
CompPopGenWorkshop2019
Documentation

Stephan Schiffels

May 09, 2019

Contents:

1 Setting up 3
1.1 The Computational Infrastructure for this Workshop . 3
1.2 Basic Usage . 3
1.3 Notebooks . 4
1.4 Working with Bash . 5
1.5 Back to Notebooks . 7
1.6 Some Plotting with Python . 7

2 Bam Files 11
2.1 samtools: Converting, Filtering SAM and BAM Files . 11
2.2 Bash programming . 12
2.3 Basic programming in AWK . 13
2.4 Calculating coverage with samtools . 14
2.5 EXTRA: Genotype calling from bam files . 14

3 Principal Components Analysis (PCA) 17
3.1 Genotype Data . 17
3.2 How PCA works . 18
3.3 Preparing the parameter file . 18
3.4 Population lists vs. Projection . 19
3.5 Running smartPCA . 19
3.6 Plotting modern populations . 20
3.7 Adding ancient individuals . 24

4 F Statistics and Treemix 27

5 Admixture modelling with qpWave and qpAdm 29
5.1 Overview: summarizing a matrix of F4 statistics . 29
5.2 Data . 30
5.3 Preparing “left” and “right” populations . 30
5.4 Preparing the parameter file . 31
5.5 Running the programs . 31
5.6 Reading the qpWave log file . 32
5.7 Reading the qpAdm log file . 34

6 Estimating Admixture times with Alder 37
6.1 Overview . 37

i

6.2 Data . 37
6.3 Preparing the parameter file . 38
6.4 Running the programs . 38
6.5 Reading the main output file (weighted LD table) . 39
6.6 Reading the log file . 39
6.7 Plotting weighted LD decay curve in R . 42

7 Estimating Admixture Graphs with qpGraph 43
7.1 Overview method . 43
7.2 Data . 44
7.3 Preparing the parameter file . 44
7.4 Preparing the graph topology . 45
7.5 Running the program . 45
7.6 Reading the output files . 46
7.7 Adding new groups to the scaffold graph . 47
7.8 Continuing to fit new groups . 47
7.9 Test the robustness of the graph topology . 47
7.10 Adding admixture edges . 47

8 MSMC 51
8.1 Data . 51
8.2 Generating consensus sequences for each sample . 51
8.3 Combining samples . 52
8.4 Running MSMC2 for estimating the effective population size . 54
8.5 Estimating population separation history . 54
8.6 Plotting in Python . 55

ii

CompPopGenWorkshop2019 Documentation

This is the documentation for the Workshop held during January 22-24, 2019 at the Max-Planck-Institute for the
Science of Human History (MPI-SHH) in Jena, organised by Stephan Schiffels (MPI-SHH), Choongwon Jeong (MPI-
SHH) and Benjamin Peter (MPI-EVA). Important contributions came from Kay Prüfer and Cosimo Posth!

Contents: 1

https://www.shh.mpg.de
https://www.shh.mpg.de
https://stephanschiffels.de
https://www.shh.mpg.de/person/50880/25522
https://www.eva.mpg.de/genetics/staff/benjamin-peter/index.html
https://www.eva.mpg.de/german/index.html
https://www.shh.mpg.de/person/95887/25522
https://www.shh.mpg.de/person/47597/25522

CompPopGenWorkshop2019 Documentation

2 Contents:

CHAPTER 1

Setting up

1.1 The Computational Infrastructure for this Workshop

For the practical sessions and exercises of this workshop, we have set up a Cloud Server with 32 CPUs and 64Gb of
Memory in total with a separate user account for each participant. As participant, you will have received your own
username and password for accessing the server. The simplest way to access the server is via Jupyter:

https://c107-224.cloud.gwdg.de/hub/login

where you can enter your username and password and are then logged into Jupyter. For reference, you find documen-
tation for the Jupyter interface here

More expert users can also access the server via custom terminal client software (such as Terminal on Mac OS X,
or putty on Windows), via:

ssh <USERNAME>@c107-224.cloud.gwdg.de

1.2 Basic Usage

When you first access Jupyter, you will get a file browser view of your home directory on the server. In the beginning,
your home directory will be empty, and will be populated with notebooks and files throughout this workshop.

To create a new text file, click on New (in the upper right corner) and then Text File, which opens a text editor within
your browser. You can now add content into the file, or edit existing content and save. The filename can be changed
by clicking into the Filename on top. You can now go back to your file browser window and update using the button
with the two arrows in the upper right corner, and you should see your text file saved in your home directory.

You can also use Jupyter to open a Terminal within the browser: Click on New and then Terminal, which will open a
terminal window in a separate browser tab. You can enter Unix Bash commands to change directories, view files or
execute programs (as we will learn below).

Finally, you can create new Folders by clicking on New and then Folder. To rename the new folder, click on the
checkbox beside the new folder, and click the Rename button on top, which appeared. To change into the new folder,

3

https://c107-224.cloud.gwdg.de/hub/login
https://jupyter.org/documentation

CompPopGenWorkshop2019 Documentation

click on it. To move back, click on the parent folder appearing on top of the file browser.

Exercise

Create a new folder called hello, and a text file within that folder using Jupyter. Name that text file hello.txt
and fill it with arbitrary content, such as “Hello, World!”. Then open a terminal and output the contents of the new
text file typing cat hello/hello.txt followed by ENTER.

Note: While the Jupyter terminal and Jupyter Text Files are different ways to interact with the server, both access the
same file system. So files created with the Text Editor are saved in your home directory, and can be accessed via the
terminal, and vice versa: Files created via the Terminal can be accessed via the Text Editor, by simpling clicking on
them in the Jupyter File Browser.

1.3 Notebooks

Notebook can be loaded for different underlying kernels: bash, python and R. Notebooks are useful to document
interactive data analysis. It combines code cells with markdown cells. A markdown cell can contain text, math or
headings.

Exercise

Create a new bash notebook. Then select in the dropdown list above “Markdown”. Type # Bash Exercises
into the cell, press Shift-Enter and watch. Then type This is text with *italic* and **bold**
letters. Then again type Shift-ENTER and watch.

Hint: To change the cells, double click into them.

Code cells can be used to write arbitrary code, execute it and get the results printed back into the Notebook.

Exercise

A new empty Code cell should have been added to the Notebook in the last step. Click into this code cell and type ls.
This should output the current directories and files into the notebook. Into a new cell enter NAME="Hello World"
and in the line below (same cell) echo $NAME. Then again Shift-ENTER.

You can use Bash notebooks to perform standard Unix tasks and run programs throughout this workshop. That way,
you have always documented what you did.

In Python 3 notebooks you can plot things: Create a new python3 notebook, and use this boilerplate code in the first
cell:

%matplotlib inline
import matplotlib.pyplot as plt

Then plot something:

Exercise

4 Chapter 1. Setting up

CompPopGenWorkshop2019 Documentation

Create a simple plot using plt.plot([1, 2, 3], [5, 2, 6])

1.4 Working with Bash

Bash denotes both a scripting language and the interactive system that is used with Terminals (and Bash notebooks).
In the following, we will learn some basic use cases and commands.

1.4.1 Simple commands

The most important commands in a Unix shell are ls, cd and mkdir. In general, all commands in a Unix shell are
entered by typing the command and then typing ENTER.

Exercise

Open a Terminal and execute the ls command by typing ls. It should list you the contents of your home directory.
Then run mkdir testdir to create a new directory. Then type cd testdir to change into that new directory.

Let’s learn some more commands. Above you have already used cat to output the contents of a file to the screen.
Another important command is echo, which also prints stuff to the screen, but not from a file but from a string that
you give it. For example:

Exercise

try the command echo "Hello, how are you?" in your terminal.

Another important command is grep, which lets you filter out lines of a file that contain certain strings. As a basic
example, consider this file listing genotyped individuals: /data/pca/genotypes_small.ind. You can for
example now list all French individuals via grep French /data/pca/genotypes_small.ind.

Exercise

try the above listing of French individuals. Also try other population names, like “Polish” or “Lebanese”. Instead of
just grep, try grep -c and see what that does (find out using man grep on a terminal.

Hint: In bash, you can use tab-expansion. Instead of heaving to spell out /data/pca/genotypes_small.ind,
you can try typing /da<TAB>pca/geno<TAB>.

In general, in order to get help on any bash command, including the above, you can use man to review the documenta-
tion. For example, in a Terminal window, run man mkdir to view the documentation of the mkdir command. Use
Space to move forward through the documentation, or the UP- and DOWN- keys. Use q to quit the view.

Warning: Use man <COMMAND> only in the Terminal, not in a bash-notebook!

1.4. Working with Bash 5

CompPopGenWorkshop2019 Documentation

1.4.2 Pipes

We will use Pipes in several places in this workshop. The basic idea is to combine multiple bash commands into
powerful workflows. As an example, we’ll use a simple bash pipeline to count the number of populations in our
individual file. We need some new commands for that. First, let’s look at the structure of the file at question. The
command head /data/pca/genotypes_small.ind outputs:

Yuk_009 M Yukagir
Yuk_025 F Yukagir
Yuk_022 F Yukagir
Yuk_020 F Yukagir

MC_40 M Chukchi
Yuk_024 F Yukagir
Yuk_023 F Yukagir

MC_16 M Chukchi
MC_15 F Chukchi
MC_18 M Chukchi

So this file contains three columns, with variable numbers of leading whitespace in each row. For counting the number
of populations, we need to first cut out the third column of this file. A useful command for this is the command awk
{print $3}, which you will learn more about later. Let’s now build our first pipe. We will pipe the output of head
/data/pca/genotypes_small.ind into awk {print $3}, by running:

head /data/pca/genotypes_small.ind | awk '{print $3}'

This means “Take the output of the first command, and pipe it into the input of the second command. The result is:

Yukagir
Yukagir
Yukagir
Yukagir
Chukchi
Yukagir
Yukagir
Chukchi
Chukchi
Chukchi

OK, so now we have to sort these population names, and of course there is a command for that: sort.

Exercise

Build a pipeline that extracts the third column of the “ind” file and sorts it. Don’t use head in the beginning, but pipe
the entire file through the awk script. You already know which command outputs an entire file!

Hint: Use head frequently to test pipelines, by putting it at the end of a pipeline and only look at the first 10 rows of
your pipeline output.

OK, so finally, we need to remove duplicates from the sorted population names, and the appropriate command for that
is the uniq command (which works only on sorted input).

Exercise

6 Chapter 1. Setting up

CompPopGenWorkshop2019 Documentation

Extend the pipeline from above to output unique population labels.

The first ten rows of that pipeline output (verfiable with head) should read:

Abkhasian
Adygei
Albanian
Aleut
Aleut_Tlingit
Altaian
Ami
Armenian
Atayal
Balkar

The final step is to count the lines. The command for that is wc -l, which counts the lines from its input.

Exercise

Extend the pipeline one last time, by piping the output into wc -l.

We can now do one final step and augment the pipeline we have built to output not only the total number of populations,
but also the number of individuals per population. The trick here is to use the uniq -c command, instead of just
uniq. That will output the unique population labels alongside the number of times it is seen. The final pipeline then
reads:

cat /data/pca/genotypes_small.ind | awk '{print $3}' | sort | uniq -c

You can run this and store the result in a file, using standard redirection. This is achieved via the operator >
FILENAME. So for example, you can extend the above pipeline with > population_frequencies.txt to
output the result in a file called population_frequencies.txt.

1.5 Back to Notebooks

Exercise

You should now try to implement the step-by-step build up of that pipeline in a bash notebook. You can find my own
example here.

1.6 Some Plotting with Python

As a final exercise, we now want to plot the population frequencies. As a first step, we again open a python notebook
and include the already known boilerplate in a code cell:

%matplotlib inline
import matplotlib.pyplot as plt

In addition, we need to load the pandas library:

1.5. Back to Notebooks 7

https://nbviewer.jupyter.org/github/stschiff/compPopGenWorkshop2019_docs/blob/master/solution_notebooks/setting_up_bash.ipynb
https://pandas.pydata.org

CompPopGenWorkshop2019 Documentation

import pandas as pd

We can now load the population_frequencies.txt (or however you have called it) into python, using pandas
read_csv function.

Exercise

Look up some documentation for the read_csv() function, by typing in a python notebook ?pd.read_csv. This
should open a little extra window with help information. For reading the population frequencies, you will need options
delim_whitespace and names. Look them up.

You can now load in the data, using the command:

dat = pd.read_csv(FILENAME, delim_whitespace=True, names=["nr", "pop"])

Exercise

Execute the above command using the correct filename (make sure you specify the correct path and directory to it, if
the file is not in the same directory as your notebook).

Note: The column names, here “nr” and “pop” are arbitrary and just denote the names for the two columns in the file.

You can verify that loading this data has succeeded by just typing dat into a new code cell and checking that it outputs
a nicely formatted dataframe with two columns and an index.

We can now go ahead and plot this. As a first step, we can just try the simplest way of plotting:

plt.plot(dat["nr])

which should yield something like this:

Now this already shows that the majority of populations has something like 10 individuals, but we would like to also

8 Chapter 1. Setting up

CompPopGenWorkshop2019 Documentation

display the population labels, and sort the values. As first step, we first create a sorted version of this dataframe using
the following command:

dat_sorted = dat.sort_values(by="nr")

Exercise

Look up the sort_valuesmethod with ?dat.sort_values and see what it does and what the by= option does.

We can now make a sorted plot. For that we actually need two arguments to plt.plot, one for specifying the x
coordinate of each point, and one for the y coordinate for each point (before we didn’t need that because plt.plot
assumes a default x value if none is given, which is the index in the dataframe. Now this got resorted, so we have to
spcify it). Here is the command:

x = range(len(dat_sorted))
y = dat_sorted["nr"]
plt.plot(x, y)

Here, the range(len(dat_sorted)) just produces an array which looks like [0, 1, 2, 3, 4, ..., so it
simply creates a list from 1 to the number of populations minus one. This command produces a sorted version of the
previous plot:

OK, so now the final step is to add the labels. We of course have the labels already in our dataframe, under the “pop”
column. The function that adds labels is the plt.xticks function.

Exercise

Look up the documentation for the plt.xticks function, similarly as in the previous exercise.

For the final plot, we now put this together, and we also increase the figure size a bit to accommodate all the population
labels. Together we have:

dat_sorted = dat.sort_values(by="nr")
y = dat_sorted["nr"]

(continues on next page)

1.6. Some Plotting with Python 9

CompPopGenWorkshop2019 Documentation

(continued from previous page)

x = range(len(y))
xticks = dat_sorted["pop"]
plt.figure(figsize=(20,8))
plt.plot(x, y)
plt.xticks(x, xticks, rotation="vertical");

which gives this final plot:

You can find a solution notebook for this part here.

10 Chapter 1. Setting up

https://nbviewer.jupyter.org/github/stschiff/compPopGenWorkshop2019_docs/blob/master/solution_notebooks/plotting_popfreqs.ipynb

CHAPTER 2

Bam Files

BAM is a binary format for reads and accompanying information about their alignments to a reference genome. They
are for instance generated by bwa, a popular alignment program. SAM is the human readable version of BAM. A full
description of both formats is available here: https://samtools.github.io/hts-specs/SAMv1.pdf

2.1 samtools: Converting, Filtering SAM and BAM Files

A commandline-tool called samtools can be used to work with BAM and SAM. You can run samtools without any
parameters to get an overview of parameters and options. The command man samtools shows you a longer docu-
mentation.

The basic pattern of usage for samtools is

samtools [command] [-paramter] [-parameter] bam/sam-file

A useful command is view which converts a BAM file to SAM. The command tview allows you to view the
alignments.

I prepared two files that you can try these commands on:

/data/bam/workshop1.bam
/data/bam/workshop2.bam

Exercise

Run samtools tview on workshop2.bam and use space to scroll until you see an alignment. Try ? to see further
options.

Hint: If you want to find a position with lots of data, check out samtools tview -p 17:6944949
/data/bam/workshop1.bam. You can also add the reference genome, which will render the reads dif-

11

https://samtools.github.io/hts-specs/SAMv1.pdf

CompPopGenWorkshop2019 Documentation

ferently: samtools tview -p 17:6944949 /data/bam/workshop1.bam --reference /data/
bam/whole_genome.fa

Exercise

Run samtools view workshop1.bam | less. What chromosome do the first couple of sequences align to?
How does the output change if you use -h which adds the SAM header information?

The view command can also be instructed to print specific regions (as long as the bam file is sorted and indexed):
samtools view workshop1.bam 17 will only print alignments on chromosome 17 and samtools view
workshop1.bam 17:6944949-6947242 only alignments overlapping the specified coordinates.

Samtools view also allows for alignments to be filtered. You can specify which alignments should be printed using
the option -f or exclude alignments with -F. These options are followed by a integer for the flags that should be
set/not set (see format description pdf). samtools view -f 16 for instance, selects all sequences that align on
the minus strand.

2.2 Bash programming

To get some basic statistics from BAM-files it is useful to know a couple of shell-commands and how to chain them
together. You can get a full decription on these commands by running man [command]. Commands can be chained
together in bash to form longer commands using the pipe-operator |. The output of each command in the chain will
be used as input for the next command.

command1 | command2 | command3

Here are some basic shell-commands:

head and tail The commands head and tail give you the first 10 lines of the beginning and 10 lines of the end
of a file, respectively. Parameter -n can be used to specify how many lines.

wc The command wc (for “word count”) counts the number of characters, words and lines in a document. Use
parameter -c for just the character count, -w for just the words and -l for just the number of lines.

Exercise

Run samtools view /data/bam/workshop1.bam | head. Count the number of lines that are printed
using wc. Specify the number of lines to be printed with head -n.

Exercise

How many sequences in total are aligned workshop1.bam? How many of these are single reads (not paired end)?

cut Will only print specific columns of a text table. Parameter -f specifies which column you want printed. cut
-f 1,2 will for instance print the first and second column from a file.

Exercise

Run samtools view /data/bam/workshop1.bam | cut -f 3. What does this column of the SAM for-
mat mean?

12 Chapter 2. Bam Files

CompPopGenWorkshop2019 Documentation

tr This command (for “transpose”) will substitute a set of characters by diffent characters. For instance, tr 'ABC'
'abc' will substitute all occurrences of A, B or C by a, b and c, respectively. The command can also delete
characters. tr -d "N" will for instance delete all occurrences of “N” from the input.

grep grep will only print lines matching a specific pattern. Example: grep AAAACCCC will print all lines contain-
ing “AAAACCCC”. grep "^Word" will print lines starting with “Word”.

Exercise

Convert the sequences from the SAM output of workshop1.bam to lowercase using tr. Use grep to check for sequences
that contain the character “N”.

sort Sorts the input alphabetically. Use option -k to specify the column to sort by and -n if you want to sort
numerically

uniq Only print unique occurrences of lines on the input. Input must be sorted (see sort). Use option -c if you’d
like to get counts of occurrences.

Exercise

How many sequences align to each chromosome in workshop1.bam and workshop2.bam? Seeing how many sequences
align to chromosome X and chromosome 7 (which is similar in size to X) for workshop2.bam, would you say this
individual is male or female?

2.3 Basic programming in AWK

awk is a simple programming language that is particularly useful when processing line-wise input. The basic format
of any awk program looks like this:

BEGIN{ }
{ }
END{ }

Everything in curly brackets in the first line is going to be done before the first line is read. The middle line specifies
everything that should be done for each line. The last line says what should be done after the last line. A simple awk
program that counts the number of lines may be written like this:

BEGIN{ line=0 }
{ line=line+1 }
END{ print line }

Since awk keeps track of the number of a line in the variable /NR/, you can simplify this program to just one line:

END{ print NR }

The formatting of awk programs doesn’t matter. This makes it easy to specify programs on one line inbetween other
shell-commands. For instance:

long version:
samtools view workshop1.bam 17 | awk 'BEGIN{ line=0 }{ line=line+1 }END{ print line }'

simplified version:
samtools view workshop1.bam 17 | awk 'END{ print NR }'

2.3. Basic programming in AWK 13

CompPopGenWorkshop2019 Documentation

Awk can also select specific columns (like cut does). To refer to a specific column, you add a $ before the number of
the column. This prints the first column from a file:

{ print $1 }

To count the characters in each line (like wc -c), you can use the function length():

{ print length($1) }

Exercise

Calculate the average size of sequences in workshop1.bam and workshop2.bam. Select only sequences that are not
paired-end.

Exercise

Calculate the number of GC and AT bases in workshop2.bam. Extra question: is the GC content in workshop1.bam
different and why?

2.4 Calculating coverage with samtools

samtools depth gives the number of sequences covering sites. With -a, all positions are given, also those not
covered. Example:

samtools depth /data/bam/workshop1.bam | less

Exercise

Calculate the average coverage on chrX and chr7 for workshop2.bam.

Exercise

Calculate the average coverage for the region 17:6944949-6947242 on workshop1.bam.

2.5 EXTRA: Genotype calling from bam files

When several sequences overlap a position in the nuclear genome, then the genotype of the carrier can be inferred.
How this is done best in every case goes beyond the scope of the workshop. However, when ancient DNA damage is
low, you can use samtools together with a program called bcftools to produce genotype calls in VCF format.

samtools mpileup -v -f [reference_genome] -I [input-bam] | bcftools call -m > output.
→˓vcf

The VCF format is described here: http://www.internationalgenome.org/wiki/Analysis/vcf4.0/

Exercise

14 Chapter 2. Bam Files

http://www.internationalgenome.org/wiki/Analysis/vcf4.0/

CompPopGenWorkshop2019 Documentation

Run the above command on workshop1.bam using the reference genome /data/bam/whole_genome.fa. Have a look at
the output and see how many differences you observe to the human reference.

The solution notebook for this session is here

2.5. EXTRA: Genotype calling from bam files 15

https://nbviewer.jupyter.org/github/stschiff/compPopGenWorkshop2019_docs/blob/master/solution_notebooks/bam_files.ipynb

CompPopGenWorkshop2019 Documentation

16 Chapter 2. Bam Files

CHAPTER 3

Principal Components Analysis (PCA)

Principal components analysis (PCA) is one of the most useful techniques to visualise genetic diversity in a dataset.
The methodology is not restricted to genetic data, but in general allows breaking down high-dimensional datasets to
two or more dimensions for visualisation in a two-dimensional space.

3.1 Genotype Data

This lesson is also our first contact with the genotype data used in this and most of the following lessons. The dataset
that we will work with contains 1,340 individuals, each represented by 593,124 single nucleotide polymorphisms
(SNPs). Those SNPs have exactly two different alleles, and each individual has one of four possible values at each
genotype: homozygous reference, heterozygous, homozygous alternative, or missing. Those four values are encoded
2, 1, 0 and 9 respectively.

The data is laid out as a matrix, with columns indicating individuals, and rows indicating SNPs. The data itself comes
in the so-called “EIGENSTRAT” format, which is defined in the Eigensoft package used by many tools used in this
workshop. In this format, a genotype dataset consists of three files, usually with the following file endings:

*.snp The file containing the SNP positions. It consists of six columns: SNP-name, chromosome, genetic positions,
physical position, reference allele, alternative allele.

*.ind The file containing the names of the individuals. It consists of three columns: Individual Name, Sex (encoded
as M(ale), F(emale), or U(nknown)), and population name.

*.geno The file containing the genotype matrix, with individuals laid out from left to right, and SNP positions laid
out from top to bottom.

Exercise

Explore the three files used in the workshop using the terminal. They are located unser /data/pca/
genotypes_small.*. Use the bash terminal, and use less -S <FILENAME> to view each file and skim
through it to get a feeling for the data.

17

https://github.com/DReichLab/EIG

CompPopGenWorkshop2019 Documentation

Exercise

Start a new bash notebook and look at the first 20 rows of both the ind and the snp file using head -20. For the
geno file, restrict to the first 100 columns using cut -c 1-100, which you can also use in a pipe together with
head -20.

Exercise

Confirm that there are 1,340 individuals in the dataset. Confirm that this number equals the number of rows in the ind
file, and the number of columns in the geno file..

Hint: You can use head -1 to restrict to the first line of a file, and wc -c to count the number of characters (i.e.
columns) in that file.

Exercise

Count how many individuals per population there are. Hint: You can use the Unix tools awk '{print $3}',
sort and uniq -c to achieve that.

You can find my solution notebook to these exercises here

3.2 How PCA works

To understand how PCA works, consider a single individual and its representation by its 593,124 markers. Formally,
each individual is a point in a 593,124-dimensional space, where each dimension can take only the three possible
genotypes indicated above, or have missing data. To visualise this high-dimensional dataset, we would like to project
it down to two dimensions. But as there are many ways to project the shadow of a three-dimensional object on a
two dimensional plane, there are many (and even more) ways to project a 593,124-dimensional cloud of points to two
dimensions. What PCA does is figuring out the “best” way to do this project in order to visualise the major components
of variance in the data.

3.3 Preparing the parameter file

For actually running the analysis, we use a software called smartPCA from the Eigensoft package. As many other
tools from this and related packages, smartPCA reads in a parameter file which specifies its input and output files
and options. The basic format of the parameter file with one extra option (lsqproject) looks like this:

genotypename: <GENOTYPE_DATA>.geno
snpname: <GENOTYPE_DATA>.snp
indivname: <GENOTYPE_DATA>.ind
evecoutname: <OUT_FILE>.evec
evaloutname: <OUT_FILE>.eval
poplistname: <POPULATION_LIST_FILE>.txt
lsqproject: YES
numoutevec: 4
numthreads: 1

18 Chapter 3. Principal Components Analysis (PCA)

https://nbviewer.jupyter.org/github/stschiff/compPopGenWorkshop2019_docs/blob/master/solution_notebooks/exploring_genotypes.ipynb
https://github.com/DReichLab/EIG

CompPopGenWorkshop2019 Documentation

Here, the first three parameters specify the input genotype files, as discussed above. The next two rows specify two
output file names, typically with ending *.evec and *.eval. The parameter line beginning with poplistname
contains a file with a list of populations used for calculating the principal components (see below). The option
lsqproject is important for applications including ancient DNA with lots of missing data, which I will not elab-
orate on. For the purpose of this workshop, you should use lsqproject: YES. The last option numoutevec
specifies the number of principal components that we compute.

3.4 Population lists vs. Projection

The parameter named poplistname is a very crucial one. It specifies the populations whose individuals are used
to calculate the principal components. Why not just all of them you ask? For two reasons: First, there are simply
too many of them. As you may have found out in the exercise above there are more than 500 ancient and modern
populations available in the dataset, and we don’t want to use all of them, since the computation would take too long.
More importantly, however, we generally try to avoid using ancient samples to compute principal components, to
avoid specific ancient-DNA related artefacts affecting the computation.

So what happens to individuals that are not in populations listed in the population list? Well, fortunately, they are not
just ignored, but “projected”. This means that after the principal components have been computed, all individuals (not
just the one in the list) are projected onto these principal components. That way, we can visualise ancient populations
in the context of modern genetic variation. While that may sound a bit problematic at first (surely there must be
variation in ancient populations that is not represented well by modern populations), but it turns out to be nevertheless
one of the most useful tools for this purpose. The advantage of avoiding ancient-DNA artefacts and batch effects
to affect the visualisation outweighs the disadvantage of missing some private genetic variation components in the
ancient populations themselves. Of course, that argument breaks down once the analysed populations become too
ancient and detached from modern genetic variation. But for our purposes it will work just fine.

For this workshop, I prepared two population lists:

/data/pca/WestEurasia.poplist.txt
/data/pca/AllEurasia.poplist.txt

As you can tell from the names of the files, they specify two sets of modern populations representing West Eurasia or
all of Europe and Asia, respectively.

Exercise

Look through both of the population lists and google some population names that you don’t recognise to get a feeling
for the ethnic groups represented here.

3.5 Running smartPCA

Now go ahead and prepare a parameter file according to the layout described above.

Hint: Put all filenames with their absolute path into the parameter file. To prepare the parameter file, you can use the
so-called “Heredoc” syntax in bash, if you are familiar with it (see also solution notebook below). Alternatively, you
can use the Jupyter file editor to create the parameter file.

. . . and run smartPCA using the command smartpca -p PARAMS_FILE > smartpca.log. Here, I’m using
bash redirection of the log output of smartpca into a log file called smartpca.log, which may be useful for
trouble shooting.

3.4. Population lists vs. Projection 19

CompPopGenWorkshop2019 Documentation

Exercise

Run smartpca with the prepared parameter file.

Note: Running smartPCA with this dataset and on a single CPU takes between 30 and 60 minutes.

To facilitate further processing, I have put the results file into /data/pca/results/pca.WestEurasia.* and
/data/pca/results/pca.AllEurasia.*

3.6 Plotting modern populations

There are several ways to make nice publication-quality plots (Excel is usually not one of them). Popular tools include
R and matplotlib . Both frameworks can be used within the Jupyter Notebook interface, and here I opted for matplotlib.

I suggest that you start a new Jupyter Python Notebook, and load a couple of essential libraries in the first code cell:

%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt

Let’s have a look at the main results file from smartpca, the *.evec file, for example by running this simple bash
command in the notebook using !head EVEC_FILE, where EVEC_FILE should obviously replaced with the actual
filename of the PCA run.

Hint: You can run any bash command in a python notebook by preceding it with the ! sign. This comes in very
handy at times!

You should find something like:

#eigvals: 6.289 3.095 2.693 2.010
I001 -0.0192 0.0353 -0.0024 -0.0084 Ignore_Iran_

→˓Zoroastrian(PCA_outlier)
I002 -0.0237 0.0372 -0.0018 -0.0133 Ignore_Iran_

→˓Zoroastrian(PCA_outlier)
IREJ-T006 -0.0226 0.0417 0.0045 0.0003 Iran_Non-Zoroastrian_Fars
IREJ-T009 -0.0214 0.0404 0.0024 -0.0064 Iran_Non-Zoroastrian_Fars
IREJ-T022 -0.0165 0.0376 -0.0003 -0.0106 Iran_Non-Zoroastrian_Fars
IREJ-T023 -0.0226 0.0376 -0.0031 -0.0101 Iran_Non-Zoroastrian_Fars
IREJ-T026 -0.0203 0.0373 -0.0009 -0.0103 Iran_Non-Zoroastrian_Fars
IREJ-T027 -0.0241 0.0392 0.0025 -0.0072 Iran_Non-Zoroastrian_Fars

The first row contains the eigenvalues for the first 4 principal components (PCs), and all further rows contain the PC
coordinates for each individual. The first column contains the name of each individual, the last row the population. To
load this dataset with python, we use the pandas package, which facilitates working with data in python. To load data
using pandas, use the read_csv() function.

Exercise

Load one of the two PCA results files with ending *.evec. You need to skip the first row and name the columns man-
ually. Use “Name”, “PC1”, . . . “PC4”, “Population” for the column names. Google documentation for read_csv()

20 Chapter 3. Principal Components Analysis (PCA)

https://www.r-project.org\T1\textgreater {}
http://matplotlib.org
https://pandas.pydata.org
https://pandas.pydata.org

CompPopGenWorkshop2019 Documentation

to ensure that tabs and spaces are considered field delimiters, that the first row is skipped, and that the column names
are correctly entered.

You should now have a pandas dataframe which looks like this:

Name PC1 PC2 PC3 PC4 Population
I001 -0.0192 0.0353 -0.0024 -0.0084 Ignore_Iran_

→˓Zoroastrian(PCA_outlier)
I002 -0.0237 0.0372 -0.0018 -0.0133 Ignore_Iran_

→˓Zoroastrian(PCA_outlier)
IREJ-T006 -0.0226 0.0417 0.0045 0.0003 Iran_Non-Zoroastrian_

→˓Fars
IREJ-T009 -0.0214 0.0404 0.0024 -0.0064 Iran_Non-Zoroastrian_

→˓Fars
IREJ-T022 -0.0165 0.0376 -0.0003 -0.0106 Iran_Non-Zoroastrian_

→˓Fars
IREJ-T023 -0.0226 0.0376 -0.0031 -0.0101 Iran_Non-Zoroastrian_

→˓Fars
IREJ-T026 -0.0203 0.0373 -0.0009 -0.0103 Iran_Non-Zoroastrian_

→˓Fars
IREJ-T027 -0.0241 0.0392 0.0025 -0.0072 Iran_Non-Zoroastrian_

→˓Fars

Let’s say you called this dataframe pcaDat. You can now very easily produce a plot of PC1 vs. PC2 for all samples
, by running plt.scatter(x=pcaDat["PC1"], y=pcaDat["PC2"]), which in my case yields a boring
figure like this:

3.6. Plotting modern populations 21

CompPopGenWorkshop2019 Documentation

Now, obviously, we would like to highlight the different populations by color. A quick and dirty solution is to simply
plot a different subset of the data on top, like this:

plt.scatter(x=pcaDat["PC1"], y=pcaDat["PC2"], label="")
for pop in ["Finnish", "Sardinian", "Armenian", "BedouinB"]:

d = pcaDat[pcaDat["Population"] == pop]
plt.scatter(x=d["PC1"], y=d["PC2"], label=pop)

plt.legend()

This sequence of commands gives us:

22 Chapter 3. Principal Components Analysis (PCA)

CompPopGenWorkshop2019 Documentation

OK, but how do we systematically show all the populations? There are too many of those to separate them all by
different colors, or by different symbols, so we need to combine colours and symbols and use all the combinations of
them to show all the populations. To do that, we first need to load the population list that we want to focus on for now,
which are the same lists as used above for running the PCA. In case of the West Eurasian PCA, you can load the
file using pd.read_csv("/data/pca/WestEurasia.poplist.txt", names=["Population"]).
sort_values(by="Population"). Next, we need to associate a color number and a symbol number with
each population. To keep things simple, I would recommend to simply cycle through all combinations automatically.
This code snippet looks a bit magic, but it does the job:

nPops = len(popListDat)
nCols = 8
nSymbols = int(nPops / nCols)
colorIndices = [int(i / nSymbols) for i in range(nPops)]
symbolIndices = [i % nSymbols for i in range(nPops)]
popListDat = popListDat.assign(colorIndex=colorIndices, symbolIndex=symbolIndices)

You should check that this worked by viewing the resulting popListDat variable (just type its name into a new
Jupyter notebook cell). Now we can produce the full PCA plot, which uses a for loop to cycle through all populations
in the popListDat dataframe, and plots each listed population in turn, with its assigned color and symbol. To
prepare, we need a list of colors and symbols. Here, I am using the default color sequence from matplotlib and a
manual sequence of symbols, which for the sake of simplicity I simply put here for you to copy-paste:

3.6. Plotting modern populations 23

CompPopGenWorkshop2019 Documentation

symbolVec = ["8", "s", "p", "P", "*", "h", "H", "+", "x", "X", "D", "d", "<", ">", "^
→˓", "v"]
colorVec = [u'#1f77b4', u'#ff7f0e', u'#2ca02c', u'#d62728', u'#9467bd',

u'#8c564b', u'#e377c2', u'#7f7f7f', u'#bcbd22', u'#17becf']

With this, the final plot command is:

for i, row in popListDat.iterrows():
d = pcaDat[pcaDat.Population == row["Population"]]
plt.scatter(x=-d["PC1"], y=d["PC2"], c=colorVec[row["colorIndex"]],

marker=symbolVec[row["symbolIndex"]], label=row["Population"])
plt.legend(loc=(1.1, 0), ncol=3)

which produces a nice plot like this (note that I’ve flipped the x axis to make the correlation with Geography more
apparent):

3.7 Adding ancient individuals

Of course, until now we haven’t yet included any of the actual ancient test individuals that we want to analyse, but
with plot command above you can very easily add them, by simply adding a few manual plot command before the
legend, but outside of the foor loop.

Exercise

Add two ancient populations to this plot, named “Levanluhta”, “JK2065” (the third individual from Levanluhta with
different ancestry) and “BolshoyOleniOstrov”, using the same technique of selecting populations from the big dataset
and plotting them as used in case of the modern populations. Use “black” as colour, and different symbols for each
additional population. While you’re at it, go ahead and also add the population called “Saami.DG”.

Finally, we are going to learn something about deeper European history, by also adding some Neolithic and Mesolithic
populations:

24 Chapter 3. Principal Components Analysis (PCA)

CompPopGenWorkshop2019 Documentation

Exercise

Add three more populations to the plot, called “WHG” (short for Western Hunter-Gatherers), “LBK_EN” (short for
Linearbandkeramik Early Neolithic, from about 6,000 years ago), and “Yamnaya_Samara”, a late Neolithic population
from the Russian Steppe, about 4,800 years ago. It can be shown that modern European genetic diversity is formed by
a mixture of these three divergence ancient groups (Lazaridis2014, Haak2015).

The final plot should look like this:

You can carry out similar commands to plot the All Eurasia case, which should look like this:

You can fine the solution notebook here.

3.7. Adding ancient individuals 25

https://www.nature.com/articles/nature13673
https://www.nature.com/articles/nature14317
https://nbviewer.jupyter.org/github/stschiff/compPopGenWorkshop2019_docs/blob/master/solution_notebooks/python_pca.ipynb

CompPopGenWorkshop2019 Documentation

26 Chapter 3. Principal Components Analysis (PCA)

CHAPTER 4

F Statistics and Treemix

Slides for this lesson are available here.

The workbook for this module is available here

And a full solutions notebook for this session available here.

Please also see https://bodkan.net/admixr for documentation on how to run Admixtools with the fantastic admixr
package in R.

27

https://nbviewer.jupyter.org/github/BenjaminPeter/cph_course/blob/master/F-stats%20tutorial%20worksheet.ipynb
https://nbviewer.jupyter.org/github/BenjaminPeter/cph_course/blob/master/F-stats%20tutorial%20solution.ipynb
https://bodkan.net/admixr

CompPopGenWorkshop2019 Documentation

28 Chapter 4. F Statistics and Treemix

CHAPTER 5

Admixture modelling with qpWave and qpAdm

In the previous session, we learned how to calculate D/F4 statistics and how to interpret output. F4 statistics are
extremely useful to test simple phylogenetic hypotheses, such as whether the relationship of four test populations fits
into a tree. However, an individual f4-statistic cannot provide specifics of this “non-treeness”: such as i) what is the
magnitude and direction of gene flow, ii) how many gene flows are required to model the relationship between the
populations used, and iii) whether the populations used are sufficient to model their relationships (or an unsampled
lineage is required).

QpWave and its derivative qpAdm are tools for summarizing information from multiple F-statistics to make such sophisticated inferences possible to a substantial degree. In this section, we focus on the following specific questions:

1) Detecting the minimum number of independent gene pools to explain a set of target populations (qpWave)

2) Testing sufficienty of an admixture model within the resolution of data (qpAdm)

3) Estimating admixture proportions (qpAdm)

5.1 Overview: summarizing a matrix of F4 statistics

In the qpWave/qpAdm scheme, you choose m “right” populations (or outgroups) and n “left” populations (targets for
qpWave, target and references for qpAdm). Taking the first population on each side as the point of comparison, you
build a (𝑚− 1)× (𝑛− 1) matrix of 𝑓4 statistics in the following way:

𝐹𝑖𝑗 = 𝐹4(𝐿1, 𝐿𝑗 ;𝑅1, 𝑅𝑗)

Given that you provide a sufficient number of distinct outgroup (m > n), this matrix has maximum n-1 independent
columns (= rank) and minimum zero nontrivial column (i.e. zero matrix). For example, two unadmixed Native
American left populations are a sister group to each other against all non-Native American right populations. Then,
any 𝑓4(American1,American2; non-American1, non-American2) will be zero.

Assuming that this matrix has rank r, i.e. there are r independent columns and the rest is a linear combination of the r
columns, we can model F matrix into product of two matrices, A and B.

𝐹 = 𝐴 ·𝐵

29

CompPopGenWorkshop2019 Documentation

Where A is an (𝑚− 1)× 𝑟 matrix, and B is an 𝑟× (𝑛− 1) matrix. You can think that columns of A matrix represents
r independent 𝐹4 statistic columns. In turn, j-th column of B matrix represents the weight values for combining A
columns to reproduce the j-th column of the original F matrix.

The observed 𝑓4 statistic is an estimate of true parameter, 𝐹4 , with a noise/error. Therefore, the actual model fitting
becomes to estimate A and B matrices in the following formula:

𝐹 = 𝐴 ·𝐵 + 𝐸

where E = error matrix:

𝐸 = F-observed −𝐴 ·𝐵

Assuming that (𝑚 − 1) × (𝑛 − 1) entries of the E matrix follows a multivariate normal distribution with mean
zero (because it is the error matrix), you can write down log-likelihood and compare different models based on log-
likelihood.

qpAdm is a special case of qpWave, in which you assume that the first left population (“target)” is a mixture of the
remaining left populations (“references”), and therefore not independent. It becomes a qpWave case with rank (n-2)
with additional constraint for scaling to make sum of admixture coefficient to 1.

5.2 Data

In this session, we will use a small EIGENSTRAT format genotype data, including the following populations:

/data/qpAdm/popgen_qpAdm_test_190120.geno
/data/qpAdm/popgen_qpAdm_test_190120.ind
/data/qpAdm/popgen_qpAdm_test_190120.snp

5.3 Preparing “left” and “right” populations

Both “left” and “right” population lists are a simple text file, including one population name per line. In the EIGEN-
STRAT format input genotype data, population name matches entries in the third column of the .ind file. “Right”
population list includes outgroup populations that are distantly but (potentially) differentially related to “left” popu-
lations. “Left” population list includes populations of your interest. For qpWave, the order of left populations does
not have specific meaning. However, for qpAdm, the first left population (one at the top of the file) is the target of
admixture modeling, and the remaining ones serve as reference populations for the target.

For this session, let’s generate two “left” and one “right” population list files using the following code bits:

target="Corded_Ware_Germany"
refs="Yamnaya_Samara LBK_EN"
og1s="Mbuti Natufian Onge Iran_N Villabruna Mixe Ami Nganasan Itelmen"

echo ${refs} | sed s/" "/"\n"/g > left1.pops
echo ${target} ${refs} | sed s/" "/"\n"/g > left2.pops
echo ${og1s} | sed s/" "/"\n"/g > right.pops

Exercise

If you run qpAdm using left2.pops file, which population is your target for admixture modeling? What admixture
modeling are you proposing by using this list? How would you write the left population list file if you want to test three-
way admixture model, including “WHG” (Mesolithic Western European Hunter-gatherers) as the third reference?

30 Chapter 5. Admixture modelling with qpWave and qpAdm

CompPopGenWorkshop2019 Documentation

5.4 Preparing the parameter file

We will use qpWave and qpAdm programs in the ADMIXTOOLS package. Parameter files for both programs have the
same structure, similar to parameter files for other programs included in the package.:

genotypename: <qpWave_qpAdm_test>.geno
snpname: <qpWave_qpAdm_test>.snp
indivname: <qpWave_qpAdm_test>.ind
popleft: left1.pops
popright: right.pops
details: YES
maxrank: 7

You can write two parameter files, using left1.pops and left2.pops as the left population file, respectively,
using a simple loop in bash:

pt1=($(pwd)"/")
fn1="/home/choongwon/qpAdm/popgen_qpAdm_test_190120"

for i in $(seq 1 2); do
echo 'genotypename: '${fn1}'.geno' > test${i}.par
echo 'snpname: '${fn1}'.snp' >> test${i}.par
echo 'indivname: '${fn1}'.ind' >> test${i}.par
echo 'popleft: '${pt1}'left'${i}'.pops' >> test${i}.par
echo 'popright: '${pt1}'right.pops' >> test${i}.par
echo -e 'details: YES\nmaxrank: 7' >> test${i}.par

done

An important optional parameter is allsnps: YES. In default setting, both programs use only the SNPs that are
not missing in any of the left or right populations. Therefore, all f4 statistics used in the program are calculated across
the exactly same set of SNPs. When allsnps: YES is set, each f4 statistic is calculated using SNPs that are
present in the four populations included in the test.

5.5 Running the programs

Running command lines are similar to the other programs (e.g. qpDstat or smartpca). Let’s run the following
three tests:

qpWave -p test1.par > qpWave.test1.log
qpWave -p test2.par > qpWave.test2.log
qpAdm -p test2.par > qpAdm.test2.log

Exercise

Run qpWave and qpAdm with the prepared parameter file.

Note: Running qpWave or qpAdm with this dataset takes 1-2 minutes, using a single core (no multithreading is
available).

5.4. Preparing the parameter file 31

CompPopGenWorkshop2019 Documentation

5.6 Reading the qpWave log file

Both qpWave and qpAdm log files begin by iterating the parameter file, showing the current version of the program,
listing left and right populations in the given order:

THE INPUT PARAMETERS
##PARAMETER NAME: VALUE
genotypename: /home/choongwon/qpAdm/popgen_qpAdm_test_190120.geno
snpname: /home/choongwon/qpAdm/popgen_qpAdm_test_190120.snp
indivname: /home/choongwon/qpAdm/popgen_qpAdm_test_190120.ind
popleft: /home/choongwon/qpAdm/left1.pops
popright: /home/choongwon/qpAdm/right.pops
details: YES
maxrank: 7
qpWave version: 410

left pops:
Yamnaya_Samara
LBK_EN

right pops:
Mbuti
Natufian
...

The next block of the log file shows quantity of data used in the analysis:

0 Yamnaya_Samara 9
1 LBK_EN 6
2 Mbuti 10
3 Natufian 6
4 Onge 11
5 Iran_N 5
6 Villabruna 1
7 Mixe 10
8 Ami 10
9 Nganasan 33

10 Itelmen 6
jackknife block size: 0.050
snps: 593124 indivs: 107
number of blocks for block jackknife: 711
dof (jackknife): 612.975
...

Exercise

How many SNPs are used in the analysis according to the test1 log file?

The next block contains the actual test results for qpWave. Because we have two left populations in test1 setting
(Yamnaya_Samara and LBK_EN) and 9 right populations, qpWave operates on 8-by-1 f4 matrix. Therefore, the
maximum rank of the matrix is 1 (i.e. two left populations are differentially related to the outgroups). Rank 0 here
means that the f4 matrix is indistinguishable from a zero vector (i.e. two left populations are symetrically related to all
outgroups listed).:

32 Chapter 5. Admixture modelling with qpWave and qpAdm

CompPopGenWorkshop2019 Documentation

f4rank: 0 dof: 8 chisq: 609.975 tail: 1.67697608e-126 dofdiff: 0
→˓chisqdiff: 0.000 taildiff: 1
f4rank: 1 dof: 0 chisq: 0.000 tail: 1 dofdiff: 8
→˓chisqdiff: 609.975 taildiff: 1.67697608e-126

This block contains multiple sub-blocks, showing results from rank zero to min(maximum rank, maxrank value in the
parfile). You can see the structure better with test2 log file, where you have three left populations and thus maximum
rank value two:

f4rank: 0 dof: 16 chisq: 690.774 tail: 1.18836874e-136 dofdiff: 0
→˓chisqdiff: 0.000 taildiff: 1
f4rank: 1 dof: 7 chisq: 31.660 tail: 4.69503474e-05 dofdiff: 9
→˓chisqdiff: 659.114 taildiff: 4.23672911e-136
f4rank: 2 dof: 0 chisq: 0.000 tail: 1 dofdiff: 7
→˓chisqdiff: 31.660 taildiff: 4.69503474e-05

Each line contains results for a certain rank value (“f4rank: r-val”). For each rank, it returns results for two different tests.

1) A comparison of the rank “r-val” model and the “full” model (i.e. rank = maxrank): dof/chisq/tail

2) A comparison of the rank “r-val” model and the rank “r-val - 1” model: dofdiff/chisqdiff/taildiff

The “full” model provides a perfect fit to data because one free parameter is assigned to each entry of the f4 matrix.
Small p-value (<< 0.05) for the “tail:” cell means that the reduced rank model under consideration fits data substantially
worse than the full model. That means, you need higher rank to properly explain data. Again, that means that you
need more streams of independent ancestry to explain the left populations!

To obtain the minumum number of distinct ancestries required, it is often convenient to go over the “taildiff: ” cell
from higher to lower ranks. If the presented p-value is significant (i.e. < 0.05), it means that the current rank fits data
significantly better than the simpler model with rank-1.

Exercise

How many streams of distinct ancestries are required to explain left1 and left2 population sets? What would that mean
for the left2 populations, given that our goal is to check if Corded Ware individuals from Germany can be modeled as
a mixture of Yamnaya and LBK?

Exercise

Let’s make another list of left populations, this time including WHG as an additional population. Then, let’s run
qpWave on this list of four left populations. What is the rank of the f4 matrix?

Last, each non-zero rank model is followed by the estimates of A and B matrices. In case of left2 populations and rank
2,:

B:
scale 1.000 1.000

Natufian -1.270 0.487
Onge 0.547 -0.560

Iran_N 0.343 -0.517
Villabruna 0.652 2.647

Mixe 1.570 -0.158
Ami 0.613 0.046

Nganasan 1.032 0.077

(continues on next page)

5.6. Reading the qpWave log file 33

CompPopGenWorkshop2019 Documentation

(continued from previous page)

Itelmen 1.279 -0.379
A:

scale 906.839 3447.047
Yamnaya_Samara 0.296 -1.383

LBK_EN -1.383 -0.296

The product of A and B matrices is the expected f4 matrix. Based on this number, you can have a good idea on which
right populations are useful to distinguish between left populations.

5.7 Reading the qpAdm log file

qpWave and qpAdm are essentially the same program. You can see this in the first part of the qpAdm log file, which
simply repeats the corresponding qpWave results. The first block of the log file shows qpWave test results for the full
rank and (full rank - 1), including degree of freedom, chi-square value, p-value, and A/B matrices.

The next block shows the main results of qpAdm: admixture coefficient estimates and standard errors:

best coefficients: 0.765 0.235
Jackknife mean: 0.764524556 0.235475444

std. errors: 0.034 0.034

error covariance (* 1000000)
1133 -1133

-1133 1133

In the case of two-way admixture model, admixture coefficients are perfectly correlated. That is, if the coefficient for
the reference 1 is alpha, that for the reference two is (1 - alpha).

The next block presents model fit measures (i.e. p-values) for the proposed admixture model and all “submodels” of
it:

fixed pat wt dof chisq tail prob
00 0 7 31.536 4.95055e-05 0.765 0.235
01 1 8 75.490 3.93452e-13 1.000 -0.000
10 1 8 389.320 0 0.000 1.000

best pat: 00 4.95055e-05 - -
best pat: 01 3.93452e-13 chi(nested): 43.954 p-value for nested
→˓model: 3.36113e-11

“tail prob” cell shows the comparison of the proposed admixture model (i.e. maxrank - 1) and the full model (i.e.
maxrank). If the value is small, it suggests that the target population significantly deviate from the proposed admixture
model (= a linear combination of reference populations).

“fixed pat” cell shows which (sub)model is being tested. “0” means that the corresponding reference population is
included in the model, while “1” means that the reference is fixed to have zero admixture coefficient.

Exercise

Judging from the tail prob of two submodels, “01” and “10”, which reference seems genetically closer to Corded
Ware? Does it match with the admixture coefficients of the two-way admixture model?

“p-value for the nested model” is a useful metric for exploring whether there is a small set of references that can
adequately explain the target population. Here it is provided only for the “best” submodel, but you can calculate it
easily using dof and chisq values in the table.

34 Chapter 5. Admixture modelling with qpWave and qpAdm

CompPopGenWorkshop2019 Documentation

Exercise

In R shell, let’s run the following command:

1 - pchisq(75.490-31.536, df=8-7)

What number do you get? Can you calculate nested p-value for the worse submodel “10”?

Although the above two blocks provide all of the essential results for qpAdm, the following two blocks actually
harbor quite useful information. The next “dscore” block shows which outgroup is useful to distinguish between
reference populations and which outgroup makes the model deviate from data when the model does not fit well. For
each outgroup except for the “base” outgroup (i.e. one at the top of the right population list), you get the following
sub-block:

dscore:: f_4(Base, Fit, Rbase, right2)
details: Yamnaya_Samara Natufian -0.000610 -3.188475
details: LBK_EN Natufian 0.001895 8.003780
dscore: Natufian f4: -0.000021 Z: -0.119830

The first two lines (“details”) show the actual entries of f4 matrix and Z-score, calculated by dividing the f4 by its block
jackknifing standard error value. That is, the above two lines mean:

f4(Corded_Ware_Germany, Yamnaya_Samara; Mbuti, Natufian)
f4(Corded_Ware_Germany, LBK_EN ; Mbuti, Natufian)

The last “dscore” line makes a linear combination of the above lines, using the admixture coefficient estimates:

f4(CW, Model; Mbu, Nat) = 0.765 * f4(CW, Yam; Mbu, Nat) + 0.235 * f4(CW, LBK; Mbu,
→˓Nat)
-0.0000213 = -0.000610 * 0.765 + 0.001895 * 0.235

If you are testing a three-way model, you get:

dscore:: f_4(Base, Fit, Rbase, right2)
details: Yamnaya_Samara Natufian -0.000630 -3.182212
details: LBK_EN Natufian 0.001961 8.018318
details: WHG Natufian 0.000319 1.297454
dscore: Natufian f4: -0.000045 Z: -0.255258

Exercise

Let’s recover the “dscore” value by taking a linear combination of the above three numbers.

The last block is a linear combination of “dscore” rows to obtain the contrast between two non-base outgroups (in
z-score scale). For example, if you want to obtain f4(Corded Ware, Model; Natufian, Onge):

f4(CW, Model; Nat, Ong) = f4(CW, Model; Mbu, Ong) - f4(CW, Model; Mbu, Nat)

You now know how to run *qpWave*/*qpAdm* and how to interpret results!

5.7. Reading the qpAdm log file 35

CompPopGenWorkshop2019 Documentation

36 Chapter 5. Admixture modelling with qpWave and qpAdm

CHAPTER 6

Estimating Admixture times with Alder

6.1 Overview

Admixture between two distinct gene pools generate an linkage disequilibrium (LD) that extends even megabases
across genomes. This “admixture LD” extends far longer than the typical LD in non-recently-admixed human popu-
lations, which often decays within few tends of kilobases. Once formed, admixture LD decays, like the typical LD,
over time due to recombination. Therefore, a relationship between the strength of LD the distance between markers
provides a powerful window to look into the temporal aspect of admixture. Such a feature is by definition not visible
by F-statistics, which does not consider LD.

The demographic admixture process is far more complicated than any simple model can fully capture, but even a
surprisingly simple model can provides a useful insight into the characteristics of the admixture process. Here we
explore the alder program that is based on the simplest possible model: a single pulse-like admixture.

6.2 Data

In this session, we will use a small EIGENSTRAT format genotype data, including the following populations:

/data/alder/popgen_alder_test_190120.geno
/data/alder/popgen_alder_test_190120.ind
/data/alder/popgen_alder_test_190120.snp

Exercise

How many individuals are in the data set? How many groups? Could you count the number of individuals in each
population?

37

CompPopGenWorkshop2019 Documentation

6.3 Preparing the parameter file

We will use alder v1.03 in this session. Parameter file for alder takes a format similar to that for the programs in the
ADMIXTOOLS package.:

genotypename: <your_genotype_data>.geno
snpname: <your_genotype_data>.snp
indivname: <your_genotype_data>.ind
admixpop: TARGET
refpops: REF1;REF2
raw_outname: <output>.txt

The “admixpop” argument is for the name of your target population. The name should match with the group ID in the
3rd column of .ind file.

The “refpops” argument is for a list of reference populations for testing admixture in the target. The standard setting
is to provide two populatuions (semicolon separated). You can provide more than two (also semicolon separated). In
that case, all pairs of references will be run one by one. You can also provide only a single reference population: alder
will run only the so-called “1-reference” model. This will still provide you with an estimate of admixture date in case
that you do not have a good proxy for the contributing ancestry. However, “1-ref” mode is prone to false positives and
does not provide a proper test of admixture signal.

Two important optional parameters are mindis: NUMBER and jackknife: YES. The “mindis” option sets
up the minimum distance (in Morgan) between two SNP bins that you want to include in exponential curve fitting. If
not set up, alder calculate a correlation of LD decay between the target and each reference population and take the
minimum distance that shows no correlation in both references. If it continues beyond 2 cM (due to either a strong
bottleneck or admixture in a reference), the program aborts. jackknife: YES is to output 22 additional weighted
LD files, each representing a leave-one-chromosome-out jackknifing results. It is useful if you want to do exponential
fitting on your side.

Let’s write two parameter files, one without mindis argument, and the other including mindis: 0.005. For both
tests, we use Uygur as the target and Daur and Georgian as references.:

pt1=($(pwd)"/")
fn1="/data/alder/popgen_alder_test_190120"
target="Uygur"
refs="Daur;Georgian"

for i in $(seq 1 2); do
echo 'genotypename: '${fn1}'.geno' > test${i}.par
echo 'snpname: '${fn1}'.snp' >> test${i}.par
echo 'indivname: '${fn1}'.ind' >> test${i}.par
echo 'admixpop: '${target} >> test${i}.par
echo 'refpops: '${refs} >> test${i}.par
echo 'raw_outname: '${pt1}'alder.test'${i}'.raw.txt' >> test${i}.par
if ["$i" -eq 2]; then echo 'mindis: 0.005' >> test${i}.par; fi

done

6.4 Running the programs

Running command line is similar to the other programs (e.g. qpDstat or smartpca). Let’s run the following two
tests:

alder -p test1.par > test1.log
alder -p test2.par > test2.log

38 Chapter 6. Estimating Admixture times with Alder

CompPopGenWorkshop2019 Documentation

If you want to see the log file being written in real time, you can try pipe + tee command instead of re-direction:

alder -p test1.par | tee test1.log
alder -p test2.par | tee test2.log

Note: Running alder with this small dataset takes a few minutes, using a single core. Multithreading is also
available.

6.5 Reading the main output file (weighted LD table)

The main output file, the name of which is designated by the “raw_outname:” argument, looks like below:

d (cM) weighted LD bin count
0.050 0.00153525 7478597
0.100 0.00073147 6079776
0.150 0.00049288 5940521
0.200 0.00038920 5914194
...
0.600 0.00023054 5700318
0.650 0.00022210 5702649

0.700 0.00020821 5687007
0.750 0.00020796 5670508

...
49.900 -0.00000575 3938767
49.950 -0.00000674 3910622

inf 0.00000416 -1089862760
last row: affine term computed from pairs of SNPs on different chroms

Exercise

What do you think would “#” at the beginning of some rows mean?

6.6 Reading the log file

The first block of the log file repeats the parameter settings and input files. There are a few default settings that are
good to know:

Data filtering:
mincount: 4

Curve fitting:
binsize: 0.000500
mindis: auto
maxdis: 0.500000

Computational options:
num_threads: 1

Alder calculates LD between a pair of SNPs across individuals. The “mincount:” argument dictates the minimum
number of individuals that you have genotype data for both SNPs. For computational efficiency, alder first split

6.5. Reading the main output file (weighted LD table) 39

CompPopGenWorkshop2019 Documentation

genome into small non-overlapping bins and use the distance between two bins for all pairs of SNPs between the
two. The “binsize” argument dictates the size of these bins. “First-bin-then-measure-distance” approach of alder
produces bigger variance of actual distance between pairs of SNPs in the same bin than “first-measure-distance-
then-bin” approach of rolloff, but it is computationally much faster. You can also multithreads alder by setting the
“num_threads:” argument.

If you did not set up the “mindis:” argument, the next block describes the minimum distance between bins that alder
found:

Checking LD correlation of test pop Uygur with ref pop Georgian
binsize: 0.1 cM
(distances are rounded down to bins; bin starting at 0 is skipped)

d (cM) LD corr (scaled) bin count
0.100 0.119 +/- 0.007 186942
0.200 0.034 +/- 0.010 364453
0.300 0.012 +/- 0.004 5760262
0.400 0.018 +/- 0.006 2861516
0.500 0.005 +/- 0.004 11396910 losing significance (1)
0.600 0.006 +/- 0.005 11395248 losing significance (2)

lost significance; computing bias-corrected LD corr polyache
0.600 0.216 +/- 0.186 <-- approx bias-corrected LD corr

Decay curves will be fit starting at the folliowing min distances (cM):
(to override, specify the 'mindis' parameter)

Daur 0.700
Georgian 0.600

The program will use 0.7 cM for the minimum distance between bins (inclusive) to fit exponential decay.

The next block describes the main results of alder: exponential fit of weighted LD decay using two references:

---- fit on data from 0.50 to 50.00 cM (using inter-chrom affine term) ----
d>0.50 decay: 19.94 +/- 1.96 z = 10.16 *
d>0.50 amp_tot: 0.00021347 +/- 0.00001428
d>0.50 amp_exp: 0.00021139 +/- 0.00001462 z = 14.46 *
d>0.50 amp_aff: 0.00000416 +/- 0.00000174

---- fit on data from 0.60 to 50.00 cM (using inter-chrom affine term) ----
d>0.60 decay: 19.32 +/- 1.98 z = 9.77 *
d>0.60 amp_tot: 0.00020732 +/- 0.00001400
d>0.60 amp_exp: 0.00020524 +/- 0.00001434 z = 14.31 *
d>0.60 amp_aff: 0.00000416 +/- 0.00000174

---- fit on data from 0.70 to 50.00 cM (using inter-chrom affine term) ----
d>0.70 decay: 18.82 +/- 1.97 z = 9.58 *
d>0.70 amp_tot: 0.00020218 +/- 0.00001398
d>0.70 amp_exp: 0.00020010 +/- 0.00001431 z = 13.98 *
d>0.70 amp_aff: 0.00000416 +/- 0.00000174

---- fit on data from 0.80 to 50.00 cM (using inter-chrom affine term) ----
d>0.80 decay: 18.45 +/- 1.98 z = 9.30 *
d>0.80 amp_tot: 0.00019840 +/- 0.00001406
d>0.80 amp_exp: 0.00019632 +/- 0.00001438 z = 13.66 *
d>0.80 amp_aff: 0.00000416 +/- 0.00000174

---- fit on data from 0.90 to 50.00 cM (using inter-chrom affine term) ----

(continues on next page)

40 Chapter 6. Estimating Admixture times with Alder

CompPopGenWorkshop2019 Documentation

(continued from previous page)

d>0.90 decay: 17.97 +/- 2.11 z = 8.52 *
d>0.90 amp_tot: 0.00019337 +/- 0.00001429
d>0.90 amp_exp: 0.00019129 +/- 0.00001465 z = 13.06 *
d>0.90 amp_aff: 0.00000416 +/- 0.00000174

This block shows estimates using the above-found minimum distance (0.7 cM), as well as values around it (0.2 cM
range). The most important number is “decay:”, which shows the estimate for admixture date and its block jackknifing
standard error. It corresponds to the “n” parameter in the following exponential curve formula:

.. math::

E[Y] = M times e^-nd + K

Exercise

In which unit is the decay parameter estimate? Let’s convert it to the unit of years.

Another important estimate is “amp_exp:”, which corresponds to the “M” parameter in the above formula. Naively
speaking, it becomes bigger when your choice of references matches the true sources better.

Exercise

What will the “d” parameter represent? In which unit will it be then?

Exercise

Check the log file of “test2” run, for which we provided “mindis: 0.005” argument. Do you see the difference in the
results on this block? Combining the results from the two runs, do you see any trend in the decay parameter estimates
over the minimum distance values?

Then, alder repeats fitting with the “1-ref” models. In these runs, alder uses one of the two references and the target
itself to set up weight.

The last block summarizes test results. The last lines will tell repeat the most important estimates and tell you whether
alder considers the test of admixture as either successful or failed.:

Test SUCCEEDS (z=9.58, p=1e-21) for Uygur with {Daur, Georgian} weights

DATA: success (warning: decay rates inconsistent) 1e-21 Uygur Daur
→˓Georgian 9.58 6.34 8.57 28% 18.82 +/- 1.97 0.00020010 +/- 0.
→˓00001431 16.22 +/- 2.56 0.00004300 +/- 0.00000456 21.55 +/- 2.52 0.
→˓00005970 +/- 0.00000650

DATA: test status p-value test pop ref A ref B 2-ref z-score 1-ref
→˓z-score A 1-ref z-score B max decay diff % 2-ref decay 2-ref amp_exp
→˓ 1-ref decay A 1-ref amp_exp A 1-ref decay B 1-ref amp_exp B

Exercise

Let’s set up new parameter files that use Daur and French as two references (instead of Georgian). Then run alder and
compare the results with the current runs.

6.6. Reading the log file 41

CompPopGenWorkshop2019 Documentation

6.7 Plotting weighted LD decay curve in R

For an easy plotting in R, let’s re-format the main output file (the LD table) using the follwoing bash commands:

for i in $(seq 1 2); do
echo -e 'Dist\tweightedLD\tnpairs\tuse' > alder.test${i}.txt
head -n -2 alder.test${i}.raw.txt | tail -n +2 | awk '{OFS="\t"} {if ($1 == "#")

→˓print $2,$3,$4,"N"; else print $1,$2,$3,"Y"}' >> alder.test${i}.txt
done

This is to make it into a proper table format and remove irregular lines (the last two).

In R, you can import this file, create a scatter plot, and add the fitted curve based on the estimates in the log file. For
example, let’s use “test1” results:

fn1 = "alder.test1.txt"

n = 18.82 ## decay parameter
M = 0.00020524 ## amp_exp
K = 0.00000416 ## amp_aff

d1 = read.table(fn1, header=T)
xv = as.vector(d1$Dist) ## distance between SNP bins (cM)
yv = as.vector(d1$weightedLD) ## Weighted LD
fv = as.vector(d1$use) == "Y" ## a boolean vector marking if each bin is used in
→˓fitting
prdv = M * exp(-1 * n * xv / 100) + K

plot(xv[fv], yv[fv], xlab="Genetic distance (cM)", ylab = "weighted LD", pch=4, col=
→˓"blue")
points(xv[fv], prdv[fv], type="l", lwd=1.5, col="red")

Exercise

How does the exponential decay curve look? Does it seem to fit data well?

Slides for this lesson are available here.

42 Chapter 6. Estimating Admixture times with Alder

CHAPTER 7

Estimating Admixture Graphs with qpGraph

Based on previous analyses we can try to reconstruct a model that includes the described observations in an admixture
graph, which combines in an unique model the relationships between multiple groups that can be single individuals
or larger populations. For that we are going to use qpGraph (also known as “ADMIXTUREGRAPH”) part of the
package ADMIXTOOLS (Patterson et al. 2012. _qpGraph_ relies on an user-defined topology of the admixture graph
and calculates the best-fitting admixture proportions and branch lengths based on the observed f-statistics.

7.1 Overview method

The general approach of an admixture graph is to reconstruct the genetic relationships between different groups
through a phylogenetic tree allowing for the addition of admixture events. The method operates on a defined graph’s
topology and estimates f2, f3, and f4-statistic values for all pairs, triples, and quadruples of groups, compared to the
expected allele frequency correlation of the tested groups. For a given topology, qpGraph provides branch lengths
(in units of genetic drift) and mixture proportions. Groups that share a more recent common ancestor will covary more
than others in their allele frequencies due to common genetic drift. We should keep in mind that the model is based on
an unrooted tree and that while we show graphs with a selected outgroup as the root, the results should not depend on
the root position.

Note: The reconstructed graph is never meant to reflect a comprehensive population history of the region under study
but the best fitted model to the limit of the available groups and method’s resolution.

As reported in the Method section of Lipson and Reich 2017:

“Our usual strategy for building a model in ADMIXTUREGRAPH is to start with a small, well-
understood subgraph and then add populations (either unadmixed or admixed) one at a time in their
best-fitting positions. This involves trying different branch points for the new population and comparing
the results. If a population is unadmixed, then if it is placed in the wrong position, the fit of the model will
be poorer, and the inferred split point will move as far as it can in the correct direction, constrained only
by the specified topology. Thus, searching over possible branching orders allows us to find a (locally)
optimal topology. If no placement provides a good fit (in the sense that the residual errors are large), then
we infer the presence of an admixture event, in which case we test for the best-fitting split points of the

43

http://www.genetics.org/content/192/3/1065.short
https://academic.oup.com/mbe/article/34/4/889/2838774

CompPopGenWorkshop2019 Documentation

two ancestry components. After a new population is added, the topology relating the existing populations
can change, so we examine the full model fit and any inferred zero-length internal branches for possible
local optimizations.”

7.2 Data

For this session, we are going to use modern and ancient DNA data analysed in the recently published study about the
settlement of the Americas Posth et al. 2018.

The genotype data is in “EIGENSTRAT” format and exclude from the “1240K panel” a subset of SNPs that are transi-
tions in CpG sites. Those Cytosines are prone to be methylated and if deamination (the typical chemical modification
of ancient DNA) occurs at the same position Cytosine is directly converted into Thymine without becoming Uracil.
Thus, the resulting CtoT modification cannot be removed with an enzymatic reaction like performing uracil-DNA gly-
cosylase (UDG) treatment. This results in additional noise in ancient DNA data that can be reduced by excluding those
SNPs. This is especially relevant when analysing ancient samples that have been processed using different laboratory
protocols.

The path to the data we are going to work on is the following:

/data/qpGraph/Posth2018_Americas.packedancestrymapgeno
/data/qpGraph/Posth2018_Americas.ind
/data/qpGraph/Posth2018_Americas.snp

Exercise

Check how many SNPs are in this dataset.

7.3 Preparing the parameter file

In order to run qpGraph we need to prepare a parameter file that we can call “parQpgraph” and where we change
“filename” with the names above:

DIR: /data/qpGraph
genotypename: DIR/<filename>.packedancestrymapgeno
snpname: DIR/<filename>.snp
indivname: DIR/<filename>.ind
outpop: NULL
useallsnps: YES
blgsize: 0.05
forcezmode: YES
lsqmode: YES
diag: .0001
bigiter: 6
hires: YES
lambdascale: 1

Let’s go through the most relevant parameter options. outpop: NULL does not use an outgroup population
to normalize f-stats by heterozygosity e.g. selecting a group in the graph in which SNPs must be polymorphic.
useallsnps: YES each comparison uses all SNPs overlapping in that specific test, otherwise the program looks
only at the overlapping SNPs between all groups. blgsize: 0.05 is the block size in Morgans for Jackknife.
diag: .0001 uses the entire matrix form of the objective function to avoid the basis dependence of the least-
squares version of the computation. lambdascale: 1 in order to preserve the standard scaling of the f-statistics

44 Chapter 7. Estimating Admixture Graphs with qpGraph

https://www.sciencedirect.com/science/article/pii/S0092867418313801

CompPopGenWorkshop2019 Documentation

without an extra denominator. lsqmode: YES otherwise unstable for large graphs. hires: YES controls
output when more decimals are desired.

7.4 Preparing the graph topology

We start by constructing a scaffold graph based on previously published studies (Lipson and Reich 2017, Moreno-
Mayar et al. 2018 and Scheib et al. 2018). The following can be saved in a file called “Figure3a”:

root R
label Mbuti.DG Mbuti.DG
label Han.DG Han.DG
label Onge.DG Onge.DG
label MA1 MA1
label USR1 USR1
label USA_SanNicolas_4900BP USA_SanNicolas_4900BP
label Canada_Lucier_4800BP_500BP Canada_Lucier_4800BP_500BP

edge a R Mbuti.DG
edge b R nonAfrica
edge c1 nonAfrica EastEurasia
edge c2 EastEurasia EastAsia
edge c3 EastEurasia Onge.DG
edge c4 EastAsia EastAsia2
edge c5 EastAsia EastAsia3
edge c6 EastAsia2 Han.DG
edge c7 EastAsia2 EastAsia4
edge c8 nonAfrica WestEurasia
edge c9 WestEurasia E_HG2
edge c10 WestEurasia E_HG3
admix ANE E_HG2 EastAsia3
edge c11 ANE MA1
admix FA EastAsia4 E_HG3
edge c12 FA Beringia
edge c13 Beringia USR1
edge c14 Beringia NA
edge c15 NA Canada_Lucier_4800BP_500BP
edge c16 NA NA2
edge c17 NA2 USA_SanNicolas_4900BP

7.5 Running the program

To run qpGraph we need to specify the parameter file “parQpgraph” and three output files that are .ggg , .dot and
.out:

qpGraph -p parQpgraph -g Figure3a -o Figure3a.ggg -d Figure3a.dot > Figure3a.out

Note: Running qpGraph with this dataset takes 1-2 minutes.

7.4. Preparing the graph topology 45

https://academic.oup.com/mbe/article/34/4/889/2838774

CompPopGenWorkshop2019 Documentation

7.6 Reading the output files

First let’s inspect the .out file. If we open that on the terminal with less Figure3a.out you can directly go
to the bottom of the file with shift-g sequence. Among other values we should see reported the total number of
individuals used for all groups indivs and the total number of snps available from at least one individual.

Note: as mentioned above, not all those SNPs are used for each f-statistic

outpop: NULL
population: 0 Mbuti.DG 5
population: 1 Han.DG 4
population: 2 Onge.DG 2
population: 3 MA1 1
population: 4 USR1 1
population: 5 USA_SanNicolas_4900BP 17
population: 6 Canada_Lucier_4800BP_500BP 6
before setwt numsnps: 882908 outpop: NULL
setwt numsnps: 681581
number of blocks for moving block jackknife: 713
snps: 681581 indivs: 36
lambdascale: 1.000

At the very bottom of the .out file are reported the outlier f4-statistics, which show the lowest or highest Z-scores.
Those are calculated based on the difference between the fitted and the observed f4 values. The only worst f4-statistic
identified in the model we just run is some un-modelled affinity between “USA_SanNicolas_4900BP” and “USR1”
that is anyway below 3 standard deviations:

outliers:
Fit Obs Diff

→˓Std. error Z

worst f-stat: Mbu USR USA Can 0.000000 -0.001849
→˓ -0.001849 0.000681 -2.717

We can now visualize the graph in the .dot file using the program graphviz with the following command and then
look at the resulting .png from the jupyter file browser. Dashed arrows represent admixture edges while solid arrows
drift edges reported in units of FST × 1, 000. On the very top, the worst f4-statistic is again reported:

dot -Tpng Figure3a.dot -o Figure3a.png

Finally we can have a look at the .ggg file, which provides detailed proportions for admixture edges and drift lengths
for each branch.

Note: generally it is important to not have zero-length edges because it might signify that the modelled edge does not
exist. Also terminal edges for ancient groups, especially if composed by a single individual, are artificially long and
should not be considered.

46 Chapter 7. Estimating Admixture Graphs with qpGraph

CompPopGenWorkshop2019 Documentation

7.7 Adding new groups to the scaffold graph

Once confirmed that the scaffold graph has a good fit, we carry on adding the new Central and South
American groups released in Posth et. al. 2018. To the file Figure3a add the following labels
Belize_MayahakCabPek_9300BP, PERu_Cuncaicha_9000BP, Peru_Lauricocha_8600BP
as well as the following additional edges, save it with a new name like Figure3b and run qpGraph as shown
before:

edge c18 NA2 CA
edge c19 CA Belize_MayahakCabPek_9300BP
edge c20 CA SA
edge c21 SA SA2
edge c22 SA2 PERu_Cuncaicha_9000BP
edge c23 SA2 Peru_Lauricocha_8600BP

The worst f4-statistic is -2.809 and despite in the .dot file once converted into .png there are some zero-length
branches a more careful examination of the .ggg file indicates that those edges are in fact different from zero.

7.8 Continuing to fit new groups

Now we can create a file called Figure3c where we add the last three group
labels Brazil_LapaDoSanto_9600BP, Argentina_ArroyoSeco2_7700BP,
Chile_LosRieles_5100BP. From node “SA” add an edge to form a new node called “SA3” that splits
into Brazil_LapaDoSanto_9600BP and a new node SA4. Finally “SA4” splits itself into the two Southern
Cone populations that are Argentina_ArroyoSeco2_7700BP and Chile_LosRieles_5100BP. After
running it we can visualise the resulting .dot file as a .png. That is the final graph reported in Figure 3 of Posth et
al. 2018!

7.9 Test the robustness of the graph topology

Starting from the final graph Figure3c we can try, for example, to invert Belize_MayahakCabPek_9300BP
with USA_SanNicolas_4900BP in a file called Figure3c.v2 to test for branching patterns between North
and Central American groups. For more advanced modelling we can instead invert the entire “SA3” node with
Belize_MayahakCabPek_9300BP and call the file Figure3c.v3 to test for Central-South America branching
patterns.

Exercise::

What do you observe when inspecting the respective .out files? Which of the models fit and which not? How do you
interpret that?

7.10 Adding admixture edges

We finally want to add in our working graph the oldest genome published so far from South America called
CHIle_LosRieles_10900BP. We initially try to position it as departing from each node without invoking ad-
mixture. One example is the following FigureS5a file that we can copy and run as seen before:

7.7. Adding new groups to the scaffold graph 47

https://www.sciencedirect.com/science/article/pii/S0092867418313801
https://www.sciencedirect.com/science/article/pii/S0092867418313801

CompPopGenWorkshop2019 Documentation

root R
label Mbuti.DG Mbuti.DG
label Han.DG Han.DG
label Onge.DG Onge.DG
label MA1 MA1
label USR1 USR1
label USA_SanNicolas_4900BP USA_SanNicolas_4900BP
label Canada_Lucier_4800BP_500BP Canada_Lucier_4800BP_500BP
label Belize_MayahakCabPek_9300BP Belize_MayahakCabPek_9300BP
label PERu_Cuncaicha_9000BP PERu_Cuncaicha_9000BP
label Peru_Lauricocha_8600BP Peru_Lauricocha_8600BP
label Brazil_LapaDoSanto_9600BP Brazil_LapaDoSanto_9600BP
label Argentina_ArroyoSeco2_7700BP Argentina_ArroyoSeco2_7700BP
label Chile_LosRieles_5100BP Chile_LosRieles_5100BP
label CHIle_LosRieles_10900BP CHIle_LosRieles_10900BP

edge a R Mbuti.DG
edge b R nonAfrica
edge c1 nonAfrica EastEurasia
edge c2 EastEurasia EastAsia
edge c3 EastEurasia Onge.DG
edge c4 EastAsia EastAsia2
edge c5 EastAsia EastAsia3
edge c6 EastAsia2 Han.DG
edge c7 EastAsia2 EastAsia4
edge c8 nonAfrica WestEurasia
edge c9 WestEurasia E_HG2
edge c10 WestEurasia E_HG3
admix ANE E_HG2 EastAsia3
edge c11 ANE MA1
admix FA EastAsia4 E_HG3
edge c12 FA Beringia
edge c13 Beringia USR1
edge c14 Beringia NA
edge c15 NA Canada_Lucier_4800BP_500BP
edge c16 NA NA2
edge c17 NA2 USA_SanNicolas_4900BP
edge c18 NA2 CA
edge c19 CA Belize_MayahakCabPek_9300BP
edge c20 CA SA
edge c21 SA SA2
edge c22 SA SA3
edge c23 SA2 SA6
edge c24 SA2 CHIle_LosRieles_10900BP
edge c25 SA6 PERu_Cuncaicha_9000BP
edge c26 SA6 Peru_Lauricocha_8600BP
edge c27 SA3 Brazil_LapaDoSanto_9600BP
edge c28 SA3 SA4
edge c29 SA4 Argentina_ArroyoSeco2_7700BP
edge c30 SA4 Chile_LosRieles_5100BP

At the bottom of the newly produced .out file there are several f4-statistics that have Z-scores below -3 or above 3.
The worst one is the following statistics that indicates some un-modelled affinity between the two Chilean samples
CHIle_LosRieles_10900BP and Chile_LosRieles_5100BP:

worst f-stat: Han Chi Bra CHI 0.000000 0.003372
→˓ 0.003372 0.000862 3.912

48 Chapter 7. Estimating Admixture Graphs with qpGraph

CompPopGenWorkshop2019 Documentation

We can then model a contribution from the oldest Chilean individual into the younger one. Change the last part of
FigureS5a with the following edges and one admixture event, save it as FigureS5a.v2 and run it again:

edge c24 SA2 SA7
edge c25 SA7 CHIle_LosRieles_10900BP
edge c26 SA6 PERu_Cuncaicha_9000BP
edge c27 SA6 Peru_Lauricocha_8600BP
edge c28 SA3 Brazil_LapaDoSanto_9600BP
edge c29 SA3 SA4
edge c30 SA4 Argentina_ArroyoSeco2_7700BP
edge c31 SA4 SA5
admix SA8 SA7 SA5
edge c32 SA8 Chile_LosRieles_5100BP

In the .out file we see that most of the outlier f4-statistics are gone while the worst statistic is still present but
reduced (Zscore=3.2). This suggests the presence of un-modelled affinity between the two oldest South American
groups Brazil_LapaDoSanto_9600BP and CHIle_LosRieles_10900BP, that might represent a shared
Anzick-1-related ancestry that we investigate in detail in Figure 4 and Figure 5 of Posth et al. 2018. The re-
sulting admixture graph suggests that a component from the oldest Chilean individual contributed at least marginally
to the younger individual despite being more than 5,000 years apart!

7.10. Adding admixture edges 49

https://www.sciencedirect.com/science/article/pii/S0092867418313801

CompPopGenWorkshop2019 Documentation

50 Chapter 7. Estimating Admixture Graphs with qpGraph

CHAPTER 8

MSMC

8.1 Data

All input data and intermediate files for this tutorial are at /data/msmc/.

For this lesson, we will use two trios from the 69 Genomes dataset by Complete Genomics. You will find the so called
“MasterVarBeta” files for six individuals for chromosome 1 in the cg_data subdirectory in the tutorial files. Some
information on the six samples: The first three form a father-mother-child trio from the West-African Yoruba, a people
living in Nigeria. Here, NA19240 is the offspring, and NA19238 and NA19239 are the two parents. The second three
samples form a father-mother-child trio from Utah (USA), with European ancestry. Here, NA12878 is the offspring,
and NA12891 and NA12892 are the parents.

8.2 Generating consensus sequences for each sample

We will use the masterVar-files for each of the 6 samples, and use the cgCaller.py script in the msmc-tools
repository to generate a VCF and a mask file for each individual from the masterVar file. For this, I suggest you
write a little shell script that loops over all individuals:

#!/usr/bin/env bash

MASTERVARDIR=/path/to/sequence_data
OUTDIR=/path/to/output_files
CHR=chr1
for IND in NA19238 NA19239 NA19240 NA12878 NA12891 NA12892; do

MASTERVAR=$(ls $MASTERVARDIR/masterVarBeta-$IND-*.tsv.chr1.bz2)
OUT_MASK=$OUTDIR/$IND.$CHR.mask.bed.gz
OUT_VCF=$OUTDIR/$IND.$CHR.vcf.gz
cgCaller.py $CHR $IND $OUT_MASK $MASTERVAR | gzip -c > $OUT_VCF

done

Here, we restrict analysis only on chromosome 1 (which is called chr1 in the Complete Genomics data sets). Nor-
mally, you would also loop over chromosomes 1-22 in this script.

51

CompPopGenWorkshop2019 Documentation

The line MASTERVAR=$(ls ...) uses bash command substitution to look for the masterVar file and store the
result in the variable $MASTERVAR.

Copy the code above into a shell script, named for example runCGcaller.sh, adjust the paths, make it executable
via chmod u+x runCGcaller.sh and run it. You should see log messages indicating the currently processed
position in the chromosome. Chromosome 1 has about 250 million sites, so you can estimate the waiting time.

When finished (should take 10-20 minutes for all 6 samples), you should now have one *.mask.bed.gz and one
*.vcf.gz file for each individual.

8.3 Combining samples

Some explanation on the generated files: The VCF file in each sample contains all sites at which at least one of the
two chromosomes differs from the reference genome. Here is a sample:

##fileformat=VCFv4.1
##FORMAT=<ID=GT,Number=1,Type=String,Description="Phased Genotype">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA19238
chr1 38232 . A G . PASS . GT 1/1
chr1 41981 . A G . PASS . GT 1/1
chr1 47108 . G C . PASS . GT 1/0
chr1 47292 . T G . PASS . GT 1/0
chr1 49272 . G A . PASS . GT 1/1
chr1 51673 . T C . PASS . GT 1/0
chr1 52058 . G C . PASS . GT 1/0

This alone would not be enough information. MSMC is a Hidden Markov Model which uses the density of heterozy-
gous sites (1/0 genotypes) to estimate the time to the most recent common ancestor. However, for a density you need
not only a numerator but also a denominator, which in this case is the number of non-heterozygous sites, so typically
homozygous reference alleles. Those are not part of this VCF file, for efficiency reasons. That’s why we have a
Mask-file for each sample, that gives information in which regions in the genome could be called. Regions with not
enough coverage or too low quality will be excluded. The first lines of such a mask look like this:

chr1 11093 11101
chr1 11137 11154
chr1 11203 11235
chr1 11276 11288
chr1 11319 11371
chr1 11378 11387
chr1 11437 11453
chr1 11481 11504
chr1 11511 11527
chr1 11568 11637

which gives a very detailed view on which regions could be called (2nd and 3rd column are begin and end).

There is one more mask that we need, which is the mappability mask. This mask defines regions in the reference
genome in which we trust the mapping to be of high quality because the reference sequence is unique in that area. The
mappability mask for chromosome 1 for the human reference GRCh37 is included in the Tutorial files. For all other
chromosomes, this README includes a link to download them, but we won’t need them in this tutorial.

For generating the input files for MSMC, we will use a script called generate_multihetsep.py, which merges
VCF and mask files together, and also performs simple trio-phasing. I will first show a command line that generates
and MSMC input file for a single diploid sample NA12878:

52 Chapter 8. MSMC

https://github.com/stschiff/msmc-tools/blob/master/README.md

CompPopGenWorkshop2019 Documentation

#!/usr/bin/env bash

INDIR=/path/to/VCF/and/mask/files
OUTDIR=/path/to/output_files
MAPDIR=/path/to/mappability/mask
generate_multihetsep.py --chr 1 --mask $INDIR/NA12878.mask.bed.gz \

--mask $MAPDIR/hs37d5_chr1.mask.bed $INDIR/NA12878.vcf.gz > $OUTDIR/NA12878.chr1.
→˓multihetsep.txt

Here we have added the mask and VCF file of the NA12878 sample, and the mappability mask. I suggest you don’t
actually run this because we won’t need this single-sample processing.

To process these two trios, we will use the two offspring samples only to phase the four parental chromosomes. You
can do this with the trio option:

#!/usr/bin/env bash

INDIR=/path/to/VCF/and/mask/files
OUTDIR=/path/to/output_files
MAPDIR=/path/to/mappability/mask
generate_multihetsep.py --chr 1 \

--mask $INDIR/NA12878.chr1.mask.bed.gz --mask $INDIR/NA12891.chr1.mask.bed.gz --
→˓mask $INDIR/NA12892.chr1.mask.bed.gz \

--mask $INDIR/NA19240.chr1.mask.bed.gz --mask $INDIR/NA19238.chr1.mask.bed.gz --
→˓mask $INDIR/NA19239.chr1.mask.bed.gz \

--mask $MAPDIR/hs37d5_chr1.mask.bed --trio 0,1,2 --trio 3,4,5 \
$INDIR/NA12878.chr1.vcf.gz $INDIR/NA12891.chr1.vcf.gz $INDIR/NA12892.chr1.vcf.gz \
$INDIR/NA19240.chr1.vcf.gz $INDIR/NA19238.chr1.vcf.gz $INDIR/NA19239.chr1.vcf.gz \
> $OUTDIR/EUR_AFR.chr1.multihetsep.txt

Here we have first input all 6 calling masks, plus one mappability mask, then the two trio specifications (see ~/
msmc-tools/generate_multihetsep.py -h for details), and then the 6 VCF files.

The first lines of the resulting “multihetsep” file should look like this:

1 68306 44 TTTCTCCT,TTTCCTTC
1 68316 10 CCCTTCCT,CCCTCTTC
1 87563 13 CCTTTTTT
1 570089 259 TTTTCCCC
1 752566 1058 AAAAAGAA
1 752721 83 GGGGGAGA
1 756781 596 GGGGGGGA
1 756912 113 AGAAAAAA
1 757103 26 CCCCCCCT
1 757734 84 TTTTTCTT

This is the input file for MSMC. The first two columns denote chromosome and position of a segregating site within
the samples. The fourth column contains the 8 alleles in the 8 parental haplotypes of the four parents we put in.
When there are multiple patterns separated by a comma, it means that phasing information is ambiguous, so there are
multiple possible phasings. This can happen if all three members of a trio are heterozygous, which makes it impossible
to separate the paternal and maternal allele.

The third column is special and I get a lot of questions about that column, so let me explain it as clearly as possible:
The third column contains the number of called sites since the previous segregating site, including the current site. So
for example, in the first row above, the first segregating site is at position 68306, but not all 68306 sites up to that site
were called homozygous reference, but only 44. This is very important for MSMC, because it would otherwise assume
that there was a huge homozygous segment spanning from 1 through 68306. Note that the very definition given above
also means that the third column is always greater or equal to 1 (which is actually enforced by MSMC)!

8.3. Combining samples 53

CompPopGenWorkshop2019 Documentation

8.4 Running MSMC2 for estimating the effective population size

MSMC’s purpose is to estimate coalescence rates between haplotypes through time. This can then be interpreted for
example as the inverse effective population size through time. If the coalescence rate is estimated between subpopu-
lations, another interpretation would be how separated the two populations became through time. In this tutorial, we
will use both interpretations.

As a first step, we will use MSMC2 to estimate coalescence rates within the four African haplotypes alone, and within
the four European haplotypes alone. Here is a short script running both these cases:

#!/usr/bin/env bash

INPUTDIR=/path/to/multihetsep/files
OUTDIR=/path/to/output/dir

msmc2 -p 1*2+15*1+1*2 -o $OUTDIR/EUR.msmc2 -I 0,1,2,3 $INPUTDIR/EUR_AFR.chr1.
→˓multihetsep.txt
msmc2 -p 1*2+15*1+1*2 -o $OUTDIR/AFR.msmc2 -I 4,5,6,7 $INPUTDIR/EUR_AFR.chr1.
→˓multihetsep.txt

Let’s go through the parameters one by one. The -p 1*2+15*1+1*2 option defines the time segment patterning.
By default, MSMC uses 32 time segments, grouped as 1*2+25*1+1*2+1*3, which means that the first 2 segments
are joined (forcing the coalescence rate to be the same in both segments), then 25 segments each with their own rate,
and then again two groups of 2 and 3, respectively. MSMC2 run time and memory usage scales quadratically with the
number of time segments. Here, since we are only analysing a single chromosome, you should reduce the number of
segments to avoid overfitting. That’s why I set 18 segments, with two groups in the front and back. Grouping helps
avoiding overfitting, as it reduces the number of free parameters.

The -o option denotes an output prefix. The three files generated by msmc will be called like this prefix with endings
.final.txt, .loop.txt and .log.

The -I option denotes the 0-based indices of the haplotypes analysed. In our case we have 8 haplotypes, the first four
being of European ancestry, the latter of African ancestry. In the first run we estimate coalescence rates within the
European chromosomes (indices 0,1,2,3), and in the second case within the African chromosomes (indices 4,5,6,7).
The last argument to msmc2 is the multihetsep file. Normally you would run it on all 22 chromosomes, and in that
case you would simply give all those 22 files in a row.

On one processors, each of those runs will take about one hour, so that’s too long to actually run it, but you should at
least test whether it starts alright and then kill the job using CTRL-C. The output files of the runs are available in the
tutorial files.

8.5 Estimating population separation history

Above we have run MSMC on each population individually. In order to better understand when and how the two
ancestral populations separated, we will use MSMC to estimate the coalescence rate across populations. Here is a
script for this run:

#!/usr/bin/env bash

INPUTDIR=/path/to/multihetsep/files
OUTDIR=/path/to/output/dir

msmc2 -I 0-4,0-5,1-4,1-5 -s -p 1*2+15*1+1*2 -o $OUTDIR/AFR_EUR.msmc2 $INPUTDIR/EUR_
→˓AFR.chr1.multihetsep.txt

54 Chapter 8. MSMC

CompPopGenWorkshop2019 Documentation

Here, I am running on all pairs between the first two parental chromosomes in each subpopulation, so -I 0-4,0-5,
1-4,1-5. If you wanted to analyse all eight haplotypes (will take consiberably longer), you would have had to type
-I 0-4,0-5,0-6,0-7,1-4,1-5,1-6,1-7,2-4,2-5,2-6,2-7,3-4,3-5,3-6,3-7.

The -s flag tells MSMC to skip sites with ambiguous phasing. As a rule of thumb: For population size estimates, we
have found that unphased sites are not so much of a problem, but for cross-population analysis we typically remove
those.

8.6 Plotting in Python

For plotting in python, we first need to import the pandas library via:

import pandas as pd

The result files from MSMC2 look like this:

time_index left_time_boundary right_time_boundary lambda
0 0 2.61132e-06 2.93162
1 2.61132e-06 6.42208e-06 3043.06
2 6.42208e-06 1.19832e-05 3000.32
3 1.19832e-05 2.00987e-05 8353.98
4 2.00987e-05 3.19418e-05 12250.1
5 3.19418e-05 4.92247e-05 8982.41
...

Here, the first column denotes a simple index of all time segments, the second and third indicate the scaled start and
end time for each time interval. The last column contains the scaled coalescence rate estimate in that interval.

Let’s first plot the effective population sizes with the following python code:

mu = 1.25e-8
gen = 30
afrDat = pd.read_csv("/path/to/AFR.msmc2.final.txt", delim_whitespace=True)
eurDat = pd.read_csv("/path/to/EUR.msmc2.final.txt", delim_whitespace=True)
plt.step(afrDat["left_time_boundary"]/mu*gen, (1/afrDat["lambda"])/(2*mu), label="AFR
→˓")
plt.step(eurDat["left_time_boundary"]/mu*gen, (1/eurDat["lambda"])/(2*mu), label="EUR
→˓")
plt.ylim(0,40000)
plt.xlabel("years ago");
plt.ylabel("effective population size");
plt.gca().set_xscale('log')
plt.legend()

Obviously, you have to adjust the path to the final result files under /data/msmc. The code produces this plot:

8.6. Plotting in Python 55

https://pandas.pydata.org

CompPopGenWorkshop2019 Documentation

You can see that both ancestral population had similar effective population sizes before 200,000 years ago, after which
the European ancestors experienced a severe population bottleneck. Of course, this is relatively low resolution because
we are only analysing one chromosome, but the basic signal is already visible. Note that here we have scaled times
and rates using a generation time of 30 years and a mutation rate of 1.25e-8, which are the same values as used in the
initial publication on MSMC

For the cross-population results, we would like to plot the coalescence rate across populations relative to the values
within the populations. However, since we have obtained these three rates independently, we have allowed MSMC2
to choose different time interval boundaries in each case, depending on the observed heterozygosity within and across
populations. We therefore first have to use the script ~/msmc-tools/combinedCrossCoal.py:

#!/usr/bin/env bash

DIR=/path/to/msmc/results

combineCrossCoal.py $DIR/EUR_AFR.msmc2.final.txt $DIR/EUR.msmc2.final.txt \
$DIR/AFR.msmc2.final.txt > $DIR/EUR_AFR.combined.msmc2.final.txt

The resulting file (also available under /data/msmc looks like this:

time_index left_time_boundary right_time_boundary lambda_00 lambda_01
→˓ lambda_11
0 1.1893075e-06 4.75723e-06 1284.0425703 2.24322 2650.59574175
1 4.75723e-06 1.15451e-05 3247.01877925 2.24322 2940.90417746
2 1.15451e-05 2.12306e-05 7798.2270432 99.0725 2526.98957475
3 2.12306e-05 3.50503e-05 11261.3153077 2271.31 2860.21608183
4 3.50503e-05 5.47692e-05 8074.85679367 4313.17 3075.15793155

Here, instead of just one columns with coalescence rates, as before, we now have three. The first is the rate within
population 0, the second across populations, the third within population 1.

OK, so we can now plot the relative cross-coalescence rate as a function of time:

mu = 1.25e-8
gen = 30
crossPopDat = pd.read_csv("/path/to/EUR_AFR.combined.msmc2.final.txt", delim_
→˓whitespace=True)
plt.step(crossPopDat["left_time_boundary"]/mu*gen, 2 * crossPopDat["lambda_01"] /
→˓(crossPopDat["lambda_00"] + crossPopDat["lambda_11"]))
plt.xlim(1000,500000)

(continues on next page)

56 Chapter 8. MSMC

http://www.nature.com/ng/journal/v46/n8/full/ng.3015.html

CompPopGenWorkshop2019 Documentation

(continued from previous page)

plt.xlabel("years ago");
plt.ylabel("relative cross coalescence rate");
plt.gca().set_xscale('log')

which produces this plot:

where you can see that the separation of (West-African) and European ancestors began already 200,000 years ago. The
two populations then became progressively more separated over time, reaching a mid-point of 0.5 around 80,000 years
ago. Since about 45,000 years, the two population seem fully separated on this plot. Note that even in simulations with
a sharp separation, MSMC would not produce an infinitely sharp separation curve, but introduces a “smear” around
the true separation time, so this plot is compatible also with the assumption that the two populations where already
fully separated around 60,000 years ago, even though the relative cross-coalescence rate is not zero at that point yet.

8.6. Plotting in Python 57

	Setting up
	The Computational Infrastructure for this Workshop
	Basic Usage
	Notebooks
	Working with Bash
	Back to Notebooks
	Some Plotting with Python

	Bam Files
	samtools: Converting, Filtering SAM and BAM Files
	Bash programming
	Basic programming in AWK
	Calculating coverage with samtools
	EXTRA: Genotype calling from bam files

	Principal Components Analysis (PCA)
	Genotype Data
	How PCA works
	Preparing the parameter file
	Population lists vs. Projection
	Running smartPCA
	Plotting modern populations
	Adding ancient individuals

	F Statistics and Treemix
	Admixture modelling with qpWave and qpAdm
	Overview: summarizing a matrix of F4 statistics
	Data
	Preparing “left” and “right” populations
	Preparing the parameter file
	Running the programs
	Reading the qpWave log file
	Reading the qpAdm log file

	Estimating Admixture times with Alder
	Overview
	Data
	Preparing the parameter file
	Running the programs
	Reading the main output file (weighted LD table)
	Reading the log file
	Plotting weighted LD decay curve in R

	Estimating Admixture Graphs with qpGraph
	Overview method
	Data
	Preparing the parameter file
	Preparing the graph topology
	Running the program
	Reading the output files
	Adding new groups to the scaffold graph
	Continuing to fit new groups
	Test the robustness of the graph topology
	Adding admixture edges

	MSMC
	Data
	Generating consensus sequences for each sample
	Combining samples
	Running MSMC2 for estimating the effective population size
	Estimating population separation history
	Plotting in Python

