

conrad

convex optimization in radiation therapy

Contents:

	Tutorial

	Case

	Treatment Planning Workflow

	Index

	Module Index

	Search Page

Tutorial

	Tutorial

Case

	Case

Treatment Planning Workflow

	Treatment Planning Workflow

Tutorial

Case

Define Case, the top level interface for treatment planning.

	
class case.Case(anatomy=None, physics=None, prescription=None, suppress_rx_constraints=False)

	Top level interface for treatment planning.

A Case has four major components.

Case.physics is of type Physics, and contains
physical information for the case, including the number of
voxels, beams, beam layout, voxel labels and dose influence
matrix.

Case.anatomy is of type Antomy, and manages the
structures in the patient anatomy, including optimization
objectives and dose constraints applied to each structure.

Case.prescription is of type Prescription, and
specifies a clinical prescription for the case, including prescribed
doses for target structures and prescribed dose constraints (e.g.,
RTOG recommendations).

Case.problem is of type PlanningProblem, and is a
tool that forms and manages the mathematical representation of
treatment planning problem specified by case anatomy, physics and
prescription; it serves as the interface to convex solvers that run
the treatment plan optimization.

	
A

	Dose matrix from current planning frame of Case.physics.

	
add_constraint(structure_label, constraint)

	Add constraint to structure specified by structure_label.

	Parameters:	
	structure_label – Must correspond to label or name of a
Structure in
Case.anatomy.

	constraint (conrad.medicine.Constraint) – Dose
constraint to add to constraint list of specified
structure.

	Returns:	None

	
anatomy

	Container for all planning structures.

	
calculate_doses(x)

	Calculate voxel doses for each structure in Case.anatomy.

	Parameters:	x – Vector-like np.array of beam intensities.

	Returns:	None

	
change_constraint(constr_id, threshold=None, direction=None, dose=None)

	Modify constraint in Case.

If constr_id is a valid key to a constraint in the
ConstraintList attached to one of
the structures in Case.anatomy, that constraint will be
modified according to the remaining arguments. Call is no-op if
key does not exist.

	Parameters:	
	constr_id – Key to a constraint on one of the structures in
Case.anatomy.

	threshold (optional) – If constraint in question is a
PercentileConstraint,
percentile threshold set to this value. No effect
otherwise.

	direction (str, optional) – Constraint direction set
to this value. Should be one of: ‘<’ or ‘>’.

	dose (DeliveredDose, optional) – Constraint dose level set to this value.

	Returns:	None

	
change_objective(label, **objective_parameters)

	Modify objective for structure in Case.

	Parameters:	
	label – Label or name of a Structure
in Case.anatomy.

	**options –

	Returns:	None

	
clear_constraints()

	Remove all constraints from all structures in Case.

	Parameters:	None –

	Returns:	None

	
drop_constraint(constr_id)

	Remove constraint from case.

If constr_id is a valid key to a constraint in the
ConstraintList attached to one of
the structures in Case.anatomy, that constraint will be
removed from the structure’s constraint list. Call is no-op if
key does not exist.

	Parameters:	constr_id – Key to a constraint on one of the structures in
Case.anatomy.

	Returns:	None

	
gather_physics_from_anatomy()

	Gather dose matrices from structures.

	Parameters:	None –

	Returns:	None

	Raises:	AttributeError – If case.physics.dose_matrix is
already set.

	
load_physics_to_anatomy(overwrite=False)

	Transfer data from physics to each structure.

The label associated with each structure in Case.anatomy
is used to retrieve the dose matrix data and voxel weights from
Case.physics for the voxels bearing that label.

The method marks the Case.physics.dose_matrix as seen,
in order to prevent redundant data transfers.

	Parameters:	overwrite (bool, optional) – If True, dose matrix
data from Case.physics will overwrite dose
matrices assigned to each structure in
Case.anatomy.

	Returns:	None

	Raises:	ValueError – If Case.anatomy has assigned dose
matrices, Case.physics not marked as having
updated dose matrix data, and flag overwrite set to
False.

	
n_beams

	Number of beams in current planning frame of Case.physics.

	
n_structures

	Number of structures in Case.anatomy.

	
n_voxels

	Number of voxels in current planning frame of Case.physics.

	
physics

	Patient anatomy, contains all dose physics information.

	
plan(use_slack=True, use_2pass=False, **options)

	Invoke numerical solver to optimize plan, given state of Case.

At call time, the objectives, dose constraints, dose matrix,
and other relevant data associated with each structure in
Case.anatomy is passed to Case.problem to build
and solve a convex optimization problem.

	Parameters:	
	use_slack (bool, optional) – Allow slacks on each dose
constraint.

	use_2pass (bool, optional) – Execute two-pass planing
method to enforce exact versions, rather than convex
restrictions of any percentile-type dose constraints
included in the plan.

	**options – Arbitrary keyword arguments. Passed through to
Case.problem.solve().

	Returns:	Tuple with bool indicator of planning
problem feasibility and a
RunRecord with data
from the setup, execution and output of the planning run.

	Return type:	tuple

	Raises:	ValueError – If case not plannable due to missing information.

	
plannable

	True if case meets minimum requirements for Case.plan() call.

	Parameters:	None –

	Returns:	True if anatomy has one or more target
structures and dose matrices from the case physics.

	Return type:	bool

	
plotting_data(x=None, constraints_only=False, maxlength=None)

	Dictionary of matplotlib-compatible plotting data.

Includes data for dose volume histograms, prescribed doses, and
dose volume (percentile) constraints for each structure in
Case.anatomy.

	Parameters:	
	x (optional) – Vector of beam intensities from which to
calculate structure doses prior to emitting plotting
data.

	constraints_only (bool, optional) – If True, only
include each structure’s constraint data in returned
dictionary.

	maxlength (int, optional) – If specified, re-sample
each structure’s DVH plotting data to have a maximum
series length of maxlength.

	Returns:	Plotting data for each structure, keyed by
structure label.

	Return type:	dict

	
prescription

	Container for clinical goals and limits.

Structure list from prescription used to populate
Case.anatomy if anatomy is empty when
Case.prescription setter is invoked.

	
problem

	Object managing numerical optimization setup and results.

	
propagate_doses(y)

	Split voxel dose vector y into doses for each structure in
Case.anatomy.

	Parameters:	y – Vector-like np.array of voxel doses, or dictionary mapping
structure labels to voxel dose subvectors,

	
structures

	Dictionary of structures contained in Case.anatomy.

	
transfer_rx_constraints_to_anatomy()

	Push constraints in prescription onto structures in anatomy.

Assume each structure label represented in
Case.prescription is represented in
Case.anatomy. Any existing constraints on structures in
Case.anatomy are preserved.

	Parameters:	None –

	Returns:	None

Medicine

Dose Constraints

Prescription

Define Prescription and methods for parsing prescription data
from python objects as well as JSON- or YAML-formatted files.

Parsing methods expect the following formats.

YAML:

- name : PTV
 label : 1
 is_target: Yes
 dose : 35.
 constraints:
 - "D90 >= 32.3Gy"
 - "D1 <= 1.1rx"

- name : OAR1
 label : 2
 is_target: No
 dose :
 constraints:
 - "D95 <= 20Gy"
 - "V30 Gy <= 20%"

Python list of dict (JSON approximately the same):

[{
 "name" : "PTV",
 "label" : 1,
 "is_target" : True,
 "dose" : 35.,
 "constraints" : ["D1 <= 1.1rx", "D90 >= 32.3Gy"]
}, {
 "name" : "OAR1",
 "label" : 2,
 "is_target" : False,
 "dose" : None,
 "constraints" : ["D95 <= 20Gy"]
}]

	JSON verus Python syntax differences:

	
	true/false instead of True/False

	null instead of None

	
class prescription.Prescription(prescription_data=None)

	Class for specifying structures with dose targets and constraints.

	
constraint_dict

	dict – Dictionary of
ConstraintList objects, keyed by structure labels.

	
structure_dict

	dict – Diciontionary of
Structure objects, keyed by structure labels.

	
rx_list

	list – List of dictionaries representation of
prescription.

	
add_structure_to_dictionaries(structure)

	Add a new structure to internal representation of prescription.

	Parameters:	structure (Structure) – Structure added to
Prescription.structure_dict. An corresponding,
empty constraint list is added to
Prescription.constraint_dict.

	Returns:	None

	Raises:	TypeError – If structure not a Structure.

	
constraints_by_label

	Dictionary of constraints in prescription, by structure label.

	
dict

	Dictionary of structures in prescription, by label.

	
digest(prescription_data)

	Populate Prescription‘s structures and dose constraints.

Specifically, for each entry in prescription_data, construct
a Structure to capture structure data (e.g., name,
label), as well as a corresponding but separate
ConstraintList object to capture any dose constraints
specified for the structure.

Add each such structure to Prescription.structure_dict,
and each such constraint list to
Prescription.constraint_dict. Build or copy a “list of
dictionaries” representation of the prescription data, assign to
Prescription.rx_list.

	Parameters:	prescription_data – Input to be parsed for structure and dose
constraint data. Accepted formats include str
specifying a valid path to a suitably-formatted JSON or
YAML file, or a suitably-formatted list of
dict objects.

	Returns:	None

	Raises:	TypeError – If input not of type list or a str
specfying a valid path to file that can be loaded with
the json.load() or yaml.safe_load() methods.

	
list

	List of structures in prescription

	
report(anatomy)

	Reports whether anatomy fulfills all prescribed constraints.

	Parameters:	anatomy (Antomy) – Container of structures to
compare against prescribed constraints.

	Returns:	Dictionary keyed by structure label, with data
on each dose constraint associated with that structure in
this Prescription. Reported data includes the
constraint, whether it was satisfied, and the actual dose
achieved at the percentile/threshold specified by the
constraint.

	Return type:	dict

	Raises:	TypeError – If anatomy not an Anatomy.

	
report_string(anatomy)

	Reports whether anatomy fulfills all prescribed constraints.

	Parameters:	anatomy (Anatomy) – Container of structures to
compare against prescribed constraints.

	Returns:	Stringified version of output from
Presription.report.

	Return type:	str

Anatomy

Define Anatomy, container for treatment planning structures.

	
class anatomy.Anatomy(structures=None)

	Iterable container class for treatment planning structures.

Provides simple syntax via overloaded operators, including addition,
retrieval, and removal of structures from anatomy:

anatomy = Anatomy()

target structure with label = 4
s1 = Structure(4, 'target', True)

non-target structure with label = 12
s2 = Structure(12, 'non-target', False)

non-target structure with label = 7
s3 = Structure(7, 'non-target 2', False)

anatomy += s1
anatomy += s2
anatomy += s3

remove structure s3 by name
anatomy -= 'non-target 2'

remove structure s2 by label
anatomy -= 12

retrieve structure s1 by name
anatomy[4]
anatomy['target']

	
calculate_doses(beam_intensities)

	Calculate voxel doses to each structure in Anatomy.

	Parameters:	beam_intensities – Beam intensities to provide to each
structure’s Structure.calculate_dose method.

	Returns:	None

	
clear_constraints()

	Clear all constraints from all structures in Anatomy.

	Parameters:	None –

	Returns:	None

	
dose_summary_data(percentiles=[2, 98])

	Collimate dose summaries from each structure in Anatomy.

	Parameters:	percentiles (list) – List of percentiles to include
in dose summary queries.

	Returns:	Dictionary of dose summaries obtained by
calling Structure.summary for each structure.

	Return type:	dict

	
dose_summary_string

	Collimate dose summary strings from each structure in Anatomy.

	Parameters:	None –

	Returns:	Dictionary of dose summaries obtained by
calling Structure.summary_string for each structure.

	Return type:	dict

	
is_empty

	True if Anatomy contains no structures.

	
label_order

	Ranked list of labels of structures in Anatomy.

	Raises:	ValueError – If input to setter contains labels for
structures not contained in anatomy, or if the length
of the input list does not match Anatomy.n_structures.

	
labels

	List of labels of structures in Anatomy.

	
list

	List of structures in Anatomy.

	
n_structures

	Number of structures in Anatomy.

	
plannable

	True if all structures plannable and at least one is a target.

	
plotting_data(constraints_only=False, maxlength=None)

	Dictionary of matplotlib-compatible plotting data for all
structures.

	Parameters:	
	constraints_only (bool, optional) – If True,
return only the constraints associated with each
structure.

	maxlength (int, optional) – If specified, re-sample
each structure’s DVH plotting data to have a maximum
series length of maxlength.

	
propagate_doses(voxel_doses)

	Assign pre-calculated voxel doses to each structure in
Anatomy

	Parameters:	voxel_doses (dict) – Dictionary mapping structure
labels to voxel dose subvectors.

	Returns:	None

	
satisfies_prescription(constraint_dict)

	Check whether anatomy satisfies supplied constraints.

:param dict: Dictionary of ConstraintList objects
:param keyed by structure labels.:

	Returns:	True if each structure in

	Return type:	int

	
size

	Total number of voxels in all structures in Anatomy.

	
structures

	Dictionary of structures in anatomy, keyed by label.

Setter method accepts any iterable collection of
Structure objects.

	Raises:	
	TypeError – If input to setter is not iterable.

	ValueError – If input to setter contains elements of a type
other than Structure.

Define Structure, building block of Anatomy.

	
structure.W_UNDER_DEFAULT

	float – Default objective weight for underdose
penalty on target structures.

	
structure.W_OVER_DEFAULT

	float – Default objective weight for underdose
penalty on non-target structures.

	
structure.W_NONTARG_DEFAULT

	float – Default objective weight for overdose
penalty on non-target structures.

	
class structure.Structure(label, name, is_target, size=None, **options)

	Structure manages the dose information (including the dose
influence matrix, dose calculations and dose volume histogram), as
well as optimization objective information—including dose
constraints—for a set of voxels (volume elements) in the patient
volume to be treated as a logically homogeneous unit with respect to
the optimization process.

	There are usually three types of structures:

	
	
	Anatomical structures, such as a kidney or the spinal

	cord, termed organs-at-risk (OARs),

	
	Clinically delineated structures, such as a tumor or a target

	volume, and,

	
	Tissues grouped together by virtue of not being explicitly

	delineated by a clinician, typically lumped together under
the catch-all category “body”.

Healthy tissue structures, including OARs and “body”, are treated as
non-target, are prescribed zero dose, and only subject to an
overdose penalty during optimization.

Target tissue structures are prescribed a non-zero dose, and subject
to both an underdose and an overdose penalty.

	
label

	(int or str): Label, applied to each voxel
in the structure, usually generated during CT contouring
step in the clinical workflow for treatment planning.

	
name

	str – Clinical or anatomical name.

	
is_target

	bool – True if structure is a target.

	
dvh

	DVH – Dose volume histogram.

	
constraints

	ConstraintList – Mutable collection of
dose constraints to be applied to structure during
optimization.

	
A

	Alias for Structure.A_full.

	
A_full

	Full dose matrix (dimensions = voxels x beams).

	Setter method will perform two additional tasks:

	
	
	If Structure.size is not set, set it based on

	number of rows in A_full.

	
	Trigger Structure.A_mean to be calculated from

	Structure.A_full.

	Raises:	
	TypeError – If A_full is not a matrix in
np.ndarray, sp.csc_matrix, or
sp.csr_matrix formats.

	ValueError – If Structure.size is set, and the number
of rows in A_full does not match
Structure.size.

	
A_mean

	Mean dose matrix (dimensions = 1 x beams).

Setter expects a one dimensional np.ndarray
representing the mean dose matrix for the structure. If this
optional argument is not provided, the method will attempt to
calculate the mean dose from Structure.A_full.

	Raises:	
	TypeError – If A_mean provided and not of type
np.ndarray, or if mean dose matrix is to be
calculated from Structure.A_full, but full dose
matrix is not a conrad-recognized matrix type.

	ValueError – If A_mean is not dimensioned as a row or
column vector, or number of beams implied by A_mean
conflicts with number of beams implied by
Structure.A_full.

	
assign_dose(y)

	Assign dose vector to structure.

	Parameters:	y – Vector-like input of voxel doses.

	Returns:	None

	Raises:	ValueError – if structure size is known and incompatible with
length of y.

	
boost

	Adjustment factor from precription dose to optimization dose.

	
calc_y(x)

	Calculate voxel doses as:
attr:Structure.y = Structure.A * x.

	Parameters:	x – Vector-like input of beam intensities.

	Returns:	None

	
calculate_dose(beam_intensities)

	Alias for Structure.calc_y().

	
collapsable

	True if optimization can be performed with mean dose only.

	
constraints_string

	String of structure header and constraints

	
dose

	Dose level targeted in structure’s optimization objective.

The dose has two components: the precribed dose,
Structure.dose_rx, and a multiplicative adjustment
factor, Structure.boost.

Once the structure’s dose has been initialized, setting
Structure.dose will change the adjustment factor. This
is to distinguish (and allow for differences) between the dose
level prescribed to a structure by a clinician and the dose
level request to a numerical optimization algorithm that yields
a desirable distribution, since the latter may require some
offset relative to the former. To change the reference dose
level, use the Structure.dose_rx setter.

Setter is no-op for non-target structures, since zero dose is
prescribed always.

	Raises:	
	TypeError – If requested dose does not have units of
DeliveredDose.

	ValueError – If zero dose is requested to a target structure.

	
dose_rx

	Prescribed dose level.

Setting this field sets Structure.dose to the requested
value and Structure.boost to 1.

	
dose_unit

	One times the DeliveredDose unit of the structure dose.

	
max_dose

	Maximum dose to structure’s voxels.

	
mean_dose

	Average dose to structure’s voxels.

	
min_dose

	Minimum dose to structure’s voxels.

	
objective_string

	String of structure header and objectives

	
plannable

	True if structure’s attached data is sufficient for optimization.

	Minimum requirements:

	
	Structure size determined, and

	Dose matrix assigned, or

	Structure collapsable and mean dose matrix assigned.

	
plotting_data(constraints_only=False, maxlength=None)

	Dictionary of matplotlib-compatible plotting data.

Data includes DVH curve, constraints, and prescribed dose.

	Parameters:	
	constraints_only (bool, optional) – If True,
return only the constraints associated with the
structure.

	maxlength (int, optional) – If specified, re-sample
the structure’s DVH plotting data to have a maximum
series length of maxlength.

	
reset_matrices()

	Reset structure’s dose and mean dose matrices to None

	
satisfies(constraint)

	Test whether structure’s voxel doses satisfy constraint.

	Parameters:	constraint (Constraint) – Dose constraint to test
against structure’s voxel doses.

	Returns:	True if structure’s voxel doses conform to
the queried constraint.

	Return type:	bool

	Raises:	
	TypeError – If constraint not of type Constraint.

	ValueError – If Structure.dvh not initialized or not
populated with dose data.

	
set_constraint(constr_id, threshold=None, relop=None, dose=None)

	Modify threshold, relop, and dose of an existing constraint.

	Parameters:	
	constr_id (str) – Key to a constraint in
Structure.constraints.

	threshold (optional) – Percentile threshold to assign if
queried constraint is of type
PercentileConstraint, no-op otherwise. Must be
compatible with the setter method for
PercentileConstraint.percentile.

	relop (optional) – Inequality constraint sense. Must be
compatible with the setter method for
Constraint.relop.

	dose (optional) – Constraint dose. Must be compatible with
setter method for Constraint.dose.

	Returns:	None

	Raises:	ValueError – If constr_id is not the key to a constraint
in the Constraintlist located at
Structure.constraints.

	
size

	Structure size (i.e., number of voxels in structure).

	Raises:	ValueError – If size not an int.

	
summary(percentiles=[2, 25, 75, 98])

	Dictionary summarizing dose statistics.

	Parameters:	percentiles (list, optional) – Percentile levels at
which to query the structure dose. If not provided, will
query doses at default percentile levels of 2%, 25%, 75%
and 98%.

	Returns:	Dictionary of doses at requested percentiles,
plus mean, minimum and maximum voxel doses.

	Return type:	dict

	
summary_string

	String of structure header and dose summary

	
voxel_weights

	Voxel weights, or relative volumes of voxels.

The voxel weights are the 1 vector if the structure volume
is regularly discretized, and some other set of integer values
if voxels are clustered.

	Raises:	ValueError – If Structure.voxel_weights setter called
before Structure.size is defined, or if length
of input does not match Structure.size, or if
any of the provided weights are negative.

	
y

	Vector of structure’s voxel doses.

	
y_mean

	Value of structure’s mean voxel dose.

Physics

Define DoseFrame and Physics classes for treatment
planning.

	
class physics.DoseFrame(voxels=None, beams=None, data=None, voxel_labels=None, beam_labels=None, voxel_weights=None, beam_weights=None, frame_name=None)

	Describe a reference frame (voxels x beams) for dosing physics.

A DoseFrame provides a description of the mathematical
basis of the dosing physics, which usually consists of a matrix in
\(\mathbf{R}^{\mbox{voxels} \times \mbox{beams}}\), mapping the
space of beam intensities, \(\mathbf{R}^\mbox{beams}\) to the
space of doses delivered to each voxel,
\(\mathbf{R}^\mbox{voxels}\).

For a given plan, we may require conversions between several related
representations of the dose matrix. For instance, the beams may in
fact be beamlets that can be coalesced into apertures, or—in order
to accelerate the treatment plan optimization—may be clustered or
sampled. Similarly, voxels may be clustered or sampled. For voxels,
there is also a geometric frame, with X * Y * Z voxels,
where the tuple (X, Y, Z) gives the dimensions of a
regularly discretized grid, the so-called dose grid used in Monte
Carlo simulations or ray tracing calculations. Since many of the
voxels in this rectangular volume necessarily lie outside of the
patient volume, there is only some number of voxels m < X *
Y * Z that are actually relevant to treatment planning.

Accordingly, each DoseFrame is intended to capture one such
configuration of beams and voxels, with corresponding data on labels
and/or weights attached to the configuration. Voxel labels allow
each voxel to be mapped to an anatomical or clinical structure used
in planning. The concept of beam labels is defined to allow beams to
be gathered in logical groups (e.g. beamlets in fluence maps, or
apertures in arcs) that may be constrained jointly or treated as a
unit in some other way in an optimization context. Voxel and beam
weights are defined for accounting purposes: if a DoseFrame
represents a set of clustered voxels or beams, the associated
weights give the number of unitary voxels or beams in each cluster,
so that optimization objective terms can be weighted appropriately.

	
beam_labels

	Vector of labels mapping beams to beam groups.

Setter will also use dimension of input vector to set beam
dimensions (DoseFrame.beams) if not already assigned at
call time.

	Raises:	ValueError – If provided vector dimensions inconsistent with
known frame dimensions.

	
beam_lookup_by_label(label)

	Get indices of beam labeled label in this DoseFrame.

	
beam_weights

	Vector of weights assigned to each (meta-)beam.

Setter will also use dimension of input vector to set voxel
dimensions (DoseFrame.beams) if not already assigned at
call time.

	Raises:	ValueError – If provided vector dimensions inconsistent with
known frame dimensions.

	
beams

	Number of beams in dose frame.

If DoseFrame.beam_weights has not been assigned at call
time, the setter will initialize it to the 1 vector.

	Raises:	ValueError – If DoseFrame.beams already determined.
Beam dimension is a write-once property.

	
dose_matrix

	Dose matrix.

Setter will also use dimensions of input matrix to set any
dimensions (DoseFrame.voxels or DoseFrame.beams)
that are not already assigned at call time.

	Raises:	
	TypeError – If input to setter is not a sparse or dense
matrix type recognized by conrad.

	ValueError – If provided matrix dimensions inconsistent with
known frame dimensions.

	
static indices_by_label(label_vector, label, vector_name)

	Retrieve indices of vector entries corresponding to a given value.

	Parameters:	
	label_vector – Vector of values to search for entries
corresponding

	label – Value to find.

	vector_name (str) – Name of vector, for use in
exception messages.

	Returns:	Vector of indices at which the
entries of label_vector are equal to label.

	Return type:	ndarray

	Raises:	
	ValueError – If label_vector is None.

	KeyError – If label not found in label_vector.

	
plannable

	True if both dose matrix and voxel label data loaded.

This can be achieved by having a contiguous matrix and a vector
of voxel labels indicating the identity of each row of the
matrix, or a dictionary of submatrices that map label keys to
submatrix values.

	
shape

	Frame dimensions, \(\{\mathbf{R}^\mbox{voxels} \times \mathbf{R}^\mbox{beams}\}\).

	
voxel_labels

	Vector of labels mapping voxels to structures.

Setter will also use dimension of input vector to set voxel
dimensions (DoseFrame.voxels) if not already assigned at
call time.

	Raises:	ValueError – If provided vector dimensions inconsistent with
known frame dimensions.

	
voxel_lookup_by_label(label)

	Get indices of voxels labeled label in this DoseFrame.

	
voxel_weights

	Vector of weights assigned to each (meta-)voxel.

Setter will also use dimension of input vector to set voxel
dimensions (DoseFrame.voxels) if not already assigned at
call time.

	Raises:	ValueError – If provided vector dimensions inconsistent with
known frame dimensions.

	
voxels

	Number of voxels in dose frame.

If DoseFrame.voxel_weights has not been assigned at call
time, the setter will initialize it to the 1 vector.

	Raises:	ValueError – If DoseFrame.voxels already determined.
Voxel dimension is a write-once property.

	
class physics.Physics(voxels=None, beams=None, dose_matrix=None, dose_grid=None, voxel_labels=None, **options)

	Class managing all dose-related information for treatment planning.

A Physics instance includes one or more
DoseFrames, each with attached data including voxel
dimensions, beam dimensions, a voxel-to-structure mapping, and a
dose influence matrix. The class also provides an interface for
adding and switching between frames, and extracting data from the
active frame.

A Physics instance optionally has an associated
VoxelGrid that represents the dose grid used for dose
matrix calculation, and that provides the necessary geometric
information for reconstructing and rendering the 3-D dose
distribution (or 2-D slices thereof).

	
add_dose_frame(key, **frame_args)

	Add new DoseFrame representation of a dosing configuration.

	Parameters:	
	key – A new DoseFrame will be added to the
Physics object’s dictionary with the key
key.

	**frame_args – Keyword arguments passed to DoseFrame
initializer.

	Returns:	None

	Raises:	ValueError – If key corresponds to an existing key in the
Physics object’s dictionary of dose frames.

	
available_frames

	List of keys to dose frames already attached to Physics.

	
beam_weights_by_label(label)

	Subvector of beam weights, filtered by label.

	
beams

	Number of beams in current Physics.frame.

	
change_dose_frame(key)

	Switch between dose frames already attached to Physics.

	
data_loaded

	True if a client has seen data from the current dose frame.

	
dose_grid

	Three-dimensional grid.

	
dose_matrix

	Dose influence matrix for current Physics.frame.

	
dose_matrix_by_label(voxel_label=None, beam_label=None)

	Submatrix of dose matrix, filtered by voxel and beam labels.

	Parameters:	
	voxel_label (optional) – Label for which to build/retrieve
submatrix of current Physics.dose_matrix based
on row indices for which voxel_label matches the
entries of Physics.voxel_labels. All rows
returned if no label provided.

	beam_label (optional) – Label for which to build/retrieve
submatrix of current Physics.dose_matrix based
on column indices for which beam_label matches the
entries of Physics.frame.beam_labels. All
columns returned if no label provided.

	Returns:	Submatrix of dose matrix attached to current
Physics.frame, based on row indices for which
Physics.frame.voxel_labels matches the queried
voxel_label, and column indices for which
Physics.frame.beam_labels matches the queried
beam_label.

	
frame

	Handle to DoseFrame representing current dosing configuration.

	
mark_data_as_loaded()

	Allow clients to mark dose frame data as seen.

	
plannable

	True if current frame has both dose matrix and voxel label data

	
unique_frames

	List of unique dose frames attached to Physics.

	
voxel_labels

	Vector mapping voxels to structures in current Physics.frame.

	
voxel_weights_by_label(label)

	Subvector of voxel weights, filtered by label.

	
voxels

	Number of voxels in current Physics.frame.

Optimization

Treatment Planning as a Convex Problem

Define PlanningProblem, interface between Case
and solvers.

	
class problem.PlanningProblem

	Interface between Case and convex solvers.

Builds and solves specified treatment planning problem using fastest
available solver, then extracts solution data and solver metadata
(e.g., timing results) for use by clients of the
PlanningProblem object (e.g., a Case).

	
solver_cvxpy

	SolverCVXPY or NoneType – cvxpy-baed solver, if available.

	
solver_pogs

	SolverOptkit or NoneType – POGS
solver, if available.

	
solve(structures, run_output, slack=True, exact_constraints=False, **options)

	Run treatment plan optimization.

	Parameters:	
	structures – Iterable collection of
Structure objects with
attached objective, constraint, and dose matrix
information. Build convex model of treatment planning
problem using these data.

	run_output (RunOutput) – Container for saving solver
results.

	slack (bool, optional) – If True, build dose
constraints with slack.

	exact_constraints (bool, optional) – If True and
at least one structure has a percentile-type dose
constraint, execute the two-pass planning algorithm,
using convex restrictions of the percentile constraints
on the firstpass, and exact versions of the constraints
on the second pass.

	**options – Abitrary keyword arguments, passed through to
PlanningProblem.solver.init_problem() and
PlanningProblem.solver.build().

	Returns:	Number of feasible solver runs performed: 0
if first pass infeasible, 1 if first pass feasible,
2 if two-pass method requested and both passes feasible.

	Return type:	int

	Raises:	ValueError – If no solvers avaialable.

	
solver

	Get active solver (CVXPY or OPTKIT/POGS).

Convex Solvers

Define solver using the cvxpy module, if available.

For np.information on cvxpy, see:
http://www.cvxpy.org/en/latest/

If conrad.defs.module_installed() routine does not find the module
cvxpy, the variable SolverCVXPY is still defined in this
module’s namespace as a lambda returning None with the same method
signature as the initializer for SolverCVXPY. If cvxpy
is found, the class is defined normally.

	
solver_cvxpy.SOLVER_DEFAULT

	str – Default solver, set to ‘SCS’ if module
scs is installed, otherwise set to ‘ECOS’.

Define POGS-based solver using optkit, if available.

For information on POGS, see:
https://foges.github.io/pogs/

For infromation on optkit, see:
https://github.com/bungun/optkit

If conrad.defs.module_installed() does not find the optkit,
the variable SolverOptkit is still defined in the module
namespace as a lambda returning None with the same method signature
as the initializer for SolverOptkit. If optkit is found,
the class is defined normally.

TODO: change backend switching syntax to check flag .precision_is_64bit
instead of current .precision_is_32bit when optkit api updated

CVXPY solver interface

	
class solver_cvxpy.SolverCVXPY(n_beams=None, **options)

	Interface between conrad and cvxpy optimization library.

SolverCVXPY interprets conrad treatment planning
problems (based on structures with attached objectives, dose
constraints, and dose matrices) to build equivalent convex
optimization problems using cvxpy‘s syntax.

The class provides an interface to modify, run, and retrieve
solutions from optimization problems that can be executed on
a CPU (or GPU, if scs installed with appropriate backend
libraries).

	
problem

	cvxpy.Minimize – CVXPY representation of
optimization problem.

	
constraint_dual_vars

	dict – Dictionary, keyed by
constraint ID, of dual variables associated with each
dose constraint in the CVXPY problem representation.
The dual variables’ values are stored here after each
optimization run for access by clients of the
SolverCVXPY object.

	
build(structures, exact=False, **options)

	Update cvxpy optimization based on structure data.

Extract dose matrix, target doses, and objective weights
from structures.

Use doses and weights to add minimization terms to
SolverCVXPY.problem.objective. Use dose constraints
to extend SolverCVXPY.problem.constraints.

(When constraints include slack variables, a penalty on each
slack variable is added to the objective.)

	Parameters:	structures – Iterable collection of Structure
objects.

	Returns:	String documenting how data in
structures were parsed to form an optimization
problem.

	Return type:	str

	
clear()

	Reset cvxpy problem to minimal representation.

	The minmal representation consists of:

	
	An empty objective (Minimize 0),

	A nonnegativity constraint on the vector of beam intensities (\(x \ge 0\)).

	Reset dictionaries of:

	
	Slack variables (all dose constraints),

	Dual variables (all dose constraints), and

	Slope variables for convex restrictions (percentile dose constraints).

	
get_dual_value(constr_id)

	Retrieve dual variable for queried constraint.

	Parameters:	constr_id (str) – ID of queried constraint.

	Returns:	None if constr_id does not correspond to a
registered dual variable. Value of dual variable
otherwise.

	
get_dvh_slope(constr_id)

	Retrieve slope variable for queried constraint.

	Parameters:	constr_id (str) – ID of queried constraint.

	Returns:	None if constr_id does not correspond to a
registered slope variable. ‘NaN’ (as numpy.np.nan)
if constraint built as exact. Reciprocal of slope
variable otherwise.

	
get_slack_value(constr_id)

	Retrieve slack variable for queried constraint.

	Parameters:	constr_id (str) – ID of queried constraint.

	Returns:	None if constr_id does not correspond to a
registered slack variable. 0 if corresponding
constraint built without slack. Value of slack variable
if constraint built with slack.

	
init_problem(n_beams, use_slack=True, use_2pass=False, **options)

	Initialize cvxpy variables and problem components.

Create a cvxpy.Variable of length-n_beams to
representthe beam intensities. Invoke
SolverCVXPY.clear() to build minimal problem.

	Parameters:	
	n_beams (int) – Number of candidate beams in plan.

	use_slack (bool, optional) – If True, next
invocation of SolverCVXPY.build() will build
dose constraints with slack variables.

	use_2pass (bool, optional) – If True, next
invocation of SolverCVXPY.build() will build
percentile-type dose constraints as exact
constraints instead of convex restrictions thereof,
assuming other requirements are met.

	**options – Arbitrary keyword arguments.

	Returns:	None

	
n_beams

	Number of candidate beams in treatment plan.

	
objective_value

	Objective value at end of solve.

	
solve(**options)

	Execute optimization of a previously built planning problem.

	Parameters:	**options – Keyword arguments specifying solver options,
passed to cvxpy.Problem.solve().

	Returns:	True if cvxpy solver converged.

	Return type:	bool

	Raises:	ValueError – If specified solver is neither ‘SCS’ nor
‘ECOS’.

	
solveiters

	Number of solver iterations performed.

	
solvetime

	Solver run time.

	
status

	Solver status.

	
x

	Vector variable of beam intensities, x.

	
x_dual

	Dual variable corresponding to constraint x >= 0.

POGS solver interface

	
solver_optkit.SolverOptkit

	alias of <lambda>

Treatment Planning Workflow

Planning History

Define classes used to record solver inputs/outputs and maintain a
treatment planning history.

	
class history.PlanningHistory

	Class for tracking treatment plans generated by a Case.

	
runs

	list of RunRecord – List of treatment
plans in history, in chronological order.

	
run_tags

	dict – Dictionary mapping tags of named plans
to their respective indices in PlanningHistory.runs

	
last_feasible

	Solver feasibility flag from most recent treatment plan.

	
last_info

	Solver info from most recent treatment plan.

	
last_solvetime

	Solver runtime from most recent treatment plan.

	
last_solvetime_exact

	Second-pass solver runtime from most recent treatment plan.

	
last_x

	Vector of beam intensities from most recent treatment plan.

	
last_x_exact

	Second-pass beam intensities from most recent treatment plan.

	
no_run_check(property_name)

	Test whether history includes any treatment plans.

Helper method for property getter methods.

	Parameters:	property_name (str) – Name to use in error message if
exception raised.

	Returns:	None

	Raises:	ValueError – If no treatment plans exist in history,
i.e., PlanningHistory.runs has length zero.

	
tag_last(tag)

	Tag most recent treatment plan in history.

	Parameters:	tag – Name to apply to most recently added treatment plan.
Plan can then be retrieved with slicing syntax:

(history is a :class:`PlanningHistory` instance)
history[tag]

	Returns:	None

	Raises:	ValueError – If no treatment plans exist in history.

	
class history.RunOutput

	Record of solver outputs associated with a treatment planning run.

	
optimal_variables

	dict – Dictionary of optimal variables
returned by solver. At a minimum, has entries for the beam
intensity vectors for the first-pass and second-pass solver
runs. May include entries for:

	x (beam intensities),

	y (voxel doses),

	mu (dual variable for constraint x>= 0), and

	nu (dual variable for constraint Ax == y).

	
optimal_dvh_slopes

	dict – Dictionary of optimal slopes
associated with the convex restriction of each
percentile-type dose constraint. Keyed by constraint ID.

	
solver_info

	dict – Dictionary of solver information. At
a minimum, has entries solver
run time (first pass/restricted constraints, and second
pass/exact constraints).

	
solvetime

	Run time for first-pass solve (restricted dose constraints).

	
solvetime_exact

	Run time for second-pass solve (exact dose constraints).

	
x

	Optimal beam intensities from first-pass solve.

	
x_exact

	Optimal beam intensities from second-pass solve.

	
class history.RunProfile(structures=None, use_slack=True, use_2pass=False, gamma='default')

	Record of solver input associated with a treatment planning run.

	
use_slack

	bool – True if solver allowed to construct
convex problem with slack variables for each dose constraint.

	
use_2pass

	bool – True if solver requested to
construct and solve two problems, one incorporating convex
restrictions of all percentile-type dose constraints, and a
second problem formulating exact constraints based on the
feasible output of the first solver run.

	
objectives

	dict – Dictionary of objective data
associated with each structure in plan, keyed by structure
labels.

	
constraints

	dict – Dictionary of constraint data
for each dose constraint on each structure in plan, keyed
by constraint ID.

	
gamma

	Master scaling applied to slack penalty term in objective
when dose constraint slacks allowed.

	
pull_constraints(structures)

	Extract and store dictionaries of constraint data from structures.

	Parameters:	structures – Iterable collection of
Structure objects.

	Returns:	None

	
pull_objectives(structures)

	Extract and store dictionaries of objective data from structures.

	Parameters:	structures – Iterable collection of
Structure objects.

	Returns:	None

	
class history.RunRecord(structures=None, use_slack=True, use_2pass=False, gamma='default')

	
	
profile

	RunProfile – Record of the objective weights,
dose constraints, and relevant solver options passed to the
convex solver prior to planning.

	
output

	RunOutput – Output from the solver, including
optimal beam intensities, i.e., the treatment plan.

	
plotting_data

	dict – Dictionary of plotting data from
case, with entries corresponding to the first (and
potentially only) plan formed by the solver, as well as
the exact-constraint version of the same plan, if the
two-pass planning method was invoked.

	
feasible

	Solver feasibility flag from solver output.

	
info

	Solver information from solver output.

	
nonzero_beam_count

	Number of active beams in first-pass solution.

	
nonzero_beam_count_exact

	Number of active beams in second-pass solution.

	
solvetime

	Run time for first-pass solve (restricted dose constraints).

	
solvetime_exact

	Run time for second-pass solve (exact dose constraints).

	
x

	Optimal beam intensitites from first-pass solution.

	
x_exact

	Optimal beam intensitites from second-pass solution.

	
x_pass1

	Alias for RunRecord.x.

	
x_pass2

	Alias for RunRecord.x_exact.

Visualization

Dose volume histogram plotting utilities.

Provides CasePlotter for conveniently
plotting DVH curve data generated by calling Case.plan().

If matplotlib is available, plotting types such as
CasePlotter types are defined normally.

This switch allows conrad to install, load and operate without
Python plotting capabilities, and exempts matplotlib from being
a load-time requirement.

Saving and Loading Cases

 Python Module Index

 a |
 c |
 d |
 h |
 p |
 s

 		 	

 		
 a	

 	
 	
 anatomy	

 		 	

 		
 c	

 	
 	
 case	

 		 	

 		
 d	

 	
 	
 dose	

 		 	

 		
 h	

 	
 	
 history	

 		 	

 		
 p	

 	
 	
 physics	

 	
 	
 plot	

 	
 	
 prescription	

 	
 	
 problem	

 		 	

 		
 s	

 	
 	
 solver_cvxpy	

 	
 	
 solver_optkit	

 	
 	
 structure	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

A

 	
 	A (case.Case attribute)

 	(structure.Structure attribute)

 	A_full (structure.Structure attribute)

 	A_mean (structure.Structure attribute)

 	add_constraint() (case.Case method)

 	add_dose_frame() (physics.Physics method)

 	
 	add_structure_to_dictionaries() (prescription.Prescription method)

 	anatomy (case.Case attribute)

 	Anatomy (class in anatomy)

 	anatomy (module)

 	assign_dose() (structure.Structure method)

 	available_frames (physics.Physics attribute)

B

 	
 	beam_labels (physics.DoseFrame attribute)

 	beam_lookup_by_label() (physics.DoseFrame method)

 	beam_weights (physics.DoseFrame attribute)

 	beam_weights_by_label() (physics.Physics method)

 	
 	beams (physics.DoseFrame attribute)

 	(physics.Physics attribute)

 	boost (structure.Structure attribute)

 	build() (solver_cvxpy.SolverCVXPY method)

C

 	
 	calc_y() (structure.Structure method)

 	calculate_dose() (structure.Structure method)

 	calculate_doses() (anatomy.Anatomy method)

 	(case.Case method)

 	Case (class in case)

 	case (module)

 	change_constraint() (case.Case method)

 	change_dose_frame() (physics.Physics method)

 	change_objective() (case.Case method)

 	
 	clear() (solver_cvxpy.SolverCVXPY method)

 	clear_constraints() (anatomy.Anatomy method)

 	(case.Case method)

 	collapsable (structure.Structure attribute)

 	constraint_dict (prescription.Prescription attribute)

 	constraint_dual_vars (SolverCVXPY attribute)

 	constraints (history.RunProfile attribute)

 	(structure.Structure attribute)

 	constraints_by_label (prescription.Prescription attribute)

 	constraints_string (structure.Structure attribute)

D

 	
 	data_loaded (physics.Physics attribute)

 	dict (prescription.Prescription attribute)

 	digest() (prescription.Prescription method)

 	dose (module)

 	(structure.Structure attribute)

 	dose_grid (physics.Physics attribute)

 	dose_matrix (physics.DoseFrame attribute)

 	(physics.Physics attribute)

 	
 	dose_matrix_by_label() (physics.Physics method)

 	dose_rx (structure.Structure attribute)

 	dose_summary_data() (anatomy.Anatomy method)

 	dose_summary_string (anatomy.Anatomy attribute)

 	dose_unit (structure.Structure attribute)

 	DoseFrame (class in physics)

 	drop_constraint() (case.Case method)

 	dvh (structure.Structure attribute)

F

 	
 	feasible (history.RunRecord attribute)

 	
 	frame (physics.Physics attribute)

G

 	
 	gamma (history.RunProfile attribute)

 	gather_physics_from_anatomy() (case.Case method)

 	
 	get_dual_value() (solver_cvxpy.SolverCVXPY method)

 	get_dvh_slope() (solver_cvxpy.SolverCVXPY method)

 	get_slack_value() (solver_cvxpy.SolverCVXPY method)

H

 	
 	history (module)

I

 	
 	indices_by_label() (physics.DoseFrame static method)

 	info (history.RunRecord attribute)

 	
 	init_problem() (solver_cvxpy.SolverCVXPY method)

 	is_empty (anatomy.Anatomy attribute)

 	is_target (structure.Structure attribute)

L

 	
 	label (structure.Structure attribute)

 	label_order (anatomy.Anatomy attribute)

 	labels (anatomy.Anatomy attribute)

 	last_feasible (history.PlanningHistory attribute)

 	last_info (history.PlanningHistory attribute)

 	last_solvetime (history.PlanningHistory attribute)

 	
 	last_solvetime_exact (history.PlanningHistory attribute)

 	last_x (history.PlanningHistory attribute)

 	last_x_exact (history.PlanningHistory attribute)

 	list (anatomy.Anatomy attribute)

 	(prescription.Prescription attribute)

 	load_physics_to_anatomy() (case.Case method)

M

 	
 	mark_data_as_loaded() (physics.Physics method)

 	max_dose (structure.Structure attribute)

 	
 	mean_dose (structure.Structure attribute)

 	min_dose (structure.Structure attribute)

N

 	
 	n_beams (case.Case attribute)

 	(solver_cvxpy.SolverCVXPY attribute)

 	n_structures (anatomy.Anatomy attribute)

 	(case.Case attribute)

 	
 	n_voxels (case.Case attribute)

 	name (structure.Structure attribute)

 	no_run_check() (history.PlanningHistory method)

 	nonzero_beam_count (history.RunRecord attribute)

 	nonzero_beam_count_exact (history.RunRecord attribute)

O

 	
 	objective_string (structure.Structure attribute)

 	objective_value (solver_cvxpy.SolverCVXPY attribute)

 	objectives (history.RunProfile attribute)

 	
 	optimal_dvh_slopes (history.RunOutput attribute)

 	optimal_variables (history.RunOutput attribute)

 	output (history.RunRecord attribute)

P

 	
 	physics (case.Case attribute)

 	Physics (class in physics)

 	physics (module)

 	plan() (case.Case method)

 	plannable (anatomy.Anatomy attribute)

 	(case.Case attribute)

 	(physics.DoseFrame attribute)

 	(physics.Physics attribute)

 	(structure.Structure attribute)

 	PlanningHistory (class in history)

 	PlanningProblem (class in problem)

 	plot (module)

 	plotting_data (history.RunRecord attribute)

 	
 	plotting_data() (anatomy.Anatomy method)

 	(case.Case method)

 	(structure.Structure method)

 	prescription (case.Case attribute)

 	Prescription (class in prescription)

 	prescription (module)

 	problem (case.Case attribute)

 	(SolverCVXPY attribute)

 	(module)

 	profile (history.RunRecord attribute)

 	propagate_doses() (anatomy.Anatomy method)

 	(case.Case method)

 	pull_constraints() (history.RunProfile method)

 	pull_objectives() (history.RunProfile method)

R

 	
 	report() (prescription.Prescription method)

 	report_string() (prescription.Prescription method)

 	reset_matrices() (structure.Structure method)

 	run_tags (history.PlanningHistory attribute)

 	
 	RunOutput (class in history)

 	RunProfile (class in history)

 	RunRecord (class in history)

 	runs (history.PlanningHistory attribute)

 	rx_list (prescription.Prescription attribute)

S

 	
 	satisfies() (structure.Structure method)

 	satisfies_prescription() (anatomy.Anatomy method)

 	set_constraint() (structure.Structure method)

 	shape (physics.DoseFrame attribute)

 	size (anatomy.Anatomy attribute)

 	(structure.Structure attribute)

 	solve() (problem.PlanningProblem method)

 	(solver_cvxpy.SolverCVXPY method)

 	solveiters (solver_cvxpy.SolverCVXPY attribute)

 	solver (problem.PlanningProblem attribute)

 	solver_cvxpy (module)

 	(problem.PlanningProblem attribute)

 	SOLVER_DEFAULT (in module solver_cvxpy)

 	solver_info (history.RunOutput attribute)

 	solver_optkit (module)

 	
 	solver_pogs (problem.PlanningProblem attribute)

 	SolverCVXPY (class in solver_cvxpy)

 	SolverOptkit (in module solver_optkit)

 	solvetime (history.RunOutput attribute)

 	(history.RunRecord attribute)

 	(solver_cvxpy.SolverCVXPY attribute)

 	solvetime_exact (history.RunOutput attribute)

 	(history.RunRecord attribute)

 	status (solver_cvxpy.SolverCVXPY attribute)

 	Structure (class in structure)

 	structure (module)

 	structure_dict (prescription.Prescription attribute)

 	structures (anatomy.Anatomy attribute)

 	(case.Case attribute)

 	summary() (structure.Structure method)

 	summary_string (structure.Structure attribute)

T

 	
 	tag_last() (history.PlanningHistory method)

 	
 	transfer_rx_constraints_to_anatomy() (case.Case method)

U

 	
 	unique_frames (physics.Physics attribute)

 	
 	use_2pass (history.RunProfile attribute)

 	use_slack (history.RunProfile attribute)

V

 	
 	voxel_labels (physics.DoseFrame attribute)

 	(physics.Physics attribute)

 	voxel_lookup_by_label() (physics.DoseFrame method)

 	voxel_weights (physics.DoseFrame attribute)

 	(structure.Structure attribute)

 	
 	voxel_weights_by_label() (physics.Physics method)

 	voxels (physics.DoseFrame attribute)

 	(physics.Physics attribute)

W

 	
 	W_NONTARG_DEFAULT (in module structure)

 	
 	W_OVER_DEFAULT (in module structure)

 	W_UNDER_DEFAULT (in module structure)

X

 	
 	x (history.RunOutput attribute)

 	(history.RunRecord attribute)

 	(solver_cvxpy.SolverCVXPY attribute)

 	x_dual (solver_cvxpy.SolverCVXPY attribute)

 	
 	x_exact (history.RunOutput attribute)

 	(history.RunRecord attribute)

 	x_pass1 (history.RunRecord attribute)

 	x_pass2 (history.RunRecord attribute)

Y

 	
 	y (structure.Structure attribute)

 	
 	y_mean (structure.Structure attribute)

 _static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/plus.png

nav.xhtml

 Table of Contents

 		conrad

 		Tutorial

 		Case

 		Treatment Planning Workflow

