
Concord Documentation

VMware

Nov 05, 2019

Contents

1 Contents 3
1.1 Getting Started . 3
1.2 Deployment . 4

1.2.1 Concord Nodes . 5
1.2.2 EthRPC Nodes . 6

1.3 Tutorials . 7
1.3.1 Installing your first smart contract . 7

1.4 Developer . 10
1.4.1 Launching the Dev Container . 10
1.4.2 Code Format . 10

1.5 Getting Help . 10

i

ii

Concord Documentation

Project Concord is an open source scalable decentralized Blockchain. It leverages the Concord-BFT engine based
on years of academic and industrial research, and implements a Blockchain which supports running Ethereum smart
contracts.

This documentation is written for different types of users. IT administrators who wish to deploy Concord will want to
read the installation and deployment section. Blockchain developers who want to build and add new smart contracts
will want to read the tutorials, and developers who want to add new functionality, such as adding support for new APIs
or state machines will want to read the developer section. For all users new to Concord, we recommend starting with
the getting started section.

The table of contents below and on the left provides easy access to documentation for your topic of interest. You can
also use the search bar in the top left corner.

Contents 1

https://github.com/vmware/concord-bft

Concord Documentation

2 Contents

CHAPTER 1

Contents

Keyword Index, Search Page

1.1 Getting Started

The preferred way to deploy and develop on Concord is through the use of Docker, which should be all you need to
get a deployment of Concord running locally.

Once you have Docker installed, checkout the Concord repository:

git clone https://github.com/vmware/concord.git

After that, from the Concord directory, run the build script for the Docker images:

cd concord
docker/build.images.sh

You’re now ready to launch Concord. Locally, docker-compose makes it very easy to setup a Concord cluster.

Attention: The following instructions setup Concord to use insecure (http) communication for simplicity and
should not be used in production.

To launch a simple 4-node Concord cluster, launch the simple4.yml file:

docker-compose -f docker/compose/simple4.yml up

You should see some messages go by, indicating the cluster is starting up. Once the cluster is up, the next setup is
to interact with it. Since this cluster comes with the ethRPC bridge, we can communciate with it using standard
Ethereum tooling.

3

https://www.docker.com/

Concord Documentation

Truffle is a popular tool for developing and debugging Ethereum smart contracts. If you’re familar with Truffle (note
that we only support Truffle 4.x at the moment) and have used it before, you can connect to the blockchain instance
on your local machine at http://localhost:8545, which will connect to the first Concord node in your system.

Otherwise, the repository contains a docker image with Truffle pre-installed to deploy to the simple 4 node Concord
instance you just created. To start the image and connect to the first Concord node, run:

docker exec -it compose_concord-truffle_1 bash
truffle console --network ethrpc1

Now you can run a test transaction using Truffle. Type the following in the Truffle console:

var accounts = await web3.eth.getAccounts()
await web3.eth.sendTransaction({from: accounts[0], to: accounts[1], value: web3.utils.
→˓toWei("0", "ether")})

You should get ouptut similar to:

{
blockHash: '0xb3bb6deed1446b30dcdaec50faf1b7fe40f8543bccb552743d4869cab5b50e63',
logsBloom: '0x00',
gasUsed: 10000000,
blockNumber: 6,
cumulativeGasUsed: 10000000,
contractAddress: null,
transactionIndex: 0,
from: '0x262c0d7ab5ffd4ede2199f6ea793f819e1abb019',
to: '0x5bb088f57365907b1840e45984cae028a82af934',
logs: [],
transactionHash: '0x9a6f2ae673da7454d66c74116183f680b0ea5d06e49f04bbcd312f0b362ac705',
status: true
}

This creates a transaction which takes 0 Ether from test account 0 and sends it to test account 1, and prints out the
information of the resulting transaction. Congratulations, you’ve just executed your first Ethereum transaction on
Concord!

From here, you can look into how to deploy Concord, read the tutorials on how to install and interact with smart
contracts on Concord, or learn how to develop support for your own custom API on Concord.

1.2 Deployment

Currently, a Concord deployment consists of two types of nodes:

• Concord nodes, which participate in the the Byzantine consensus protocol and perform state machine replica-
tion.

• EthRPC nodes, which translate Ethereum API calls into requests that Concord nodes can understand.

A deployment needs to contain 3𝐹 + 1 concord nodes, where 𝐹 is the number of failures the deployment needs
to tolerate. In a typical deployment, each Concord node will have a single, possibly co-located EthRPC node.
Ethereum applications, such as Truffle, interact with the deployment through the EthRPC node.

Each node is typically deployed as a Docker container, which allows for easy deployment through tools such as
docker-compose and Kubernetes.

In the next sections, we detail how to setup each type of node.

4 Chapter 1. Contents

https://www.npmjs.com/package/truffle
http://localhost:8545
https://www.npmjs.com/package/truffle

Concord Documentation

1.2.1 Concord Nodes

Concord nodes are provided by the concord-node container. Typically, you run the container with the command:

docker run concord-node:latest --expose 3501,3502,3503,3504,3505 -p 5848 -v <log-path>
→˓:/concord/log \
-v <rocksdb-path>:/concord/rocksdbdata -v <localconfig-path>:/concord/config-local \
-v <publicconfig-path>:/concord/config-public:ro -v <tlscert-path>:/concord/tls_
→˓certs:ro

The paths contain the database, log, configuration and TLS certificates for the node running in the container.

• <log-path> is a path where Concord stores debug logs.

• <rocksdb-path> is a path that contains the rocksdb database replicated by the state machine.

• <localconfig-path> is a path containing a concord.config file for configuring this Concord instance.

• <publicconfig-path> is a path containing a genesis.json file, which describes the genesis block for
the deployment, and a log4cplus.properties file which configures the logging level for each component.

• <tlscert-path> is a path to TLS certificates used to encrypt communication. The certificates are stored in
pem format.

Ports 3501-3505 are exposed because they are specified as communication ports in the configuration files that other
nodes will communicate with. Port 5848 is published to the host, so that EthRPC nodes can easily communicate using
the hosts local IP address.

Concord requires two sets of configuration files. The local concord.config file configures per node settings and
the public and private keys used to sign requests. The public dockerConfigurationInput.yml configure
global settings, such as the size of the cluster and its configuration. Both of these files are yaml files and their schema
is documented in the next sections. The public config also includes a genesis.json file which defines the genesis
(or initial) state of the system. This includes information about the genesis block as well as the initial accounts, balance
and storage.

The TLS certificates are stored in pem format and stored in subdirectories named after the principal id specified in the
concord.config file. Each principal has a client/server pair, consisting of the public client.cert and server.
cert, as well as a pk.pem file containing the private key. More details about the TLS certificate directory format
and repository can be found in the next sections.

A convenience tool for generating configuration files and TLS certificates simplifies deployment.

Confguration File Generator

Concord nodes each have to have their own configuration files and certificates, which may be difficult to generate by
hand. To simplify this task, we provide a convenience tool, conc_genconfig which generates configuration files
as well as the TLS certificates necessary to start a Concord deployment. conc_genconfig takes a yaml file named
configurationInput.yml.

configurationInput.yml

Note: The deployment documentation is currently a work in progress. Help contribute documentation by submitting
a pull request! You can edit this page by clicking on the Edit on GitHub link on the top right.

1.2. Deployment 5

Concord Documentation

concord.config

Note: The deployment documentation is currently a work in progress. Help contribute documentation by submitting
a pull request! You can edit this page by clicking on the Edit on GitHub link on the top right.

genesis.json

The genesis.json file contains the genesis (initial) state of the system. It is stored in JSON format, and a sample
file is shown below:

{
"config": {

"chainId": 1,
"homesteadBlock": 0,
"eip155Block": 0,
"eip158Block": 0

},
"alloc": {

"262c0d7ab5ffd4ede2199f6ea793f819e1abb019": {
"balance": "12345"

},
"5bb088f57365907b1840e45984cae028a82af934": {

"balance": "0xabcdef"
},
"0000a12b3f3d6c9b0d3f126a83ec2dd3dad15f39": {

"balance": "0x7fffffffffffffff"
}

},
"nonce": "0x000000000000000",
"difficulty": "0x400",
"mixhash": "0x00",
"parentHash": "0x00",
"gasLimit": "0xf4240"

}

TLS certificates

Note: The deployment documentation is currently a work in progress. Help contribute documentation by submitting
a pull request! You can edit this page by clicking on the Edit on GitHub link on the top right.

1.2.2 EthRPC Nodes

Concord nodes are provided by the concord-ethrpc container. Typically, you run the container with the command:

docker run concord-ethrpc:latest java -jar concord-ethrpc.jar --ConcordAuthorities=
→˓<host>:<port> \
--security.require-ssl=true --server.ssl.key-store-type=PKCS12 --server.ssl.key-
→˓store=/config/keystore.p12 \
--server.ssl.key-store-password=Ethrpc!23 --server.ssl.key-alias=ethrpc

6 Chapter 1. Contents

Concord Documentation

Attention: To simplify deployment, you may disable SSL by setting -security.require-ssl=false.
However, this is not recommended in production environments for security reasons.

The --ConcordAuthorities=<host>:<port> specifies the <host>, a hostname or ip address and API
<port> of the Concord node. The --security.ssl.* parameters specify the SSL key that the HTTPS end-
point will use. The defaults shown above are for the self-signed certificates provided in the docker/resources/
config-ethrpc* folders. You may configure the server with your own certificate.

1.3 Tutorials

Note: The tutorials documentation is currently a work in progress. Help contribute documentation by submitting a
pull request! You can edit this page by clicking on the Edit on GitHub link on the top right.

1.3.1 Installing your first smart contract

In this first tutorial, we’ll install a simple Hello World contract into Concord and interact with it. This tutorial assumes
you’ve followed the steps from the getting started, Start by running the simple four node Concord instance, simple4.
yml from the getting started file:

docker-compose -f docker/compose/simple4.yml up

Next, start the truffle image:

docker exec -it compose_concord-truffle_1 bash

We’ll now create a simple hello world contract. We’ll use vim to create the contract, which needs to be inserted in the
contracts directory:

vi contracts/HelloWorld.sol

Insert the following code and save the file:

pragma solidity ^0.5.8;
contract HelloWorld {

address public creator;
string public message;

constructor() public {
creator = msg.sender;
message = 'Hello, world';

}
}

Now, we’ll need to create a javascript file to instruct truffle to deploy the contract. This file needs to be inserted in the
migrations directory:

vi migrations/2_deploy_contracts.js

Insert the following code and save the file:

1.3. Tutorials 7

Concord Documentation

var HelloWorld = artifacts.require("./HelloWorld.sol");

module.exports = function(deployer) {
deployer.deploy(HelloWorld);
};

Now we can deploy the contract by running:

truffle migrate --network ethrpc1

If the contract is sucessfully deployed, you should see output similar to:

Compiling your contracts...
===========================
> Compiling ./contracts/HelloWorld.sol
> Compiling ./contracts/Migrations.sol
> Artifacts written to /truffle/build/contracts
> Compiled successfully using:

- solc: 0.5.8+commit.23d335f2.Emscripten.clang

Starting migrations...
======================
> Network name: 'ethrpc1'
> Network id: 5000
> Block gas limit: 0xf4240

1_initial_migration.js
======================

Deploying 'Migrations'

> transaction hash:

→˓0x7a62d178231bcee0167fd82330e96781bcf15e08c186a143de68bf0ce0a163c5
> Blocks: 0 Seconds: 0
> contract address: 0xc2b3150D03A3320b6De3F3a3dD0fDA086C384eB5
> block number: 1
> block timestamp: 1571682384
> account: 0x262C0D7AB5FfD4Ede2199f6EA793F819e1abB019
> balance: 0.000000000000012345
> gas used: 5449
> gas price: 0 gwei
> value sent: 0 ETH
> total cost: 0 ETH

> Saving migration to chain.
> Saving artifacts

> Total cost: 0 ETH

2_deploy_contracts.js
=====================

(continues on next page)

8 Chapter 1. Contents

Concord Documentation

(continued from previous page)

Deploying 'HelloWorld'

> transaction hash:

→˓0x73bc4a9e91b0da818cec84259c0faee8e46d26bdffa14d72ad51447c4e2870d6
> Blocks: 0 Seconds: 0
> contract address: 0x7373de9d9da5185316a8D493C0B04923326754b2
> block number: 3
> block timestamp: 1571682385
> account: 0x262C0D7AB5FfD4Ede2199f6EA793F819e1abB019
> balance: 0.000000000000012345
> gas used: 11019
> gas price: 0 gwei
> value sent: 0 ETH
> total cost: 0 ETH

> Saving migration to chain.
> Saving artifacts

> Total cost: 0 ETH

Summary
=======
> Total deployments: 2
> Final cost: 0 ETH

Next, we’ll want to interact with the contract. We can do that through the truffle console:

truffle console --network ethrpc1

The truffle console accepts javascript as input. We can get acceess to the HelloWorld contract through the
HelloWorld variable. We want the deployed version of the contract, which we can retrieve using the asyn-
chronous deployed() method. In javascript, we can use await to wait for an asynchronous function (which returns
a Promise) to complete:

var app = await HelloWorld.deployed()

Now you can acceess the contract through the app variable. If you type app. and press tab, tab completion should
give you the list of functions you can call:

truffle(ethrpc1)> app.
app.__defineGetter__ app.__defineSetter__ app.__lookupGetter__ app.__
→˓lookupSetter__ app.__proto__
app.hasOwnProperty app.isPrototypeOf app.propertyIsEnumerable app.
→˓toLocaleString app.toString
app.valueOf

app.abi app.address app.allEvents app.
→˓constructor app.contract
app.creator app.message app.send app.
→˓sendTransaction
app.transactionHash

Try calling the message function to view the message we entered in the app. Remember, the function is asynchronous,
so use the await keyword to resolve the Promise:

1.3. Tutorials 9

Concord Documentation

await app.message.call()
> 'Hello, world'

Congratulations, you just installed your first smart contract on Concord and made a simple call to one of its functions.

1.4 Developer

Note: The developer documentation is currently a work in progress. Help contribute documentation by submitting a
pull request! You can edit this page by clicking on the Edit on GitHub link on the top right.

Concord is developed inside of Docker containers to simplify dependency management, and the easiest way to get a
development environment setup for Concord is by using Visual Studio Code, which includes Dev Container features,
making it easy to deploy and debug from within a container.

Concord has a devcontainer.json file included in the repository which will correctly setup the container and
build environment.

1.4.1 Launching the Dev Container

To get a dev container environment for Concord, open your Concord checkout in Visual Studio Code. Open
the command palette (View > Command Palette...) and type Remote Containers: Reopen in
container.

The dev container environment is setup with CMake tooling. When prompted to select a CMake kit, select clang-7.
0.

1.4.2 Code Format

We enforce code formatting through clang-format. The build will fail if there are code formatting errors. To fix
formatting errors automatically, run the format target, which will attempt to automatically fix any code formatting
issues in the repository.

1.5 Getting Help

Currently, the best place to get help is via the Github issue tracker.

10 Chapter 1. Contents

https://code.visualstudio.com/
https://github.com/vmware/concord/issues

	Contents
	Getting Started
	Deployment
	Concord Nodes
	EthRPC Nodes

	Tutorials
	Installing your first smart contract

	Developer
	Launching the Dev Container
	Code Format

	Getting Help

