
concurrently Documentation
Release 0.8

Konstantin Enchant

Feb 22, 2018

Contents

1 Details 3
1.1 Waiter . 3
1.2 Supported engines . 4

Python Module Index 7

i

ii

concurrently Documentation, Release 0.8

Library helps to easily write concurrent executed code blocks.

Quick example:

import asyncio
from concurrently import concurrently

async def amain(loop):
"""
How to fetch some web pages with concurrently.
"""
urls = [# define pages urls

'http://test/page_1',
'http://test/page_2',
'http://test/page_3',
'http://test/page_4',

]
results = {}

immediately run wrapped function concurrent
in 2 thread (asyncio coroutines)
@concurrently(2)
async def fetch_urls():

for url in urls:
some function for download page
page = await fetch_page(url)
results[url] = page

wait until all concurrent threads finished
await fetch_urls()
print(results)

if __name__ == '__main__':
loop = asyncio.get_event_loop()
loop.run_until_complete(amain(loop))

Decorator @concurrently() makes to main thinks:

• starts concurrent execution specified count of decorated function

• returns special Waiter object to control the running functions

By default, the code runs as asyncio coroutines, but there are other supported ways to execute, by specifying the
argument engine.

Contents 1

concurrently Documentation, Release 0.8

2 Contents

CHAPTER 1

Details

1.1 Waiter

The @concurrently() returns special object Waiter to control the running functions, like a wait until complete,
stop and other.

class concurrently.engines.AbstractWaiter

__call__(suppress_exceptions: bool = False, fail_hard: bool = False)
The call blocks until the completion of all concurrent functions.

All exceptions in concurrent functions are captured and re-raise as UnhandledExceptions.

You can customize this behavior with following options:

Parameters

• suppress_exceptions – don’t raise UnhandledExceptions

• fail_hard – stop all functions and raise error if one of function abort with error

exceptions()→ List[Exception]
Returns list of all exception.

Useful with option suppress_exceptions.

stop()
Interrupts execution functions.

1.1.1 UnhandledExceptions

exception concurrently.UnhandledExceptions(exceptions)

Parameters exceptions – list of exception

3

concurrently Documentation, Release 0.8

1.2 Supported engines

1.2.1 AsyncIOEngine

Runs code as asyncio coroutines:

from concurrently import concurrently, AsyncIOEngine

...
@concurrently(2, engine=AsyncIOEngine, loop=loop) # loop is option
async def fetch_urls():

...

await fetch_urls()

class concurrently.AsyncIOEngine(loop: asyncio.base_events.BaseEventLoop = None)

Parameters loop – specific asyncio loop or use default if None

1.2.2 AsyncIOThreadEngine

Runs code in threads with asyncio:

from concurrently import concurrently, AsyncIOThreadEngine

...
@concurrently(2, engine=AsyncIOThreadEngine, loop=loop)
def fetch_urls(): # not async def

...

await fetch_urls()

class concurrently.AsyncIOThreadEngine(loop: asyncio.base_events.BaseEventLoop = None)

Parameters loop – specific asyncio loop or use default if None

1.2.3 ThreadEngine

Runs code in system threads:

from concurrently import concurrently, ThreadEngine

...
@concurrently(2, engine=ThreadEngine)
def fetch_urls(): # not async def

...

fetch_urls() # not await

class concurrently.ThreadEngine

1.2.4 ProcessEngine

Runs code in system process:

4 Chapter 1. Details

concurrently Documentation, Release 0.8

from concurrently import concurrently, ProcessEngine

...
@concurrently(2, engine=ProcessEngine)
def fetch_urls():

...

fetch_urls()

class concurrently.ProcessEngine

1.2.5 GeventEngine

Runs code as gevent greenlets:

from concurrently import concurrently, GeventEngine

...
@concurrently(2, engine=GeventEngine)
def fetch_urls():

...

fetch_urls()

Note: You must install gevent module for use this engine:

$ pip install concurrently[gevent]

class concurrently.GeventEngine

1.2. Supported engines 5

concurrently Documentation, Release 0.8

6 Chapter 1. Details

Python Module Index

c
concurrently.engines, 3
concurrently.engines.asyncio, 4
concurrently.engines.gevent, 5
concurrently.engines.process, 4
concurrently.engines.thread, 4

7

concurrently Documentation, Release 0.8

8 Python Module Index

Index

Symbols
__call__() (concurrently.engines.AbstractWaiter method),

3

A
AbstractWaiter (class in concurrently.engines), 3
AsyncIOEngine (class in concurrently), 4
AsyncIOThreadEngine (class in concurrently), 4

C
concurrently.engines (module), 3
concurrently.engines.asyncio (module), 4
concurrently.engines.gevent (module), 5
concurrently.engines.process (module), 4
concurrently.engines.thread (module), 4

E
exceptions() (concurrently.engines.AbstractWaiter

method), 3

G
GeventEngine (class in concurrently), 5

P
ProcessEngine (class in concurrently), 5

S
stop() (concurrently.engines.AbstractWaiter method), 3

T
ThreadEngine (class in concurrently), 4

U
UnhandledExceptions, 3

9

	Details
	Waiter
	Supported engines

	Python Module Index

