

 Navigation

 	
 index

 	
 next |

 	Constraining order 0.1 documentation

Welcome to Constraining Order’s documentation!

Constraining Order is a pure python library for solving certain classes of
constraint satisfaction problems (CSP). In particular it contains an
implementation of IntervalSets to represent fairly general sets of real
numbers.

Constraining Order works (at least) with Python 2.7, 3.4 and PyPy and is
licensed under the MIT license.

Constraining Order is relatively flexible in the sense that many CSPs can be
quickly modeled and new constraints can be implemented very easily. However
it is not tuned towards high performance.

For serious problems there are much more powerful solutions available:

	gecode [http://www.gecode.org] (which looks amazing and superbly
documented)

	or-tools [https://code.google.com/p/or-tools/]

	choco [http://www.choco-solver.org/]

	or one of the many specialized constraint programming languages [https://en.wikipedia.org/wiki/Constraint_programming]

For python there are several packages for constraint satisfaction problems:

	ortools [https://pypi.python.org/pypi/ortools/1.3795]

	gecode-python [https://pypi.python.org/pypi/gecode-python/0.27] outdated,
inactive

	logilab-constraints [https://pypi.python.org/pypi/logilab-constraint/0.5.0] sparse
documentation, inactive

	pyconstraints [https://pypi.python.org/pypi/pyconstraints/1.0.1] sparse
documentation, inactive

For a nice overview over the theoretical foundations, see e.g. [Tsang96].

The code is hosted on GitHub:

https://github.com/jreinhardt/constraining-order

Contents:

	Quickstart
	Variables

	Constraints

	Space

	Solution

	References

	Sets
	DiscreteSet

	Interval

	IntervalSets

	Custom constraints
	8 queens problem

	Custom Binary relations

API Reference:

	Sets
	DiscreteSet

	Interval

	IntervalSet

	Constraint Satisfaction
	Variables

	Constraints

	Space

	Solvers

Indices and tables

	Index

	Module Index

	Search Page

References

	[Tsang96]	Tsang, E. Foundations of Constraint Satisfaction Academic Press, 1996

 Copyright 2015, Johannes Reinhardt.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Constraining order 0.1 documentation

Quickstart

For a quick introduction we will write a Sudoku solver. Sudokus [https://en.wikipedia.org/Sudoku] are popular puzzles that are often found
in Newspapers. The task is to fill in numbers in a (already partly filled)
9x9 grid, such that no number is present twice in a row, column or one of the
9 3x3 blocks.

Sudokus are constraint satisfaction problems. The 81 fields of the grid are
the variables, their domain is the set of numbers from 1 to 9, and the
constraints are the number placement rules.

Variables

The first step is to model the space our problem lives in. For that we need
the variables and their domains. We can make use of python to do this very
compactly for all 81 variables

from constrainingorder.sets import DiscreteSet
from constrainingorder.variables import DiscreteVariable

numbers = range(1,10)
domain = DiscreteSet(numbers)
variables = {}
for i in numbers:
 for j in numbers:
 name = 'x%d%d' % (i,j)
 variables[name] = DiscreteVariable(name,domain=domain)

A DiscreteSet is a datastructure representing a set of discrete elements,
very similar to pythons built-in set. But it can also represent the “set of
everything”, which is sometimes convenient. For details see
.. todo:: Add DiscreteSet reference

A DiscreteVariable is a variable that can take on values from a DiscreteSet.
Each variable has a name. The variables x11 is the number in the first row
and first column, the variable x12 the one in the first row and second
column and so on. We store them in a dictionary, so that we can easily to
refer to them by name when building the constraints. This is often
convenient, but not always necessary.

Constraints

The constraints model the requirements, that no number is allowed to occur
twice in a row, column or block. Or equivalently, that all numbers in a row,
column or block are different (as there are exactly nine different numbers).
Luckily constraining order already comes with a constraint of this type, so
we just have to use it:

from constrainingorder.constraints import AllDifferent

cons = []
#row constraints
for i in numbers:
 cons.append(AllDifferent([variables['x%d%d'%(i,j)] for j in numbers]))
#column constraints
for i in numbers:
 cons.append(AllDifferent([variables['x%d%d'%(j,i)] for j in numbers]))
#block constraints
for i in range(0,3):
 for j in range(0,3):
 #assemble list of parameternames for this block
 names = []
 for k in range(0,3):
 for l in range(0,3):
 names.append('x%d%d' % (3*i + k + 1,3*j + l + 1))
 #create constraint
 cons.append(AllDifferent([variables[n] for n in names]))

If we wanted to find all possible completely filled sudokus, we could now try
to enumerate all solutions to this problem (see below), but this would take a
very, very long while, as there are 6.67 10^21 different ones see
[Felgenhauer].

In the sudokus found in newspapers some numbers are already given, in such a
way that there is only one solution. We can add these filled in numbers by
adding additional constraints that restrict certain variables to just a single
value. Again this kind of constraint is already included in Constraining Order:

from constrainingorder.constraints import FixedValue

cons.append(FixedValue(variables['x11'],1))
cons.append(FixedValue(variables['x14'],8))
cons.append(FixedValue(variables['x21'],6))
cons.append(FixedValue(variables['x22'],3))
cons.append(FixedValue(variables['x25'],5))
cons.append(FixedValue(variables['x27'],9))
cons.append(FixedValue(variables['x32'],9))
cons.append(FixedValue(variables['x36'],3))
cons.append(FixedValue(variables['x37'],5))
cons.append(FixedValue(variables['x44'],2))
cons.append(FixedValue(variables['x47'],6))
cons.append(FixedValue(variables['x49'],3))
cons.append(FixedValue(variables['x51'],3))
cons.append(FixedValue(variables['x53'],2))
cons.append(FixedValue(variables['x57'],1))
cons.append(FixedValue(variables['x59'],7))
cons.append(FixedValue(variables['x61'],9))
cons.append(FixedValue(variables['x63'],8))
cons.append(FixedValue(variables['x66'],6))
cons.append(FixedValue(variables['x73'],6))
cons.append(FixedValue(variables['x74'],5))
cons.append(FixedValue(variables['x78'],7))
cons.append(FixedValue(variables['x83'],9))
cons.append(FixedValue(variables['x85'],6))
cons.append(FixedValue(variables['x88'],2))
cons.append(FixedValue(variables['x89'],5))
cons.append(FixedValue(variables['x96'],8))
cons.append(FixedValue(variables['x99'],9))

Space

With the variables and the constraints we can set up a Space. A Space collects
all the variables and constraints, and keeps track of the possible values (the
domain) for each variable. We print the domain for the first few variables.

from constrainingorder import Space

space = Space(variables.values(),cons)
for vname, domain in sorted(space.domains.items())[:15]:
 print vname, domain

This outputs

x11 {1,2,3,4,5,6,7,8,9}
x12 {1,2,3,4,5,6,7,8,9}
x13 {1,2,3,4,5,6,7,8,9}
x14 {1,2,3,4,5,6,7,8,9}
x15 {1,2,3,4,5,6,7,8,9}
x16 {1,2,3,4,5,6,7,8,9}
x17 {1,2,3,4,5,6,7,8,9}
x18 {1,2,3,4,5,6,7,8,9}
x19 {1,2,3,4,5,6,7,8,9}
x21 {1,2,3,4,5,6,7,8,9}
x22 {1,2,3,4,5,6,7,8,9}
x23 {1,2,3,4,5,6,7,8,9}
x24 {1,2,3,4,5,6,7,8,9}
x25 {1,2,3,4,5,6,7,8,9}
x26 {1,2,3,4,5,6,7,8,9}

A space can also tell us if a labelling (a dictionary with parameter names
and values) is consistent with the constraints or satisfies them.

Solution

With the Space set up, we can now solve the CSP with backtracking, i.e. by
filling in a number into a field and then checking if this is consistent with
the constraints. If it is put a number into another field, if not, try another
number, or if all numbers have been tried, go back to the previous field and
try another number there.

This procedure can take a long time, as there are 9^81 possibilities that
have to be tried. One possibility to speed this up is to reduce the problem
space. For some fields possible numbers can be eliminated, as they are not
consistent with the posed constraints. For example if the value of a field is
fixed to 3, then its value can not be something else, and also the 3 can be
removed from the domain of the fields in the same row, column and block.

In the constraint satisfaction literature this is called problem reduction.
Constraining Order has an algorithm included for problem reduction called ac3, that does that.

from constrainingorder.solver import ac3

ac3(space)
for vname, domain in sorted(space.domains.items())[:15]:
 print vname, domain

Which now yields

x11 {1}
x12 {2,4,5,7}
x13 {4,5,7}
x14 {8}
x15 {2,4,7,9}
x16 {2,4,7,9}
x17 {2,3,4,7}
x18 {3,4,6}
x19 {2,4,6}
x21 {6}
x22 {3}
x23 {4,7}
x24 {1,4,7}
x25 {5}
x26 {1,2,4,7}

We can see that the domains of the variables have been reduces dramatically,
which will speed up backtracking by a huge factor. Another thing that has a
big impact on the performance is the order in which the variables are tried.
In general one wants find conflicts as early as possible, as this eliminates
whole branches of the search tree at once. For the case of sudoku a columns
wise ordering (or row or blockwise) has proven to be effective.

Finally we can solve the sudoku by backtracking. The solve function is a
generator which iterates over all found solutions. In this case we only want
one, so break out of the loop after the first one is found.

from constrainingorder.solver import solve

#column wise ordering
ordering = []
for i in numbers:
 for j in numbers:
 ordering.append('x%d%d' % (i,j))

#find first solution and print it, then stop
for solution in solve(space,method='backtrack',ordering=ordering):
 for i in numbers:
 for j in numbers:
 print solution['x%d%d' % (i,j)],
 print
 break

The output of the solution should look like this

1 2 5 8 9 4 7 3 6
6 3 7 1 5 2 9 4 8
8 9 4 6 7 3 5 1 2
4 5 1 2 8 7 6 9 3
3 6 2 9 4 5 1 8 7
9 7 8 3 1 6 2 5 4
2 4 6 5 3 9 8 7 1
7 8 9 4 6 1 3 2 5
5 1 3 7 2 8 4 6 9

References

	[Felgenhauer]	Bertram Felgenhauer and Frazer Jarvis. Enumerating possible sudoku grids. Technical report, 2005

 Copyright 2015, Johannes Reinhardt.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Constraining order 0.1 documentation

Sets

In addition to constraint satisfaction, Constraining Order also contains an
implementation of Intervals and IntervalSets over the real numbers and
datastructures for sets in several dimensions.

DiscreteSet

The use of the DiscreteSet is very similar
to the built in frozenset:

>>> from constrainingorder.sets import DiscreteSet
>>> a = DiscreteSet([1,2,'a','b'])
>>> b = DiscreteSet([1,'a','c',3])

DiscreteSets support the usual set operations and membership tests

>>> a.union(b)
DiscreteSet([1,2,3,'a','b','c'])
>>> a.intersection(b)
DiscreteSet([1,'a'])
>>> a.difference(b)
DiscreteSet([2,'b'])
>>> 1 in a
True
>>> "Foo" in b
False

The main difference is that a DiscreteSet can represent a set of
“everything”, which makes sense sometimes

>>> c = DiscreteSet.everything()
>>> c.union(a)
DiscreteSet.everything()
>>> c.intersection(a)
DiscreteSet([1,2,'a','b'])

One can also iterate over all members

>>> [m for m in a.iter_members()]
[1, 2, 'a', 'b']

Interval

To initialize a Interval one passes the bounds and indicates whether they are
included in the interval, or alternatively one of the convenience class
methods

>>> from constrainingorder.sets import Interval
>>> a = Interval((0,1),(True,True))
>>> b = Interval.open(1,3)
>>> c = Interval.leftopen(2,4)

Intervals only support the intersection operation, as for the others the
result might not be a single connected interval.

>>> b.intersection(c)
Interval((2, 3),(False, False))

One can check membership in Intervals

>>> 0.3 in a
True
>>> 1.3 in a
False

Intervals can also represent the full real axis and a single point:

>>> d = Interval.everything()
>>> e = Interval.from_value(2.4)

IntervalSets

The main use of Intervals is in IntervalSets, which can represent fairly
general sets of real numbers. They get initialized by a sequence of
Intervals, or one of the convenience functions

>>> from constrainingorder.sets import Interval,IntervalSet
>>> a = IntervalSet([Interval.open(0,3), Interval.open(5,8)])
>>> b = IntervalSet([Interval.closed(2,3), Interval.closed(7,10)])
>>> c = IntervalSet.from_values([4, -1])
>>> d = IntervalSet.everything()

In contrast to Intervals, IntervalSets support all of the common set
operations

>>> a.union(b)
IntervalSet([Interval((0, 3),(False, True)),Interval((5, 10),(False, True))])
>>> a.intersection(b)
IntervalSet([Interval((2, 3),(True, False)),Interval((7, 8),(True, False))])
>>> a.difference(b)
IntervalSet([Interval((0, 2),(False, False)),Interval((5, 7),(False, False))])

Membership tests work as expected

>>> 2 in a
True
>>> 4 in a
False
>>> -1 in c
True

Like DiscreteSets, one can iterate over the members if the IntervalSet only contains isolated points

>>> c.is_discrete()
True
>>> [m for m in c.iter_members()]
[-1, 4]

 Copyright 2015, Johannes Reinhardt.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Constraining order 0.1 documentation

Custom constraints

Constraining Order is designed to make it easy to add custom constraints.
This tutorial will show this for the example of one of the most prominent
constraint satisfaction problems, the 8 queens problem.

8 queens problem

The task is to place 8 queens on a chessboard in such a way that no queen can
attack any other queen, i.e. no two queens occupy the same row, column or
same diagonals.

One way to model this is by using 8 variables, one for a queen in each
column. In this way, the requirement that there has to be one queen in every
column is already built in, which reduces the number of constraints and the
domain of the variables and improves performance.

As values for the variables we choose tuples with the actual coordinates on
the board, this makes it easier to formulate the diagonal constraints. We
name the variables with lowercase letter, the traditional naming schema of
the columns of a chess board. Coordinates will be zero indexed, as this is
more convenient in python.

from constrainingorder.sets import DiscreteSet
from constrainingorder.variables import DiscreteVariable

variables = {}
for i,col in enumerate('abcdefgh'):
 domain = DiscreteSet([(j,i) for j in range(8)])
 variables[col] = DiscreteVariable(col,domain=domain)

As we already built in the column constraint, it remains to express the row
and diagonal constraints. We will take care of all of them by creating a new
constraint type, a QueensConstraint:

from constrainingorder.constraints import Constraint
from itertools import product

class QueensConstraint(Constraint):
 """
 Constraint that ensures that a number of queens on a chessboard can
 not attack each other
 """
 def __init__(self,queens):
 """
 Create a new Queens constraint.

 :param variable: Variables representing the position of queens on a chess board
 :type variable: list of DiscreteVariables
 """
 Constraint.__init__(self,dict((var,var.domain) for var in queens))

 def _conflict(self,val1,val2):
 #check for row conflict
 if val1[0] == val2[0]:
 return True
 #check for rising diagonal conflict
 if val1[0] - val1[1] == val2[0] - val2[1]:
 return True
 #check for falling diagonal conflict
 if val1[0] + val1[1] == val2[0] + val2[1]:
 return True
 def satisfied(self,lab):
 for v1,v2 in product(self.vnames,repeat=2):
 if v1 == v2:
 continue
 if v1 not in lab or v2 not in lab:
 return False
 if self._conflict(lab[v1],lab[v2]):
 return False
 return True
 def consistent(self,lab):
 for v1,v2 in product(self.vnames,repeat=2):
 if v1 not in lab or v2 not in lab or v1 == v2:
 continue
 if self._conflict(lab[v1],lab[v2]):
 return False
 return True

A constraint needs to derive from the
Constraint class and implement the
two methods satisfied and consistent.

In the constructor we pass a dictionary of variables and the values for them
which are consistent with this constraint. In this case, there is no field on
the board excluded a priori, so we use the full domain of the variable.

As both of the methods we have to implement check for conflicts between the
queens, it makes sense to write a small utility method that does this check
to avoid code duplication. It compares the first component of the tuples to
check for a row conflict. To check whether the two queens are on the same
diagonal, we compare the sum and difference of the row and column components.
It might not be obvious, but it is easy to check that fields with the same
sum or difference of rows and columns are on the same diagonal. Not that we don’t check for column conflicts, as they are taken care of by the setup of our variables.

The satisfied method checks that the labelling (a dictionary with variable
names and values) assigns values to all variables affected by this
constraint, and that there are no conflicts. The parameter names of the
affected variables are accessible in the attribute
vnames, that the Constraint
class sets up for us.

The consistent method is a bit weaker, as it just checks for conflicts, but
doesn’t care about missing values. It allows the solution and reduction
algorithms to detect inconsistencies even if not all queens are placed yet.

And thats it. We can now use this constraint just like the in-built ones:

from constrainingorder import Space
from constrainingorder.solver import solve

constraint = QueensConstraint(variables.values())
space = Space(variables.values(),[constraint])

for solution in solve(space,method='backtrack'):
 for i in range(8):
 for j in range(8):
 if (i,j) in solution.values():
 print 'X',
 else:
 print '.',
 print
 break

In contrast to the sudoku solver discussed in the Quickstart, the 8 queens problem space can not be reduced, as no fields can be eliminated a priori, for every field there exist solutions where a queen occupies this field.

We also don’t specify a variable ordering, as in this case the total number of variables is rather low, and solution is quick in any case.

X
. X . .
. X
. . X
. X .
. . . X
. X
. . . . X . . .

Custom Binary relations

A riddle from this weeks newspaper:

Professor Knooster is visiting Shroombia. The people of Shroombia is
divided into two groups, the shrimpfs that always lie and the wex that
always tell the truth. For his research the professor asked 10 Shroombians
about their groups. The answers:

	Zeroo: Onesy is a shrimpf

	Onesy: Threesy is a shrimpf

	Twoo: Foursy is a shrimpf

	Threesy: Sixee is a shrimpf

	Foursy: Seveen is a shrimpf

	Fivsy: Ninee is a shrimpf

	Sixee: Twoo is a shrimpf

	Seveen: Eightsy is a shrimpf

	Eightsy: Fivsy is a shrimpf

The professor sighed: “I will never find out who is in which group if you
continue like this.” Then the last Shroombian answered

	Ninee: Zeroo and Sixee belong to different groups

This riddle can be modelled as a CSP, and it gives the opportunity to discuss a special kind of constraint, namely binary relations.

First set up the variables

from constrainingorder.variables import DiscreteVariable
from constrainingorder.sets import DiscreteSet

domain = DiscreteSet(['Shrimpf','Wex'])
variables = []
for i in range(10):
 variables.append(DiscreteVariable(str(i),domain=domain))

So every variable represents one Shroombian, who can be either a shrimpf or a wex.

Almost all hints are of the same structure: one Shroombian accuses another
Shroombian of being a shrimpf. The hint is fulfilled either if the accusing
shroombian is a Shrimpf (who is always lying) and the accused shroombian is
not actually a Shrimpf, or if the accusor is a Wex (who is always telling the
truth) and the accused is a in fact a Shrimpf.

We can represent this in form of a custom constraint. As each hint affects
two shroombians, such constraints are binary relations. The implementation of
binary relations is much simpler than for general constraints.

from constrainingorder.constraints import BinaryRelation

class Accusation(BinaryRelation):
 def relation(self,val1,val2):
 return (val1 == 'Shrimpf' and val2 == 'Wex') or\
 (val1 == 'Wex' and val2 == 'Shrimpf')

For classes derived from BinaryRelations it suffices to implement a single
method that returns True if the two values fulfill the relation and False
otherwise. Specific constraints are obtained by instantiating this class with two variables.

For DiscreteVariables with small domains one can represent binary relations also by listing all tuples of values that fulfill the relation. An equivalent implementation would be derived from DiscreteBinaryRelation.

from constrainingorder.constraints import DiscreteBinaryRelation

class Accusation(DiscreteBinaryRelation):
 def __init__(self,var1,var2):
 DiscreteBinaryRelation.__init__(self,var1,var2,[
 ('Shrimpf','Wex'), ('Wex','Shrimpf')
])

In addition we need to implement a new constraint for the last hint. As it affects three shroombians, this is not a binary relation.

from constrainingorder.constraints import Constraint
class AllegedNonEqual(Constraint):
 def __init__(self,var1,var2,var3):
 Constraint.__init__(self,{
 var1 : var1.domain,
 var2 : var2.domain,
 var3 : var3.domain}
)
 self.v1 = var1.name
 self.v2 = var2.name
 self.v3 = var3.name

 def satisfied(self,lab):
 if not (self.v1 in lab and self.v2 in lab and self.v3 in lab):
 return False
 elif lab[self.v1] == 'Shrimpf':
 return lab[self.v2] == lab[self.v3]
 elif lab[self.v1] == 'Wex':
 return lab[self.v2] != lab[self.v3]

 def consistent(self,lab):
 if not (self.v1 in lab and self.v2 in lab and self.v3 in lab):
 return True
 elif lab[self.v1] == 'Shrimpf':
 return lab[self.v2] == lab[self.v3]
 elif lab[self.v1] == 'Wex':
 return lab[self.v2] != lab[self.v3]

Now we can specify the constraints

cons = []
cons.append(Accusation(variables[0],variables[1]))
cons.append(Accusation(variables[1],variables[3]))
cons.append(Accusation(variables[2],variables[4]))
cons.append(Accusation(variables[3],variables[6]))
cons.append(Accusation(variables[4],variables[7]))
cons.append(Accusation(variables[5],variables[9]))
cons.append(Accusation(variables[6],variables[2]))
cons.append(Accusation(variables[7],variables[8]))
cons.append(Accusation(variables[8],variables[5]))

cons.append(AllegedNonEqual(variables[9],variables[0],variables[6]))

And solve the problem

from constrainingorder import Space
from constrainingorder.solver import solve

space = Space(variables,cons)

for solution in solve(space,method='backtrack'):
 for name, group in sorted(solution.items()):
 print name, group

0 Shrimpf
1 Wex
2 Shrimpf
3 Shrimpf
4 Wex
5 Shrimpf
6 Wex
7 Shrimpf
8 Wex
9 Wex

 Copyright 2015, Johannes Reinhardt.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Constraining order 0.1 documentation

Sets

Constraining Order contains DataStructures to represent sets of discrete elements and real numbers.

A DiscreteSet is a wrapper around pythons builtin frozenset. The
main difference is that a DiscreteSet can represent a set of all possible
elements.

In addition, there are data structures to represent sets of real numbers, in
form of connected Intervals and
collections of such intervals, called IntervalSet.

DiscreteSet

	
class constrainingorder.sets.DiscreteSet(elements)[source]

	A set data structure for hashable elements

This is a wrapper around pythons set type, which additionally provides
the possibility to express the set of everything (which only makes sense
sometimes).

	
__contains__(element)[source]

	Check membership of the element.

	Parameters:	element – Element to check membership of

	Return type:	bool

	
__init__(elements)[source]

	Create a new DiscreteSet

	Parameters:	elements (sequence) – The elements of the newly created set

	
difference(other)[source]

	Return a new DiscreteSet with the difference of the two sets, i.e.
all elements that are in self but not in other.

	Parameters:	other (DiscreteSet) – Set to subtract

	Return type:	DiscreteSet

	Raises ValueError:

		if self is a set of everything

	
classmethod everything()[source]

	Create a new set of everything.

One can not iterate over the elements of this set, but many
operations are actually well defined and useful.

	
intersection(other)[source]

	Return a new DiscreteSet with the intersection of the two sets, i.e.
all elements that are in both self and other.

	Parameters:	other (DiscreteSet) – Set to intersect with

	Return type:	DiscreteSet

	
is_discrete()[source]

	Check whether the set is discrete, i.e. if iter_members() can
be used.

	Return type:	bool

	
is_empty()[source]

	Check whether the set is empty

	Return type:	bool

	
iter_members()[source]

	Iterate over all elements of the set.

	Raises ValueError:

		if self is a set of everything

	
union(other)[source]

	Return a new DiscreteSet with the union of the two sets, i.e.
all elements that are in self or in other.

	Parameters:	other (DiscreteSet) – Set to unite with

	Return type:	DiscreteSet

Interval

	
class constrainingorder.sets.Interval(bounds, included)[source]

	An interval on the real axis.

	
__contains__(x)[source]

	Check membership of the element.

	Parameters:	x (float) – Element to check membership of

	Return type:	bool

	
__init__(bounds, included)[source]

	Create a new Interval with bounds. If the right bound is larger than
the left bound, the interval is assumed to be empty.

	Parameters:	
	bounds (sequence) – left and right bounds

	included (sequence) – bools indicating whether the bounds are
included in the interval.

	
classmethod closed(a, b)[source]

	Create a new closed Interval.

	Parameters:	
	a (float) – Left bound

	b (float) – Right bound

	
classmethod everything()[source]

	Create a new Interval representing the full real axis

	
classmethod from_value(value)[source]

	Create a new Interval representing a single real number.

	Parameters:	value (float) – The member of the Interval

	
get_point()[source]

	Return the number contained in this interval.

	Return type:	float

	Raises ValueError:

		if Interval contains more than exactly one number.

	
intersection(other)[source]

	Return a new Interval with the intersection of the two intervals,
i.e. all elements that are in both self and other.

	Parameters:	other (Interval) – Interval to intersect with

	Return type:	Interval

	
is_discrete()[source]

	Check whether this interval contains exactly one number

	Return type:	bool

	
is_disjoint(other)[source]

	Check whether two Intervals are disjoint.

	Parameters:	other (Interval) – The Interval to check disjointedness with.

	
is_empty()[source]

	Check whether this interval is empty.

	Return type:	bool

	
classmethod leftopen(a, b)[source]

	Create a new halfopen Interval (left bound is excluded, right bound
included).

	Parameters:	
	a (float) – Left bound

	b (float) – Right bound

	
classmethod open(a, b)[source]

	Create a new open Interval.

	Parameters:	
	a (float) – Left bound

	b (float) – Right bound

	
classmethod rightopen(a, b)[source]

	Create a new halfopen Interval (right bound is excluded, left bound
included).

	Parameters:	
	a (float) – Left bound

	b (float) – Right bound

IntervalSet

	
class constrainingorder.sets.IntervalSet(ints)[source]

	A set of intervals to represent quite general sets in R

	
__contains__(x)[source]

	Check membership of the element.

	Parameters:	element – Element to check membership of

	Return type:	bool

	
__init__(ints)[source]

	Create a new IntervalSet.

	Parameters:	ints (sequence) – Intervals for this IntervalSet

	
difference(other)[source]

	Return a new IntervalSet with the difference of the two sets, i.e.
all elements that are in self but not in other.

	Parameters:	other (IntervalSet) – Set to subtract

	Return type:	IntervalSet

	
classmethod everything()[source]

	Create a new IntervalSet representing the full real axis.

	
classmethod from_values(values)[source]

	Create a new IntervalSet representing a set of isolated real numbers.

	Parameters:	values (sequence) – The values for this IntervalSet

	
intersection(other)[source]

	Return a new IntervalSet with the intersection of the two sets, i.e.
all elements that are both in self and other.

	Parameters:	other (IntervalSet) – Set to intersect with

	Return type:	IntervalSet

	
is_discrete()[source]

	Check whether this IntervalSet contains only isolated numbers.

	Return type:	bool

	
is_empty()[source]

	Check whether this IntervalSet is empty.

	Return type:	bool

	
iter_members()[source]

	Iterate over all elements of the set.

	Raises ValueError:

		if self is a set of everything

	
union(other)[source]

	Return a new IntervalSet with the union of the two sets, i.e.
all elements that are in self or other.

	Parameters:	other (IntervalSet) – Set to intersect with

	Return type:	IntervalSet

 Copyright 2015, Johannes Reinhardt.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Constraining order 0.1 documentation

Constraint Satisfaction

Variables

Variables are derived from a common baseclass

	
class constrainingorder.variables.Variable(name, **kwargs)[source]

	Abstract baseclass for variables.

Variables describe the variables of a CSP. The instances are immutable
and only make sense in connection with a Space.

	
description = None

	description of the variable

	
discrete = None

	whether the variable is discrete or continuous

	
domain = None

	domain of the variable

	
name = None

	name of the variable

Constrainingorder at the moment contains two types of Variables, DiscreteVariables and RealVariables

	
class constrainingorder.variables.DiscreteVariable(name, **kwargs)[source]

	Discrete variable with values from a DiscreteSet of elements.

	
__init__(name, **kwargs)[source]

	Create a new DiscreteVariable

	Parameters:	
	name (str) – The name of the variable

	description (str) – An optional description of the variable

	domain (DiscreteSet) – An optional domain for this variable,
defaults to everything.

	
class constrainingorder.variables.RealVariable(name, **kwargs)[source]

	Continuous real variable with values from the real numbers.

	
__init__(name, **kwargs)[source]

	Create a new RealVariable

	Parameters:	
	name (str) – The name of the variable

	description (str) – An optional description of the variable

	domain (IntervalSet) – An optional domain for this variable,
defaults to everything.

Constraints

Constraints are derived from a common baseclass

	
class constrainingorder.constraints.Constraint(domains)[source]

	
	
consistent(lab)[source]

	check whether the labeling is consistent with this constraint

	Parameters:	lab (dict) – A dictionary with parameter names and values

	Return type:	bool

	
domains = None

	Domains imposed by node consistency for this constraint

	
satisfied(lab)[source]

	check whether the labeling satisfies this constraint

	Parameters:	lab (dict) – A dictionary with parameter names and values

	Return type:	bool

	
vnames = None

	Names of the variables affected by this constraint

Constrainingorder ships with a selection of constraints, but it is easy to add custom ones

	
class constrainingorder.constraints.FixedValue(variable, value)[source]

	Constraint that fixes a variable to a value

	
__init__(variable, value)[source]

	Create a new FixedValue constraint. It enforces that a variable
takes on a particular, fixed value.

	Parameters:	
	variable (Variable) – Variable whose value is fixed

	value – Value to which it is fixed

	Raises ValueError:

		if the value is not in the domain of the variable

	
class constrainingorder.constraints.AllDifferent(variables)[source]

	Constraint enforcing different values between a number of variables

	
__init__(variables)[source]

	Create a new AllDifferent constraint. It enforces that a set of
variable takexs on different values.

	Parameters:	variables (sequence) – Variables for this Constraint

	
class constrainingorder.constraints.Domain(variable, domain)[source]

	Constraint that ensures that value of a variable falls into a given
domain

	
__init__(variable, domain)[source]

	Create a new Domain constraint. It enforces that a variable takes on
values from a specified set.

	Parameters:	
	variable (DiscreteVariable or RealVariable) – Variable whose value is restricted

	domain (DiscreteSet or IntervalSet) – Set of values to which variable is restricted

Binary relations are an important class of constraints. In Constraining Order
they are derived from a common baseclass. New binary relations only need to implement the relation function. These relations can be used on Variables with values that offer the corresponding relations in the python data model.

	
class constrainingorder.constraints.BinaryRelation(var1, var2)[source]

	Abstract Base class for constraint the describe a binary relation between
two variables.

	
__init__(var1, var2)[source]

	Create a new binary relation constraint between these two variables

	Parameters:	
	var1 (DiscreteVariable or RealVariable) – The first variable

	var2 (DiscreteVariable or RealVariable) – The second variable

	
relation(val1, val2)[source]

	evaluate the relation between two values

	Parameters:	
	val1 – The value of the first variable

	val2 – The value of the second variable

	Return type:	bool

Constraining Order ships with the standard relations.

	
class constrainingorder.constraints.Equal(var1, var2)[source]

	Equality relation

	
class constrainingorder.constraints.NonEqual(var1, var2)[source]

	Inequality relation

	
class constrainingorder.constraints.Less(var1, var2)[source]

	Smaller-than relation

	
class constrainingorder.constraints.LessEqual(var1, var2)[source]

	Smaller or equal relation

	
class constrainingorder.constraints.Greater(var1, var2)[source]

	Larger-than relation

	
class constrainingorder.constraints.GreaterEqual(var1, var2)[source]

	Larger or equal relation

For DiscreteVariables, another way to represent relations is by the set of
tuples that are fulfilling this relation. This is represented by the
DiscreteBinaryRelation constraint

	
class constrainingorder.constraints.DiscreteBinaryRelation(var1, var2, tuples)[source]

	General binary relation between discrete variables represented by the
tuples that are in this relation

	
__init__(var1, var2, tuples)[source]

	Create a new DiscreteBinaryRelation constraint. It restricts the values of the two variables to a set of possible combinations.

	Parameters:	
	var1 (DiscreteVariable or RealVariable) – The first variable

	var2 (DiscreteVariable or RealVariable) – The second variable

	tuples (sequence of tuples with values) – The allowed value combinations

Space

	
class constrainingorder.Space(variables, constraints)[source]

	A space is a description of the computation space for a specific CSP.

	
__init__(variables, constraints)[source]

	Create a new Space for a CSP

	Parameters:	
	variables (sequence of Variables) – The variables of the CSP

	constraints (sequence of Constraints) – The constraints of the CSP

	
consistent(lab)[source]

	Check whether the labeling is consistent with all constraints

	
constraints = None

	list of constraints

	
domains = None

	dictionary of variable names to DiscreteSet/IntervalSet with admissible values

	
is_discrete()[source]

	Return whether this space is discrete

	
satisfied(lab)[source]

	Check whether the labeling satisfies all constraints

	
variables = None

	dictionary of variable names to variable instances

Solvers

To obtain one or all solutions to a CSP, one needs to use a solver. Solvers operate on a space. For good performance it might be good to reduce the problem space first.

	
constrainingorder.solver.ac3(space)[source]

	AC-3 algorithm. This reduces the domains of the variables by
propagating constraints to ensure arc consistency.

	Parameters:	space (Space) – The space to reduce

	
constrainingorder.solver.solve(space, method=u'backtrack', ordering=None)[source]

	Generator for all solutions.

	Parameters:	
	method (str) – the solution method to employ

	ordering (sequence of parameter names) – an optional parameter ordering

Methods:

	“backtrack”:	simple chronological backtracking

	“ac-lookahead”:	full lookahead

 Copyright 2015, Johannes Reinhardt.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Constraining order 0.1 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | N
 | O
 | R
 | S
 | U
 | V

_

 	

 	__contains__() (constrainingorder.sets.DiscreteSet method)

 	

 	(constrainingorder.sets.Interval method)

 	(constrainingorder.sets.IntervalSet method)

 	

 	__init__() (constrainingorder.constraints.AllDifferent method)

 	

 	(constrainingorder.Space method)

 	(constrainingorder.constraints.BinaryRelation method)

 	(constrainingorder.constraints.DiscreteBinaryRelation method)

 	(constrainingorder.constraints.Domain method)

 	(constrainingorder.constraints.FixedValue method)

 	(constrainingorder.sets.DiscreteSet method)

 	(constrainingorder.sets.Interval method)

 	(constrainingorder.sets.IntervalSet method)

 	(constrainingorder.variables.DiscreteVariable method)

 	(constrainingorder.variables.RealVariable method)

A

 	

 	ac3() (in module constrainingorder.solver)

 	

 	AllDifferent (class in constrainingorder.constraints)

B

 	

 	BinaryRelation (class in constrainingorder.constraints)

C

 	

 	closed() (constrainingorder.sets.Interval class method)

 	consistent() (constrainingorder.constraints.Constraint method)

 	

 	(constrainingorder.Space method)

 	

 	Constraint (class in constrainingorder.constraints)

 	constraints (constrainingorder.Space attribute)

D

 	

 	description (constrainingorder.variables.Variable attribute)

 	difference() (constrainingorder.sets.DiscreteSet method)

 	

 	(constrainingorder.sets.IntervalSet method)

 	discrete (constrainingorder.variables.Variable attribute)

 	DiscreteBinaryRelation (class in constrainingorder.constraints)

 	DiscreteSet (class in constrainingorder.sets)

 	

 	DiscreteVariable (class in constrainingorder.variables)

 	Domain (class in constrainingorder.constraints)

 	domain (constrainingorder.variables.Variable attribute)

 	domains (constrainingorder.constraints.Constraint attribute)

 	

 	(constrainingorder.Space attribute)

E

 	

 	Equal (class in constrainingorder.constraints)

 	

 	everything() (constrainingorder.sets.DiscreteSet class method)

 	

 	(constrainingorder.sets.Interval class method)

 	(constrainingorder.sets.IntervalSet class method)

F

 	

 	FixedValue (class in constrainingorder.constraints)

 	from_value() (constrainingorder.sets.Interval class method)

 	

 	from_values() (constrainingorder.sets.IntervalSet class method)

G

 	

 	get_point() (constrainingorder.sets.Interval method)

 	Greater (class in constrainingorder.constraints)

 	

 	GreaterEqual (class in constrainingorder.constraints)

I

 	

 	intersection() (constrainingorder.sets.DiscreteSet method)

 	

 	(constrainingorder.sets.Interval method)

 	(constrainingorder.sets.IntervalSet method)

 	Interval (class in constrainingorder.sets)

 	IntervalSet (class in constrainingorder.sets)

 	is_discrete() (constrainingorder.sets.DiscreteSet method)

 	

 	(constrainingorder.Space method)

 	(constrainingorder.sets.Interval method)

 	(constrainingorder.sets.IntervalSet method)

 	

 	is_disjoint() (constrainingorder.sets.Interval method)

 	is_empty() (constrainingorder.sets.DiscreteSet method)

 	

 	(constrainingorder.sets.Interval method)

 	(constrainingorder.sets.IntervalSet method)

 	iter_members() (constrainingorder.sets.DiscreteSet method)

 	

 	(constrainingorder.sets.IntervalSet method)

L

 	

 	leftopen() (constrainingorder.sets.Interval class method)

 	Less (class in constrainingorder.constraints)

 	

 	LessEqual (class in constrainingorder.constraints)

N

 	

 	name (constrainingorder.variables.Variable attribute)

 	

 	NonEqual (class in constrainingorder.constraints)

O

 	

 	open() (constrainingorder.sets.Interval class method)

R

 	

 	RealVariable (class in constrainingorder.variables)

 	relation() (constrainingorder.constraints.BinaryRelation method)

 	

 	rightopen() (constrainingorder.sets.Interval class method)

S

 	

 	satisfied() (constrainingorder.constraints.Constraint method)

 	

 	(constrainingorder.Space method)

 	solve() (in module constrainingorder.solver)

 	

 	Space (class in constrainingorder)

U

 	

 	union() (constrainingorder.sets.DiscreteSet method)

 	

 	(constrainingorder.sets.IntervalSet method)

V

 	

 	Variable (class in constrainingorder.variables)

 	variables (constrainingorder.Space attribute)

 	

 	vnames (constrainingorder.constraints.Constraint attribute)

 Copyright 2015, Johannes Reinhardt.
 Created using Sphinx 1.2.2.

 _static/comment.png

_static/file.png

_static/minus.png

_static/up.png

_static/plus.png

_static/ajax-loader.gif

_static/down.png

_static/comment-close.png

_static/comment-bright.png

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		Constraining order 0.1 documentation »

 All modules for which code is available

		constrainingorder

		constrainingorder.constraints

		constrainingorder.sets

		constrainingorder.solver

		constrainingorder.variables

 © Copyright 2015, Johannes Reinhardt.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		Constraining order 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Johannes Reinhardt.
 Created using Sphinx 1.2.2.

_modules/constrainingorder.html

 Navigation

 		
 index

 		Constraining order 0.1 documentation »

 		Module code »

 Source code for constrainingorder

#Constraining Order - a simple constraint satisfaction library
#
#Copyright (c) 2015 Johannes Reinhardt <jreinhardt@ist-dein-freund.de>
#
#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is
#furnished to do so, subject to the following conditions:
#
#The above copyright notice and this permission notice shall be included in all
#copies or substantial portions of the Software.
#
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
#SOFTWARE.

"""
This module defines common stuff for constraint satisfaction probleme
"""

from __future__ import unicode_literals
from builtins import object

[docs]class Space(object):
 """
 A space is a description of the computation space for a specific CSP.
 """
[docs] def __init__(self,variables, constraints):
 """
 Create a new Space for a CSP

 :param variables: The variables of the CSP
 :type variables: sequence of Variables
 :param constraints: The constraints of the CSP
 :type constraints: sequence of Constraints
 """
 self.constraints = constraints
 "list of constraints"
 self.variables = {}
 "dictionary of variable names to variable instances"
 self.domains = {}
 "dictionary of variable names to DiscreteSet/IntervalSet with admissible values"
 for var in variables:
 self.variables[var.name] = var
 self.domains[var.name] = var.domain

[docs] def is_discrete(self):
 """
 Return whether this space is discrete
 """
 for domain in self.domains.values():
 if not domain.is_discrete():
 return False
 return True

[docs] def consistent(self,lab):
 """
 Check whether the labeling is consistent with all constraints
 """
 for const in self.constraints:
 if not const.consistent(lab):
 return False
 return True

[docs] def satisfied(self,lab):
 """
 Check whether the labeling satisfies all constraints
 """
 for const in self.constraints:
 if not const.satisfied(lab):
 return False
 return True

 © Copyright 2015, Johannes Reinhardt.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_modules/constrainingorder/constraints.html

 Navigation

 		
 index

 		Constraining order 0.1 documentation »

 		Module code »

 		constrainingorder »

 Source code for constrainingorder.constraints

#Constraining Order - a simple constraint satisfaction library
#
#Copyright (c) 2015 Johannes Reinhardt <jreinhardt@ist-dein-freund.de>
#
#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is
#furnished to do so, subject to the following conditions:
#
#The above copyright notice and this permission notice shall be included in all
#copies or substantial portions of the Software.
#
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
#SOFTWARE.

"""
This module defines classes describing constraints on variables
"""
from __future__ import unicode_literals
from builtins import str, object
from constrainingorder.sets import DiscreteSet, IntervalSet
from itertools import product

[docs]class Constraint(object):
 def __init__(self,domains):
 self.vnames = [v.name for v in domains.keys()]
 "Names of the variables affected by this constraint"
 self.domains = {}
 "Domains imposed by node consistency for this constraint"
 for var,dom in domains.items():
 self.domains[var.name] = dom
[docs] def satisfied(self,lab):
 """
 check whether the labeling satisfies this constraint

 :param dict lab: A dictionary with parameter names and values
 :rtype: bool
 """
 raise NotImplementedError

[docs] def consistent(self,lab):
 """
 check whether the labeling is consistent with this constraint

 :param dict lab: A dictionary with parameter names and values
 :rtype: bool
 """
 raise NotImplementedError

[docs]class FixedValue(Constraint):
 """
 Constraint that fixes a variable to a value
 """
[docs] def __init__(self,variable,value):
 """
 Create a new FixedValue constraint. It enforces that a variable
 takes on a particular, fixed value.

 :param Variable variable: Variable whose value is fixed
 :param value: Value to which it is fixed
 :raises ValueError: if the value is not in the domain of the variable
 """
 if not value in variable.domain:
 raise ValueError("Value %s is incompatible with domain of %s" %
 (str(value),variable.name))
 if variable.discrete:
 domain = {variable : DiscreteSet([value])}
 else:
 domain = {variable : IntervalSet.from_values([value])}
 Constraint.__init__(self,domain)

 self.name = variable.name
 self.value = value

 def satisfied(self,lab):
 if self.name in lab:
 return lab[self.name] == self.value
 return False

 def consistent(self,lab):
 if self.name in lab:
 return self.satisfied(lab)
 return True

[docs]class AllDifferent(Constraint):
 """
 Constraint enforcing different values between a number of variables
 """
[docs] def __init__(self,variables):
 """
 Create a new AllDifferent constraint. It enforces that a set of
 variable takexs on different values.

 :param sequence variables: Variables for this Constraint
 """
 Constraint.__init__(self,dict((v,v.domain) for v in variables))

 def satisfied(self,lab):
 for v1,v2 in product(self.vnames,repeat=2):
 if v1 not in lab or v2 not in lab:
 return False
 if v1 == v2:
 continue
 if lab[v1] == lab[v2]:
 return False
 return True
 def consistent(self,lab):
 for v1,v2 in product(self.vnames,repeat=2):
 if v1 not in lab or v2 not in lab or v1 == v2:
 continue
 if lab[v1] == lab[v2]:
 return False
 return True

[docs]class Domain(Constraint):
 """
 Constraint that ensures that value of a variable falls into a given
 domain
 """
[docs] def __init__(self,variable,domain):
 """
 Create a new Domain constraint. It enforces that a variable takes on
 values from a specified set.

 :param variable: Variable whose value is restricted
 :type variable: DiscreteVariable or RealVariable
 :param domain: Set of values to which variable is restricted
 :type domain: DiscreteSet or IntervalSet
 """
 Constraint.__init__(self,{variable:domain})

 def satisfied(self,lab):
 for v in self.vnames:
 if v not in lab:
 return False
 if not lab[v] in self.domains[v]:
 return False
 return True
 def consistent(self,lab):
 for v in self.vnames:
 if v not in lab:
 continue
 if not lab[v] in self.domains[v]:
 return False
 return True

[docs]class BinaryRelation(Constraint):
 """
 Abstract Base class for constraint the describe a binary relation between
 two variables.
 """
[docs] def __init__(self,var1,var2):
 """
 Create a new binary relation constraint between these two variables

 :param var1: The first variable
 :type var1: DiscreteVariable or RealVariable
 :param var2: The second variable
 :type var2: DiscreteVariable or RealVariable
 """
 Constraint.__init__(self,{var1:var1.domain,var2:var2.domain})
 self.v1 = var1.name
 self.v2 = var2.name

[docs] def relation(self,val1,val2):
 """
 evaluate the relation between two values

 :param val1: The value of the first variable
 :param val2: The value of the second variable
 :rtype: bool
 """

 def satisfied(self,lab):
 for v in self.vnames:
 if v not in lab:
 return False
 elif not lab[v] in self.domains[v]:
 return False
 return self.relation(lab[self.v1],lab[self.v2])
 def consistent(self,lab):
 incomplete = False
 for v in self.vnames:
 if v not in lab:
 incomplete = True
 continue
 elif not lab[v] in self.domains[v]:
 return False
 if incomplete:
 return True
 return self.relation(lab[self.v1],lab[self.v2])

[docs]class Equal(BinaryRelation):
 """
 Equality relation
 """
 def __init__(self,var1,var2):
 BinaryRelation.__init__(self,var1,var2)
 #for equality, something can be said about the domains
 domain = var1.domain.intersection(var2.domain)
 self.domains[var1.name] = domain
 self.domains[var2.name] = domain
 def relation(self,val1,val2):
 return val1 == val2

[docs]class NonEqual(BinaryRelation):
 """
 Inequality relation
 """
 def relation(self,val1,val2):
 return val1 != val2

[docs]class Less(BinaryRelation):
 """
 Smaller-than relation
 """
 def relation(self,val1,val2):
 return val1 < val2

[docs]class LessEqual(BinaryRelation):
 """
 Smaller or equal relation
 """
 def relation(self,val1,val2):
 return val1 <= val2

[docs]class Greater(BinaryRelation):
 """
 Larger-than relation
 """
 def relation(self,val1,val2):
 return val1 > val2

[docs]class GreaterEqual(BinaryRelation):
 """
 Larger or equal relation
 """
 def relation(self,val1,val2):
 return val1 >= val2

[docs]class DiscreteBinaryRelation(Constraint):
 """
 General binary relation between discrete variables represented by the
 tuples that are in this relation
 """
[docs] def __init__(self,var1,var2,tuples):
 """
 Create a new DiscreteBinaryRelation constraint. It restricts the values of the two variables to a set of possible combinations.

 :param var1: The first variable
 :type var1: DiscreteVariable or RealVariable
 :param var2: The second variable
 :type var2: DiscreteVariable or RealVariable
 :param tuples: The allowed value combinations
 :type tuples: sequence of tuples with values
 """
 dom1 = DiscreteSet([t[0] for t in tuples])
 dom2 = DiscreteSet([t[1] for t in tuples])
 Constraint.__init__(self,{var1:dom1,var2:dom2})
 self.v1 = var1.name
 self.v2 = var2.name
 self.tuples = tuples

 def satisfied(self,lab):
 for v in self.vnames:
 if v not in lab:
 return False
 return (lab[self.v1],lab[self.v2]) in self.tuples
 def consistent(self,lab):
 incomplete = False
 for v in self.vnames:
 if v not in lab:
 incomplete = True
 continue
 elif not lab[v] in self.domains[v]:
 return False
 if incomplete:
 return True
 return (lab[self.v1],lab[self.v2]) in self.tuples

 © Copyright 2015, Johannes Reinhardt.
 Created using Sphinx 1.2.2.

_modules/constrainingorder/solver.html

 Navigation

 		
 index

 		Constraining order 0.1 documentation »

 		Module code »

 		constrainingorder »

 Source code for constrainingorder.solver

#Constraining Order - a simple constraint satisfaction library
#
#Copyright (c) 2015 Johannes Reinhardt <jreinhardt@ist-dein-freund.de>
#
#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is
#furnished to do so, subject to the following conditions:
#
#The above copyright notice and this permission notice shall be included in all
#copies or substantial portions of the Software.
#
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
#SOFTWARE.

"""
This module contains functions for solving and reducing CSPs
"""
from __future__ import unicode_literals
from itertools import product
from constrainingorder import Space
from constrainingorder.constraints import FixedValue
from constrainingorder.sets import DiscreteSet, IntervalSet

[docs]def ac3(space):
 """
 AC-3 algorithm. This reduces the domains of the variables by
 propagating constraints to ensure arc consistency.

 :param Space space: The space to reduce
 """
 #determine arcs
 arcs = {}
 for name in space.variables:
 arcs[name] = set([])
 for const in space.constraints:
 for vname1,vname2 in product(const.vnames,const.vnames):
 if vname1 != vname2:
 #this is pessimistic, we assume that each constraint
 #pairwisely couples all variables it affects
 arcs[vname1].add(vname2)

 #enforce node consistency
 for vname in space.variables:
 for const in space.constraints:
 _unary(space,const,vname)

 #assemble work list
 worklist = set([])
 for v1 in space.variables:
 for v2 in space.variables:
 for const in space.constraints:
 if _binary(space,const,v1,v2):
 for name in arcs[v1]:
 worklist.add((v1,name))

 #work through work list
 while worklist:
 v1,v2 = worklist.pop()
 for const in space.constraints:
 if _binary(space,const,v1,v2):
 for vname in arcs[v1]:
 worklist.add((v1,vname))

def _unary(space,const,name):
 """
 Reduce the domain of variable name to be node-consistent with this
 constraint, i.e. remove those values for the variable that are not
 consistent with the constraint.

 returns True if the domain of name was modified
 """
 if not name in const.vnames:
 return False
 if space.variables[name].discrete:
 values = const.domains[name]
 else:
 values = const.domains[name]

 space.domains[name] = space.domains[name].intersection(values)
 return True

def _binary(space,const,name1,name2):
 """
 reduce the domain of variable name1 to be two-consistent (arc-consistent)
 with this constraint, i.e. remove those values for the variable name1,
 for which no values for name2 exist such that this pair is consistent
 with the constraint

 returns True if the domain of name1 was modified
 """
 if not (name1 in const.vnames and name2 in const.vnames):
 return False
 remove = set([])
 for v1 in space.domains[name1].iter_members():
 for v2 in space.domains[name2].iter_members():
 if const.consistent({name1 : v1, name2 : v2}):
 break
 else:
 remove.add(v1)

 if len(remove) > 0:
 if space.variables[name1].discrete:
 remove = DiscreteSet(remove)
 else:
 remove = IntervalSet.from_values(remove)

 space.domains[name1] = space.domains[name1].difference(remove)
 return True
 else:
 return False

[docs]def solve(space,method='backtrack',ordering=None):
 """
 Generator for all solutions.

 :param str method: the solution method to employ
 :param ordering: an optional parameter ordering
 :type ordering: sequence of parameter names

 Methods:

 :"backtrack": simple chronological backtracking
 :"ac-lookahead": full lookahead
 """
 if ordering is None:
 ordering = list(space.variables.keys())

 if not space.is_discrete():
 raise ValueError("Can not backtrack on non-discrete space")
 if method=='backtrack':
 for label in _backtrack(space,{},ordering):
 yield label
 elif method=='ac-lookahead':
 for label in _lookahead(space,{},ordering):
 yield label
 else:
 raise ValueError("Unknown solution method: %s" % method)

def _backtrack(space,label,ordering):
 level = len(label)
 if level == len(space.variables):
 if space.satisfied(label):
 yield label
 elif space.consistent(label):
 vname = ordering[level]
 newlabel = label.copy()
 for val in space.domains[vname].iter_members():
 newlabel[vname] = val
 for sol in _backtrack(space,newlabel,ordering):
 yield sol

def _lookahead(space,label,ordering):
 level = len(label)
 if len(label) == len(space.variables):
 if space.satisfied(label):
 yield label
 elif space.consistent(label):
 vname = ordering[level]
 var = space.variables[vname]
 newlabel = label.copy()
 for val in space.domains[vname].iter_members():
 nspace = Space(list(space.variables.values()),
 space.constraints + [FixedValue(var,val)])
 newlabel[vname] = val
 ac3(nspace)
 for sol in _lookahead(nspace,newlabel,ordering):
 yield sol

 © Copyright 2015, Johannes Reinhardt.
 Created using Sphinx 1.2.2.

_modules/constrainingorder/sets.html

 Navigation

 		
 index

 		Constraining order 0.1 documentation »

 		Module code »

 		constrainingorder »

 Source code for constrainingorder.sets

#Constraining Order - a simple constraint satisfaction library
#
#Copyright (c) 2015 Johannes Reinhardt <jreinhardt@ist-dein-freund.de>
#
#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is
#furnished to do so, subject to the following conditions:
#
#The above copyright notice and this permission notice shall be included in all
#copies or substantial portions of the Software.
#
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
#SOFTWARE.

"""
This module defines datastructures to represent discrete and real sets in one
and more dimensions
"""
from __future__ import unicode_literals
from builtins import zip, next, str, object
from itertools import tee,product

def pairwise(iterable):
 "s -> (s0,s1), (s1,s2), (s2, s3), ..."
 a, b = tee(iterable)
 next(b, None)
 return zip(a, b)

[docs]class Interval(object):
 """
 An interval on the real axis.
 """
[docs] def __init__(self,bounds,included):
 """
 Create a new Interval with bounds. If the right bound is larger than
 the left bound, the interval is assumed to be empty.

 :param sequence bounds: left and right bounds
 :param sequence included: bools indicating whether the bounds are
 included in the interval.
 """
 self.bounds = tuple(bounds)
 self.included = tuple(included)

 @classmethod
[docs] def everything(cls):
 """
 Create a new Interval representing the full real axis
 """
 return cls((-float("inf"),float("inf")),(True,True))

 @classmethod
[docs] def from_value(cls,value):
 """
 Create a new Interval representing a single real number.

 :param float value: The member of the Interval
 """
 return cls((value,value),(True,True))

 @classmethod
[docs] def open(cls,a,b):
 """
 Create a new open Interval.

 :param float a: Left bound
 :param float b: Right bound
 """
 return cls((a,b),(False,False))

 @classmethod
[docs] def closed(cls,a,b):
 """
 Create a new closed Interval.

 :param float a: Left bound
 :param float b: Right bound
 """
 return cls((a,b),(True,True))

 @classmethod
[docs] def leftopen(cls,a,b):
 """
 Create a new halfopen Interval (left bound is excluded, right bound
 included).

 :param float a: Left bound
 :param float b: Right bound
 """
 return cls((a,b),(False,True))

 @classmethod
[docs] def rightopen(cls,a,b):
 """
 Create a new halfopen Interval (right bound is excluded, left bound
 included).

 :param float a: Left bound
 :param float b: Right bound
 """
 return cls((a,b),(True,False))

[docs] def is_disjoint(self,other):
 """
 Check whether two Intervals are disjoint.

 :param Interval other: The Interval to check disjointedness with.
 """
 if self.is_empty() or other.is_empty():
 return True

 if self.bounds[0] < other.bounds[0]:
 i1,i2 = self,other
 elif self.bounds[0] > other.bounds[0]:
 i2,i1 = self,other
 else:
 #coincident lower bounds
 if self.is_discrete() and not other.included[0]:
 return True
 elif other.is_discrete() and not self.included[0]:
 return True
 else:
 return False

 return not i2.bounds[0] in i1

 def _difference(self,other):
 #the set of intervals is not closed w.r.t the difference, as it might
 #yield zeor,one or two intervals as a result. Therefore this method
 #is only used as a utility function for IntervalSet.

 if self.is_empty():
 return []

 if other.is_empty() or self.is_disjoint(other):
 return [self]

 b1 = (self.bounds[0],other.bounds[0])
 i1 = (self.included[0],not other.included[0])
 int1 = Interval(b1,i1)

 b2 = (other.bounds[1],self.bounds[1])
 i2 = (not other.included[1],self.included[1])
 int2 = Interval(b2,i2)

 if other.bounds[0] in self and other.bounds[1] in self:
 #-------
 # ***
 return [int1,int2]

 elif other.bounds[0] in self:
 bounds = (self.bounds[0],other.bounds[0])
 include = (self.included[0],not other.included[0])
 #-------
 # *********
 return [int1]
 elif other.bounds[1] in self:
 # -------
 #*******
 return [int2]
 else:
 raise RuntimeError("This should not happen")

 def _union(self,other):
 #the set of intervals is not closed w.r.t the union, as it might
 #yield one or two intervals as a result. Therefore this method
 #is only used as a utility function for IntervalSet.

 if self.is_empty() and other.is_empty():
 return []
 elif self.is_empty():
 return [other]
 elif other.is_empty():
 return [self]

 if self.bounds[0] < other.bounds[0]:
 i1,i2 = self,other
 elif self.bounds[0] > other.bounds[0]:
 i2,i1 = self,other
 else:
 if self.included[0]:
 i1,i2 = self,other
 else:
 i2,i1 = self,other

 if i1.is_disjoint(i2):
 return [i1,i2]
 elif i2.bounds[0] in i1 and i2.bounds[1] in i1:
 #-------
 # ***
 return [i1]
 elif i2.bounds[0] in i1:
 bounds = (i1.bounds[0],i2.bounds[1])
 include = (i1.included[0],i2.included[1])
 #-------
 # *********
 return [Interval(bounds,include)]
 else:
 raise RuntimeError("This should not happen")

[docs] def intersection(self,other):
 """
 Return a new Interval with the intersection of the two intervals,
 i.e. all elements that are in both self and other.

 :param Interval other: Interval to intersect with
 :rtype: Interval
 """
 if self.bounds[0] < other.bounds[0]:
 i1,i2 = self,other
 else:
 i2,i1 = self,other

 if self.is_disjoint(other):
 return Interval((1,0),(True,True))

 bounds = [None,None]
 included = [None,None]
 #sets are not disjoint, so i2.bounds[0] in i1:
 bounds[0] = i2.bounds[0]
 included[0] = i2.included[0]

 if i2.bounds[1] in i1:
 bounds[1] = i2.bounds[1]
 included[1] = i2.included[1]
 else:
 bounds[1] = i1.bounds[1]
 included[1] = i1.included[1]

 return Interval(bounds,included)

[docs] def is_empty(self):
 """
 Check whether this interval is empty.

 :rtype: bool
 """
 if self.bounds[1] < self.bounds[0]:
 return True
 if self.bounds[1] == self.bounds[0]:
 return not (self.included[0] and self.included[1])

[docs] def is_discrete(self):
 """
 Check whether this interval contains exactly one number

 :rtype: bool
 """
 return self.bounds[1] == self.bounds[0] and\
 self.included == (True,True)

[docs] def get_point(self):
 """
 Return the number contained in this interval.

 :rtype: float
 :raises ValueError: if Interval contains more than exactly one number.
 """
 if not self.is_discrete():
 raise ValueError("Interval doesn't contain exactly one value")
 return self.bounds[0]

[docs] def __contains__(self,x):
 """
 Check membership of the element.

 :param float x: Element to check membership of
 :rtype: bool
 """
 if self.is_empty():
 return False
 if self.included[0]:
 if not (x >= self.bounds[0]):
 return False
 else:
 if not (x > self.bounds[0]):
 return False
 if self.included[1]:
 if not (x <= self.bounds[1]):
 return False
 else:
 if not (x < self.bounds[1]):
 return False
 return True

 def __repr__(self):
 if self.is_empty():
 return "Interval((1,0),(False,False))"
 return "Interval(%s,%s)" % (self.bounds,self.included)

 def __str__(self):
 if self.is_empty():
 return "<empty set>"
 else:
 left = ["(","["]
 right = [")","]"]

 bnd = "%s,%s" % self.bounds
 brk = (left[self.included[0]],right[self.included[1]])

 return "%s%s%s" % (brk[0],bnd,brk[1])

[docs]class IntervalSet(object):
 """
 A set of intervals to represent quite general sets in R
 """
[docs] def __init__(self,ints):
 """
 Create a new IntervalSet.

 :param sequence ints: Intervals for this IntervalSet
 """
 self.ints = []
 for i in sorted(ints,key=lambda x: x.bounds[0]):
 if i.is_empty():
 continue
 if len(self.ints) > 0 and not i.is_disjoint(self.ints[-1]):
 i2 = self.ints.pop(-1)
 self.ints.extend(i2._union(i))
 else:
 self.ints.append(i)

 for i1,i2 in pairwise(self.ints):
 if not i1.is_disjoint(i2):
 raise ValueError('Intervals are not disjoint')

 @classmethod
[docs] def everything(cls):
 """
 Create a new IntervalSet representing the full real axis.
 """
 return cls([Interval.everything()])

 @classmethod
[docs] def from_values(cls,values):
 """
 Create a new IntervalSet representing a set of isolated real numbers.

 :param sequence values: The values for this IntervalSet
 """
 return cls([Interval.from_value(v) for v in values])

[docs] def is_empty(self):
 """
 Check whether this IntervalSet is empty.

 :rtype: bool
 """
 return len(self.ints) == 0

[docs] def is_discrete(self):
 """
 Check whether this IntervalSet contains only isolated numbers.

 :rtype: bool
 """
 for i in self.ints:
 if not i.is_discrete():
 return False
 return True

[docs] def iter_members(self):
 """
 Iterate over all elements of the set.

 :raises ValueError: if self is a set of everything
 """
 if not self.is_discrete():
 raise ValueError("non-discrete IntervalSet can not be iterated")
 for i in self.ints:
 yield i.get_point()

[docs] def intersection(self,other):
 """
 Return a new IntervalSet with the intersection of the two sets, i.e.
 all elements that are both in self and other.

 :param IntervalSet other: Set to intersect with
 :rtype: IntervalSet
 """
 res = []
 for i1 in self.ints:
 for i2 in other.ints:
 res.append(i1.intersection(i2))

 return IntervalSet(res)

[docs] def union(self,other):
 """
 Return a new IntervalSet with the union of the two sets, i.e.
 all elements that are in self or other.

 :param IntervalSet other: Set to intersect with
 :rtype: IntervalSet
 """
 return IntervalSet(self.ints + other.ints)

[docs] def difference(self,other):
 """
 Return a new IntervalSet with the difference of the two sets, i.e.
 all elements that are in self but not in other.

 :param IntervalSet other: Set to subtract
 :rtype: IntervalSet
 """
 res = IntervalSet.everything()
 for j in other.ints:
 tmp = []
 for i in self.ints:
 tmp.extend(i._difference(j))
 res = res.intersection(IntervalSet(tmp))
 return res

[docs] def __contains__(self,x):
 """
 Check membership of the element.

 :param element: Element to check membership of
 :rtype: bool
 """
 for interval in self.ints:
 if x in interval:
 return True
 return False

 def __str__(self):
 if self.is_empty():
 return "<empty interval set>"
 else:
 return " u ".join(str(i) for i in self.ints)

 def __repr__(self):
 return "IntervalSet([%s])" % ",".join(i.__repr__() for i in self.ints)

[docs]class DiscreteSet(object):
 """
 A set data structure for hashable elements

 This is a wrapper around pythons set type, which additionally provides
 the possibility to express the set of everything (which only makes sense
 sometimes).
 """
[docs] def __init__(self,elements):
 """
 Create a new DiscreteSet

 :param sequence elements: The elements of the newly created set
 """
 self.everything = False
 self.elements = frozenset(elements)

 @classmethod
[docs] def everything(cls):
 """
 Create a new set of everything.

 One can not iterate over the elements of this set, but many
 operations are actually well defined and useful.
 """
 res = cls([])
 res.everything = True
 return res

[docs] def is_empty(self):
 """
 Check whether the set is empty

 :rtype: bool
 """
 if self.everything:
 return False
 return len(self.elements) == 0

[docs] def is_discrete(self):
 """
 Check whether the set is discrete, i.e. if :meth:`iter_members` can
 be used.

 :rtype: bool
 """
 return not self.everything

[docs] def intersection(self,other):
 """
 Return a new DiscreteSet with the intersection of the two sets, i.e.
 all elements that are in both self and other.

 :param DiscreteSet other: Set to intersect with
 :rtype: DiscreteSet
 """
 if self.everything:
 if other.everything:
 return DiscreteSet()
 else:
 return DiscreteSet(other.elements)
 else:
 if other.everything:
 return DiscreteSet(self.elements)
 else:
 return DiscreteSet(self.elements.intersection(other.elements))

[docs] def difference(self,other):
 """
 Return a new DiscreteSet with the difference of the two sets, i.e.
 all elements that are in self but not in other.

 :param DiscreteSet other: Set to subtract
 :rtype: DiscreteSet
 :raises ValueError: if self is a set of everything
 """
 if self.everything:
 raise ValueError("Can not remove from everything")
 elif other.everything:
 return DiscreteSet([])
 else:
 return DiscreteSet(self.elements.difference(other.elements))

[docs] def union(self,other):
 """
 Return a new DiscreteSet with the union of the two sets, i.e.
 all elements that are in self or in other.

 :param DiscreteSet other: Set to unite with
 :rtype: DiscreteSet
 """
 if self.everything:
 return self
 elif other.everything:
 return other
 else:
 return DiscreteSet(self.elements.union(other.elements))

[docs] def iter_members(self):
 """
 Iterate over all elements of the set.

 :raises ValueError: if self is a set of everything
 """
 if self.everything:
 raise ValueError("Can not iterate everything")
 for coord in sorted(self.elements):
 yield coord

[docs] def __contains__(self,element):
 """
 Check membership of the element.

 :param element: Element to check membership of
 :rtype: bool
 """
 if self.everything:
 return True
 return element in self.elements

 def __str__(self):
 if self.is_empty():
 return "<empty discrete set>"
 else:
 return "{%s}" % ",".join(str(e) for e in sorted(self.elements))

 def __repr__(self):
 if self.everything:
 return "DiscreteSet.everything()"
 return "DiscreteSet([%s])" % ",".join(i.__repr__() for i in sorted(self.elements))

#These are not used or documented at the moment, but might be useful in the
#future

class Patch(object):
 def __init__(self,sets):
 """
 A patch of multidimensional parameter space

 sets is a dict of names to DiscreteSet or IntervalSets of feasible
 values and represents the cartesion product of these
 """
 self.sets = sets
 self.discrete = True
 self.empty = False
 for s in sets.values():
 if isinstance(s,IntervalSet) and not s.is_discrete():
 self.discrete = False
 if s.is_empty():
 self.empty = True

 def is_empty(self):
 return self.empty

 def is_discrete(self):
 return self.discrete

 def intersection(self,other):
 "intersection with another patch"
 res = {}
 if set(self.sets.keys()) != set(other.sets.keys()):
 raise KeyError('Incompatible patches in intersection')
 for name,s1 in self.sets.items():
 s2 = other.sets[name]
 res[name] = s1.intersection(s2)
 return Patch(res)

 def iter_points(self):
 "returns a list of tuples of names and values"
 if not self.is_discrete():
 raise ValueError("Patch is not discrete")
 names = sorted(self.sets.keys())
 icoords = [self.sets[name].iter_members() for name in names]
 for coordinates in product(*icoords):
 yield tuple(zip(names,coordinates))

 def __contains__(self,point):
 for name, coord in point.items():
 if not coord in self.sets[name]:
 return False
 return True

 def __str__(self):
 if self.is_empty():
 return "<empty patch>"
 else:
 sets = ["%s:%s" % (n,str(i)) for n,i in self.sets.items()]
 return " x ".join(sets)

class PatchSet(object):
 """
 A list of patches that represents quite general subsets of a
 multidimensional parameter space
 """
 def __init__(self,patches):
 self.discrete = True
 self.patches = []
 self.coords = None
 for patch in patches:
 if patch.is_empty():
 continue
 if not patch.is_discrete():
 self.discrete = False
 self.patches.append(patch)

 def is_empty(self):
 return len(self.patches) == 0

 def is_discrete(self):
 return self.discrete

 def intersection(self,other):
 res = []
 for p1 in self.patches:
 for p2 in other.patches:
 res.append(p1.intersection(p2))
 return PatchSet(res)

 def iter_points(self):
 if not self.discrete:
 raise ValueError('cannot iter points in non-discrete domain')
 if self.coords is None:
 self.coords = set([])
 for patch in self.patches:
 for point in patch.iter_points():
 self.coords.add(point)
 for coord in self.coords:
 yield coord

 def __contains__(self,point):
 for patch in self.patches:
 if point in patch:
 return True
 return False

 def __str__(self):
 if self.is_empty():
 return "<empty interval set>"
 else:
 return "{ %s }" % " u ".join(str(i) for i in self.ints)

 © Copyright 2015, Johannes Reinhardt.
 Created using Sphinx 1.2.2.

_modules/constrainingorder/variables.html

 Navigation

 		
 index

 		Constraining order 0.1 documentation »

 		Module code »

 		constrainingorder »

 Source code for constrainingorder.variables

#Constraining Order - a simple constraint satisfaction library
#
#Copyright (c) 2015 Johannes Reinhardt <jreinhardt@ist-dein-freund.de>
#
#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is
#furnished to do so, subject to the following conditions:
#
#The above copyright notice and this permission notice shall be included in all
#copies or substantial portions of the Software.
#
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
#SOFTWARE.

"""
This module defines classes representing variables
"""
from __future__ import unicode_literals
from builtins import object
from constrainingorder.sets import DiscreteSet, IntervalSet

[docs]class Variable(object):
 """
 Abstract baseclass for variables.

 Variables describe the variables of a CSP. The instances are immutable
 and only make sense in connection with a Space.
 """
 def __init__(self,name,**kwargs):
 self.name = name
 "name of the variable"
 self.description = kwargs.get('description')
 "description of the variable"
 self.domain = None
 "domain of the variable"
 self.discrete = None
 "whether the variable is discrete or continuous"

[docs]class RealVariable(Variable):
 """
 Continuous real variable with values from the real numbers.
 """
[docs] def __init__(self,name,**kwargs):
 """
 Create a new RealVariable

 :param str name: The name of the variable
 :param str description: An optional description of the variable
 :param IntervalSet domain: An optional domain for this variable,
 defaults to everything.
 """
 Variable.__init__(
 self,
 name,
 description=kwargs.get('description','')
)

 self.domain = kwargs.get('domain',IntervalSet.everything())
 self.discrete = False

[docs]class DiscreteVariable(Variable):
 """
 Discrete variable with values from a DiscreteSet of elements.
 """
[docs] def __init__(self,name,**kwargs):
 """
 Create a new DiscreteVariable

 :param str name: The name of the variable
 :param str description: An optional description of the variable
 :param DiscreteSet domain: An optional domain for this variable,
 defaults to everything.
 """
 Variable.__init__(
 self,
 name,
 description=kwargs.get('description','')
)

 self.domain = kwargs.get('domain',DiscreteSet.everything())

 self.discrete = True

 © Copyright 2015, Johannes Reinhardt.
 Created using Sphinx 1.2.2.

