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ConfigHub is a platform for software configuration. Configuration is managed programmatically or through the web-
based user interface.

Overview and Installation 1
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2 Overview and Installation



CHAPTER 1

ConfigHub overview

All configuration can be boiled down to key-value pairs (properties). Ignoring the format that surrounds various
configuration components, configuration differences are always reduced to properties.

For example, in Development environment, a config file may contain a line like:

<Connector port="8080" redirectPort="8443"/>

While in Production the same line looks like this:

<Connector port="80" redirectPort="443"/>

Therefore, the merged configuration could be written as:

<Connector port="${ http.port }" redirectPort="${ http.redirect }"/>

And we have our two properties: http.port and http.redirect.

1.1 Context properties

In order to eliminate a mesh of configuration file and property duplication, ConfigHub changes the definition of a
property. By assigning a context to a property value, a single property key can have multiple values, each with a
unique context signature.

Note:

Context Property property = key: [ context_1: value, context_2: value, . . . ]

When an application/client requests configuration, they only need to specify their context. Using a request context,
the exact key-value pairing occurs, and the result is returned to the client.

Using example above, a request context Production would return:

3
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http.port: 80
http.redirect: 443

While a request with context Development would return:

http.port: 8080
http.redirect: 8443

In this example, context is very simple - its composed with a single context hierarchy, Environment. However, context
can be as complex as your environment demands - up to 10 context element hierarchy.

1.2 Context resolution

Context resolution is a process during which value-context of each key is compared to the request context in order to
determine which properties should be returned.

Matching value to request context occurs in two steps:

1.2.1 1. Semantic Filter

For each context hierarchy, corresponding context-values from request and property are compared. For a
match, corresponding context values have to satisfy following rules:

• If both are specified, they have to be the same;

• Either or both are a wildcard.

Example: Context-Request resolution

Assume a context property is defined with for a key logger.level with 4 values.

Environment Application Instance
Request-Context Production WebServer Webserver-Jim

Value-Context * * Webserver-Jim Match
Value-Context Production WebServer * Match
Value-Context Production * * Match
Value-Context Development * * No Match

The semantic filter has matched 3 values, and ignored a single value because Environment context hier-
archy from Request-Context “Production” did not match “Development”.

1.2.2 2. Weight Filter

Weighted filter is only applied if Context-Request is fully-qualified (each context hierarchy is specified).

As repository’s context scope can vary in size (see Choosing Repository Context Scope), each of the
context blocks is assigned specific weight. The widest scope specifications (left) carry less weight, while
most specific parts (right) carry most weight.

For example, in a repository with 3 context hierarchies, weight is assigned as follows:

4 Chapter 1. ConfigHub overview
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Environment [40] | Application [80] | Instance [160]

This repository might have a property defined with multiple values. Each value-context also has weight.

Example: Fully-Specified Request-Context resolution

Environment Application Instance Weight
Value-Context * * Webserver-Jim 160 Match
Value-Context Production WebServer * 40 + 80 = 120
Value-Context Production * * 40

The value with the highest weight is matched, as it is the most relevant value for the given context request.

Here’s the ConfigHub property editor view of the same property - with the values expanded.

1.2. Context resolution 5
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CHAPTER 2

Installation and setup

The fastest way to evaluate ConfigHub is to use the hosted demo version.

2.1 Installation

2.1.1 System requirements

The ConfigHub server application has the following prerequisites:

• Some modern Linux distribution (Debian Linux, Ubuntu Linux, or CentOS recommended)

• MySQL 5 or PostgreSQL 9 or later (latest stable version is recommended)

• Oracle Java SE 8 or later (latest stable update is recommended)

2.1.2 Download and install

• Download and install Java8 to your localhost. Set the JAVA_HOME environment variable to Java’s bin directory:

export JAVA_HOME=/path/to/java8/bin

• Download the latest version of ConfigHub:

• Uncompress the downloaded file:

tar -xzvf confighub-<version>.tar.gz

2.1.3 ConfigHub service configuration

There are two configuration sections:

1. Database connections

7
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2. Server configuration

• Database connections

Database connection is configured in confighub-<version>/server/conf/tomee.xml file. ConfigHub
uses a database for storage of all repository and user related data.

As of version v1.6, ConfigHub supports MySQL and PostgreSQL databases. Here’s an example of a database config-
uration:

<?xml version="1.0" encoding="UTF-8"?>
<tomee>

<Resource id="ConfigHubMainDS" type="DataSource">
JdbcDriver = org.postgresql.Driver
JdbcUrl = jdbc:postgresql://127.0.0.1:5432/ConfigHubMain
UserName = username
Password = password

JtaManaged = false
validationQuery="SELECT 1"
maxWaitTime = 2 seconds
maxActive = 200

</Resource>

</tomee>

The resource IDs ConfigHubMainDS and the parameter JtaManaged = false have to remain unchanged. The
rest of the datasource definition can be modified to your specific needs.

Note: For the rest of the the optional parameters, please consult Tomee documentation

• Server configuration

Edit the configuration file confighub.sh or confighub.bat for Windows installations in confighub-<version>
directory. Each configuration parameter has to be specified.

# Memory assigned to the ConfigHub service. It is recommended to assign 4g or more.
export ALLOCATED_MEMORY=4g

# HTTP and HTTPs ports
export HTTP_PORT=80
export HTTPS_PORT=443

# Path to the location where all ConfigHub service logs are stored.
export LOG_PATH=/var/log/confighub

# Specify an override to the default self-signed certificate/keystore.
export KEYSTORE_FILE=cert/confighub_default.jks
export KEYSTORE_ALIAS=confighub
export KEYSTORE_PASSWORD=confighub

2.1.4 Starting and stopping ConfigHub service

• Start ConfigHub:

8 Chapter 2. Installation and setup
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confighub-<version>/server/bin/startup.sh

• Stop ConfigHub:

confighub-<version>/server/bin/shutdown.sh

Note: If you are running ConfigHub on a reserved port (i.e. 80, and 443), use root access (or sudo).

2.2 Create personal account

To create a personal account click on the Sign Up button (top-right) of the browser.

Note: In the near future, we will support LDAP integration.

2.3 Create an organization

Organizations are a better way to share management responsibilities for your repositories. Some aspects of repository
management are limited to repository owners, or admins - for example, deleting tokens, changing repository settings,
adding/removing team members as well as access permissions.

To distribute this workload, organization let’s you assign repository owners and administrators.

To create a new organization, once logged in:

1. Click on the New link (top-right) and choose Organization

2. Enter the Organization name, and save.

Once the organization is created, you can create repositories and add users as owners and administrators.

Role Access Description
Owner Can manage every aspect of the organization and grant administrative access to other ConfigHub

users. Only owners can delete repositories.
Adminis-
trator

Can manage repositories, teams, access control and can add other ConfigHub users to the repositories.

2.4 Create ConfigHub repository

Location where all configuration is kept. Much like a repository for code, ConfigHub repository is a storage for
configuration.

A repository can be owned by either a personal account, or an organization.

To create a new repository, once logged in:

1. Click on the New link (top-right) and choose Repository

2. Choose the owner account and enter the repository name. Description is optional

3. Choose and label your context, and save.

2.2. Create personal account 9
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2.4.1 Choosing repository context

When deciding on a repository context, you are essentially modeling your environments.

There are several factors you will need to consider when choosing the context scope for your repository. Are you
running multiple independent projects, do you have different environments, multiple applications and do they run
several instances?

Even though context scope can always be changed, getting it right the first time will save you some time in the long
run.

To help you determine the right scope, answering these questions might help:

• Do you have different environments (i.e. Development, Production, Test, etc.)?

• Do you have multiple applications?

• Are you running multiple instances (with different configuration) of your applications?

Each time you answered yes, your context scope grew by factor of one. And if you did answer yes to all of them, your
labeled context should look like this: Environment | Application | Instance.

2.4.2 Context hierarchy order

Context is defined in the order of precedence. From the widest scope (left), to the narrowest scope (right) - similar to
the way you would narrow in on a general specification. For example, to explain a person Jim, you could say: Human
> Male > Jim, and therefore your repository context would be set up as: Species | Sex | Name.

10 Chapter 2. Installation and setup



CHAPTER 3

Properties editor

Properties are traditionally defined as::

key: value

In ConfigHub, a property is defined with a context attached to the value. This schema allows many values to be
assigned to a single key, with the requirement that each value’s context is unique among other values assigned to the
same key.:

key: [
context: value,
context: value,
...

]

Following sections show how context properties and context elements are created, edited and deleted.

3.1 Editor toolbar

Properties editor is the default view of ConfigHub UI where all/resolved properties are managed. The properties
toolbar allows provides following functionality:

11
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1. Context selection

These fields allow you to set the working context, and view configuration that is “resolved” by that
context. Unlike the context requested by the client, editor context can have multiple context elements
specified in a single context hierarchy.

For example, if you wanted to see configuration returned for both Production and Development en-
vironments, you could select both in the Environment context hierarchy. The returned configuration
would show all keys and values that can be returned for the combination of the specified context.

We call this type of context - where any number of context elements can be selected per context
hierarchy, a non-qualified context;

2. Search type

Searching keys, comments or values, may return results either among the resolved values (as indi-
cated by specified context #1), or among all configuration properties in this repository.

The All selection, searches all properties in the repository, where Resolved searches only among
properties resolved by the specified context.

3. New property

This button toggles the new property form, where a new or existing key can be specified as well as a
property value.

4. Comparison View

Side-by-side comparison of resolved properties from any combination of contexts, times or tags.

5. All key toggle

Let’s you see all property keys. If some keys did not resolve values as per the specified context #1,
these keys will not be shown in the properties editor. Clicking this key, will include them in the
display, but their values are still left out of the view.

6. Key sort order

Keys are sorted alphabetically. Sort order toggles direction.

7. Value context alignment

To see all value contexts aligned as a table view, toggle this button.

8. Pagination navigation

Move between pages of results.

12 Chapter 3. Properties editor
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3.2 Create a new property

1. Readme

Comment for the property key. Visible and searchable in property editor.

2. Key Attributes

• Type: Refers to the data type of values. When a non-Text value is selected, this value type is enforced in
the UI, and the type information is included in the JSON API response.

• Security: Chose pre created Security Group. All values assigned to the key will adhere to access controls
set by the Security Group, and will be encrypted as per Security Group settings.

• Push: If enabled, this key and its values may be modified via PUSH API.

3. Key

Property key is unique per repository. Specifying a key that is already defined, will just add new
value to the existing key. Deprecated flag can be enabled for a key. If enabled, client PULL response
JSON will include a deprecated flag on the key object. Use this flag to log all deprecated key usages.

4. Value

Value for this key. If Type (key attribute) flag is specified, value input field is changed in consideration
of the value type.

5. Context

Each key’s value has to have a unique context. Having a unique context guarantees that a fully-
specified-context, as requested by the client applications, can only receive back a single value per
key.

3.2. Create a new property 13
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Each context’s hierarchy may contain a wildcard or a single context element.

6. Save or Save with change comments

Clicking on a talk-bubble button next to the “Save property” will pop-open a “Change comment” text
box. Comments entered here will be visible next to the change in the Revisions tab.

3.3 Add value to existing key

Mousing over the existing key, attributes or values, shows additional options for the key.

Choosing New value will open a new value form.

The value’s form elements are the same as specified in Create a new property section. Additional option is the Active
toggle. When a value is Disabled, it is treated as if it is deleted. A Disabled value is never returned to the client.

3.4 Editing keys and values

Double clicking on a key or a value, will open the editing form for either key or a value. You can also click on Edit
key from the key’s options menu. Clicking the right array next to the value will also trigger the value form.

14 Chapter 3. Properties editor



CHAPTER 4

Security groups

Security Group is an abstract wrapper to which properties and/or files may be assigned. Security Group is password
protected, so any modification of the data contained in them requires authentication before the change is allowed.

In addition to a password challenge, security group may also be defined with Encryption enabled using one of several
provided cyphers. If enabled, content assigned to a security group will, in addition to being password protected, be
encrypted, using the selected cypher and the security group’s password.

15
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4.1 Securing files and properties

Once the security group is created, you can add any number of properties and files to it. To assign an existing property
to a security group, you need to add a security group to the key.

1. Assignment to a property

2. Assignment to a file

16 Chapter 4. Security groups



CHAPTER 5

Teams

To organize repository contributors, create Teams and add any user with a ConfigHub account to a single team per
repository. Administrator and repository owner accounts are privileged to manage teams and their members.

To enable access controls for teams, go to:

Settings > Configuration > Access control management

17
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CHAPTER 6

Team Access Control

Team access rules let repository owners/admins set write limits to both configuration properties and files for each team.
The rules defined limit users ability to create/modify/delete properties and files. The rules apply when manipulating
config via UI as well as API.

For access rules to apply via API, a token needs to apply access rules for a specific team.

To enable access controls for teams, go to:

Settings > Configuration > Access control management

Once enabled, you can create rules that will govern Read/Write privileges for members of each team.

6.1 Create team access rule

To create a new access rule, select a team and click “new” next to “Team rules” section.

You can add any number or rules to each team. Rules will govern write privileges to both properties and files in UI as
well as the API Push when token assigned to a team/team member is used.

19
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6.1.1 Key Rule

Key rules are matched against a property key only 1. Select Read/Write or Read-Only option that will be applied if a
rule is matched against a key 2. Select “Key” 3. Choose matching type when comparing keys against a match string
you will specify 4. Enter a matching string 5. Click “Create Rule”

6.1.2 Context Rule

Context rules are matched against property values and files.

1. Select Read/Write or Read-Only option that will be applied if a rule is matched against a property and/or file

2. Select “Context”

3. Choose matching type: - “Contains Any” - if any context elements specified in the rule is found in the context
definition of a property value’s or file’s context, rule is matched. - “Contains All” - all context elements specified
have to be present in property value’s or file’s context. - “Does not contain” - property value’s or file’s context
cannot have any context elements found in this rule to match. - “Resolves” - if this rule’s context resolves the
context of the property value or a file, rule will match. - “Does not resolve” - property value’s or file’s context is
not resolved by this context query.

4. Specify context elements

5. Click “Create Rule”

20 Chapter 6. Team Access Control



CHAPTER 7

Tokens

Repository tokens are used by the client APIs. Optionally, a repository could be set up to allow API access without
a token (Repository > Settings > Configuration > API Settings), by default, token is required for both API push and
pull.

A ConfigHub token is a JSON JWT Web token, following industry standard RFC 7519 method for representing claims
securely between two parties. In its payload, it contains only a repository id. Once the token is received by a ConfigHub
instance, its validity, expiration and active flags are checked. Content is only returned of all checks are validated.

Tokens with a team assigned to “Push Access Rules”, will prevent modification to configuration if any rule from the
team prevents write access.

21
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7.1 Creating a token

1. Token name has to be unique among tokens.

2. Expiration date is optional. If set, token will no longer be accepted after the expiration is reached.

3. Push Key Override - if enabled will allow property value Push via API, regardless of the property key’s Push
setting.

4. Push Access Rules - let’s you specify a team. Access rules defined for the team will be applied for all API Push
requests issued by the client.

5. Security Groups entered into this field will pre-authorize the token to decrypt values and files assigned to them
prior to returning the data via API Pull request.

6. Managed By - let’s you specify who has visibility to this token.

22 Chapter 7. Tokens
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7.2 Adding security groups to tokens

Security Groups can be added to a token at creation time, or any time thereafter. Furthermore, all repository members
may edit any other token to add/remove security groups from them. As long as they can authenticate to the security
group, they can adjust any other token.

The intention is that, if need be, a user which knows a password to a security group can extend access to config that
is protected/encrypted by the security group without sharing security group’s the password with another user - token
owner.

7.3 Deleting a token

A personal token, where “Managed By” is “Only You” can be deleted by the token’s owner and repository
owner/admin. All other tokens - those assigned to teams, admins, or all, can be delete by the repository owner/admin.

7.2. Adding security groups to tokens 23
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CHAPTER 8

Config Pull

With fully specified context, pull configuration from ConfigHub service. The JSON response may contain key-value
pairs, as well as resolved files (as per request).

• API URL (with token): https://confighub-api/rest/pull

• API URL (no token): https://confighub-api/rest/pull/<account>/<repository>

Note:

• All data returned is in JSON format.

• All dates are expected and returned in ISO 8601 format (UTC): YYYY-MM-DDTHH:MM:SSZ.

• All parameters are passed through HTTP header fields.

• Returned data will contain resolved properties and files, unless limited by the No-Properties or No-Files
flags.

• Method: GET

8.1 Usage

curl -i https://api.confighub.com/rest/pull \
-H "Client-Token: <token>" \
-H "Context: <context>" \
-H "Application-Name: myApp" \
-H "Client-Version: <optional version>" \
-H "Tag: <optional tag label>" \
-H "Repository-Date: <optional repo date>"

25
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HTTP/1.1 200 OK
Date: Fri, 10 Jun 2016 22:38:13 GMT
Content-Type: application/json
Content-Length: 2167
Server: TomEE
{

"generatedOn": "06/10/2016 22:38:13",
"account": "ConfigHub",
"repo": "Demo",
"context": "Production;TimeKepper",
"files": {
"demo.props": {

"content": " ... ",
"content-type": "text/plain"

},
"server.xml": {

"content": " ... ",
"content-type": "application/xml"

}
},
"properties": {
"db.host": {

"val": "prod.mydomain.com"
},
"server.http.port": {

"val": "80"
},
"db.name": {

"val": "ProdDatabase"
},
...
"db.user": {

"val": "admin"
}

}
}

8.2 Request Headers

Client-Token

Client token identifies a specific repository. This field is not required if the account and repository are
specified as part of the URL.

Context

Context for the pull request has to be a fully-qualified-context (each context rank has to be specified - no
wildcards). Context items are semi-colon delimited, and have to be in context rank order. For example,
a repository with context size of 3 levels Environment > Application > Instance could be
defined as:

-H "Context: Production;MyApp;MyAppInstance "

Repository-Date

ISO 8601 date format (UTC) YYYY-MM-DDTHH:MM:SSZ lets you specify a point in time for which to
pull configuration. If not specified, latest configuration is returned.

26 Chapter 8. Config Pull
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Tag

Name of the defined tag. Returned configuration is for a point in time as specified by the tag. If both Tag
and Repository-Date headers are specified, Repository-Date is only used if the tag is no longer available.

Security-Profile-Auth

If a repository is enabled for and uses Security-Profiles (SP) with encryption, choose any of several ways
to decrypt resolved property values.

1. Server-Side decryption by providing SP name(s) and password(s): - Token is created that specifies
SP name/password pairs; - SP name/password pairs are specified using this request parameter.

2. Client-Side decryption is also available by: - Use of ConfigHub API in a selected language come
functionality for local decryption; - A client can implement its own decryption;

Security-Profile-Auth uses JSON format: {'Security-Profile_1':'password',
'Security-Profile_2':'password',...}

Client-Version

Version of the client API. If not specified, ConfigHub assumes the latest version. Even through this is not
a required parameter, you are encouraged to specify a version.

Application-Name

This field helps you identify application or a client pulling configuration. Visible in Pull Request tab.

Include-Comments

If value is true response includes comments for property keys.

Include-Value-Context

If value is true response includes context of resolved property values.

Pretty

If value is true, returned JSON is ‘pretty’ - formatted.

No-Properties

If value is true key-value pairs are not returned. This is useful if you are only interested in pulling files,
and want to make transaction more efficient.

No-Files

If value is true resolved files are not returned. This is useful if you are only interested in pulling
properties, and want to make transaction more efficient.

8.2. Request Headers 27
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CHAPTER 9

Config Push

Push API allows clients to update or create properties, context values and tags.

• API URL (with token): https://confighub-api/rest/push

• API URL (no token): https://confighub-api/rest/push/<account>/<repository>

Note:

• All data returned is in JSON format.

• No data is returned.

• Response code: 200 (Success); 304 (Not modified).

• Method: POST

9.1 Usage

curl -i https://api.confighub.com/rest/push \
-H "Content-Type: application/json" \
-H "Client-Token: <token>" \
-H "Client-Version: v1.5" \
-H "Application-Name: myApp" \
-X POST -d '
{

"changeComment": "Adding a new key and value",
"enableKeyCreation": true,
"data": [

{
"key": "propertyKey",
"readme": "",
"deprecated": false,

(continues on next page)
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(continued from previous page)

"vdt": "Text",
"push": true,
"securityGroup": "GroupName",
"password": "",
"values": [
{
"context": "el;*;el2",
"value": "",
"active": true

},
{
"context": "el;*;*",
"value": "",
"active": true

}
]

},
{

"file": "/path/to/filename.ext",
"context": "el;*;*",
"content": "some file content"

}
...

]
}'

Successful Response:

HTTP/1.1 200 OK
Date: Tue, 15 Nov 2016 17:15:43 GMT
Content-Length: 0
Server: TomEE

Error Response:

HTTP/1.1 304 Not Modified
Date: Tue, 15 Nov 2016 02:49:23 GMT
ETag: "Invalid password specified."
Server: TomEE

9.2 Request Headers

Content-Type Required

Content-type header attribute must be set to application/json.

Client-Token

Client token identifies a specific repository. This field is not required if the account and repository are
specified as part of the URL.

Client-Version

Version of the client API. If not specified, ConfigHub assumes the latest version. Even through this is not
a required parameter, you are encouraged to specify a version.
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Application-Name

This field helps you identify application or a client pushing configuration. Visible in Pull Request tab.

9.3 JSON File Format

Json file you are uploading is a Json Object.

As the push transaction is atomic, a top level changeComment parameter will apply for all changes.

The format allows for addition, modification and deletion of any specified element. To delete any element (i.e. key
and all values, or a specific value, or a specific file), add parameter “opp”: “delete” to the element.

For example, to delete a key “aKey” and all its values, specify:

{
"data": [

{
"key": "aKey",
"opp": "delete"

}
]

}

To delete a specific key value:

{
"data": [

{
"key": "aKey",
"values": {

"context": "el;*;*",
"opp": "delete"

}
}

]
}
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CHAPTER 10

Single File Pull

With fully specified context, pull a specific file from ConfigHub service. The response contains raw, resolved config-
uration file

• API URL (with token): https://confighub-api/rest/rawFile

• API URL (no token): https://confighub-api/rest/rawFile/<account>/<repository>

Note:

• All data returned is in JSON format.

• All dates are expected and returned in ISO 8601 format (UTC): YYYY-MM-DDTHH:MM:SSZ.

– All parameters are passed through HTTP header fields.

– Returned data is the content of the resolved file.

– Method: GET

10.1 Usage

curl -i https://api.confighub.com/rest/rawFile \
-H "Client-Token: <token>" \
-H "Context: <context>" \
-H "File: <absolute path>" \
-H "Application-Name: myApp" \
-H "Client-Version: <optional version>" \
-H "Tag: <optional tag label>" \
-H "Repository-Date: <optional repo date>"
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10.2 Request Headers

Client-Token

Client token identifies a specific repository. This field is not required if the account and repository are
specified as part of the URL.

Context

Context for the pull request has to be a fully-qualified-context (each context rank has to be specified -
no wildcards). Context items are semi-colon delimited, and are ordered in order of have to be in context
rank order. For example, a repository with context size of 3 levels Environment > Application
> Instance could be defined as:

-H "Context: Production;MyApp;MyAppInstance "

Repository-Date

ISO 8601 date format (UTC) YYYY-MM-DDTHH:MM:SSZ lets you specify a point in time for which to
pull configuration. If not specified, latest configuration is returned.

Tag

Name of the defined tag. Returned configuration is for a point in time as specified by the tag. If both Tag
and Repository-Date headers are specified, Repository-Date is only used if the tag is no longer available.

Security-Profile-Auth

If a repository is enabled for and uses Security-Profiles (SP) with encryption, choose any of several ways
to decrypt resolved property values.

1. Server-Side decryption by providing SP name(s) and password(s): - Token is created that specifies
SP name/password pairs; - SP name/password pairs are specified using this request parameter.

2. Client-Side decryption is also available by: - Use of ConfigHub API in a selected language come
functionality for local decryption; - A client can implement its own decryption;

Security-Profile-Auth uses JSON format: {'Security-Profile_1':'password',
'Security-Profile_2':'password',...}

Client-Version

Version of the client API. If not specified, ConfigHub assumes the latest version. Even through this is not
a required parameter, you are encouraged to specify a version.

Application-Name

This field helps you identify application or a client pulling configuration. Visible in Pull Request tab.
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CHAPTER 11

Repository Info

This API provides information about a specific repository. It allows for glob syntax search of configuration files, and
context definition.

• API URL (with token): https://confighub-api/rest/info

• API URL (no token): https://confighub-api/rest/info/<account>/<repository>

Note:

• All data returned is in JSON format.

• All dates are expected and returned in ISO 8601 format (UTC): YYYY-MM-DDTHH:MM:SSZ.

• All parameters are passed through HTTP header fields.

• Method: GET

11.1 Usage

curl -i https://api.confighub.com/rest/info \
-H "Client-Token: <token>" \
-H "Repository-Date: <ISO 8601 date (UTC)>" \
-H "Tag: <repo tag>" \
-H "Client-Version: v1.5" \
-H "Files: true/false" \
-H "Files-Glob: <glob expression>" \
-H "Context-Elements: true/false" \
-H "Context-Labels: <comma delimited list>" \
-H "Pretty: true/false"
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HTTP/1.1 200 OK
Date: Wed, 16 Nov 2016 18:12:33 GMT
Content-Type: application/json
Content-Length: 483
Server: TomEE
{

"account": "ConfigHub",
"repository": "HowItWorks",
"generatedOn": "11/16/2016 18:12:33",
"context": [ "Environment", "Application" ],
"contextElements":
{

"Environment": [ "Production", "Development" ],
"Application": [ "Analytics", "Collector", "WebDashboard" ]

},
"files": [

{
"name": "nginx2.conf",
"path": "nginx/nginx2.conf",
"lastModified": 1479260284272

}
]

}

11.2 Request Headers

Client-Token

Client token identifies a specific repository. This field is not required if the account and repository are
specified as part of the URL.

Repository-Date

ISO 8601 date format (UTC) YYYY-MM-DDTHH:MM:SSZ lets you specify a point in time for which to
pull repository information. If not specified, latest information is returned.

Tag

Name of the defined tag. Returned information is for a point in time as specified by the tag. If both Tag
and Repository-Date headers are specified, Repository-Date is only used if the tag is no longer available.

Client-Version

Version of the client API. If not specified, ConfigHub assumes the latest version. Even through this is not
a required parameter, you are encouraged to specify a version.

Files

Boolean flag to indicate if all files should be returned. If Files-Glob header is specified, this flag is ignored
and treated true by default.

Files-Glob

Enables glob expressions while searching for files over their path and name.

Context-Elements

Boolean flag to indicate if all context elements should be returned. If Context-Labels header is specified,
this flag is ignored and treated true by default.
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Context-Labels

Limit context elements returned by the list of context labels. Comma delimited list of context labels.

Pretty

If value is true, returned JSON is ‘pretty’ - formatted.
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CHAPTER 12

All Repositories

Use this API to get full details of settings for all defined repositories.

• API URL: https://confighub-api/rest/info/all

Note:

• All data returned is in JSON format.

• All dates are expected and returned in ISO 8601 format (UTC): YYYY-MM-DDTHH:MM:SSZ.

• All parameters are passed through HTTP header fields.

• Method: GET

12.1 Usage

curl -i https://api.confighub.com/rest/info/all \
-H "Client-Version: v1.5" \
-H "Pretty: true/false"

HTTP/1.1 200 OK
Date: Fri, 25 Nov 2016 19:47:39 GMT
Content-Type: application/json
Content-Length: 2776
Server: TomEE
[

{
"account": "ConfigHub",
"name": "Demo",
"isPrivate": false,
"isPersonal": false,

(continues on next page)
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"description": "This is a demo repository. Saving changes is disabled for all
→˓options, however all options are available for you to explore.",

"created": "2016-05-05T16:26Z",
"accessControlsEnabled": false,
"vdtEnabled": true,
"securityEnabled": true,
"contextGroupsEnabled": true,
"keyCount": 27,
"valueCount": 42,
"userCount": 1,
"context": [

"Environment",
"Application"

]
},
{
"account": "ConfigHub",
"name": "HowItWorks",
"isPrivate": false,
"isPersonal": false,
"created": "2016-10-04T21:19Z",
"accessControlsEnabled": false,
"vdtEnabled": true,
"securityEnabled": true,
"contextGroupsEnabled": false,
"keyCount": 13,
"valueCount": 23,
"userCount": 0,
"context": [

"Environment",
"Application"

]
}

]

12.2 Request Headers

Client-Version

Version of the client API. If not specified, ConfigHub assumes the latest version. Even through this is not
a required parameter, you are encouraged to specify a version.

Pretty

If value is true, returned JSON is ‘pretty’ - formatted.
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CHAPTER 13

System Status

API returns details of ConfigHub License and version.

• API URL: https://confighub-api/rest/info/system

Note:

• All data returned is in JSON format.

• All parameters are passed through HTTP header fields.

• Method: GET

13.1 Usage

curl -i https://api.confighub.com/rest/info/system \
-H "Client-Version: v1.5" \
-H "Pretty: true/false"

HTTP/1.1 200 OK
Date: Fri, 25 Nov 2016 19:55:01 GMT
Content-Type: application/json
Content-Length: 635
Server: TomEE
{

"version": {
"version": "v1.2.0"

},
"license": {

"First Name": "John",
"Last Name": "Doe",
"Email": "john.doe@acme.com",

(continues on next page)
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(continued from previous page)

"Company": "Acme Inc.",
"Title": "CTO",
"Type": "Trial",
"Expires": "Wed, Mar 1, 2017",
"LicenseKey": "..."

}
}

13.2 Request Headers

Client-Version

Version of the client API. If not specified, ConfigHub assumes the latest version. Even through this is not
a required parameter, you are encouraged to specify a version.

Pretty

If value is true, returned JSON is ‘pretty’ - formatted.

APIs on GitHub: Java, Python
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https://github.com/ConfigHubPub/JavaAPI
https://github.com/ConfigHubPub/PythonAPI
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