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Library helps to easily write concurrent executed code blocks.

Quick example:

import asyncio
from concurrently import concurrently

async def amain(loop):
"""
How to fetch some web pages with concurrently.
"""
urls = [ # define pages urls

'http://test/page_1',
'http://test/page_2',
'http://test/page_3',
'http://test/page_4',

]
results = {}

# immediately run wrapped function concurrent
# in 2 thread (asyncio coroutines)
@concurrently(2)
async def fetch_urls():

for url in urls:
# some function for download page
page = await fetch_page(url)
results[url] = page

# wait until all concurrent threads finished
await fetch_urls()
print(results)

if __name__ == '__main__':
loop = asyncio.get_event_loop()
loop.run_until_complete(amain(loop))

Decorator @concurrently() makes to main thinks:

• starts concurrent execution specified count of decorated function

• returns special Waiter object to control the running functions

By default, the code runs as asyncio coroutines, but there are other supported ways to execute, by specifying the
argument engine.
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CHAPTER 1

Details

1.1 Waiter

The @concurrently() returns special object Waiter to control the running functions, like a wait until complete,
stop and other.

class concurrently.engines.AbstractWaiter

__call__(suppress_exceptions: bool = False, fail_hard: bool = False)
The call blocks until the completion of all concurrent functions.

All exceptions in concurrent functions are captured and re-raise as UnhandledExceptions.

You can customize this behavior with following options:

Parameters

• suppress_exceptions – don’t raise UnhandledExceptions

• fail_hard – stop all functions and raise error if one of function abort with error

exceptions()→ List[Exception]
Returns list of all exception.

Useful with option suppress_exceptions.

stop()
Interrupts execution functions.

1.1.1 UnhandledExceptions

exception concurrently.UnhandledExceptions(exceptions)

Parameters exceptions – list of exception
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1.2 Supported engines

1.2.1 AsyncIOEngine

Runs code as asyncio coroutines:

from concurrently import concurrently, AsyncIOEngine

...
@concurrently(2, engine=AsyncIOEngine, loop=loop) # loop is option
async def fetch_urls():

...

await fetch_urls()

class concurrently.AsyncIOEngine(loop: asyncio.base_events.BaseEventLoop = None)

Parameters loop – specific asyncio loop or use default if None

1.2.2 AsyncIOThreadEngine

Runs code in threads with asyncio:

from concurrently import concurrently, AsyncIOThreadEngine

...
@concurrently(2, engine=AsyncIOThreadEngine, loop=loop)
def fetch_urls(): # not async def

...

await fetch_urls()

class concurrently.AsyncIOThreadEngine(loop: asyncio.base_events.BaseEventLoop = None)

Parameters loop – specific asyncio loop or use default if None

1.2.3 ThreadEngine

Runs code in system threads:

from concurrently import concurrently, ThreadEngine

...
@concurrently(2, engine=ThreadEngine)
def fetch_urls(): # not async def

...

fetch_urls() # not await

class concurrently.ThreadEngine

1.2.4 ProcessEngine

Runs code in system process:
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from concurrently import concurrently, ProcessEngine

...
@concurrently(2, engine=ProcessEngine)
def fetch_urls():

...

fetch_urls()

class concurrently.ProcessEngine

1.2.5 GeventEngine

Runs code as gevent greenlets:

from concurrently import concurrently, GeventEngine

...
@concurrently(2, engine=GeventEngine)
def fetch_urls():

...

fetch_urls()

Note: You must install gevent module for use this engine:

$ pip install concurrently[gevent]

class concurrently.GeventEngine

1.2. Supported engines 5
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