

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	compactor 0.2.2 documentation

compactor

[image: https://travis-ci.org/wickman/compactor.svg?branch=master]
 [https://travis-ci.org/wickman/compactor]compactor is a pure python implementation of libprocess, the actor library
underpinning mesos [https://mesos.apache.org].

	compactor
	Global methods

	PIDs

	Processes

	Contexts

getting started

implementing a process is a matter of subclassing compactor.Process.
you can “install” methods on processes using the install decorator.
this makes them remotely callable.

import threading

from compactor import install, spawn, Process

class PingProcess(Process):
 def initialize(self):
 self.pinged = threading.Event()

 @install('ping')
 def ping(self, from_pid, body):
 self.pinged.set()

construct the process
ping_process = PingProcess('ping_process')

spawn the process, binding it to the current global context
spawn(ping_process)

send a message to the process
client = Process('client')
spawn(client)
client.send(ping_process.pid, 'ping')

ensure the message was delivered
ping_process.pinged.wait()

each context is, in essence, a listening (ip, port) pair.

by default there is a global, singleton context. use compactor.spawn to
spawn a process on it. by default it will bind to 0.0.0.0 on an
arbitrary port. this can be overridden using the LIBPROCESS_IP and
LIBPROCESS_PORT environment variables.

alternately, you can create an instance of a compactor.Context,
explicitly passing it port= and ip= keywords. you can then call the
spawn method on it to bind processes.

spawning a process does two things: it binds the process to the context,
creating a pid, and initializes the process. the pid is a unique identifier
used for routing purposes. in practice, it consists of an (ip, port, name)
tuple, where the ip and port are those of the context, and the name is the
name of the process.

when a process is spawned, its initialize method is called. this can be
used to initialize state or initiate connections to other services, as
illustrated in the following example.

leader/follower pattern

import threading
import uuid
from compactor import install
from compactor.process import Process

class Leader(Process):
 def __init__(self):
 super(Leader, self).__init__('leader')
 self.followers = set()

 @install('register')
 def register(self, from_pid, uuid):
 self.send(from_pid, 'registered', uuid)

class Follower(Process):
 def __init__(self, name, leader_pid):
 super(Follower, self).__init__(name)
 self.leader_pid = leader_pid
 self.uuid = uuid.uuid4().bytes
 self.registered = threading.Event()

 def initialize(self):
 super(Follower, self).initialize()
 self.send(self.leader_pid, 'register', self.uuid)

 def exited(self, from_pid):
 self.registered.clear()

 @install('registered')
 def registered(self, from_pid, uuid):
 if uuid == self.uuid:
 self.link(from_pid)
 self.registered.set()

with this, you can create two separate contexts:

from compactor import Context

leader_context = Context(port=5051)
leader = Leader()
leader_context.spawn(leader)

at this point, leader_context.pid is a unique identifier for this leader process
and can be disseminated via service discovery or passed explicitly to other services,
e.g. 'leader@192.168.33.2:5051'. the follower can be spawned in the same process,
in a separate process, or on a separate machine.

follower_context = Context()
follower = Follower('follower1', leader_context.pid)
follower_context.spawn(follower)

follower.registered.wait()

this effectively initiates a handshake between the leader and follower processes, a common
pattern building distributed systems using the actor model.

the link method links the two processes together. should the connection be severed,
the exited method on the process will be called.

protocol buffer processes

mesos uses protocol buffers over the wire to support RPC. compactor supports this natively.
simply subclass ProtobufProcess instead and use ProtobufProcess.install

from compactor.process import ProtobufProcess
from service_pb2 import ServiceRequestMessage, ServiceResponseMessage

class Service(ProtobufProcess):
 @ProtobufProcess.install(ServiceRequestMessage)
 def request(self, from_pid, message):
 # message is a deserialized protobuf ServiceRequestMessage
 response = ServiceResponseMessage(...)
 # self.send automatically serializes the response, a protocol buffer, over the wire.
 self.send(from_pid, response)

 Copyright 2015, Brian Wickman.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	compactor 0.2.2 documentation

compactor

Global methods

Some methods are proxied to the global singleton Context in order to make
simple programs simpler to write. These methods do the Right Thing™ for
most use-cases.

	
compactor.join()[source]

	Join against the global context – blocking until the context has been stopped.

	
compactor.spawn(*args, **kw)[source]

	Spawn a process on the global context and return its pid.

	Parameters:	process (Process) – The process to bind to the global context.

	Returns pid:	The pid of the spawned process.

	Return type:	PID

PIDs

from compactor.pid import PID
pid = PID.from_string('slave(1)@192.168.33.2:5051')

	
class compactor.pid.PID(ip, port, id_)[source]

	
	
__init__(ip, port, id_)[source]

	Construct a pid.

	Parameters:	
	ip (str) – An IP address in string form.

	port (int) – The port of this pid.

	id (str) – The name of the process.

	
classmethod from_string(pid)[source]

	Parse a PID from its string representation.

PIDs may be represented as name@ip:port, e.g.

pid = PID.from_string('master(1)@192.168.33.2:5051')

	Parameters:	pid (str) – A string representation of a pid.

	Returns:	The parsed pid.

	Return type:	PID

	Raises:	ValueError should the string not be of the correct syntax.

Processes

from compactor.process import Process

class PingProcess(Process):
 def initialize(self):
 super(PingProcess, self).initialize()
 self.pinged = threading.Event()

 @Process.install('ping')
 def ping(self, from_pid, body):
 self.pinged.set()

	
class compactor.process.Process(name)[source]

	
	
__init__(name)[source]

	Create a process with a given name.

The process must still be bound to a context before it can send messages
or link to other processes.

	Parameters:	name (str) – The name of this process.

	
context[source]

	The context that this process is bound to.

	Raises:	Will raise a Process.UnboundProcess exception if the
process is not bound to a context.

	
exited(pid)[source]

	Called when a linked process terminates or its connection is severed.

	Parameters:	pid (PID) – The pid of the linked process.

	
initialize()[source]

	Called when this process is spawned.

Once this is called, it means a process is now routable. Subclasses
should implement this to initialize state or possibly initiate
connections to remote processes.

	
classmethod install(mbox)[source]

	A decorator to indicate a remotely callable method on a process.

from compactor.process import Process

class PingProcess(Process):
 @Process.install('ping')
 def ping(self, from_pid, body):
 # do something

The installed method should take from_pid and body parameters.
from_pid is the process calling the method. body is a bytes
stream that was delivered with the message, possibly empty.

	Parameters:	mbox (str) – Incoming messages to this “mailbox” will be dispatched to this method.

	
link(to)[source]

	Link to another process.

The link operation is not guaranteed to succeed. If it does, when
the other process terminates, the exited method will be called with
its pid.

Returns immediately.

	Parameters:	to (PID) – The pid of the process to send a message.

	Raises:	Will raise a Process.UnboundProcess exception if the
process is not bound to a context.

	Returns:	Nothing

	
pid[source]

	The pid of this process.

	Raises:	Will raise a Process.UnboundProcess exception if the
process is not bound to a context.

	
classmethod route(path)[source]

	A decorator to indicate that a method should be a routable HTTP endpoint.

from compactor.process import Process

class WebProcess(Process):
 @Process.route('/hello/world')
 def hello_world(self, handler):
 return handler.write('<html><title>hello world</title></html>')

The handler passed to the method is a tornado RequestHandler.

WARNING: This interface is alpha and may change in the future if or when
we remove tornado as a compactor dependency.

	Parameters:	path (str) – The endpoint to route to this method.

	
send(to, method, body=None)[source]

	Send a message to another process.

Sending messages is done asynchronously and is not guaranteed to succeed.

Returns immediately.

	Parameters:	
	to (PID) – The pid of the process to send a message.

	method (str) – The method/mailbox name of the remote method.

	body (bytes or None) – The optional content to send with the message.

	Raises:	Will raise a Process.UnboundProcess exception if the
process is not bound to a context.

	Returns:	Nothing

	
terminate()[source]

	Terminate this process.

This unbinds it from the context to which it is bound.

	Raises:	Will raise a Process.UnboundProcess exception if the
process is not bound to a context.

	
class compactor.process.ProtobufProcess(name)[source]

	Bases: compactor.process.Process

	
classmethod install(message_type)[source]

	A decorator to indicate a remotely callable method on a process using protocol buffers.

from compactor.process import ProtobufProcess
from messages_pb2 import RequestMessage, ResponseMessage

class PingProcess(ProtobufProcess):
 @ProtobufProcess.install(RequestMessage)
 def ping(self, from_pid, message):
 # do something with message, a RequestMessage
 response = ResponseMessage(...)
 # send a protocol buffer which will get serialized on the wire.
 self.send(from_pid, response)

The installed method should take from_pid and message parameters.
from_pid is the process calling the method. message is a protocol
buffer of the installed type.

	Parameters:	message_type (A generated protocol buffer stub) – Incoming messages to this message_type will be dispatched to this method.

	
send(to, message)[source]

	Send a message to another process.

Same as Process.send except that message is a protocol buffer.

Returns immediately.

	Parameters:	
	to (PID) – The pid of the process to send a message.

	message – The message to send

	Raises:	Will raise a Process.UnboundProcess exception if the
process is not bound to a context.

	Returns:	Nothing

Contexts

from compactor.context import Context

context = Context(ip='127.0.0.1', port=8081)
context.start()

ping_process = PingProcess('ping')
ping_pid = context.spawn(ping_process)

context.join()

	
class compactor.context.Context(delegate='', loop=None, ip=None, port=None)[source]

	A compactor context.

Compactor contexts control the routing and handling of messages between
processes. At its most basic level, a context is a listening (ip, port)
pair and an event loop.

	
__init__(delegate='', loop=None, ip=None, port=None)[source]

	Construct a compactor context.

Before any useful work can be done with a context, you must call
start on the context.

	Parameters:	
	ip (str or None) – The ip port of the interface on which the Context should listen.
If none is specified, the context will attempt to bind to the ip specified by
the LIBPROCESS_IP environment variable. If this variable is not set,
it will bind on all interfaces.

	port (int or None) – The port on which the Context should listen. If none is specified,
the context will attempt to bind to the port specified by the LIBPROCESS_PORT
environment variable. If this variable is not set, it will bind to an ephemeral
port.

	
delay(amount, pid, method, *args)[source]

	Call a method on another process after a specified delay.

This is equivalent to dispatch except with an additional amount of
time to wait prior to invoking the call.

This function returns immediately.

	Parameters:	
	amount (float or int) – The amount of time to wait in seconds before making the call.

	pid (PID) – The pid of the process to be called.

	method (str) – The name of the method to be called.

	Returns:	Nothing

	
dispatch(pid, method, *args)[source]

	Call a method on another process by its pid.

The method on the other process does not need to be installed with
Process.install. The call is serialized with all other calls on the
context’s event loop. The pid must be bound to this context.

This function returns immediately.

	Parameters:	
	pid (PID) – The pid of the process to be called.

	method (str) – The name of the method to be called.

	Returns:	Nothing

	
link(pid, to)[source]

	Link a local process to a possibly remote process.

Note: It is more idiomatic to call link directly on the bound Process
object instead.

When pid is linked to to, the termination of the to process
(or the severing of its connection from the Process pid) will result
in the local process’ exited method to be called with to.

This method returns immediately.

	Parameters:	
	pid (PID) – The pid of the linking process.

	to (PID) – The pid of the linked process.

	Returns:	Nothing

	
send(from_pid, to_pid, method, body=None)[source]

	Send a message method from one pid to another with an optional body.

Note: It is more idiomatic to send directly from a bound process rather than
calling send on the context.

If the destination pid is on the same context, the Context may skip the
wire and route directly to process itself. from_pid must be bound
to this context.

This method returns immediately.

	Parameters:	
	from_pid (PID) – The pid of the sending process.

	to_pid (PID) – The pid of the destination process.

	method (str) – The method name of the destination process.

	body (bytes or None) – Optional content to send along with the message.

	Returns:	Nothing

	
spawn(process)[source]

	Spawn a process.

Spawning a process binds it to this context and assigns the process a
pid which is returned. The process’ initialize method is called.

Note: A process cannot send messages until it is bound to a context.

	Parameters:	process (Process) – The process to bind to this context.

	Returns:	The pid of the process.

	Return type:	PID

	
start()[source]

	Start the context. This method must be called before calls to send and spawn.

This method is non-blocking.

	
stop()[source]

	Stops the context. This terminates all PIDs and closes all connections.

	
terminate(pid)[source]

	Terminate a process bound to this context.

When a process is terminated, all the processes to which it is linked
will be have their exited methods called. Messages to this process
will no longer be delivered.

This method returns immediately.

	Parameters:	pid (PID) – The pid of the process to terminate.

	Returns:	Nothing

 Copyright 2015, Brian Wickman.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	compactor 0.2.2 documentation

 Python Module Index

 c

 			

 		
 c	

 	
 	
 compactor	

 Copyright 2015, Brian Wickman.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	compactor 0.2.2 documentation

Index

 _
 | C
 | D
 | E
 | F
 | I
 | J
 | L
 | P
 | R
 | S
 | T

_

 	

 	__init__() (compactor.context.Context method)

 	

 	(compactor.pid.PID method)

 	(compactor.process.Process method)

C

 	

 	compactor (module)

 	Context (class in compactor.context)

 	

 	context (compactor.process.Process attribute)

D

 	

 	delay() (compactor.context.Context method)

 	

 	dispatch() (compactor.context.Context method)

E

 	

 	exited() (compactor.process.Process method)

F

 	

 	from_string() (compactor.pid.PID class method)

I

 	

 	initialize() (compactor.process.Process method)

 	

 	install() (compactor.process.Process class method)

 	

 	(compactor.process.ProtobufProcess class method)

J

 	

 	join() (in module compactor)

L

 	

 	link() (compactor.context.Context method)

 	

 	(compactor.process.Process method)

P

 	

 	PID (class in compactor.pid)

 	pid (compactor.process.Process attribute)

 	

 	Process (class in compactor.process)

 	ProtobufProcess (class in compactor.process)

R

 	

 	route() (compactor.process.Process class method)

S

 	

 	send() (compactor.context.Context method)

 	

 	(compactor.process.Process method)

 	(compactor.process.ProtobufProcess method)

 	spawn() (compactor.context.Context method)

 	

 	(in module compactor)

 	

 	start() (compactor.context.Context method)

 	stop() (compactor.context.Context method)

T

 	

 	terminate() (compactor.context.Context method)

 	

 	(compactor.process.Process method)

 Copyright 2015, Brian Wickman.
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/comment.png

_static/plus.png

_static/comment-bright.png

_modules/compactor/pid.html

 Navigation

 		
 index

 		
 modules |

 		compactor 0.2.2 documentation »

 		Module code »

 		compactor »

 Source code for compactor.pid

[docs]class PID(object): # noqa
 __slots__ = ('ip', 'port', 'id')

 @classmethod
[docs] def from_string(cls, pid):
 """Parse a PID from its string representation.

 PIDs may be represented as name@ip:port, e.g.

 .. code-block:: python

 pid = PID.from_string('master(1)@192.168.33.2:5051')

 :param pid: A string representation of a pid.
 :type pid: ``str``
 :return: The parsed pid.
 :rtype: :class:`PID`
 :raises: ``ValueError`` should the string not be of the correct syntax.
 """
 try:
 id_, ip_port = pid.split('@')
 ip, port = ip_port.split(':')
 port = int(port)
 except ValueError:
 raise ValueError('Invalid PID: %s' % pid)
 return cls(ip, port, id_)

[docs] def __init__(self, ip, port, id_):
 """Construct a pid.

 :param ip: An IP address in string form.
 :type ip: ``str``
 :param port: The port of this pid.
 :type port: ``int``
 :param id_: The name of the process.
 :type id_: ``str``
 """
 self.ip = ip
 self.port = port
 self.id = id_

 def __hash__(self):
 return hash((self.ip, self.port, self.id))

 def __eq__(self, other):
 return isinstance(other, PID) and (
 self.ip == other.ip and
 self.port == other.port and
 self.id == other.id
)

 def __ne__(self, other):
 return not (self == other)

 def as_url(self, endpoint=None):
 url = 'http://%s:%s/%s' % (self.ip, self.port, self.id)
 if endpoint:
 url += '/%s' % endpoint
 return url

 def __str__(self):
 return '%s@%s:%d' % (self.id, self.ip, self.port)

 def __repr__(self):
 return 'PID(%s, %d, %s)' % (self.ip, self.port, self.id)

 © Copyright 2015, Brian Wickman.
 Created using Sphinx 1.2.2.

_modules/compactor/context.html

 Navigation

 		
 index

 		
 modules |

 		compactor 0.2.2 documentation »

 		Module code »

 		compactor »

 Source code for compactor.context

"""Context controls the routing and handling of messages between processes."""

import logging
import socket
import threading
import os
try:
 import asyncio
except ImportError:
 import trollius as asyncio

from collections import defaultdict
from functools import partial

from .httpd import HTTPD
from .request import encode_request

from tornado import stack_context
from tornado.iostream import IOStream
from tornado.netutil import bind_sockets
from tornado.platform.asyncio import BaseAsyncIOLoop

log = logging.getLogger(__name__)

[docs]class Context(threading.Thread):
 """A compactor context.

 Compactor contexts control the routing and handling of messages between
 processes. At its most basic level, a context is a listening (ip, port)
 pair and an event loop.
 """

 class Error(Exception): pass
 class SocketError(Error): pass
 class InvalidProcess(Error): pass
 class InvalidMethod(Error): pass

 _SINGLETON = None
 _LOCK = threading.Lock()

 CONNECT_TIMEOUT_SECS = 5

 @classmethod
 def _make_socket(cls, ip, port):
 """Bind to a new socket.

 If LIBPROCESS_PORT or LIBPROCESS_IP are configured in the environment,
 these will be used for socket connectivity.
 """
 bound_socket = bind_sockets(port, address=ip)[0]
 ip, port = bound_socket.getsockname()

 if not ip or ip == '0.0.0.0':
 ip = socket.gethostbyname(socket.gethostname())

 return bound_socket, ip, port

 @classmethod
 def get_ip_port(cls, ip=None, port=None):
 ip = ip or os.environ.get('LIBPROCESS_IP', '0.0.0.0')
 try:
 port = int(port or os.environ.get('LIBPROCESS_PORT', 0))
 except ValueError:
 raise cls.Error('Invalid ip/port provided')
 return ip, port

 @classmethod
 def singleton(cls, delegate='', **kw):
 with cls._LOCK:
 if cls._SINGLETON:
 if cls._SINGLETON.delegate != delegate:
 raise RuntimeError('Attempting to construct different singleton context.')
 else:
 cls._SINGLETON = cls(delegate=delegate, **kw)
 cls._SINGLETON.start()
 return cls._SINGLETON

[docs] def __init__(self, delegate='', loop=None, ip=None, port=None):
 """Construct a compactor context.

 Before any useful work can be done with a context, you must call
 ``start`` on the context.

 :keyword ip: The ip port of the interface on which the Context should listen.
 If none is specified, the context will attempt to bind to the ip specified by
 the ``LIBPROCESS_IP`` environment variable. If this variable is not set,
 it will bind on all interfaces.
 :type ip: ``str`` or None
 :keyword port: The port on which the Context should listen. If none is specified,
 the context will attempt to bind to the port specified by the ``LIBPROCESS_PORT``
 environment variable. If this variable is not set, it will bind to an ephemeral
 port.
 :type port: ``int`` or None
 """
 self._processes = {}
 self._links = defaultdict(set)
 self.delegate = delegate
 self.__loop = self.http = None
 self.__event_loop = loop
 self._ip = None
 ip, port = self.get_ip_port(ip, port)
 self.__sock, self.ip, self.port = self._make_socket(ip, port)
 self._connections = {}
 self._connection_callbacks = defaultdict(list)
 self._connection_callbacks_lock = threading.Lock()
 self.__context_name = 'CompactorContext(%s:%d)' % (self.ip, self.port)
 super(Context, self).__init__(name=self.__context_name)
 self.daemon = True
 self.lock = threading.Lock()
 self.__id = 1
 self.__loop_started = threading.Event()

 def _assert_started(self):
 assert self.__loop_started.is_set()

[docs] def start(self):
 """Start the context. This method must be called before calls to ``send`` and ``spawn``.

 This method is non-blocking.
 """
 super(Context, self).start()
 self.__loop_started.wait()

 def __debug(self, msg):
 log.debug('%s: %s' % (self.__context_name, msg))

 def run(self):
 # The entry point of the Context thread. This should not be called directly.
 loop = self.__event_loop or asyncio.new_event_loop()

 class CustomIOLoop(BaseAsyncIOLoop):
 def initialize(self):
 super(CustomIOLoop, self).initialize(loop, close_loop=False)

 self.__loop = CustomIOLoop()
 self.http = HTTPD(self.__sock, self.__loop)

 self.__loop_started.set()

 self.__loop.start()
 self.__loop.close()

 def _is_local(self, pid):
 return pid in self._processes

 def _assert_local_pid(self, pid):
 if not self._is_local(pid):
 raise self.InvalidProcess('Operation only valid for local processes!')

[docs] def stop(self):
 """Stops the context. This terminates all PIDs and closes all connections."""

 log.info('Stopping %s' % self)

 pids = list(self._processes)

 # Clean up the context
 for pid in pids:
 self.terminate(pid)

 while self._connections:
 pid = next(iter(self._connections))
 conn = self._connections.pop(pid, None)
 if conn:
 conn.close()

 self.__loop.stop()

[docs] def spawn(self, process):
 """Spawn a process.

 Spawning a process binds it to this context and assigns the process a
 pid which is returned. The process' ``initialize`` method is called.

 Note: A process cannot send messages until it is bound to a context.

 :param process: The process to bind to this context.
 :type process: :class:`Process`
 :return: The pid of the process.
 :rtype: :class:`PID`
 """
 self._assert_started()
 process.bind(self)
 self.http.mount_process(process)
 self._processes[process.pid] = process
 process.initialize()
 return process.pid

 def _get_dispatch_method(self, pid, method):
 try:
 return getattr(self._processes[pid], method)
 except KeyError:
 raise self.InvalidProcess('Unknown process %s' % pid)
 except AttributeError:
 raise self.InvalidMethod('Unknown method %s on %s' % (method, pid))

[docs] def dispatch(self, pid, method, *args):
 """Call a method on another process by its pid.

 The method on the other process does not need to be installed with
 ``Process.install``. The call is serialized with all other calls on the
 context's event loop. The pid must be bound to this context.

 This function returns immediately.

 :param pid: The pid of the process to be called.
 :type pid: :class:`PID`
 :param method: The name of the method to be called.
 :type method: ``str``
 :return: Nothing
 """
 self._assert_started()
 self._assert_local_pid(pid)
 function = self._get_dispatch_method(pid, method)
 self.__loop.add_callback(function, *args)

[docs] def delay(self, amount, pid, method, *args):
 """Call a method on another process after a specified delay.

 This is equivalent to ``dispatch`` except with an additional amount of
 time to wait prior to invoking the call.

 This function returns immediately.

 :param amount: The amount of time to wait in seconds before making the call.
 :type amount: ``float`` or ``int``
 :param pid: The pid of the process to be called.
 :type pid: :class:`PID`
 :param method: The name of the method to be called.
 :type method: ``str``
 :return: Nothing
 """
 self._assert_started()
 self._assert_local_pid(pid)
 function = self._get_dispatch_method(pid, method)
 self.__loop.add_timeout(self.__loop.time() + amount, function, *args)

 def __dispatch_on_connect_callbacks(self, to_pid, stream):
 with self._connection_callbacks_lock:
 callbacks = self._connection_callbacks.pop(to_pid, [])
 for callback in callbacks:
 log.debug('Dispatching connection callback %s for %s:%s -> %s' % (
 callback, self.ip, self.port, to_pid))
 self.__loop.add_callback(callback, stream)

 def _maybe_connect(self, to_pid, callback=None):
 """Asynchronously establish a connection to the remote pid."""

 callback = stack_context.wrap(callback or (lambda stream: None))

 def streaming_callback(data):
 # we are not guaranteed to get an acknowledgment, but log and discard bytes if we do.
 log.info('Received %d bytes from %s, discarding.' % (len(data), to_pid))
 log.debug(' data: %r' % (data,))

 def on_connect(exit_cb, stream):
 log.info('Connection to %s established' % to_pid)
 with self._connection_callbacks_lock:
 self._connections[to_pid] = stream
 self.__dispatch_on_connect_callbacks(to_pid, stream)
 self.__loop.add_callback(
 stream.read_until_close,
 exit_cb,
 streaming_callback=streaming_callback)

 create = False
 with self._connection_callbacks_lock:
 stream = self._connections.get(to_pid)
 callbacks = self._connection_callbacks.get(to_pid)

 if not stream:
 self._connection_callbacks[to_pid].append(callback)

 if not callbacks:
 create = True

 if stream:
 self.__loop.add_callback(callback, stream)
 return

 if not create:
 return

 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0)
 if not sock:
 raise self.SocketError('Failed opening socket')

 stream = IOStream(sock, io_loop=self.__loop)
 stream.set_nodelay(True)
 stream.set_close_callback(partial(self.__on_exit, to_pid, b'reached end of stream'))

 connect_callback = partial(on_connect, partial(self.__on_exit, to_pid), stream)

 log.info('Establishing connection to %s' % to_pid)

 stream.connect((to_pid.ip, to_pid.port), callback=connect_callback)

 if stream.closed():
 raise self.SocketError('Failed to initiate stream connection')

 log.info('Maybe connected to %s' % to_pid)

 def _get_local_mailbox(self, pid, method):
 for mailbox, callable in self._processes[pid].iter_handlers():
 if method == mailbox:
 return callable

[docs] def send(self, from_pid, to_pid, method, body=None):
 """Send a message method from one pid to another with an optional body.

 Note: It is more idiomatic to send directly from a bound process rather than
 calling send on the context.

 If the destination pid is on the same context, the Context may skip the
 wire and route directly to process itself. ``from_pid`` must be bound
 to this context.

 This method returns immediately.

 :param from_pid: The pid of the sending process.
 :type from_pid: :class:`PID`
 :param to_pid: The pid of the destination process.
 :type to_pid: :class:`PID`
 :param method: The method name of the destination process.
 :type method: ``str``
 :keyword body: Optional content to send along with the message.
 :type body: ``bytes`` or None
 :return: Nothing
 """

 self._assert_started()
 self._assert_local_pid(from_pid)

 if self._is_local(to_pid):
 local_method = self._get_local_mailbox(to_pid, method)
 if local_method:
 log.info('Doing local dispatch of %s => %s (method: %s)' % (from_pid, to_pid, local_method))
 self.__loop.add_callback(local_method, from_pid, body or b'')
 return
 else:
 # TODO(wickman) Consider failing hard if no local method is detected, otherwise we're
 # just going to do a POST and have it dropped on the floor.
 pass

 request_data = encode_request(from_pid, to_pid, method, body=body)

 log.info('Sending POST %s => %s (payload: %d bytes)' % (
 from_pid, to_pid.as_url(method), len(request_data)))

 def on_connect(stream):
 log.info('Writing %s from %s to %s' % (len(request_data), from_pid, to_pid))
 stream.write(request_data)
 log.info('Wrote %s from %s to %s' % (len(request_data), from_pid, to_pid))

 self.__loop.add_callback(self._maybe_connect, to_pid, on_connect)

 def __erase_link(self, to_pid):
 for pid, links in self._links.items():
 try:
 links.remove(to_pid)
 log.debug('PID link from %s <- %s exited.' % (pid, to_pid))
 self._processes[pid].exited(to_pid)
 except KeyError:
 continue

 def __on_exit(self, to_pid, body):
 log.info('Disconnected from %s (%s)', to_pid, body)
 stream = self._connections.pop(to_pid, None)
 if stream is None:
 log.error('Received disconnection from %s but no stream found.' % to_pid)
 self.__erase_link(to_pid)

[docs] def link(self, pid, to):
 """Link a local process to a possibly remote process.

 Note: It is more idiomatic to call ``link`` directly on the bound Process
 object instead.

 When ``pid`` is linked to ``to``, the termination of the ``to`` process
 (or the severing of its connection from the Process ``pid``) will result
 in the local process' ``exited`` method to be called with ``to``.

 This method returns immediately.

 :param pid: The pid of the linking process.
 :type pid: :class:`PID`
 :param to: The pid of the linked process.
 :type to: :class:`PID`
 :returns: Nothing
 """

 self._assert_started()

 def really_link():
 self._links[pid].add(to)
 log.info('Added link from %s to %s' % (pid, to))

 def on_connect(stream):
 really_link()

 if self._is_local(pid):
 really_link()
 else:
 self.__loop.add_callback(self._maybe_connect, to, on_connect)

[docs] def terminate(self, pid):
 """Terminate a process bound to this context.

 When a process is terminated, all the processes to which it is linked
 will be have their ``exited`` methods called. Messages to this process
 will no longer be delivered.

 This method returns immediately.

 :param pid: The pid of the process to terminate.
 :type pid: :class:`PID`
 :returns: Nothing
 """
 self._assert_started()

 log.info('Terminating %s' % pid)
 process = self._processes.pop(pid, None)
 if process:
 log.info('Unmounting %s' % process)
 self.http.unmount_process(process)
 self.__erase_link(pid)

 def __str__(self):
 return 'Context(%s:%s)' % (self.ip, self.port)

 © Copyright 2015, Brian Wickman.
 Created using Sphinx 1.2.2.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		compactor 0.2.2 documentation »

 All modules for which code is available

		compactor

		compactor.context

		compactor.pid

		compactor.process

 © Copyright 2015, Brian Wickman.
 Created using Sphinx 1.2.2.

_modules/compactor.html

 Navigation

 		
 index

 		
 modules |

 		compactor 0.2.2 documentation »

 		Module code »

 Source code for compactor

from functools import wraps

from .context import Context
from .process import Process

_ROOT_CONTEXT = None

def initialize(delegate="", **kw):
 global _ROOT_CONTEXT
 _ROOT_CONTEXT = Context.singleton(delegate=delegate, **kw)
 if not _ROOT_CONTEXT.is_alive():
 _ROOT_CONTEXT.start()

[docs]def join():
 """Join against the global context -- blocking until the context has been stopped."""
 _ROOT_CONTEXT.join()

def after_init(fn):
 @wraps(fn)
 def wrapper_fn(*args, **kw):
 initialize()
 return fn(*args, **kw)
 return wrapper_fn

@after_init
[docs]def spawn(process):
 """Spawn a process on the global context and return its pid.

 :param process: The process to bind to the global context.
 :type process: :class:`Process`
 :returns pid: The pid of the spawned process.
 :rtype: :class:`PID`
 """
 return _ROOT_CONTEXT.spawn(process)

route = Process.route
install = Process.install

__all__ = (
 'initialize',
 'install',
 'join',
 'route',
 'spawn',
)

del Context
del Process
del after_init
del wraps

 © Copyright 2015, Brian Wickman.
 Created using Sphinx 1.2.2.

_modules/compactor/process.html

 Navigation

 		
 index

 		
 modules |

 		compactor 0.2.2 documentation »

 		Module code »

 		compactor »

 Source code for compactor.process

import functools

from .context import Context
from .pid import PID

[docs]class Process(object):
 class Error(Exception): pass
 class UnboundProcess(Error): pass

 ROUTE_ATTRIBUTE = '__route__'
 INSTALL_ATTRIBUTE = '__mailbox__'

 @classmethod
[docs] def route(cls, path):
 """A decorator to indicate that a method should be a routable HTTP endpoint.

 .. code-block:: python

 from compactor.process import Process

 class WebProcess(Process):
 @Process.route('/hello/world')
 def hello_world(self, handler):
 return handler.write('<html><title>hello world</title></html>')

 The handler passed to the method is a tornado RequestHandler.

 WARNING: This interface is alpha and may change in the future if or when
 we remove tornado as a compactor dependency.

 :param path: The endpoint to route to this method.
 :type path: ``str``
 """

 if not path.startswith('/'):
 raise ValueError('Routes must start with "/"')

 def wrap(fn):
 setattr(fn, cls.ROUTE_ATTRIBUTE, path)
 return fn

 return wrap

 # TODO(wickman) Make mbox optional, defaulting to function.__name__.
 # TODO(wickman) Make INSTALL_ATTRIBUTE a defaultdict(list) so that we can
 # route multiple endpoints to a single method.

 @classmethod
[docs] def install(cls, mbox):
 """A decorator to indicate a remotely callable method on a process.

 .. code-block:: python

 from compactor.process import Process

 class PingProcess(Process):
 @Process.install('ping')
 def ping(self, from_pid, body):
 # do something

 The installed method should take ``from_pid`` and ``body`` parameters.
 ``from_pid`` is the process calling the method. ``body`` is a ``bytes``
 stream that was delivered with the message, possibly empty.

 :param mbox: Incoming messages to this "mailbox" will be dispatched to this method.
 :type mbox: ``str``
 """
 def wrap(fn):
 setattr(fn, cls.INSTALL_ATTRIBUTE, mbox)
 return fn
 return wrap

[docs] def __init__(self, name):
 """Create a process with a given name.

 The process must still be bound to a context before it can send messages
 or link to other processes.

 :param name: The name of this process.
 :type name: ``str``
 """

 self.name = name
 self._delegates = {}
 self._http_handlers = dict(self.iter_routes())
 self._message_handlers = dict(self.iter_handlers())
 self._context = None

 def __iter_callables(self):
 # iterate over the methods in a way where we can differentiate methods from descriptors
 for method in type(self).__dict__.values():
 if callable(method):
 # 'method' is the unbound method on the class -- we want to return the bound instancemethod
 yield getattr(self, method.__name__)

 def iter_routes(self):
 for function in self.__iter_callables():
 if hasattr(function, self.ROUTE_ATTRIBUTE):
 yield getattr(function, self.ROUTE_ATTRIBUTE), function

 def iter_handlers(self):
 for function in self.__iter_callables():
 if hasattr(function, self.INSTALL_ATTRIBUTE):
 yield getattr(function, self.INSTALL_ATTRIBUTE), function

 def _assert_bound(self):
 if not self._context:
 raise self.UnboundProcess('Cannot get pid of unbound process.')

 def bind(self, context):
 if not isinstance(context, Context):
 raise TypeError('Can only bind to a Context, got %s' % type(context))
 self._context = context

 @property
[docs] def pid(self):
 """The pid of this process.

 :raises: Will raise a ``Process.UnboundProcess`` exception if the
 process is not bound to a context.
 """
 self._assert_bound()
 return PID(self._context.ip, self._context.port, self.name)

 @property
[docs] def context(self):
 """The context that this process is bound to.

 :raises: Will raise a ``Process.UnboundProcess`` exception if the
 process is not bound to a context.
 """
 self._assert_bound()
 return self._context

 @property
 def route_paths(self):
 return self._http_handlers.keys()

 @property
 def message_names(self):
 return self._message_handlers.keys()

 def delegate(self, name, pid):
 self._delegates[name] = pid

 def handle_message(self, name, from_pid, body):
 if name in self._message_handlers:
 self._message_handlers[name](from_pid, body)
 elif name in self._delegates:
 to = self._delegates[name]
 self._context.transport(to, name, body, from_pid)

 def handle_http(self, route, handler, *args, **kw):
 return self._http_handlers[route](handler, *args, **kw)

[docs] def initialize(self):
 """Called when this process is spawned.

 Once this is called, it means a process is now routable. Subclasses
 should implement this to initialize state or possibly initiate
 connections to remote processes.
 """

[docs] def exited(self, pid):
 """Called when a linked process terminates or its connection is severed.

 :param pid: The pid of the linked process.
 :type pid: :class:`PID`
 """

[docs] def send(self, to, method, body=None):
 """Send a message to another process.

 Sending messages is done asynchronously and is not guaranteed to succeed.

 Returns immediately.

 :param to: The pid of the process to send a message.
 :type to: :class:`PID`
 :param method: The method/mailbox name of the remote method.
 :type method: ``str``
 :keyword body: The optional content to send with the message.
 :type body: ``bytes`` or None
 :raises: Will raise a ``Process.UnboundProcess`` exception if the
 process is not bound to a context.
 :return: Nothing
 """
 self._assert_bound()
 self._context.send(self.pid, to, method, body)

[docs] def link(self, to):
 """Link to another process.

 The ``link`` operation is not guaranteed to succeed. If it does, when
 the other process terminates, the ``exited`` method will be called with
 its pid.

 Returns immediately.

 :param to: The pid of the process to send a message.
 :type to: :class:`PID`
 :raises: Will raise a ``Process.UnboundProcess`` exception if the
 process is not bound to a context.
 :return: Nothing
 """
 self._assert_bound()
 self._context.link(self.pid, to)

[docs] def terminate(self):
 """Terminate this process.

 This unbinds it from the context to which it is bound.

 :raises: Will raise a ``Process.UnboundProcess`` exception if the
 process is not bound to a context.
 """
 self._assert_bound()
 self._context.terminate(self.pid)

[docs]class ProtobufProcess(Process):
 @classmethod
[docs] def install(cls, message_type):
 """A decorator to indicate a remotely callable method on a process using protocol buffers.

 .. code-block:: python

 from compactor.process import ProtobufProcess
 from messages_pb2 import RequestMessage, ResponseMessage

 class PingProcess(ProtobufProcess):
 @ProtobufProcess.install(RequestMessage)
 def ping(self, from_pid, message):
 # do something with message, a RequestMessage
 response = ResponseMessage(...)
 # send a protocol buffer which will get serialized on the wire.
 self.send(from_pid, response)

 The installed method should take ``from_pid`` and ``message`` parameters.
 ``from_pid`` is the process calling the method. ``message`` is a protocol
 buffer of the installed type.

 :param message_type: Incoming messages to this message_type will be dispatched to this method.
 :type message_type: A generated protocol buffer stub
 """
 def wrap(fn):
 @functools.wraps(fn)
 def wrapped_fn(self, from_pid, message_str):
 message = message_type()
 message.MergeFromString(message_str)
 return fn(self, from_pid, message)
 return Process.install(message_type.DESCRIPTOR.full_name)(wrapped_fn)
 return wrap

[docs] def send(self, to, message):
 """Send a message to another process.

 Same as ``Process.send`` except that ``message`` is a protocol buffer.

 Returns immediately.

 :param to: The pid of the process to send a message.
 :type to: :class:`PID`
 :param message: The message to send
 :type method: A protocol buffer instance.
 :raises: Will raise a ``Process.UnboundProcess`` exception if the
 process is not bound to a context.
 :return: Nothing
 """
 super(ProtobufProcess, self).send(to, message.DESCRIPTOR.full_name, message.SerializeToString())

 © Copyright 2015, Brian Wickman.
 Created using Sphinx 1.2.2.

_static/file.png

_static/down.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		compactor 0.2.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Brian Wickman.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

_static/down-pressed.png

