
compactor Documentation
Release 0.2.2

Brian Wickman

March 24, 2015

Contents

1 compactor 3
1.1 Global methods . 3
1.2 PIDs . 3
1.3 Processes . 4
1.4 Contexts . 6

2 getting started 9

3 leader/follower pattern 11

4 protocol buffer processes 13

Python Module Index 15

i

ii

compactor Documentation, Release 0.2.2

compactor is a pure python implementation of libprocess, the actor library underpinning mesos.

Contents 1

https://mesos.apache.org

compactor Documentation, Release 0.2.2

2 Contents

CHAPTER 1

compactor

1.1 Global methods

Some methods are proxied to the global singleton Context in order to make simple programs simpler to write. These
methods do the Right Thing™ for most use-cases.

compactor.join()
Join against the global context – blocking until the context has been stopped.

compactor.spawn(*args, **kw)
Spawn a process on the global context and return its pid.

Parameters process (Process) – The process to bind to the global context.

Returns pid The pid of the spawned process.

Return type PID

1.2 PIDs

from compactor.pid import PID
pid = PID.from_string(’slave(1)@192.168.33.2:5051’)

class compactor.pid.PID(ip, port, id_)

__init__(ip, port, id_)
Construct a pid.

Parameters

• ip (str) – An IP address in string form.

• port (int) – The port of this pid.

• id (str) – The name of the process.

classmethod from_string(pid)
Parse a PID from its string representation.

PIDs may be represented as name@ip:port, e.g.

pid = PID.from_string(’master(1)@192.168.33.2:5051’)

3

mailto:name@ip

compactor Documentation, Release 0.2.2

Parameters pid (str) – A string representation of a pid.

Returns The parsed pid.

Return type PID

Raises ValueError should the string not be of the correct syntax.

1.3 Processes

from compactor.process import Process

class PingProcess(Process):
def initialize(self):
super(PingProcess, self).initialize()
self.pinged = threading.Event()

@Process.install(’ping’)
def ping(self, from_pid, body):
self.pinged.set()

class compactor.process.Process(name)

__init__(name)
Create a process with a given name.

The process must still be bound to a context before it can send messages or link to other processes.

Parameters name (str) – The name of this process.

context
The context that this process is bound to.

Raises Will raise a Process.UnboundProcess exception if the process is not bound to a
context.

exited(pid)
Called when a linked process terminates or its connection is severed.

Parameters pid (PID) – The pid of the linked process.

initialize()
Called when this process is spawned.

Once this is called, it means a process is now routable. Subclasses should implement this to initialize state
or possibly initiate connections to remote processes.

classmethod install(mbox)
A decorator to indicate a remotely callable method on a process.

from compactor.process import Process

class PingProcess(Process):
@Process.install(’ping’)
def ping(self, from_pid, body):
do something

The installed method should take from_pid and body parameters. from_pid is the process calling
the method. body is a bytes stream that was delivered with the message, possibly empty.

4 Chapter 1. compactor

compactor Documentation, Release 0.2.2

Parameters mbox (str) – Incoming messages to this “mailbox” will be dispatched to this
method.

link(to)
Link to another process.

The link operation is not guaranteed to succeed. If it does, when the other process terminates, the
exited method will be called with its pid.

Returns immediately.

Parameters to (PID) – The pid of the process to send a message.

Raises Will raise a Process.UnboundProcess exception if the process is not bound to a
context.

Returns Nothing

pid
The pid of this process.

Raises Will raise a Process.UnboundProcess exception if the process is not bound to a
context.

classmethod route(path)
A decorator to indicate that a method should be a routable HTTP endpoint.

from compactor.process import Process

class WebProcess(Process):
@Process.route(’/hello/world’)
def hello_world(self, handler):
return handler.write(’<html><title>hello world</title></html>’)

The handler passed to the method is a tornado RequestHandler.

WARNING: This interface is alpha and may change in the future if or when we remove tornado as a
compactor dependency.

Parameters path (str) – The endpoint to route to this method.

send(to, method, body=None)
Send a message to another process.

Sending messages is done asynchronously and is not guaranteed to succeed.

Returns immediately.

Parameters

• to (PID) – The pid of the process to send a message.

• method (str) – The method/mailbox name of the remote method.

• body (bytes or None) – The optional content to send with the message.

Raises Will raise a Process.UnboundProcess exception if the process is not bound to a
context.

Returns Nothing

terminate()
Terminate this process.

This unbinds it from the context to which it is bound.

1.3. Processes 5

compactor Documentation, Release 0.2.2

Raises Will raise a Process.UnboundProcess exception if the process is not bound to a
context.

class compactor.process.ProtobufProcess(name)
Bases: compactor.process.Process

classmethod install(message_type)
A decorator to indicate a remotely callable method on a process using protocol buffers.

from compactor.process import ProtobufProcess
from messages_pb2 import RequestMessage, ResponseMessage

class PingProcess(ProtobufProcess):
@ProtobufProcess.install(RequestMessage)
def ping(self, from_pid, message):
do something with message, a RequestMessage
response = ResponseMessage(...)
send a protocol buffer which will get serialized on the wire.
self.send(from_pid, response)

The installed method should take from_pid and message parameters. from_pid is the process call-
ing the method. message is a protocol buffer of the installed type.

Parameters message_type (A generated protocol buffer stub) – Incoming messages to this mes-
sage_type will be dispatched to this method.

send(to, message)
Send a message to another process.

Same as Process.send except that message is a protocol buffer.

Returns immediately.

Parameters

• to (PID) – The pid of the process to send a message.

• message – The message to send

Raises Will raise a Process.UnboundProcess exception if the process is not bound to a
context.

Returns Nothing

1.4 Contexts

from compactor.context import Context

context = Context(ip=’127.0.0.1’, port=8081)
context.start()

ping_process = PingProcess(’ping’)
ping_pid = context.spawn(ping_process)

context.join()

class compactor.context.Context(delegate=’‘, loop=None, ip=None, port=None)
A compactor context.

Compactor contexts control the routing and handling of messages between processes. At its most basic level, a
context is a listening (ip, port) pair and an event loop.

6 Chapter 1. compactor

compactor Documentation, Release 0.2.2

__init__(delegate=’‘, loop=None, ip=None, port=None)
Construct a compactor context.

Before any useful work can be done with a context, you must call start on the context.

Parameters

• ip (str or None) – The ip port of the interface on which the Context should listen. If none
is specified, the context will attempt to bind to the ip specified by the LIBPROCESS_IP
environment variable. If this variable is not set, it will bind on all interfaces.

• port (int or None) – The port on which the Context should listen. If none is specified, the
context will attempt to bind to the port specified by the LIBPROCESS_PORT environment
variable. If this variable is not set, it will bind to an ephemeral port.

delay(amount, pid, method, *args)
Call a method on another process after a specified delay.

This is equivalent to dispatch except with an additional amount of time to wait prior to invoking the
call.

This function returns immediately.

Parameters

• amount (float or int) – The amount of time to wait in seconds before making the call.

• pid (PID) – The pid of the process to be called.

• method (str) – The name of the method to be called.

Returns Nothing

dispatch(pid, method, *args)
Call a method on another process by its pid.

The method on the other process does not need to be installed with Process.install. The call is
serialized with all other calls on the context’s event loop. The pid must be bound to this context.

This function returns immediately.

Parameters

• pid (PID) – The pid of the process to be called.

• method (str) – The name of the method to be called.

Returns Nothing

link(pid, to)
Link a local process to a possibly remote process.

Note: It is more idiomatic to call link directly on the bound Process object instead.

When pid is linked to to, the termination of the to process (or the severing of its connection from the
Process pid) will result in the local process’ exited method to be called with to.

This method returns immediately.

Parameters

• pid (PID) – The pid of the linking process.

• to (PID) – The pid of the linked process.

Returns Nothing

1.4. Contexts 7

compactor Documentation, Release 0.2.2

send(from_pid, to_pid, method, body=None)
Send a message method from one pid to another with an optional body.

Note: It is more idiomatic to send directly from a bound process rather than calling send on the context.

If the destination pid is on the same context, the Context may skip the wire and route directly to process
itself. from_pid must be bound to this context.

This method returns immediately.

Parameters

• from_pid (PID) – The pid of the sending process.

• to_pid (PID) – The pid of the destination process.

• method (str) – The method name of the destination process.

• body (bytes or None) – Optional content to send along with the message.

Returns Nothing

spawn(process)
Spawn a process.

Spawning a process binds it to this context and assigns the process a pid which is returned. The process’
initialize method is called.

Note: A process cannot send messages until it is bound to a context.

Parameters process (Process) – The process to bind to this context.

Returns The pid of the process.

Return type PID

start()
Start the context. This method must be called before calls to send and spawn.

This method is non-blocking.

stop()
Stops the context. This terminates all PIDs and closes all connections.

terminate(pid)
Terminate a process bound to this context.

When a process is terminated, all the processes to which it is linked will be have their exited methods
called. Messages to this process will no longer be delivered.

This method returns immediately.

Parameters pid (PID) – The pid of the process to terminate.

Returns Nothing

8 Chapter 1. compactor

CHAPTER 2

getting started

implementing a process is a matter of subclassing compactor.Process. you can “install” methods on processes
using the install decorator. this makes them remotely callable.

import threading

from compactor import install, spawn, Process

class PingProcess(Process):
def initialize(self):
self.pinged = threading.Event()

@install(’ping’)
def ping(self, from_pid, body):
self.pinged.set()

construct the process
ping_process = PingProcess(’ping_process’)

spawn the process, binding it to the current global context
spawn(ping_process)

send a message to the process
client = Process(’client’)
spawn(client)
client.send(ping_process.pid, ’ping’)

ensure the message was delivered
ping_process.pinged.wait()

each context is, in essence, a listening (ip, port) pair.

by default there is a global, singleton context. use compactor.spawn to spawn a process on it. by default it will
bind to 0.0.0.0 on an arbitrary port. this can be overridden using the LIBPROCESS_IP and LIBPROCESS_PORT
environment variables.

alternately, you can create an instance of a compactor.Context, explicitly passing it port= and ip= keywords.
you can then call the spawn method on it to bind processes.

spawning a process does two things: it binds the process to the context, creating a pid, and initializes the process. the
pid is a unique identifier used for routing purposes. in practice, it consists of an (ip, port, name) tuple, where the ip
and port are those of the context, and the name is the name of the process.

when a process is spawned, its initialize method is called. this can be used to initialize state or initiate connec-
tions to other services, as illustrated in the following example.

9

compactor Documentation, Release 0.2.2

10 Chapter 2. getting started

CHAPTER 3

leader/follower pattern

import threading
import uuid
from compactor import install
from compactor.process import Process

class Leader(Process):
def __init__(self):
super(Leader, self).__init__(’leader’)
self.followers = set()

@install(’register’)
def register(self, from_pid, uuid):
self.send(from_pid, ’registered’, uuid)

class Follower(Process):
def __init__(self, name, leader_pid):
super(Follower, self).__init__(name)
self.leader_pid = leader_pid
self.uuid = uuid.uuid4().bytes
self.registered = threading.Event()

def initialize(self):
super(Follower, self).initialize()
self.send(self.leader_pid, ’register’, self.uuid)

def exited(self, from_pid):
self.registered.clear()

@install(’registered’)
def registered(self, from_pid, uuid):
if uuid == self.uuid:

self.link(from_pid)
self.registered.set()

with this, you can create two separate contexts:

from compactor import Context

leader_context = Context(port=5051)
leader = Leader()
leader_context.spawn(leader)

at this point, leader_context.pid is a unique identifier for this leader process

11

compactor Documentation, Release 0.2.2

and can be disseminated via service discovery or passed explicitly to other services,
e.g. ’leader@192.168.33.2:5051’. the follower can be spawned in the same process,
in a separate process, or on a separate machine.

follower_context = Context()
follower = Follower(’follower1’, leader_context.pid)
follower_context.spawn(follower)

follower.registered.wait()

this effectively initiates a handshake between the leader and follower processes, a common pattern building distributed
systems using the actor model.

the link method links the two processes together. should the connection be severed, the exited method on the
process will be called.

12 Chapter 3. leader/follower pattern

CHAPTER 4

protocol buffer processes

mesos uses protocol buffers over the wire to support RPC. compactor supports this natively. simply subclass
ProtobufProcess instead and use ProtobufProcess.install

from compactor.process import ProtobufProcess
from service_pb2 import ServiceRequestMessage, ServiceResponseMessage

class Service(ProtobufProcess):
@ProtobufProcess.install(ServiceRequestMessage)
def request(self, from_pid, message):
message is a deserialized protobuf ServiceRequestMessage
response = ServiceResponseMessage(...)
self.send automatically serializes the response, a protocol buffer, over the wire.
self.send(from_pid, response)

13

compactor Documentation, Release 0.2.2

14 Chapter 4. protocol buffer processes

Python Module Index

c
compactor, 3

15

compactor Documentation, Release 0.2.2

16 Python Module Index

Index

Symbols
__init__() (compactor.context.Context method), 6
__init__() (compactor.pid.PID method), 3
__init__() (compactor.process.Process method), 4

C
compactor (module), 3
Context (class in compactor.context), 6
context (compactor.process.Process attribute), 4

D
delay() (compactor.context.Context method), 7
dispatch() (compactor.context.Context method), 7

E
exited() (compactor.process.Process method), 4

F
from_string() (compactor.pid.PID class method), 3

I
initialize() (compactor.process.Process method), 4
install() (compactor.process.Process class method), 4
install() (compactor.process.ProtobufProcess class

method), 6

J
join() (in module compactor), 3

L
link() (compactor.context.Context method), 7
link() (compactor.process.Process method), 5

P
PID (class in compactor.pid), 3
pid (compactor.process.Process attribute), 5
Process (class in compactor.process), 4
ProtobufProcess (class in compactor.process), 6

R
route() (compactor.process.Process class method), 5

S
send() (compactor.context.Context method), 7
send() (compactor.process.Process method), 5
send() (compactor.process.ProtobufProcess method), 6
spawn() (compactor.context.Context method), 8
spawn() (in module compactor), 3
start() (compactor.context.Context method), 8
stop() (compactor.context.Context method), 8

T
terminate() (compactor.context.Context method), 8
terminate() (compactor.process.Process method), 5

17

	compactor
	Global methods
	PIDs
	Processes
	Contexts

	getting started
	leader/follower pattern
	protocol buffer processes
	Python Module Index

