
configclasses Documentation
Release 0.4.5

Jeff Belgum

Oct 11, 2018

Contents

1 Introduction 3
1.1 A Basic Example . 3
1.2 A Slightly More Advanced Example . 3
1.3 Features . 4
1.4 Planned work . 5

2 Installation 7
2.1 Installation . 7

3 User’s Guide 9
3.1 User’s Guide . 9

4 API Documentation 15
4.1 API Documentation . 15

5 Contribution 21
5.1 Contribution . 21

6 License 23
6.1 LICENSE . 23

7 Indices and tables 29

Python Module Index 31

i

ii

configclasses Documentation, Release 0.4.5

Release v0.4.5. (Installation)

Contents 1

https://travis-ci.org/JeffBelgum/configclasses
https://ci.appveyor.com/project/JeffBelgum/configclasses
https://codecov.io/gh/JeffBelgum/configclasses
https://pypi.python.org/pypi/configclasses
https://pypi.python.org/pypi/configclasses
https://pypi.python.org/pypi/configclasses

configclasses Documentation, Release 0.4.5

2 Contents

CHAPTER 1

Introduction

configclasses provides a simple yet powerful way to define and fetch configuration values for your application by
extending python’s dataclasses (PEP-557) with additional functionality.

Configuration values are fetched on demand from various sources, validated, and stored in a single strongly typed
configuration object.

1.1 A Basic Example

from configclasses import configclass

Wrap your configuration class in the `configclass` decorator
@configclass
class Configuration:

HOST: str
PORT: int

Fields are populated when you construct a Configuration instance
config = Configuration()

Access fields by name.
config.HOST == "localhost"

That’s it!

You now have an easy to use configuration class that fetches and validates all the configuration values your application
requires. It defaults to searching environment variables to populate fields. In this case, it expects environment variables
to be set for HOST and PORT.

1.2 A Slightly More Advanced Example

The configclass decorator also accepts user-specified sources of configuration data.

3

https://www.python.org/dev/peps/pep-0557/

configclasses Documentation, Release 0.4.5

from configclasses import configclass, sources
from configclasses.sources import CommandLineSource, DotEnvSource, EnvironmentSource

Create multiple sources of configuration information, and pass them to the
`configclass` decorator.
@configclass(sources=[DotEnvSource(path=".env"), EnvironmentSource(),
→˓CommandLineSource()])
class Configuration:

HOST: str = "localhost" # Set a default value
PORT: int

Instantiating `Configuration` will always return the same
singleton object. This way you can create a reference to
it from any module you like and the configuration values
will be consistent from instance to instance.
config = Configuration()

Access fields by name.
config.HOST == "localhost"

The Configuration class will now search command line arguments, environment variables, and a .env file for
HOST and PORT.

If a field name is found in multiple sources, sources are prioritized based on how they are passed to the configclass
decorator. Sources are prioritized from left to right, giving the last source the highest priority.

1.3 Features

• Globally accessible configuration classes

• Easily pull from many sources of configuration:

– Environment variables

– Command line arguments

– Dotenv files

– Json files

– Toml files

– Ini files

– Consul Key/Value store

– Planned sources: AWS Parameter Store, Etcd, Redis

• Specify prioritization when multiple sources are used together.

• Support for strongly typed configuration values out of the box:

– primitive types such as int, float, and str are supported.

– Enum types can be used to specify valid values

– converter functions can turn stringly typed values complex types such as dicts or your own types.

4 Chapter 1. Introduction

configclasses Documentation, Release 0.4.5

1.4 Planned work

• Deal with sources that only provide stringly typed values and values that provide other primitives

• Some sources might be case-insensitive.

• Async/Sync versions of sources

• Research and design push updates (as opposed to polling updates)

• Better error messages when config values are missing from all sources

• Audit exception types raised.

• Comprehensive docs

– Includes docs on adding your own sources.

1.4. Planned work 5

configclasses Documentation, Release 0.4.5

6 Chapter 1. Introduction

CHAPTER 2

Installation

2.1 Installation

configclasses can be installed with all the traditional python tools.

2.1.1 Pip Install configclasses

To install configclasses, simply run this command in your terminal:

$ pip install configclasses

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.1.2 Suggested Alternative: Pipenv

pipenv is a new tool that solves the problems of isolated virtual environment, package installation, and dependency
tracking in a simple but comprehensive manner:

$ pip install pipenv
$ pipenv install configclasses

Full documentation can be found on readthedocs. Why not give it a try!

2.1.3 Get the Source Code

configclasses is under active development on GitHub, where the code is always available.

You can clone the repository:

$ git clone git://github.com/jeffbelgum/configclasses.git

7

https://pip.pypa.io/en/stable
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/pypa/pipenv
https://pipenv.readthedocs.io/en/latest/
https://github.com/jeffbelgum/configclasses

configclasses Documentation, Release 0.4.5

Once you have a copy of the source, you can embed it in your own Python package or install it into your site-packages
easily:

$ python setup.py install

8 Chapter 2. Installation

CHAPTER 3

User’s Guide

Tutorials to guide you through the most common uses of the library as well as more advanced scenarios.

3.1 User’s Guide

Starting with the example shown in the introduction, let’s dig into configclasses a bit:

from configclasses import configclass

Wrap your configuration class in the `configclass` decorator
@configclass
class Configuration:

HOST: str
PORT: int

Fields are populated when you construct a Configuration instance
config = Configuration()

Access fields by name.
config.HOST == "localhost"

You start by defining your own configuration class with the fields that you will need for your application. This is done
exactly in the same way that it is done with dataclasses (PEP-557).

Note: If you’re not familiar with dataclasses, they are a way of describing classes in python using type annotations
that removes much of the boilerplate. The ideas have existed for some time in alternative forms as attrs, recordType,
namedtuple, etc. I would suggest familiarizing yourself with the functionality before continuing to get the most out of
this guide.

The key distinction between a dataclass and a configclass is that the fields of a dataclass are not populated from within
the code itself. Instead, a configclass knows how to fetch the value for each field from sources of configuration that
live outside the code.

9

https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/
https://github.com/python-attrs/attrs
http://code.activestate.com/recipes/576586-dot-style-nested-lookups-over-dictionary-based-dat/
https://docs.python.org/3/library/collections.html#collections.namedtuple

configclasses Documentation, Release 0.4.5

When a dataclass is constructed, the __init__ method searches for configuration variables that match the field
names, and assigns the values to the matching configclass field. By default, that source of configuration is the applica-
tion’s environment variables.

$ HOST=localhost PORT=8000 python application.py

Configuration has a field named HOST, so it will search the environment for a variable with the same name. The
value of the environment variable is assigned to the HOST field.

PORT is also found and assigned to the matching field. Notice that it is defined as an int type. Because of this, it
is converted into an integer value before assignment. If the PORT environment variable cannot be converted into an
int, an exception is raised.

3.1.1 Field Types

So far, we have discussed string and integer fields. But configclasses supports other types as well. These include bools,
floats, json objects, lists, key-value pairs, and custom types. It also includes enums for when you want to limit the
valid set of values for a field.

Let’s see that in action:

from configclasses import configclass, enums

Wrap your configuration class in the `configclass` decorator
@configclass
class Configuration:

HOST: str
PORT: int
ENABLE_AUTHENTICATION: bool
LOG_LEVEL: enums.LogLevel

Fields are populated when you construct a Configuration instance
config = Configuration()

config.ENABLE_AUTHENTICATION == True
config.LOG_LEVEL.value == logging.DEBUG

$ HOST=localhost PORT=8000 ENABLE_AUTHENTICATION=true LOG_LEVEL=DEBUG python
→˓application.py

You’ll notice that the fields are converted from strings in the environment into the correct python types. Bool values
should be case insensitive “true”/”false” or 1/0 respectively.

Note: Later we will look at sources that provide python primitive types instead of just string types. Those primitive
types can be converted into strings using python’s truthy value rules.

LOG_LEVEL uses a convenience enum that the library provides which maps the logging constants in the stdlib’s
logging module into an enum class.

class configclasses.enums.LogLevel(Enum)
Python logging module log level constants represented as an enum.Enum.

NotSet = logging.NOTSET = 0

Debug = logging.DEBUG = 10

Info = logging.INFO = 20

10 Chapter 3. User’s Guide

configclasses Documentation, Release 0.4.5

Warning = logging.WARNING = 30

Error = logging.ERROR = 40

Critical = logging.CRITICAL = 50

Values are considered valid for enums when they are either the case-insensitive name of an enum variant or the case-
insensitive value of an enum variant. There is nothing special about the LogLevel enum defined in the library. You
can define use any subclass of enum.Enum from the python stdlib, and the same rules will apply.

3.1.2 Converters

Richer data types require the introducion of a couple of new concepts. The field function and its converter argument:

def field(converter=None, default=MISSING, default_factory=MISSING, init=True,
→˓repr=True, hash=None, compare=True, metadata=None)

If you are familiar with dataclasses, the function is identical to the same function in that module, with one key differ-
ence. That is the converter argument. A converter is any function that takes a single argument and knows how to
convert it into the datatype of the configclass field. You are probably familiar with one such function already, json.
loads. json.loads takes a string as an argument and produces a python object as long as the string contains valid
json.

If we have a json config file such as logging_conf.json:

{
"version": 1,
"formatters": {

"default": {
"format": "%(asctime)s %(levelname)s %(name)s %(message)s"

},
},
"handlers": {

"console": {
"class": "logging.StreamHandler",
"formatter":"default"

}
},
"root": {

"handlers": ["console"],
"level": "DEBUG",

},
}

We would put it to use like so:

import json
from configclasses import configclass, field

Wrap your configuration class in the `configclass` decorator
@configclass
class Configuration:

LOGGING_CONF: dict = field(converter=json.loads)

Fields are populated when you construct a Configuration instance
config = Configuration()

type(config.LOGGING_CONF) == dict

3.1. User’s Guide 11

configclasses Documentation, Release 0.4.5

configclasses also provides a handful of useful converters. _list takes comma seperated values and splits them into
a list. It strips whitespace unless values are quoted. "foo, bar, baz, ' quix'" is transformed into ["foo",
"bar", "baz", " quix"]

kv_list takes a comma seperated list of key value pairs. "foo=bar, baz=' quix'" becomes {"foo":
"bar", "baz": " quix"}

3.1.3 Sources

So far we have glossed over exactly how fields are populated from the environment. Those details are deter-
mined by Source classes. The default source is an EnvironmentSource and the constructor looks like this
EnvironmentSource(namespace=None). With the namespace argument, we can limit the environment vari-
ables that can populate our configclass. Suppose we have the following environment variables:

HOST=localhost
PORT=8000
MYAPP_HOST=0.0.0.0
MYAPP_PORT=80

Let’s see it in action:

from configclasses import configclass
from configclasses.sources import EnvironmentSource

Field Types Defaults Sources Singleton instances Errors Enums Converters Reload Advanced patterns: - custom
sources - field dependent sources - bootstrapping one configclass with values from another configclass. - Gotcha:
Some sources produce python types and some always produce strings. - Make sure that your converter functions can
handle that distinction

Example:

from configclasses import configclass, LogLevel, Environment

Wrap your configuration class in the `configclass` decorator
By default, it looks for matching variables in the environment.
@configclass
class Configuration:

ENVIRONMENT: Environment # Enum
LOG_LEVEL: LogLevel # Enum
HOST: str
PORT: int
DB_HOST: str = "localhost" # Default when field not found
DB_PORT: int = 5432 # Default when field not found

Instantiating a `Configuration` will always return the same object
config = Configuration()

access fields by name
config.HOST == "localhost"

`int` typed fields will be ints
config.PORT == 8080

Fields with `Enum` types will have variants as values
config.ENVIRONMENT == Environment.Development

Reload config values from sources
(continues on next page)

12 Chapter 3. User’s Guide

configclasses Documentation, Release 0.4.5

(continued from previous page)

config.reload()

Configuration objects can now have different values
config.ENVIRONMENT == Environment.Production

Config classes can also be configured with other `sources`
from configclasses.sources import DotEnvSource, EnvironmentSource

@configclass(sources=[DotEnvSource(), EnvironmentSource()])
class Configuration:

HOST: str
PORT: int
DB_ADDRESS: str = "localhost"
DB_PORT: int = 5432
ENVIRONMENT: Environment
LOG_LEVEL: LogLevel

First, a `.env` file will be searched for values, then
any values that are not present there will be searched
for in the program's environment.
config = Configuration()

3.1. User’s Guide 13

configclasses Documentation, Release 0.4.5

14 Chapter 3. User’s Guide

CHAPTER 4

API Documentation

Here is where you’ll find comprehensive documentation for the public api.

4.1 API Documentation

The API documentation covers the full public api for the library including examples for more complicated features.
The configclass decorator is described followed by pluggable sources of configuration values, and finally convenience
enums and data type conversion functionality.

4.1.1 Configclass

configclasses.configclass(source: Source=None, sources: List[Source]=None)
Turn a class into a configclass with the default EnvironmentSource used.

For example, configuring the host and port for a web application might look like this:

>>> from configclasses import configclass
>>> @configclass
... class Configuration:
... HOST: str
... PORT: int

Turn a class into a configclass using the user provided source or sources list.

Parameters

• source – single Source used to fetch values.

• sources – list of Source used to fetch values, prioritized from first to last.

Raises ValueError – The user must pass either the source or a list of sources. It is an error to
provide both.

15

configclasses Documentation, Release 0.4.5

Configuring the host and port for a web application using both command line arguments and environment
variables as sources:

>>> from configclasses import configclass, sources
>>> env_source = EnvironmentSource()
>>> cli_source = CommandLineSource()
>>> @configclass(sources=[cli_source, env_source])
... class Configuration:
... HOST: str
... PORT: int

Because the cli_source comes after the env_source in the list of sources, it will be prioritized when
fetching values that are found in both sources.

Decorate your configuration classes with the configclass decorator to turn them into Configuration Classes.

The returned configclass will have a .reload() method present, that can be used to reload values from
configuration sources on demand. This reload affects all instances of the configclass you are reloading.

configclasses.field(converter=None, default=MISSING, default_factory=MISSING, init=True,
repr=True, hash=None, compare=True, metadata=None)

This function can be used if the field differs from the default functionality. It is the same as the field function
in the dataclasses module except that it includes a converter argument that can be used to convert from a
primitive type to a more complex type such as a dict or custom class.

Parameters

• converter – is a function that takes a single argument and constructs a return value that
is the same as the conficlass field’s type annotation.

• converter – is a function that takes a single argument and returns True or False depending
on whether that argument is considerd a valid value.

• default – is the default value of the field.

• default_factory – is a 0-argument function called to initialize a field’s value.

• init – if True, the field will be a parameter to the class’s __init__() function.

• repr – if True, the field will be included in the object’s repr().

• hash – if True, the field will be included in the object’s hash().

• compare – if True, the field will be used in comparison functions.

• metadata – if specified, must be a mapping which is stored but not otherwise examined
by dataclass.

Raises ValueError – It is an error to specify both default and default_factory.

4.1.2 Sources

Source classes know how to fetch configuration values from all kinds of different sources of configuration values. A
number of Source classes are provided by the library, and users can implement their own sources.

TODO: link to documentation on implementing custom sources.

Builtin sources:

class configclasses.sources.EnvironmentSource(namespace=None, environ=os.environ)
Get configuration values from case insensitive environment variables.

Parameters

16 Chapter 4. API Documentation

configclasses Documentation, Release 0.4.5

• namespace – An optional string prefix to match on with environment variables.

• environ – A different source of environment variables can be passed if you don’t want to
use os.environ.

If namespace is provided, only environment variable names that start with the namespace value will be con-
sidered. The namespace is also stripped off the variable name before it is stored.

reload()
Fetch and parse values from the environment dict and store them.

class configclasses.sources.DotEnvSource(path=’.env’, filehandle=None, names-
pace=None)

Get configuration values from a .env (dotenv) formatted file.

Parameters

• path – path to read from.

• filehandle – open file handle to read from.

• namespace – string prefix for values this sources will fetch from.

Raises ValueError – It is an error if both path and filehandle are defined or neither path
nor filehandle are defined.

reload()
Fetch and parse values from the file source and store them.

If a pathwas provided to the source, the path will be reopened and read. If a filehandlewas provided
and the handle supports seeking, it will seek to the position the handle was at when passed to the source.
If it does not support seeking, it will attempt to read from the current position.

It is up to the user to ensure that filehandles will act correctly given the above rules

class configclasses.sources.CommandLineSource(argparse=None, argv=sys.argv)
Get configuration values from command line arguments. Adds command line arguments for each field in the
associated configclass.

Parameters

• argparse – Optionally pass in a preexisting argparse.ArgumentParser instance to add to
an existing set of command line arguments rather than only using auto-generated command
line arguments.

• argv – Optionally pass a custom argv list. Most useful for testing.

reload()
Child classes that have a sensible reload strategy should override this method

class configclasses.sources.JsonSource(path=None, filehandle=None, namespace=None)
Get configuration values from a json encoded file or filehandle.

Parameters

• path – path to read from.

• filehandle – open file handle to read from.

• namespace – list of keys or indices used to access a nested configuration object.

Raises ValueError – It is an error if both path and filehandle are defined or neither path
nor filehandle are defined.

Namespacing for json sources is best described by example:

4.1. API Documentation 17

configclasses Documentation, Release 0.4.5

>>> json_value = """ {
... "nested": {
... "configuration": {
... "FOO": "foo_value",
... "BAR": "bar_value",
... }
... }
... }"""
>>> namespace = ["nested", "configuration"]

A JsonSource that reads a file with the contents of json_value with the namespace defined above
would only consider the keys “FOO” and “BAR” as configuration values in scope.

reload()
Fetch and parse values from the file source and store them.

If a pathwas provided to the source, the path will be reopened and read. If a filehandlewas provided
and the handle supports seeking, it will seek to the position the handle was at when passed to the source.
If it does not support seeking, it will attempt to read from the current position.

It is up to the user to ensure that filehandles will act correctly given the above rules

class configclasses.sources.TomlSource(path=None, filehandle=None, namespace=None)
Get configuration values from a .toml file.

Parameters

• path – path to read from.

• filehandle – open file handle to read from.

• namespace – optional list of nested section to search for configuration fields

Raises ValueError – It is an error if both path and filehandle are defined or neither path
nor filehandle are defined.

reload()
Fetch and parse values from the file source and store them.

If a pathwas provided to the source, the path will be reopened and read. If a filehandlewas provided
and the handle supports seeking, it will seek to the position the handle was at when passed to the source.
If it does not support seeking, it will attempt to read from the current position.

It is up to the user to ensure that filehandles will act correctly given the above rules

class configclasses.sources.IniSource(path=None, filehandle=None, namespace=None)
Get configuration values from a .ini file.

Parameters

• path – path to read from.

• filehandle – open file handle to read from.

• namespace – optional section to search for configuration fields

Raises ValueError – It is an error if both path and filehandle are defined or neither path
nor filehandle are defined.

Note: Python ini parsing is case insensitive.

reload()
Fetch and parse values from the file source and store them.

18 Chapter 4. API Documentation

configclasses Documentation, Release 0.4.5

If a pathwas provided to the source, the path will be reopened and read. If a filehandlewas provided
and the handle supports seeking, it will seek to the position the handle was at when passed to the source.
If it does not support seeking, it will attempt to read from the current position.

It is up to the user to ensure that filehandles will act correctly given the above rules

class configclasses.sources.ConsulSource(root, namespace="", http=requests)
Get configuration values from a remote consul key value store.

Parameters

• root – The address of the consul api to use. Don’t forget to include the scheme (http or
https)!

• namespace – The consul kv namespace from which to fetch fields.

• http – http library used to make get requests. Defaults to using requests.

reload()
Child classes that have a sensible reload strategy should override this method

4.1.3 Enums

Common configuration enums provided for user convenience. However, any subclass of python’s enum.Enum will
work as expected.

class configclasses.enums.LogLevel(Enum)
Python logging module log level constants represented as an enum.Enum.

NotSet = logging.NOTSET

Debug = logging.DEBUG

Info = logging.INFO

Warning = logging.WARNING

Error = logging.ERROR

Critical = logging.CRITICAL

class configclasses.enums.Environment(Enum)
Common environment names.

Development = 0

Test = 1

Staging = 2

Production = 3

4.1.4 Conversions

Conversion functions that can be specified as the converter in a configclass field.

configclasses.conversions.csv_list(value: str)→ list
csv_lists are comma separated values. Whitespace around a value is stripped unless text is quoted. Empty values
are skipped.

An example usage:

4.1. API Documentation 19

configclasses Documentation, Release 0.4.5

>>> csv_list("a,b,c")
["a", "b", "c"]

Typically it is used in specifying a configclass:

>>> @configclass
... class Configuration:
... LIST: list = field(converter=csv_list)

Then a string of values will be converted into a list of strings in the Configuration class.

configclasses.conversions.csv_pairs(value: str)→ dict
Kv lists are comma separated pairs of values where a pair is defined as "key=value". Whitespace around a
key or value is stripped unless text is quoted. Empty pairs are skipped.

Raises ValueError – on a malformed key value pair.

An example usage:

>>> csv_pairs("a=1,b=2")
{"a": "1", "b": "2"}

Typically it is used in specifying a configclass:

>>> @configclass
... class Configuration:
... PAIRS: dict = field(converter=csv_pairs)

Then a string of key=value pairs will be converted into a dictionary in the Configuration class.

20 Chapter 4. API Documentation

CHAPTER 5

Contribution

Contributors are the best!

5.1 Contribution

Feature requests, issues, and Pull Requests welcome.

If you want to add any new functionality, please file an issue to discuss it beforehand. That way we can all avoid code
that conflicts with the goals and design philosophy of the project.

21

configclasses Documentation, Release 0.4.5

22 Chapter 5. Contribution

CHAPTER 6

License

Licensor solely permits licensee to license under either of the following two options

• MIT license

• Apache License, Version 2.0

6.1 LICENSE

Licensor solely permits licensee to license under either of the following two options:

• MIT license

• Apache License, Version 2.0

6.1.1 Contribution

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you shall
be dual licensed as above, without any additional terms or conditions.

6.1.2 MIT

Copyright (c) 2015 The rust-postgres-macros Developers

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

23

https://opensource.org/licenses/MIT
https://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/licenses/MIT
https://www.apache.org/licenses/LICENSE-2.0

configclasses Documentation, Release 0.4.5

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

OR

6.1.3 Apache, Version 2.0

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner
that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control,
are controlled by, or are under common control with that entity. For the purposes of
this definition, “control” means (i) the power, direct or indirect, to cause the direction or
management of such entity, whether by contract or otherwise, or (ii) ownership of fifty
percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such
entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted
by this License.

“Source” form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or trans-
lation of a Source form, including but not limited to compiled object code, generated
documentation, and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made avail-
able under the License, as indicated by a copyright notice that is included in or attached
to the work (an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based
on (or derived from) the Work and for which the editorial revisions, annotations, elabora-
tions, or other modifications represent, as a whole, an original work of authorship. For the
purposes of this License, Derivative Works shall not include works that remain separable
from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works
thereof.

“Contribution” shall mean any work of authorship, including the original version of the
Work and any modifications or additions to that Work or Derivative Works thereof, that is
intentionally submitted to Licensor for inclusion in the Work by the copyright owner or
by an individual or Legal Entity authorized to submit on behalf of the copyright owner.

24 Chapter 6. License

http://www.apache.org/licenses/

configclasses Documentation, Release 0.4.5

For the purposes of this definition, “submitted” means any form of electronic, verbal,
or written communication sent to the Licensor or its representatives, including but not
limited to communication on electronic mailing lists, source code control systems, and
issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose
of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom
a Contribution has been received by Licensor and subsequently incorporated within the
Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Con-
tributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-
free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works
in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contrib-
utor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have made, use, offer
to sell, sell, import, and otherwise transfer the Work, where such license applies only to
those patent claims licensable by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s) with the Work to which
such Contribution(s) was submitted. If You institute patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contri-
bution incorporated within the Work constitutes direct or contributory patent infringement,
then any patent licenses granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this
License; and

(b) You must cause any modified files to carry prominent notices stating that You changed
the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute,
all copyright, patent, trademark, and attribution notices from the Source form of the
Work, excluding those notices that do not pertain to any part of the Derivative Works;
and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Deriva-
tive Works that You distribute must include a readable copy of the attribution notices
contained within such NOTICE file, excluding those notices that do not pertain to
any part of the Derivative Works, in at least one of the following places: within a
NOTICE text file distributed as part of the Derivative Works; within the Source form
or documentation, if provided along with the Derivative Works; or, within a display
generated by the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes only and do
not modify the License. You may add Your own attribution notices within Derivative
Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may provide ad-

6.1. LICENSE 25

configclasses Documentation, Release 0.4.5

ditional or different license terms and conditions for use, reproduction, or distribution of
Your modifications, or for any such Derivative Works as a whole, provided Your use, re-
production, and distribution of the Work otherwise complies with the conditions stated in
this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution in-
tentionally submitted for inclusion in the Work by You to the Licensor shall be under the
terms and conditions of this License, without any additional terms or conditions. Notwith-
standing the above, nothing herein shall supersede or modify the terms of any separate
license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for reasonable and
customary use in describing the origin of the Work and reproducing the content of the
NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Li-
censor provides the Work (and each Contributor provides its Contributions) on an “AS
IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either ex-
press or implied, including, without limitation, any warranties or conditions of TITLE,
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR
PURPOSE. You are solely responsible for determining the appropriateness of using or re-
distributing the Work and assume any risks associated with Your exercise of permissions
under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You
for damages, including any direct, indirect, special, incidental, or consequential damages
of any character arising as a result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill, work stoppage, computer
failure or malfunction, or any and all other commercial damages or losses), even if such
Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support, war-
ranty, indemnity, or other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf and on
Your sole responsibility, not on behalf of any other Contributor, and only if You agree to
indemnify, defend, and hold each Contributor harmless for any liability incurred by, or
claims asserted against, such Contributor by reason of your accepting any such warranty
or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice,
with the fields enclosed by brackets “{}” replaced with your own identifying infor-
mation. (Don’t include the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a file or class name and
description of purpose be included on the same “printed page” as the copyright notice
for easier identification within third-party archives.

Copyright {yyyy} {name of copyright owner}

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file
except in compliance with the License. You may obtain a copy of the License at

26 Chapter 6. License

configclasses Documentation, Release 0.4.5

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the Li-
cense is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

6.1. LICENSE 27

http://www.apache.org/licenses/LICENSE-2.0

configclasses Documentation, Release 0.4.5

28 Chapter 6. License

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

29

configclasses Documentation, Release 0.4.5

30 Chapter 7. Indices and tables

Python Module Index

c
configclasses, 15
configclasses.enums, 19
configclasses.sources, 16

31

configclasses Documentation, Release 0.4.5

32 Python Module Index

Index

C
CommandLineSource (class in configclasses.sources), 17
configclass() (in module configclasses), 15
configclasses (module), 15
configclasses.enums (module), 19
configclasses.sources (module), 16
ConsulSource (class in configclasses.sources), 19
csv_list() (in module configclasses.conversions), 19
csv_pairs() (in module configclasses.conversions), 20

D
DotEnvSource (class in configclasses.sources), 17

E
Environment (class in configclasses.enums), 19
EnvironmentSource (class in configclasses.sources), 16

F
field() (in module configclasses), 16

I
IniSource (class in configclasses.sources), 18

J
JsonSource (class in configclasses.sources), 17

L
LogLevel (class in configclasses.enums), 19

R
reload() (configclasses.sources.CommandLineSource

method), 17
reload() (configclasses.sources.ConsulSource method),

19
reload() (configclasses.sources.DotEnvSource method),

17
reload() (configclasses.sources.EnvironmentSource

method), 17

reload() (configclasses.sources.IniSource method), 18
reload() (configclasses.sources.JsonSource method), 18
reload() (configclasses.sources.TomlSource method), 18

T
TomlSource (class in configclasses.sources), 18

33

	Introduction
	A Basic Example
	A Slightly More Advanced Example
	Features
	Planned work

	Installation
	Installation

	User’s Guide
	User’s Guide

	API Documentation
	API Documentation

	Contribution
	Contribution

	License
	LICENSE

	Indices and tables
	Python Module Index

