/functions.html#str]) – The service id

	Return type:	list

	
services()

	Return a list of all of the services for the current datacenter.

	Return type:	list

 Copyright 2014, Gavin M. Roy.
 Created using Sphinx 1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	consulate 0.6.0 documentation

Event

	
class consulate.api.event.Event(uri, adapter, datacenter=None, token=None)

	The Event endpoints are used to fire a new event and list recent events.

	
fire(name, payload=None, datacenter=None, node=None, service=None, tag=None)

	Trigger a new user Event

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the event

	payload (str [https://docs.python.org/2/library/functions.html#str]) – The opaque event payload

	datacenter (str [https://docs.python.org/2/library/functions.html#str]) – Optional datacenter to fire the event in

	node (str [https://docs.python.org/2/library/functions.html#str]) – Optional node to fire the event for

	service (str [https://docs.python.org/2/library/functions.html#str]) – Optional service to fire the event for

	tag (str [https://docs.python.org/2/library/functions.html#str]) – Option tag to fire the event for

	Return str:	the new event ID

	
list(name=None)

	Returns the most recent events known by the agent. As a consequence
of how the event command works, each agent may have a different view of
the events. Events are broadcast using the gossip protocol, so they
have no global ordering nor do they make a promise of delivery.

	Returns:	list

 Copyright 2014, Gavin M. Roy.
 Created using Sphinx 1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	consulate 0.6.0 documentation

Health

	
class consulate.api.health.Health(uri, adapter, datacenter=None, token=None)

	Used to query health related information. It is provided separately
from the Catalog, since users may prefer to not use the health checking
mechanisms as they are totally optional. Additionally, some of the query
results from the Health system are filtered, while the Catalog endpoints
provide the raw entries.

	
checks(service_id)

	Return checks for the given service.

	Parameters:	service_id (str [https://docs.python.org/2/library/functions.html#str]) – The service ID

	Return type:	list

	
node(node_id)

	Return the health info for a given node.

	Parameters:	node_id (str [https://docs.python.org/2/library/functions.html#str]) – The node ID

	Return type:	list

	
service(service_id, tag=None, passing=None)

	Returns the nodes and health info of a service

	Parameters:	service_id (str [https://docs.python.org/2/library/functions.html#str]) – The service ID

	Return type:	list

	
state(state)

	Returns the checks in a given state where state is one of
“unknown”, “passing”, “warning”, or “critical”.

	Parameters:	state (str [https://docs.python.org/2/library/functions.html#str]) – The state to get checks for

	Return type:	list

 Copyright 2014, Gavin M. Roy.
 Created using Sphinx 1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	consulate 0.6.0 documentation

KV

The KV class provides both high and low level access
to the Consul Key/Value service. To use the KV class,
access the consulate.Consul.kv() attribute of the
Session class.

For high-level operation, the KV class behaves
like a standard Python dict [https://docs.python.org/2/library/stdtypes.html#dict]. You can get, set, and delete items in
the Key/Value service just as you would with a normal dictionary.

If you need to have access to the full record associated with an item, there are
lower level methods such as KV.set_record
and KV.set_record. These two methods
provide access to the other fields associated with the item in Consul, including
the flag and various index related fields.

Examples of Use

Here’s a big blob of example code that uses most of the functionality in the
KV class. Check the comments in the code to see what
part of the class it is demonstrating.

import consulate

session = consulate.Session()

Set the key named release_flag to True
session.kv['release_flag'] = True

Get the value for the release_flag, if not set, raises AttributeError
try:
 should_release_feature = session.kv['release_flag']
except AttributeError:
 should_release_feature = False

Delete the release_flag key
del session.kv['release_flag']

Fetch how many rows are set in the KV store
print(len(self.session.kv))

Iterate over all keys in the kv store
for key in session.kv:
 print('Key "{0}" set'.format(key))

Iterate over all key/value pairs in the kv store
for key, value in session.kv.iteritems():
 print('{0}: {1}'.format(key, value))

Iterate over all keys in the kv store
for value in session.kv.values:
 print(value)

Find all keys that start with "fl"
for key in session.kv.find('fl'):
 print('Key "{0}" found'.format(key))

Check to see if a key called "foo" is set
if "foo" in session.kv:
 print 'Already Set'

Return all of the items in the key/value store
session.kv.items()

API

	
class consulate.api.kv.KV(uri, adapter, datacenter=None, token=None)

	The consul.api.KV class implements a dict [https://docs.python.org/2/library/stdtypes.html#dict] like
interface for working with the Key/Value service. Simply use items on the
consulate.Session like you would with a dict [https://docs.python.org/2/library/stdtypes.html#dict] to
get,
set, or
delete values in the key/value store.

Additionally, KV acts as an
iterator, providing methods to
iterate over keys,
values,
keys and values, etc.

Should you need access to get or set the flag value, the
get_record,
set_record,
and records provide a way to access
the additional fields exposed by the KV service.

	
__contains__(item)

	Return True if there is a value set in the Key/Value service for the
given key.

	Parameters:	item (str [https://docs.python.org/2/library/functions.html#str]) – The key to check for

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

	
__delitem__(item)

	Delete an item from the Key/Value service

	Parameters:	item (str [https://docs.python.org/2/library/functions.html#str]) – The key name

	
__getitem__(item)

	Get a value from the Key/Value service, returning it fully
decoded if possible.

	Parameters:	item (str [https://docs.python.org/2/library/functions.html#str]) – The item name

	Return type:	mixed

	Raises:	KeyError

	
__iter__()

	Iterate over all the keys in the Key/Value service

	Return type:	iterator

	
__len__()

	Return the number if items in the Key/Value service

	Returns:	int

	
__setitem__(item, value)

	Set a value in the Key/Value service, using the CAS mechanism
to ensure that the set is atomic. If the value passed in is not a
string, an attempt will be made to JSON encode the value prior to
setting it.

	Parameters:	
	item (str [https://docs.python.org/2/library/functions.html#str]) – The key to set

	value (mixed) – The value to set

	Raises:	KeyError

	
acquire_lock(item, session, value=None, cas=None, flags=None)

	Use Consul for locking by specifying the item/key to lock with
and a session value for removing the lock.

	Parameters:	
	item (str [https://docs.python.org/2/library/functions.html#str]) – The item in the Consul KV database

	session (str [https://docs.python.org/2/library/functions.html#str]) – The session value for the lock

	value (mixed) – An optional value to set for the lock

	cas (int [https://docs.python.org/2/library/functions.html#int]) – Optional Check-And-Set index value

	flags (int [https://docs.python.org/2/library/functions.html#int]) – User defined flags to set

	Returns:	bool

	
delete(item, recurse=False)

	Delete an item from the Key/Value service

	Parameters:	
	item (str [https://docs.python.org/2/library/functions.html#str]) – The item key

	recurse (bool [https://docs.python.org/2/library/functions.html#bool]) – Remove keys prefixed with the item pattern

	Raises:	KeyError

	
find(prefix, separator=None)

	Find all keys with the specified prefix, returning a dict of
matches.

Example:

>>> consul.kv.find('b')
{'baz': 'qux', 'bar': 'baz'}

	Parameters:	prefix (str [https://docs.python.org/2/library/functions.html#str]) – The prefix to search with

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
get(item, default=None, raw=False)

	Get a value from the Key/Value service, returning it fully
decoded if possible.

	Parameters:	
	item (str [https://docs.python.org/2/library/functions.html#str]) – The item key

	default (mixed) – A default value to return if the get fails

	raw (bool [https://docs.python.org/2/library/functions.html#bool]) – Return the raw value from Consul

	Return type:	mixed

	Raises:	KeyError

	
get_record(item)

	Get the full record from the Key/Value service, returning
all fields including the flag.

	Parameters:	item (str [https://docs.python.org/2/library/functions.html#str]) – The item key

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	KeyError

	
items()

	Return a dict of all of the key/value pairs in the Key/Value service

Example:

>>> consul.kv.items()
{'foo': 'bar', 'bar': 'baz', 'quz': True, 'corgie': 'dog'}

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
iteritems()

	Iterate over the dict of key/value pairs in the Key/Value service

Example:

>>> for key, value in consul.kv.iteritems():
... print(key, value)
...
(u'bar', 'baz')
(u'foo', 'bar')
(u'quz', True)

	Return type:	iterator

	
keys()

	Return a list of all of the keys in the Key/Value service

Example:

>>> consul.kv.keys()
[u'bar', u'foo', u'quz']

	Return type:	list

	
records(key=None)

	Return a list of tuples for all of the records in the Key/Value
service

Example:

>>> consul.kv.records()
[(u'bar', 0, 'baz'),
 (u'corgie', 128, 'dog'),
 (u'foo', 0, 'bar'),
 (u'quz', 0, True)]

	Return type:	list of (Key, Flags, Value)

	
release_lock(item, session)

	Release an existing lock from the Consul KV database.

	Parameters:	
	item (str [https://docs.python.org/2/library/functions.html#str]) – The item in the Consul KV database

	session (str [https://docs.python.org/2/library/functions.html#str]) – The session value for the lock

	Returns:	bool

	
set(item, value)

	Set a value in the Key/Value service, using the CAS mechanism
to ensure that the set is atomic. If the value passed in is not a
string, an attempt will be made to JSON encode the value prior to
setting it.

	Parameters:	
	item (str [https://docs.python.org/2/library/functions.html#str]) – The key to set

	value (mixed) – The value to set

	Raises:	KeyError

	
set_record(item, flags=0, value=None, replace=True)

	Set a full record, including the item flag

	Parameters:	
	item (str [https://docs.python.org/2/library/functions.html#str]) – The key to set

	value (mixed) – The value to set

	replace – If True existing value will be overwritten:

	
values()

	Return a list of all of the values in the Key/Value service

Example:

>>> consul.kv.values()
[True, 'bar', 'baz']

	Return type:	list

 Copyright 2014, Gavin M. Roy.
 Created using Sphinx 1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	consulate 0.6.0 documentation

Session

	
class consulate.api.session.Session(uri, adapter, datacenter=None, token=None)

	Create, destroy, and query Consul sessions.

	
create(name=None, behavior='release', node=None, delay=None, ttl=None, checks=None)

	Initialize a new session.

None of the fields are mandatory, and in fact no body needs to be PUT
if the defaults are to be used.

Name can be used to provide a human-readable name for the Session.

Behavior can be set to either release or delete. This controls
the behavior when a session is invalidated. By default, this is
release, causing any locks that are held to be released. Changing this
to delete causes any locks that are held to be deleted. delete is
useful for creating ephemeral key/value entries.

Node must refer to a node that is already registered, if specified.
By default, the agent’s own node name is used.

LockDelay (delay) can be specified as a duration string using a
“s” suffix for seconds. The default is 15s.

The TTL field is a duration string, and like LockDelay it can use “s”
as a suffix for seconds. If specified, it must be between 10s and
3600s currently. When provided, the session is invalidated if it is
not renewed before the TTL expires. See the session internals page
for more documentation of this feature.

Checks is used to provide a list of associated health checks. It is
highly recommended that, if you override this list, you include the
default “serfHealth”.

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – A human readable session name

	behavior (str [https://docs.python.org/2/library/functions.html#str]) – One of release or delete

	node (str [https://docs.python.org/2/library/functions.html#str]) – A node to create the session on

	delay (str [https://docs.python.org/2/library/functions.html#str]) – A lock delay for the session

	ttl (str [https://docs.python.org/2/library/functions.html#str]) – The time to live for the session

	checks (lists) – A list of associated health checks

	Return str:	session ID

	
destroy(session_id)

	Destroy an existing session

	Parameters:	session_id (str [https://docs.python.org/2/library/functions.html#str]) – The session to destroy

	Returns:	bool

	
info(session_id)

	Returns the requested session information within a given dc.
By default, the dc of the agent is queried.

	Parameters:	session_id (str [https://docs.python.org/2/library/functions.html#str]) – The session to get info about

	Returns:	dict

	
list()

	Returns the active sessions for a given dc.

	Returns:	list

	
node(node)

	Returns the active sessions for a given node and dc.
By default, the dc of the agent is queried.

	Parameters:	node (str [https://docs.python.org/2/library/functions.html#str]) – The node to get active sessions for

	Returns:	list

	
renew(session_id)

	Renew the given session. This is used with sessions that have a TTL,
and it extends the expiration by the TTL. By default, the dc
of the agent is queried.

	Parameters:	session_id (str [https://docs.python.org/2/library/functions.html#str]) – The session to renew

	Returns:	dict

 Copyright 2014, Gavin M. Roy.
 Created using Sphinx 1.3.

 Navigation

 	
 index

 	
 previous |

 	consulate 0.6.0 documentation

Status

	
class consulate.api.status.Status(uri, adapter, datacenter=None, token=None)

	Get information about the status of the Consul cluster. This are
generally very low level, and not really useful for clients.

	
leader()

	Get the Raft leader for the datacenter the agent is running in.

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	
peers()

	Get the Raft peers for the datacenter the agent is running in.

	Return type:	list

 Copyright 2014, Gavin M. Roy.
 Created using Sphinx 1.3.

 Navigation

 	
 index

 	consulate 0.6.0 documentation

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

_

 	

 	__contains__() (consulate.api.kv.KV method)

 	__delitem__() (consulate.api.kv.KV method)

 	__getitem__() (consulate.api.kv.KV method)

 	__init__() (consulate.api.agent.Agent method)

 	

 	(consulate.api.lock.Lock method)

 	

 	__iter__() (consulate.api.kv.KV method)

 	__len__() (consulate.api.kv.KV method)

 	__setitem__() (consulate.api.kv.KV method)

A

 	

 	ACL (class in consulate.api.acl)

 	acl (consulate.Consul attribute)

 	acquire() (consulate.api.lock.Lock method)

 	acquire_lock() (consulate.api.kv.KV method)

 	

 	Agent (class in consulate.api.agent)

 	agent (consulate.Consul attribute)

 	Agent.Check (class in consulate.api.agent)

 	Agent.Service (class in consulate.api.agent)

C

 	

 	Catalog (class in consulate.api.catalog)

 	catalog (consulate.Consul attribute)

 	checks() (consulate.api.agent.Agent method)

 	

 	(consulate.api.health.Health method)

 	

 	clone() (consulate.api.acl.ACL method)

 	Consul (class in consulate)

 	create() (consulate.api.acl.ACL method)

 	

 	(consulate.api.session.Session method)

D

 	

 	datacenters() (consulate.api.catalog.Catalog method)

 	delete() (consulate.api.kv.KV method)

 	

 	deregister() (consulate.api.agent.Agent.Check method)

 	

 	(consulate.api.agent.Agent.Service method)

 	(consulate.api.catalog.Catalog method)

 	destroy() (consulate.api.acl.ACL method)

 	

 	(consulate.api.session.Session method)

E

 	

 	Event (class in consulate.api.event)

 	

 	event (consulate.Consul attribute)

F

 	

 	find() (consulate.api.kv.KV method)

 	fire() (consulate.api.event.Event method)

 	

 	force_leave() (consulate.api.agent.Agent method)

G

 	

 	get() (consulate.api.kv.KV method)

 	

 	get_record() (consulate.api.kv.KV method)

H

 	

 	Health (class in consulate.api.health)

 	

 	health (consulate.Consul attribute)

I

 	

 	info() (consulate.api.acl.ACL method)

 	

 	(consulate.api.session.Session method)

 	items() (consulate.api.kv.KV method)

 	

 	iteritems() (consulate.api.kv.KV method)

J

 	

 	join() (consulate.api.agent.Agent method)

K

 	

 	key (consulate.api.lock.Lock attribute)

 	keys() (consulate.api.kv.KV method)

 	

 	KV (class in consulate.api.kv)

 	kv (consulate.Consul attribute)

L

 	

 	leader() (consulate.api.status.Status method)

 	list() (consulate.api.acl.ACL method)

 	

 	(consulate.api.event.Event method)

 	(consulate.api.session.Session method)

 	

 	Lock (class in consulate.api.lock)

 	lock (consulate.Consul attribute)

M

 	

 	members() (consulate.api.agent.Agent method)

N

 	

 	node() (consulate.api.catalog.Catalog method)

 	

 	(consulate.api.health.Health method)

 	(consulate.api.session.Session method)

 	

 	nodes() (consulate.api.catalog.Catalog method)

P

 	

 	peers() (consulate.api.status.Status method)

 	

 	prefix() (consulate.api.lock.Lock method)

R

 	

 	records() (consulate.api.kv.KV method)

 	register() (consulate.api.agent.Agent.Check method)

 	

 	(consulate.api.agent.Agent.Service method)

 	(consulate.api.catalog.Catalog method)

 	

 	release_lock() (consulate.api.kv.KV method)

 	renew() (consulate.api.session.Session method)

S

 	

 	service() (consulate.api.catalog.Catalog method)

 	

 	(consulate.api.health.Health method)

 	services() (consulate.api.agent.Agent method)

 	

 	(consulate.api.catalog.Catalog method)

 	Session (class in consulate.api.session)

 	session (consulate.Consul attribute)

 	set() (consulate.api.kv.KV method)

 	

 	set_record() (consulate.api.kv.KV method)

 	state() (consulate.api.health.Health method)

 	Status (class in consulate.api.status)

 	status (consulate.Consul attribute)

T

 	

 	ttl_fail() (consulate.api.agent.Agent.Check method)

 	ttl_pass() (consulate.api.agent.Agent.Check method)

 	

 	ttl_warn() (consulate.api.agent.Agent.Check method)

U

 	

 	update() (consulate.api.acl.ACL method)

V

 	

 	values() (consulate.api.kv.KV method)

 Copyright 2014, Gavin M. Roy.
 Created using Sphinx 1.3.

 lock.html

 Navigation

 		
 index

 		consulate 0.6.0 documentation »

Lock

		
class consulate.api.lock.Lock(uri, adapter, session, datacenter=None, token=None)

		Wrapper for easy KV locks. Keys are
automatically prefixed with consulate/locks/. To change the prefix or
remove it invoke the :meth:~consulate.api.lock.Lock.prefix` method.

Example:

import consulate

consul = consulate.Consul()
with consul.lock.acquire('my-key'):
 print('Locked: {}'.format(consul.lock.key))
 # Do stuff

		Raises:		LockError

		
__init__(uri, adapter, session, datacenter=None, token=None)

		Create a new instance of the Lock

		Parameters:		
		uri (str [https://docs.python.org/2/library/functions.html#str]) – Base URI

		adapter (consul.adapters.Request) – Request adapter

		session (consul.api.session.Session) – Session endpoint instance

		datacenter (str [https://docs.python.org/2/library/functions.html#str]) – datacenter

		token (str [https://docs.python.org/2/library/functions.html#str]) – Access Token

		
acquire(*args, **kwds)

		A context manager that allows you to acquire the lock, optionally
passing in a key and/or value.

		Parameters:		
		key (str [https://docs.python.org/2/library/functions.html#str]) – The key to lock

		value (str [https://docs.python.org/2/library/functions.html#str]) – The value to set in the lock

		Raises:		LockError

		
key

		Return the lock key

		Return type:		str [https://docs.python.org/2/library/functions.html#str]

		
prefix(value)

		Override the path prefix for the lock key

		Parameters:		value (str [https://docs.python.org/2/library/functions.html#str]) – The value to set the path prefix to

 © Copyright 2014, Gavin M. Roy.
 Created using Sphinx 1.3.

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/comment.png

search.html

 Navigation

 		
 index

 		consulate 0.6.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Gavin M. Roy.
 Created using Sphinx 1.3.

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

history.html

 Navigation

 		
 index

 		consulate 0.6.0 documentation »

Version History

		0.7.0

		Fixed run_once wrong args + subprocess parsing (#65) - Anthony Scalisi

		Fixed register() and deregister() (#59)

		Add support for flags, cas, and value in Consulate.kv.acquire_lock() (#63)

		Add --pretty option to kv backup (#69) - Brian Clark

		Don’t try to b64decode null values on kv restore (#68, #70) - Brian Clark

		Raise server-error exception when setting a key fails due to a server error (#67) - Fredric Newberg

		Address Python 2.6 incompatibility with the consulate cli and null data (#62, #61) - Wayne Walker

		New Lock class for easier lock acquisition

		New CLI feature to backup and restore ACLs (#71)

		0.6.0 - released 2015-07-22

		Added –recurse and –trim to cli kv_get (#58) - Matt Walker

		Add run-once functionality to CLI (#57) - Harrison Dahme

		Fix cli kv ls -l to report empty key lengths as 0 (#55) - Matt Walker

		Add ability to restore from API output (#53) - Morgan Delagrange

		If specified, use CONSUL_RPC_ADDR as defaults for API scheme/host/port in CLI app (#50) - Mike Dougherty

		Fix a recursion introduced in 0.5.0 with catalog.register (#49)

		Unix socket support moved to extras install, no longer required (#48) - Anders Daljord Morken

		Add support for HTTP health checks and CLI support for deregistering services (#47) - Anders Daljord Morken

		Handle an edge case where argparse doesn’t properly pass int values (#45)

		Handle binary data properly (#41)

		Add –base64 flag to kv backup/restore for backing up and restoring binary data (#41)

		Fix status.peers() returning string instead of list if only one peer exists (#39)

		Remove print debugging on error message (#37) - Christian Kauhaus

		Added additional test coverage

		Expose consulate.exceptions.* at consulate package level

		consulate.exceptions.ACLForbidden renamed to consulate.exceptions.Forbidden

		Fix content encoding issues with Python 3

		0.5.1 - released 2015-05-13

		Fix a regression with consualte cli introduced with UnixSockets (#36) - Dan Tracy

		0.5.0 - released 2015-05-13

		Add ability to talk to Consul via Unix Socket

		Remove the automatic JSON deserialization attempt of KV values

		Add timeout parameter when creating the consulate.Consul instance (#31) - Grzegorz Śliwiński

		Add ability to specify a different request adapter when creating a consulate.Consul instance (#30)

		Add a flag that will prevent consulate.KV.set_record from replacing a pre-existing value (#29) - Jakub Wierzbowski

		Add a flag to the consulate cli for the restore command to prevent the replacement of pre-existing values (#29) - Jakub Wierzbowski

		Add query args to consulate.Health.service (#27) - Chen Lei

		Removed the ability to override the datacenter in consulate.Session APIs

		Address UTF-8 decoding/encoding issues with Python 3

		Remove optional simplejson use

		Remove default value arg for consulate.KV.get_record

		General code cleanup and reduction of duplicate code

		0.4.0 - released 2015-03-14

		Major internal restructure and code cleanup

		consulate.Session renamed to consulate.Consul

		Fix issues regarding UTF-8 values

		Fix usage of CAS for KV.set (#15)

		Added new consulate kv options: ls, mkdir, rm (#16)

		Add support for KV.get raw

		Add ACL endpoint support

		Add Session endpoint support

		Add Event endpoint support

		Added KV lock support (acquire, release)

		Remove all remaining fragments of Tornado support

		0.3.0 - released 2015-03-03
- Fix issues with quoting and UTF-8 in consulate kv backup/restore (#6, #8,
- Fix installation issues related to missing tornado dependency (#10,
- Make simplejson requirement optional

		0.2.0 - released 2014-07-22
- Extract the passport app to a standalone library

		0.1.2 - released 2014-05-06
- consulate cli app bugfixes

		0.1.0 - released 2014-05-06
- Initial release

 © Copyright 2014, Gavin M. Roy.
 Created using Sphinx 1.3.

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

