
CONCOCT Documentation
Release 1.0.0

Johannes Alneberg, Brynjar Smari Bjarnason, Ino de Bruijn, Melanie Schirmer, Joshua Quick, Umer Z. Ijaz, Nicholas J. Loman, Anders F. Andersson, Christopher Quince

December 12, 2018

Contents

1 Features 3

2 Installation 5

3 Contribute 7

4 Support 9

5 Licence 11

6 Contents: 13
6.1 Installation . 13
6.2 Usage . 15
6.3 Complete Example V1.0 . 15
6.4 CONCOCT Scripts . 15

i

ii

CONCOCT Documentation, Release 1.0.0

CONCOCT “bins” metagenomic contigs. Metagenomic binning is the process of clustering sequences into clusters
corresponding to operational taxonomic units of some level.

For any known issues with CONCOCT check the issue tracker: https://github.com/BinPro/CONCOCT/issues

Contents 1

https://github.com/BinPro/CONCOCT/issues

CONCOCT Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Features

CONCOCT does unsupervised binning of metagenomic contigs by using nucleotide composition - kmer frequencies
- and coverage data for multiple samples. CONCOCT can accurately (up to species level) bin metagenomic contigs.
For optimal performance:

• Map several samples against your assembled contigs.

• Cut longer contigs into 10 - 20 kb pieces prior to mapping.

• Evaluate your bins using single copy genes.

3

CONCOCT Documentation, Release 1.0.0

4 Chapter 1. Features

CHAPTER 2

Installation

For a comprehensive guide on how to install CONCOCT and all its dependencies, see Installation.

5

CONCOCT Documentation, Release 1.0.0

6 Chapter 2. Installation

CHAPTER 3

Contribute

• Issue Tracker: github

• Source Code: github

7

https://github.com/BinPro/CONCOCT/issues
https://github.com/BinPro/CONCOCT

CONCOCT Documentation, Release 1.0.0

8 Chapter 3. Contribute

CHAPTER 4

Support

If you are having issues, please let us know. We have a mailing list located at: concoct-support@lists.sourceforge.net
which you can subscribe to here.

9

mailto:concoct-support@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/concoct-support

CONCOCT Documentation, Release 1.0.0

10 Chapter 4. Support

CHAPTER 5

Licence

FreeBSD

11

CONCOCT Documentation, Release 1.0.0

12 Chapter 5. Licence

CHAPTER 6

Contents:

Installation

Dependencies

Fundamental dependencies

python version 2.7 or version 3
gcc - C compiler
gsl - GNU Scientific Library
gslcblas - GNU Scientific Library BLAS library
gomp - GNU OpenMP implementation

These items are prerequisities for the installation of concoct as described below. The installation procedure varies on
different systems, and described in this README is only how to proceed with a linux (ubuntu) distribution.

We recommend using miniconda to install python. A c-compiler, e.g. gcc, is needed to compile the c parts of concoct
that uses the GNU Scientific Library gsl. For linux (ubuntu) this is installed through:

apt-get install build-essential libgsl0-dev libgomp1

Making it work on Mac OSX

A bit of a hack. You have been warned:

conda install llvm gcc libgcc pip
export CC=/Users/johannes.alneberg/miniconda3/envs/concoct_py3/bin/gcc
export CXX=/Users/johannes.alneberg/miniconda3/envs/concoct_py3/bin/g++
conda install gsl
pip install -r requirements.txt
unset CC
unset CXX
pip install pysam

Python packages

cython>=0.19.2
numpy>=1.7.1
scipy>=0.12.0

13

CONCOCT Documentation, Release 1.0.0

pandas>=0.11.0
biopython>=1.62b
scikit-learn>=0.13.1

These are the python packages that need to be installed in order to run concoct. If you follow the installation instruc-
tions below, these will be installed automatically, but are listed here for transparency.

Optional dependencies

• For assembly, use your favorite, here is one

– Megahit

• To create the input table (containing average coverage per sample and contig)

– BEDTools version >= 2.15.0 (only genomeCoverageBed)

– Picard tools version >= 1.110

– samtools version >= 0.1.18

– bowtie2 version >= 2.1.0

– GNU parallel version >= 20130422

– Python packages: pysam>=0.6

• For validation of clustering using single-copy core genes we recommend using:

– CheckM

If you want to install these dependencies on your own server, you can take a look at doc/Dockerfile.all_dep for ideas
on how to install them.

Installation

Here we describe two recommended ways of getting concoct to run on your computer/server. The first option, using
Anaconda, should work for any *nix (e.g. Mac OS X or Linux) system even where you do not have ‘sudo’ rights (e.g.
on a common computer cluster). The second option is suitable for a linux computer where you have root privileges
and you prefer to use a virtual machine where all dependencies to run concoct are included. Docker does also run on
Mac OS X through a virtual machine. For more information check out the Docker documentation.

Using Anaconda

This instruction shows how to install all dependencies (except the ‘Fundamental dependencies’ and the ‘Optional
dependencies’ listed above) using an Anaconda environment. Anaconda is a tool to isolate your python installation,
which allows you to have multiple parallel installations using different versions of different packages, and gives you
a very convenient and fast way to install the most common scientific python packages. Anaconda is free but not open
source, you can download Anaconda here. Installation instructions can be found here.

After installing Anaconda, create a new environment that will contain the concoct installation:

conda create -n concoct_env python=2.7

After choosing to proceed, run the suggested command:

source activate concoct_env

then install the concoct dependencies into this environment:

14 Chapter 6. Contents:

https://github.com/voutcn/megahit
https://github.com/arq5x/bedtools2/releases
https://launchpad.net/ubuntu/+source/picard-tools/
http://samtools.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://www.gnu.org/software/parallel/
https://github.com/Ecogenomics/CheckM
http://docs.docker.com/installation/
https://store.continuum.io/cshop/anaconda/
http://docs.continuum.io/anaconda/install.html

CONCOCT Documentation, Release 1.0.0

conda install cython numpy scipy biopython pandas pip scikit-learn

Finally, download the CONCOCT distribution from https://github.com/BinPro/CONCOCT/releases (stable) and ex-
tract the files, or clone the repository with github (potentially unstable). Resolve all dependencies, see above and then
execute within the CONCOCT directory:

python setup.py install

Using Docker

If you have root access to a machine where you want to install concoct and you have storage for roughly 2G “virtual
machine” then Docker provides a very nice way to get a Docker image with concoct and its dependencies installed.
This way the only thing you install on your host system is Docker, the rest is contained in an Docker image. This
allows you to install and run programs in that image without it affecting your host system. You should get to know
Docker here. You need to get Docker installed and specially if you have Ubuntu. When Docker is installed you need
to download and log into the concoct image.

We provide a Docker image:

binpro/concoct_latest contains CONCOCT and all its dependencies for the Complete Example V1.0 with the exception
of the SCG evaluation.

The following command will then download the image from the Docker image index, map the Data folder to the image
and log you into the docker image.

sudo docker run -v /home/USER/Data:/opt/Data -i -t binpro/concoct_latest bash

To test concoct you can then do:

$ cd /opt/CONCOCT_latest
$ nosetests

Which should execute all tests without errors.

Usage

CONCOCT uses several command line options to control the clustering, here is a complete documentation of these.
These can also be viewed by typing concoct -h on the command line:

File "<stdin>", line 2
SyntaxError: from __future__ imports must occur at the beginning of the file

Complete Example V1.0

We’d like to here give you a complete example walk through. However, the examples that were here previously were
so outdated that they were directly unhelpful. Hopefully a new version of this page will appear here within a not so
distant future.

CONCOCT Scripts

The scripts in the CONCOCT/scripts directory are not fully maintained. They implement methods that we apply
after binning with CONCOCT. Eventually some of these methods might make it to a package of their own.

6.2. Usage 15

https://github.com/BinPro/CONCOCT/releases
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/installation/
http://docs.docker.com/installation/ubuntulinux/

CONCOCT Documentation, Release 1.0.0

To test all scripts that have tests one could do:

cd CONCOCT/scripts/tests
nosetests

Before using a script it would be good to check if its test (in case it has one) is working for you:

cd CONCOCT/scripts/tests
nosetests -s test_script_name

Contents:

dnadiff_dist_matrix.py

Usage

The usage and help documentation of dnadiff_dist_matrix.py can be seen by running pyhton
dnadiff_dist_matrix -h:

usage: - [-h] [--min_coverage MIN_COVERAGE] [--fasta_names FASTA_NAMES]
[--plot_image_extension PLOT_IMAGE_EXTENSION] [--skip_dnadiff]
[--skip_matrix] [--skip_plot] [--cluster-threshold CLUSTER_THRESHOLD]
output_folder fasta_files [fasta_files ...]

Output distance matrix between fasta files using dnadiff from MUMmer. Generates
dnadiff output files in folders:

output_folder/fastaname1_vs_fastaname2/
output_folder/fastaname1_vs_fastaname3/

etc

where fastaname for each fasta file can be supplied as an option to the script.
Otherwise they are just counted from 0 to len(fastafiles)

The distance between each bin is computed using the 1-to-1 alignments of the
report files (not M-to-M):

1 - AvgIdentity if min(AlignedBases) >= min_coverage. Otherwise distance is 1.
Or 0 to itself.

Resulting matrix is printed to stdout and to output_folder/dist_matrix.tsv. The
rows and columns of the matrix follow the order of the supplied fasta files. The
names given to each fasta file are also outputted to the file
output_folder/fasta_names.tsv

A hierarchical clustering of the distance using euclidean average linkage
clustering is plotted. This can be deactivated by using --skip_plot. The
resulting heatmap is in output_folder/hclust_heatmap.pdf or
output_folder/hclust_dendrogram.pdf and the resulting clustering is presented
in output_folder/clustering.tsv. The image extension can be changed.

positional arguments:
output_folder Output folder
fasta_files fasta files to compare pairwise using MUMmer's dnadiff

optional arguments:
-h, --help show this help message and exit

16 Chapter 6. Contents:

CONCOCT Documentation, Release 1.0.0

--min_coverage MIN_COVERAGE
Minimum coverage of bin in percentage to calculate
distance otherwise distance is 1. Default is 50.

--fasta_names FASTA_NAMES
File with names for fasta file, one line each. Could
be sample names, bin names, genome names, whatever you
want. The names are used when storing the MUMmer
dnadiff results as in
output_folder/fastaname1_vs_fastaname2/. The names are
also used for the plots.

--plot_image_extension PLOT_IMAGE_EXTENSION
Type of image to plotted e.g. pdf, png, svg.

--skip_dnadiff Skips running MUMmer and uses output_folder as given
input to calculate the distance matrix. Expects
dnadiff output as
output_folder/fastaname1_vs_fastaname2/out.report

--skip_matrix Skips Calculating the distance matrix.
--skip_plot Skips plotting the distance matrix. By default the

distance matrix is clustered hierarchically using
euclidean average linkage clustering. This step
requires seaborn and scipy.

--cluster-threshold CLUSTER_THRESHOLD
The maximum within cluster distance allowed.

Example

An example of how to run dnadiff_dist_matrix on the test data:

cd CONCOCT/scripts
python dnadiff_dist_matrix.py test_dnadiff_out tests/test_data/bins/sample*.fa

This results in the following output files in the folder test_dnadiff_out/:

• dist_matrix.stv The distance matrix

• fasta_names.tsv The names given to each bin (or fasta file)

• clustering.tsv This file will give a cluster assignment for each bin (or fasta file)

• hcust_dendrogram.pdf Dendrogram of the clustering (click for example)

• hcust_heatmap.pdf Heatmap of the clustering (click for example)

Then there is also for each pairwise dnadiff alignment the following output files in a subfolder
fastaname1_vs_fastaname2/:

out.1coords
out.1delta
out.cmd
out.delta
out.mcoords
out.mdelta
out.qdiff
out.rdiff
out.report
out.snps
out.unqry
out.unref

See MUMmer’s own manual for an explanation of each file with dnadiff --help.

6.4. CONCOCT Scripts 17

CONCOCT Documentation, Release 1.0.0

extract_scg_bins.py

Usage

The usage and help documentation of extract_scg_bins.py can be seen by running pyhton
extract_scg_bins -h:

usage: - [-h] --output_folder OUTPUT_FOLDER --scg_tsvs SCG_TSVS [SCG_TSVS ...]
--fasta_files FASTA_FILES [FASTA_FILES ...] --names NAMES [NAMES ...]
[--groups GROUPS [GROUPS ...]] [--max_missing_scg MAX_MISSING_SCG]
[--max_multicopy_scg MAX_MULTICOPY_SCG]

Extract bins with given SCG (Single Copy genes) criteria. Criteria can be set
as a combination of the maximum number of missing SCGs and the maximum number
of multicopy SCGs. By default the script selects from pairs of scg_tsvs and
fasta_files, the pair that has the highest number of approved bins. In case
there are multiple with the max amount of approved bins, it takes the one that
has the highest sum of bases in those bins. If that is the same, it selects the
first one passed as argument.

One can also group the pairs of scg_tsvs and fasta_files with the --groups
option so one can for instance find the best binning per sample.

optional arguments:
-h, --help show this help message and exit
--output_folder OUTPUT_FOLDER

Output folder
--scg_tsvs SCG_TSVS [SCG_TSVS ...]

Single Copy Genes (SCG) tsvs as outpututted by
COG_table.py. Should have the same ordering as
fasta_files.

--fasta_files FASTA_FILES [FASTA_FILES ...]
Fasta files. Should have the same ordering as scg_tsvs

--names NAMES [NAMES ...]
Names for each scg_tsv and fasta_file pair. This is
used as the prefix for the outputted bins.

--groups GROUPS [GROUPS ...]
Select the best candidate for each group of scg_tsv
and fasta_file pairs. Number of group names given
should be equal to the number of scg_tsv and
fasta_file pairs. Identical group names indicate same
groups.

--max_missing_scg MAX_MISSING_SCG
--max_multicopy_scg MAX_MULTICOPY_SCG

Example

An example of how to run extract_scg_bins on the test data:

cd CONCOCT/scripts/tests/test_data
python extract_scg_bins.py \

--output_folder test_extract_scg_bins_out \
--scg_tsvs tests/test_data/scg_bins/sample0_gt300_scg.tsv \

tests/test_data/scg_bins/sample0_gt500_scg.tsv \
--fasta_files tests/test_data/scg_bins/sample0_gt300.fa \

tests/test_data/scg_bins/sample0_gt500.fa \
--names sample0_gt300 sample0_gt500 \

18 Chapter 6. Contents:

CONCOCT Documentation, Release 1.0.0

--max_missing_scg 2 --max_multicopy_scg 4 \
--groups gt300 gt500

This results in the following output files in the folder test_extraxt_scg_bins_out/:

$ ls test_extract_scg_bins_out/
sample0_gt300_bin2.fa sample0_gt500_bin2.fa

Only bin2 satisfies the given criteria for both binnings. If we want to get the best binning of the two, one can remove
the --groups parameter (or give them the same group id). That would only output sample0_gt500_bin2.fa,
because the sum of bases in the approved bins of sample0_gt500 is higher than that of sample0_gt300.

6.4. CONCOCT Scripts 19

	Features
	Installation
	Contribute
	Support
	Licence
	Contents:
	Installation
	Usage
	Complete Example V1.0
	CONCOCT Scripts

