

Welcome to CommCare HQ’s documentation!

CommCare is a multi-tier mobile, server, and messaging platform. The platform enables users to build and
configure content and a user interface, deploy that application to Android devices or to an end-user-facing web
interface for data entry, and receive that data back in real time. In addition, content may be defined that
leverages bi-directional messaging to end-users via API interfaces to SMS gateways, e-mail systems, or other
messaging services. The system uses multiple persistence mechanisms, analytical frameworks, and open source
libraries.

Data on CommCare mobile is stored encrypted-at-rest (symmetric AES256) by keys that are secured by the
mobile user’s password. User data is never written to disk unencrypted, and the keys are only ever held in memory,
so if a device is turned off or logged out the data is locally irretrievable without the user’s password.
Data is transmitted from the phone to the server (and vis-a-versa) over a secure and encrypted HTTPS channel.

Contents:

Overview

	CommCare HQ Platform Overview

	CommCare Architecture Overview

	CommCare Enhancement Proposal Process

Application Building

	Application terminology

	Features

	Bulk Application Translations

	Multimedia

	Adding a new CommCare Setting

	CommCare Settings Config Spec

	App Navigation Features

	The Suite

	Syncing local HQ instance with an Android Phone

	Directly Modifying App Builds (CCZ files)

	Adding CommCare Builds to CommCare HQ

	Web Apps JavaScript

	Formplayer in HQ

Application Data Layer

	Device Restore Optimization

Tenant Management

	Locations

Analytics

	Reporting

	Reporting: Maps in HQ

	Exports

	Change Feeds

	Pillows

	Monitoring Email Events with Amazon SES

User-Configurable Reporting

	User Configurable Reporting

	UCR Examples

	Data source filters

	Data source indicators

	Base Item Expressions

	Report examples

	Charts

	UCR FAQ

Messaging

	Messaging in CommCare HQ

Integrations

	API

	CommCare FHIR Integration

	The MOTECH OpenMRS & Bahmni Module

	How Data Mapping Works

Single Sign On (SSO)

	General Overview

	Architecture

	Local Setup

	Adding a New Identity Provider Type

UI and Front End

	Internationalization

	UI Helpers

	Using Class-Based Views in CommCare HQ

	Forms in HQ

	Dimagi JavaScript Guide

Testing

	Testing infrastructure

	Testing best practices

	Analyzing Test Coverage

	Mocha Tests

	Writing tests by using ES fakes

Performance

	Profiling

	Caching and Memoization

Code

	Plugins

	CommTrack

	Elasticsearch

	Middleware

	Using the shared NFS drive

	How to use and reference forms and cases programatically

	Playing nice with Cloudant/CouchDB

	Celery

	Configuring SQL Databases in CommCare

	Metrics

	CommCare Extensions

	List Extension Points

	Custom Modules

Migrations

	Migrations in Practice

	Auto-Managed Migration Pattern

	Migrating Database Definitions

	Migrating models from couch to postgres

Architecture Decisions

	1. Record architecture decisions

	2. Keep static UCR configurations in memory

	3. Remove warehouse database

Documentation Tips

	Documenting
	Index

	Sphinx

	Read the Docs
	Troubleshooting
	Replicating the build environment

	Writing Documentation

	reStructuredText

	Editors
	Examples
	Section Header

Indices and tables

	Index

	Module Index

	Search Page

CommCare HQ Platform Overview

The major functional components are:

	Application Building and Content Management

	Application Data Layer

	Tenant Management

	Analytics and Usage

	Messaging Layer

	Integration

[image: ../_images/functional_architecture.png]

Application Content Layer

Application Building and Deployment Management

The Application Builder provides an interface for users to create and structure an application’s content and
workflow. Questions can be added by type (text, integer, multiple answer, date, etc.) and logic conditions can be
applied to determine whether the question should be displayed or if the answer is valid.

This environment also provides critical support for detailed management of content releases. CommCare’s deployment
management provides a staging-to-deploy pipeline, profile-based releases for different regions, and supports
incremental rollout and distribution for different regions.

Android Mobile App Runner and Web App Engine

Applications developed in the end user programming (EUP) content builder are deployed to users and then executed
within the CommCare application engine, which is built on a shared Java codebase. The application configurations
can be run on both a native Android client and a Spring web client, to allow access for users in the field as well
as those accessing the application from a computer on the web.

Application Data Layer

Data Management

There are two data models that underpin the CommCare data model:

Form
A form is the basic building block of Applications. Forms are represented as XForms [https://dimagi.github.io/xform-spec/] (XML Forms) which contain
data, logic and rules. Users interact with forms on the mobile device to capture data and perform logic. This data
is then sent back to CommCare as a form submission which is an XML document containing only the data portion of
the XForm.

Forms may include case blocks which can be used to create, update and close cases.

Case
Cases are used to track interactions with objects, often people. Cases provide longitudinal records which can track
the ongoing interactions with a case through form submissions and facilitate the complex sharding and reconciliation
required from synchronizing offline clients.

Each case has a type, such as “patient”, “contact”, “household” which distinguishes it from cases of other types.
Cases may also be structured in a hierarchy using uni-directional relationships between cases.

The full specification for cases can be found here [https://github.com/dimagi/commcare-core/wiki/casexml20].

Transaction Processing

CommCare provides a transaction processing layer which acts as the first step in the underlying data and storage
pipeline. This layer manages the horizontal workload of the mobile and web applications submitting forms, which are
archived into a chunked object storage, and extracts the transactional ‘case’ logic which is used to facilitate
data synchronization through more live storage in the table based storage layer. The transaction processor then
appropriately queues transactions into the real time data pipeline for processing into the reporting databases
through the Kakfa Change Feed, or triggering asynchronous business rules in the Celery queue.

The data processing service is flexible to store any content sent or received via mobile form submissions or SMS
services as long as it adheres to the XForms specification. It also saves all logging and auditing information
necessary for data security compliance. The data processing service saves all data at the transactional level so
that histories can be audited and reconstructed if necessary.

Synchronization

The synchronization process allows for case and user data to be kept up-to-date through incremental syncs of
information from the backend server for offline use cases. To ensure consistency, the backend keeps a shadow record
of each user’s application state hashed to a minimal format, when users submit data or request synchronization,
this shadow record hash is kept up to date to identify issues with what local data is on device.

Syncs request a diff from the server by providing their current hashed state and shadow record token. The server
then establishes what cases have been manipulated outside of the local device’s storage (along with reports or
other static data) which may be relevant to the user, such as a new beneficiary or household registered in their
region. After all of those cases are established, the server produces an XML payload similar to the ones generated
by filling out forms on the local device, which is used to update local device storage with the new data.

Tenant Management Layer

Project Spaces

Every project has its own site on CommCare HQ. Project spaces can house one, or more than one inter-related
applications. Data is not shared among project spaces.

Content can be centrally managed with a master project space housing a master application that can be replicated in
an unlimited number of additional project spaces. CommCare enables fine grained release management along with
roll-back that can be controlled from each project space. These project spaces can be managed under an Enterprise
Subscription that enables centralized control and administration of the project spaces.

User Management

There are two main user types in CommCare: Project Users and Application Users.

Project Users are meant to view data, edit data, manage exports, integrations, and application content. Project
Users can belong to one or more project spaces and are able to transition between project spaces without needing to
login/logout by simply selecting from a drop-down.

Application Users are expected to primarily use CommCare as an end-user entering data and driving workflows through
an application.

Project Users and Application Users are stored with separate models. These models include all permission and
project space membership information, as well as some metadata about the user such as their email address,
phone number, etc. Additionally, authentication stubs are synchronized in real time to SQL where they are saved as
Django Users, allowing us to use standard Django authentication, as well as Django Digest, a third-party Django
package for supporting HTTP Digest Authentication.

Device and Worker Monitoring

Mobile devices which are connected to the CommCare server communicate maintenance and status information through a
lightweight HTTP ‘heartbeat’ layer, which receives up-to-date information from devices like form throughput and
application health, and can transmit back operational codes for maintenance operations, allowing for remote
management of the application directly outside of a full-fledged MDM.

Analytics and Usage

There are several standard reports available in CommCare. The set of standard reports available are organized into
four categories: Monitor Workers, Inspect Data, Messaging Reports and Manage Deployments.

Monitor Workers

Includes reports that allow you to view and compare activity and performance of end
workers against each other.

Inspect Data

Reports for finding and viewing in detail individual cases and form submissions.

Messaging Reports

Domains that leverage CommCare HQ’s messaging capabilities have an additional reporting
section for tracking SMS messages sent and received through their domain

Manage Deployments

Provides tools for looking at applications deployed to users’ phones and device logging
information.

User Defined Reports

In addition to the set of standard reports users may also configure reports based on the data collected by their
users. This reporting framework allows users to define User Configurable Reports (UCR) which store their data in
SQL tables.

Mobile Reports

UCRs may also be used to send report data to the mobile devices. This data can then be displayed on the device as
a report or graph.

Messaging Layer

CommCare Messaging integrates with a SMS gateway purchased and maintained by the client as the processing layer for
SMS messages. This layer manages the pipeline from a Case transaction to matching business logic rules to message
scheduling and validation.

Conditional Scheduled Messages

Every time a case is created, updated, or closed in a form it is placed on the asynchronous processing queue.
Asynchronous processors review any relevant business logic rules to review whether the case has become (or is no
longer) eligible for the rule, and schedules a localized message which can contain information relevant to the
case, such as an individual who did not receive a scheduled visit.

Broadcast Messages

Broadcast messaging is used to send ad-hoc messages to users or cases. These messages can either be sent
immediately, or at a later date and time, and can also be configured to send to groups of users in the system.

Gateway Connectivity and Configuration, Logging, and Audit Tracking

All SMS traffic (inbound and outbound) is logged in the CommCare Message Log, which is also available as a report.
In addition to tracking the timestamp, content, and contact the message was associated with, the Message Log also
tracks the SMS backend that was used and the workflow that the SMS was a part of (broadcast message, reminder, or
keyword interaction).

The messaging layer is also used to provide limits and controls on messaging volume, restricting the number of
messages which can be sent in a 24hr period, and restricting the time of day which messages will be sent, to comply
with regulations. These restrictions may apply to both ad-hoc and scheduled messages. Messages are still processed
and queued 24hrs per day, but only submitted when permitted.

Messaging Dashboards

Charts and other kinds of visualizations are useful for getting a general overview of the data in your system. The
dashboards in CommCare display various graphs that depict case, user, and SMS activity over time. These graphs
provide visibility into when new cases and users were created, how many SMS messages are being sent daily, and the
breakdown of what those messages were used for (reminders, broadcasts, etc.).

Integration

CommCare has robust APIs as well as a MOTECH integration engine that is embedded in CommCare. APIs allow for
direct programmatic access to CommCare. The MOTECH integration engine allows for custom business rules to be
implemented that allow for real-time or batch integration with external systems. This engine does not have an
application or content management environment, and so requires custom engineering to be added to a CommCare
instance.

APIs

CommCare has extensive APIs to get data in and out for bidirectional integration with other systems. This method of
data integration requires familiarity with RESTful HTTP conventions, such as GET and POST and url parameters.

There are APIs both for reading and writing data to CommCare. This can be updated data related to forms or cases
in the system and enable highly-sophisticated integrations with CommCare.

More details on CommCare’s API can be found in the API documentation [https://confluence.dimagi.com/display/commcarepublic/CommCare+HQ+APIs].

MOTECH Repeaters

For interoperability with external systems which process transactional data, CommCare has a MOTECH repeater layer,
which manages the pipeline of case and form transactions received and manages the lifecycle of secure outbound
messages to external systems.

This architecture is designed to autonomously support the scale and volume of transactional data up to hundreds of
millions of transactions in a 24hr period.

[image: ../_images/repeaters_flow.png]
New transformation code for this subsystem can be authored as Python code modules for each outbound integration.
These modules can independently transform the transactional data for the repeater layer, or rely on other data
from the application layer when needed by integration requirements.

CommCare Architecture Overview

CommCare Backend Services

The majority of the code runs inside the server process. This contains all of the data models and services that
power the CommCare website.

Each module is a collection of one or more Django applications that each contain the relevant data models, url
mappings and view controllers, templates, and Database views necessary to provide that module’s functionality.

Data flow for forms and cases

CommCare deals with many different types of data but the primary data that is generated by users form and case data.
This data most often comes from a mobile device running the CommCare mobile application. It may also come from
Web Apps, via an integration API or from a case import.

The data processing for form and case data is split into two portions, synchronous processing and asynchronous
processing.

Synchronous processing

Form and case data in CommCare always follows the same pathway through the system regardless of whether the data
originated from a mobile device (as in the diagram below), from Web Apps, an external integration or from an
internal process such as case update rules.

In all instances a form (which may contain zero or more case changes) is received by CommCare and processed
synchronously and atomically to the point of persisting it in the primary databases and recording the
change in the change log.

The diagram below shows this synchronous processing:

[image: ../_images/data_pipeline_sync.png]

	A form is created on a mobile device (this could also be Web Apps, an external system).

	The form is received by CommCare and once the request has been authenticated and authorized it is fully processed
before responding with a success or error response.

	The data is persisted to the various backend data sources.

	This SQL database is used for authentication and authorization.

	A set of partitioned SQL databases form the primary data store for form and case data.

	Once processing is complete a metadata record is published to the change log for each data model
that was created or updated.

	The raw form XML is persisted to object storage (only metadata about the form is saved to the primary
database in (b).

	If this submission is from a mobile device the sync record for the device is updated to allow efficient
synchronization when the mobile device next makes a sync request.

	A successful response is sent to the sender.

Asynchronous data pipeline

Separately from the synchronous workflow described above there is a data processing pipeline
which runs asynchronously. This pipeline is responsible for populating the secondary
databases which are used for reporting and as the datasource for some of the APIs that
CommCare offers.

[image: ../_images/data_pipeline_async.png]

	Kafka stores the metadata about data model changes. Kafka partitions the data based on the data model ID
(case ID / form ID) and stores each partition separately. Data is sent to Kafka during the synchronous
request processing as described above.

	A pool of ETL workers (a.k.a. pillows) subscribe to Kafka and receive the metadata records from the partitions
they are subscribed to.

	Each ETL worker subscribes to a unique set of partitions.

	Since each worker is independent of the others the rate of processing can vary between workers or can get
delayed due to errors or other external factors.

	The impact of this is that data liveness in the secondary database may vary based on the specific components
in the pipeline. I.e. two cases which got updated in the same form may be updated in Elasticsearch at different
times due to variations in the processing delay between pillow workers.

	The ETL workers fetch the data record from the primary database.

	For forms and cases this data comes from PostgreSQL

	For users and applications this data comes from CouchDB

	If the data model is a form then the form XML is also retrieved from object storage. This data together with the
record from the primary database are used to produce the final output which is written to the secondary databases.

	In the case of UCRs there may be other data that is fetched during the processing stage e.g. locations, users.

Change Processors (Pillows)

Change processors (known in the codebase as pillows) are events that trigger when changes are introduced to the
database. CommCare has a suite of tools that listen for new database changes and do additional processing based on
those changes. These include the analytics engines, as well as secondary search indices and custom report
utilities. All change processors run in independent threads in a separate process from the server process, and are
powered by Apache Kafka [https://kafka.apache.org/].

Task Queue

The task queue is used for asynchronous work and periodic tasks. Processes that require a long time and significant
computational resources to run are put into the task queue for asynchronous processing. These include data exports,
bulk edit operations, and email services. In addition the task queue is used to provide periodic or scheduled
functionality, including SMS reminders, scheduled reports, and data forwarding services. The task queue is powered
by Celery [https://docs.celeryproject.org], an open-source, distributed task queueing framework.

Data Storage Layer

CommCare HQ leverages the following databases for its persistence layer.

PostgreSQL

A large portion of our data is stored in the PostgreSQL [https://www.postgresql.org] database, including case data, form metadata, and user
account information.

Also stored in a relational database, are tables of domain-specific transactional reporting data. For a particular
reporting need, our User Configurable Reporting framework (UCR) stores a table where each row contains the relevant
indicators as well as any values necessary for filtering.

For larger deployments the PostgreSQL database is sharded. Our primary data is sharded using a library called
PL/Proxy as well as application logic written in the Python.

PostgreSQL is a powerful, open source object-relational database system. It has more than 15 years of active
development and a proven architecture that has earned it a strong reputation for reliability, data integrity, and
correctness.

See Configuring SQL Databases in CommCare

CouchDB

CommCare uses CouchDB [https://couchdb.apache.org/] as the primary data store for some of its data models, including the application builder
metadata and models around multitenancy like domains and user permissions. CouchDB is an open source database
designed to be used in web applications. In legacy systems CouchDB was also used to store forms, cases, and SMS
records, though these models have moved to PostgreSQL in recent applications.

CouchDB was primarily chosen because it is completely schema-less. All data is stored as JSON documents and views
are written to index into the documents to provide fast map-reduce-style querying.

In addition CommCare leverages the CouchDB changes feed heavily to do asynchronous and post processing of our data.
This is outlined more fully in the “change processors” section above.

Elasticsearch

Elasticsearch [https://www.elastic.co/] is a flexible and powerful open source, distributed real-time search and analytics engine for the
cloud. CommCare uses Elasticsearch for several distinct purposes:

Much of CommCare’s data is defined by users in the application configuration. In order to provide performant
reporting and querying of user data CommCare makes use of Elasticsearch.

CommCare also serves portions of the REST API from a read-only copy of form and case data that is replicated in
real time to an Elasticsearch service.

This also allows independent scaling of the transactional data services and the reporting services.

Devops Automation

Fabric / Ansible

Fabric and Ansible are deployment automation tools which support the efficient management of cloud resources for
operations like deploying new code, rolling out new server hosts, or running maintenance processes like logically
resharding distributed database. CommCare uses these tools as the foundation for our cloud management toolkit,
which allows us to have predictable and consistent maintenance across a large datacenter.

Dimagi’s tool suite, commcare-cloud [https://dimagi.github.io/commcare-cloud/] is also available on Github

Other services

Nginx (proxy)

CommCare’s main entry point for all traffic to CommCare HQ goes through Nginx [https://www.nginx.com/]. Nginx performs the following
functions:

	SSL termination

	Reverse proxy and load balancing

	Request routing to CommCare and Formplayer

	Serving static assets

	Request caching

	Rate limiting (optional)

Redis

Redis [https://redis.io/] is an open source document store that is used for caching in CommCare HQ. Its primary use is for general
caching of data that otherwise would require a query to the database to speed up the performance of the site. Redis
also is used as a temporary data storage of large binary files for caching export files, image dumps, and
other large downloads.

Apache Kafka

Kafka [https://kafka.apache.org/] is a distributed streaming platform used for building real-time data pipelines and streaming apps. It is
horizontally scalable, fault-tolerant, fast, and runs in production in thousands of companies. It is used in
CommCare to create asynchronous feeds that power our change processors (pillows) as part of the reporting pipeline.

RabbitMQ

RabbitMQ [https://www.rabbitmq.com/] is an open source Advanced Message Queuing Protocol (AMQP) compliant server. As mentioned above CommCare
uses the Celery [https://docs.celeryproject.org] framework to execute background tasks. The Celery task queues are managed by RabbitMQ.

Gunicorn

Gunicorn [https://gunicorn.org/] is an out-of-the-box multithreaded HTTP server for Python, including good integration with Django. It allows
CommCare to run a number of worker processes on each worker machine with very little additional setup. CommCare is
also using a configuration option that allows each worker process to handle multiple requests at a time using the
popular event-based concurrency library Gevent. On each worker machine, Gunicorn abstracts the concurrency and
exposes our Django application on a single port. After deciding upon a machine through its load balancer, our proxy
is then able to forward traffic to this machine’s port as if forwarding to a naive single-threaded implementation
such as Django’s built-in “runserver”.

CommCare Enhancement Proposal Process

This process outlines a mechanism for proposing changes to CommCare HQ. The process is intentionally very
lightweight and is not intended as a gateway that must be passed through. The main goal of the process is to
communicate intended changes or additions to CommCare HQ and facilitate discussion around those changes.

The CommCare Enhancement Proposal (CEP) process is somewhat analogous to the Request For Comments [https://en.wikipedia.org/wiki/Request_for_Comments] process
though much simpler:

	Create a CEP

Create a Github Issue using the CEP template [https://github.com/dimagi/commcare-hq/issues/new/choose]. Once you have completed the template submit the issue an
notify relevant team members or @dimagi/dimagi-dev.

	Respond to any questions or comments that arise

Application terminology

Applications (and builds)

An application typically has many different Application documents:
one for the current/primary/canonical application, plus one for each
saved build. The current app’s id is what you’ll see in the URL on most
app manager pages. Most pages will redirect to the current app if given
the id of an older build, since saved builds are essentially read-only.

In saved builds, copy_of contains the primary app’s id, while it’s
None for the primary app itself. If you need to be flexible about
finding primary app’s id on an object that might be either an app or a
build, use the property origin_id.

Within code, “build” should always refer to a saved build, but “app” is
used for both the current app and saved builds. The ambiguity of “app”
is occasionally a source of bugs.

Every time an app is saved, the primary doc’s version is
incremented. Builds have the version from which they were created,
which is never updated, even when a build doc is saved (e.g., the build
is released or its build comment is updated).

When a user makes a build of an application, a copy of the primary
application document is made. These documents are the “versions” you see
on the deploy page. Each build document will have a different id, and
the copy_of field will be set to the ID of the primary application
document. Both builds and primary docs contain built_on and
built_with information - for a primary app doc, these fields will
match those of the most recent build. Additionally, a build creates
attachments such as profile.xml and suite.xml and saves then to
the build doc (see create_all_files).

When a build is released, its is_released attribute will be set to
True. is_released is always false for primary application docs.

Modules

An application contains one or more modules, which are called “menus” in
user-facing text. These modules roughly map to menus when using the app
on a device. In apps that use case management, each module is associated
with a case type.

Each module has a unique_id which is guaranteed unique only within
the application.

Forms

A “form” in HQ may refer to either a form definition within an
application or a form submission containing data. App manager code
typically deals with form definitions.

A module contains one or more form definitions. Forms, at their most
basic, are collections of questions. Forms also trigger case changes and
can be configured in a variety of ways.

Each form has a unique_id which is guaranteed unique only within the
domain. For the most part, being unique within an application is
sufficient, but uniqueness across the domain is required for the sake of
multimaster linked applications. See this
commit [https://github.com/dimagi/commcare-hq/commit/6e2f38653377d167fdbef247f02eaec4159ce2e2#diff-535390eb5c83a4cd3449f82afd1fa9fb]
for detail.

Forms also have an xml namespace, abbreviated xmlns, which is part
of the form’s XML definition. Reports match form submissions to form
definitions using the xmlns plus the app id, which most apps pass along
to
secure_post [https://github.com/dimagi/commcare-hq/blob/5d9122ad2ba23986e6b4493eee0eab16cbcc868b/corehq/apps/receiverwrapper/views.py#L304].
For reports to identify forms accurately, xmlns must be unique within an
app.

Duplicate xmlnses in an app will throw an error when a new version of
the app is built. When an app is copied, each form in the copy keeps the
same XMLNS as the corresponding form in the original. When a form is
copied within an app - or when a user uploads XML using an xmlns already
in use by another form in the same app - the new form’s xmlns will be
set to a new value in
save_xform [https://github.com/dimagi/commcare-hq/blob/170690a2fbf8039365fdca852911b4a57fd70a1e/corehq/apps/app_manager/util.py#L171].

Exceptions

Linked apps use similar workflows to app copy for creating and pulling.
See
docs [https://github.com/dimagi/commcare-hq/tree/master/corehq/apps/linked_domain#linked-applications]
for more detail on how they handle form unique ids and xmlnses.

Shadow forms are a variation of advanced forms that “shadow” another
form’s XML but can have their own settings and actions. Because they
don’t have their own XML, shadow forms do not have an xmlns but instead
inherit their source form’s xmlns. In reports, submissions from shadow
forms show up as coming from their source form.

Features

Template apps

HQ currently has two versions of “template apps.”

Onboarding apps

The first set of template apps are simple apps in different sectors that
we’ve experimented with adding to a user’s project when they first sign
up for an account. These template apps are stored as json in the code
base, in the
template_apps [https://github.com/dimagi/commcare-hq/tree/master/corehq/apps/app_manager/static/app_manager/template_apps]
directory. They are imported using the view app_from_template.

COVID app library

This is a set of template applications that exist in a real project
space and are made publicly visible to other domains. A record of each
app is stored as an ExchangeApplication model.

These applications are visible via the app_exchange view.

To add a new app, add a new ExchangeApplication model via django
admin. You must supply a domain and an app id. Use the “canonical” app
id used in app manager URLs, not a specific build id. You may also
provide a help link and/or a link to a version history. All released
versions of the app will be available via the app library, with the
versions labeled by date of release, not by version number. The
application title displayed in the library will be from the latest
version of the app.

Bulk Application Translations

HQ supports a file download and re-upload to update all application-specific translations.

The download has two variants, a multi-sheet and a single-sheet format. Both are tolerant of partial uploads:

missing sheets, missing language columns (as opposed to the columns needed to identify a row), and missing rows

(with some exceptions for module translations, which depend on case properties being present and correctly ordered).

The default multi-sheet format contains a first “menus and forms” sheet for editing module and form names and menu media. It then contains a sheet for each module and each form.

The single-sheet format allows editing all of the same content, just with all rows in the same sheet. Depending on the type of row (module/form name, module content, or form content) certain columns will be blank.

The UI defaults to the multi-sheet download. There’s a feature flagged ability to select a single language, which downloads the single sheet format for that language. There’s no technical reason that the single sheet download is also a single language download.

For domains with Transifex integration, Transifex generates Excel files in the multi-sheet format that HQ accepts.

Code is organized into
- download.py Generation of Excel downloads
- upload_app.py Entry point to upload code
- upload_module.py Helper functions to update module content
- upload_form.py Helper functions to update form content
- utils.py Helper functions shared by download and upload, such as header generators

Multimedia

General multimedia handling

Multimedia metadata is stored in couch, using CommCareMultimedia and its subclasses: CommCareImage, CommCareAudio, etc.

Each file is stored once, regardless of how many applications or domains use it. This is enforced via the by_hash [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/hqmedia/_design/views/by_hash/map.js] view, which stores a hash of each multimedia file’s content. When new multimedia is uploaded, the contents are hashed and looked up to determine wheether or not to create a new document. See CommCareMultimedia.get_by_data and its calling code in places like BaseProcessFileUploadView.process_upload.

These documents are never deleted.

Multimedia in applications

The app’s multimedia_map

The biggest use case for multimedia in CommCare is displaying multimedia in applications. The application’s multimedia_map property stores information about where it uses multimedia.

multimedia_map is a dict where each key is a path and each value is a dict corresponding to an HQMediaMapItem. The map has one entry for every path, also called a reference, in the application. If an application uses the same image as an icon for two forms, it will have two entries in the map, unless a user has edited the app so that both forms use the same path.

Sample multimedia_map entry:

"jr://file/commcare/image/module0_en.jpg": {
 "doc_type": "HQMediaMapItem",
 "media_type": "CommCareImage",
 "multimedia_id": "7f14f2dc29fa7c406dc1b0d40603e742",
 "unique_id": "b6ee70e5e61ea550b26d36cc185dde23",
 "version": 17
}

The path is auto-generated by HQ based on where the file is being used. It can be manually edited - everywhere that a multimedia file can be uploaded, its path can be edited. There is also a tool to edit multimedia paths in bulk via Excel.

The doc_type is always HQMediaMapItem.

The media_type is CommCareMultimedia or one of its subclasses.

The multimedia_id is the id of the corresponding CommCareMultimedia document.

The unique_id is a hash of the concatenated multimedia id and path at the time the item was created. That means this id will be unique within the multimedia map, but will not be globally unique.

The version is the app version where the multimedia was added or most recently changed. The version can be None for applications that are unbuilt, and then any blank versions will be assigned when a new build is made. More on this below.

Versioning multimedia

CommCare (on mobile) uses the version to determine when to re-download an updated multimedia file. The version will always be an app version. This correspondence isn’t necessary; all the phone checks is if the current version is greater than the version already on the phone - if so, the phone will re-download the multimedia. This logic is based on the logic used to download updated forms.

The version is updated (set to the latest app version) in the following situations:

	Multimedia is added to the app.

	The content of multimedia is changed, by using the “Replace” button in the uploader. This also causes the multimedia id to change. It typically does not change the unique*id, because set*media*versions looks up the path in the previous version of the app and uses that item’s unique id. However, it may change the unique*id for form question media, because form questions include a random string at the end of their path which changes when a user uploads a new file.

	The path alone is changed using the “Manage Multimedia Paths” bulk uploader. This does not change the unique id, even though the path changes.

	The path and content are changed together in the UI. This also replaces the multimedia id and re-generates the unique id.

Linked apps

Linked apps, when pulled, copy the multimedia map directly from the upstream app, so all the attributes of each item will match those in the upstream app. Because linked apps are always pulled from a released version of an upstream app, each item should have a version set.

media_suite.xml

The media suite contains a list of media elements, one for each value in the multimedia map.

<media path="../../commcare/image">
 <resource descriptor="Image File: FILENAME" id="media-UNIQUE_ID-FILENAME" version="VERSION">
 <location authority="local">PATH</location>
 <location authority="remote">
 URL
 </location>
 </resource>
</media>

	FILENAME is originally generated by HQ and will be fairly readable, something like module0_en.jpg, and may be modified by users.

	PATH will be the path to the file on the device, so similar to the path used as a key in the multimedia map, though in a format like ./commcare/image/module0*en.jpg rather than the jr://commcare/image/module0*en.jpg format used in the map.

	UNIQUE_ID and VERSION are from the multimedia map.

	URL is the url to access the file on the server and incorporates the media type, multimedia id, and filename, e.g., http://www.commcarehq.org/hq/multimedia/file/CommCareImage/7f14f2dc29fa7c406dc1b0d40603e742/module0_en.jpg.

If the same file is uploaded to two different paths, it will be included twice on the device, but on the server it will be stored only once and will have only one CommCareMultimedia document. Although there will be two different URLs in the media suite, they will point to the same page: HQ only uses the multimedia id to identify the file, it ignores the URL’s filename suffix.

Adding a new CommCare Setting

A new setting can be defined in commcare-app-settings.yml or
commcare-profile-settings.yml depending on whether the setting is HQ
only or should also go to mobile xml files. The spec for setting is
given in below section.

CommCare Settings Config Spec

This page documents the YAML configuration found in these locations:

	commcare-app-settings.yml [https://github.com/dimagi/core-hq/blob/master/corehq/apps/app_manager/static/app_manager/json/commcare-app-settings.yml]:
Settings that are specific to CommCare HQ’s configurations

	commcare-profile-settings.yml [https://github.com/dimagi/core-hq/blob/master/corehq/apps/app_manager/static/app_manager/json/commcare-profile-settings.yml]:
Settings that are 1-to-1 with CommCare mobile profile features/properties

	commcare-settings-layout.yml [https://github.com/dimagi/core-hq/blob/master/corehq/apps/app_manager/static/app_manager/json/commcare-settings-layout.yml]:
Determines how these settings are grouped and laid out on the app settings page

Each of commcare-app-settings.yml and commcare-profile-settings.yml contain a yaml list with each element containing the following properties:

Required properties

	id - The “key” attribute to be used in the CommCare profile
(or “feature” name)

	name - Human readable name of the property

	description - A longer human readable description of what the
property does

	default - The default value for the property

	values - All the possible values for the property

	value_names - The human readable names corresponding to the
values

Optional

	requires - Should be set if this property is only enabled when
another property has a certain value. Syntax is
"{SCOPE.PROPERTY}='VALUE'", where SCOPE can be hq,
properties, features, or $parent.

	requires_txt - Optional text explaining the dependency enforced
by requires

	contingent_default - What value to force this property to if it’s
disabled. E.g.
[{"condition": "{features.sense}='true'", "value": "cc-su-auto"}],
means “if the feature sense is 'true', then this property
should be forced to take the value "cc-su-auto".

	since - The CommCare version in which this property was
introduced. E.g. 2.1.

	type - Less common. To render as a “feature” set this to
"features".

	commcare_default - The default used by CommCare, if it differs
from the default we want it to have on HQ.

	disabled_default - The default to be used if the app’s build
version is less than the since parameter. contingent_default
takes precedence over this setting.

	values_txt - Extra help text describing what values can be
entered

	group - Presentational; defines how the properties get grouped on
HQ

	disabled - Set to true for deprecated values we don’t want to
show up in the UI anymore

	force - Set to true to have the force attribute of the
setting set when building the profile. Only applies when
type=’properties’ (default).

	toggle - If specified, the property will only be shown if the
given toggle is enabled. The value should be an identifier for a
toggle in corehq/toggles.py, e.g. “CUSTOM_APP_BASE_URL”

	warning - Text displayed if the value of the setting is invalid

Only static setting options can be defined in settings yaml files, any
app or domain specific context to render the setting on HQ Edit
Application settings page can be provided in
corehq.apps.app_manager.view.apps:get_app_view_context

Example

- name: "Auto Update Frequency"
 description: "How often CommCare mobile should attempt to check for a new, released application version."
 id: "cc-autoup-freq"
 values: ["freq-never", "freq-daily", "freq-weekly"]
 value_names: ["Never", "Daily", "Weekly"]
 default: "freq-never"
 values_txt: "After login, the application will look at the profile's defined reference for the authoritative location of the newest version. This check will occur with some periodicity since the last successful check based on this property. freq-never disables the automatic check."
 since: "1.3"

App Navigation Features

Navigation in CommCare is oriented around form entry. The goal of each CommCare session is to complete a form.
Menus and case lists are tools for gathering the necessary data required to enter a particular form.
App manager gives app builders direct control over many parts of their app’s UI, but the exact sequence of screens
a user sees is indirectly configured.

Based on app configuration, HQ builds a suite.xml file that acts as a blueprint for the app. It outlines what
forms are available to fill out, where they fit, and what data (like cases) they will need to function. CommCare
interprets this configuration to decide which screens to show to the user and in what order.

Much of the complexity of app manager code, and of building apps, comes from inferences HQ makes while building the
suite file, especially around determining the set of data required for each form. These features that influence,
but don’t directly control, the suite also influence each other, in ways that may not be obvious. The following
features are particularly prone to interact unexpectedly and should be tested together when any significant change
is made to any of them:

	Display Only Forms

	Select Parent First

	End of Form Navigation and Form Linking

	Child Modules

	Shadow Modules

Several of these features are simple from an app builder’s perspective, but they require HQ to “translate” UI
concepts into suite concepts. Other features force the app builder to understand suite concepts, so they may
be challenging for app builders to learn but are less prone to interacting poorly with other features:

	Case search, which maps fairly cleanly to the <remote-request> element (except when using the
USH_INLINE_SEARCH flag).

	Advanced modules

Display Only Forms

Display only forms is deceptively simple. This setting causes a module’s forms to be displayed directly in the
parent menu (either the parent module’s menu or the root CommCare menu), instead of the user needing to explicitly
select the menu’s name. This can be a UX efficiency gain.

However, quite a lot of suite generation is structured around modules, and using display only forms means that
modules no longer map cleanly to <menu> elements. This means that modules using display only forms can’t be
“destinations” in their own right, so they don’t work with end of form navigation, form linking, or smart links.
It also complicates menu construction, raising issues like how to deal with module display conditions when the
module doesn’t have a dedicated <menu>.

Select Parent First

When the “select parent first” setting is turned on for a module, the user is presented with a case list for
the parent case type. The user selects a case from this list and is then given another case list limited to
children of that parent. The user can select any other module in the app that uses the parent case type to use as
the configuration for this parent case list.

This setting is controlled by ModuleBase.parent_select and has a dedicated model, ParentSelect.
The suite implementation is small: HQ adds a parent_id datum to the module’s <entry> blocks and a filter to the
main case_id datum’s nodeset to filter it to children of the parent:
[index/parent=instance('commcaresession')/session/data/parent_id].

This is easy to confuse with parent/child modules (see below), which affect the suite’s <menu> elements and can
affect datum generation.

The feature flag NON_PARENT_MENU_SELECTION allows the user to use any module as the “parent” selection, and it
does not use the additional nodeset filter. This allows for more generic two-case-list workflows.

End of Form Navigation and Form Linking

These features allow the user to select a destination for the user to be automatically navigated to after filling
out a particular form. To support this, HQ needs to figure out how to get to the requested destination, both the
actions taken (user selecting a form or menu) and the data needed (which needs to be pulled from somewhere,
typically the session, in order to automatically navigate the user instead of asking them to provide it).

End of form navigation (“EOF nav”) allows for a couple of specific locations, such as going back to the form’s module or its
parent module. EOF nav also has a “previous screen” option this is particularly fragile, since it requires HQ to
replicate CommCare’s UI logic.

Form linking, which is behind the FORM_LINK_WORKFLOW flag, allows the user to select a form as the destination.
Form linking allows the user to link to multiple forms, depending on the value of an XPath expression.

Most forms can be linked “automatically”, meaning that it’s easy for HQ to determine what datums are needed.
See the
auto_link [https://github.com/dimagi/commcare-hq/blob/b7c88d4127feeb0ebc17c7df3211fb523a900f6f/corehq/apps/app_manager/views/forms.py#L919-L950]
logic for implementation.
For other forms, HQ pushes the burden of figuring out datums towards the user, requiring them to provide an XPath
expression for each datum.

EOF nav and form linking config is stored in FormBase.post_form_workflow. In the suite, it’s implemented as a
stack [https://github.com/dimagi/commcare-core/wiki/SessionStack] in the form’s <entry> block.
For details, see docs on WorkflowHelper.

Child Modules

In principle child modules is very simple. Making one module a child of another
simply changes the menu elements in the suite.xml file. For example in the
XML below module m1 is a child of module m0 and so it has its root
attribute set to the ID of its parent.

<menu id="m0">
 <text>
 <locale id="modules.m0"/>
 </text>
 <command id="m0-f0"/>
</menu>
<menu id="m1" root="m0">
 <text>
 <locale id="modules.m1"/>
 </text>
 <command id="m1-f0"/>
</menu>

HQ’s app manager only allows users to configure one level of nesting; that is, it does not allow for “grandchild” modules. Although CommCare mobile supports multiple levels of nesting, beyond two levels it quickly gets prohibitively complex for the user to understand the implications of their app design and for for HQ to determine a logical set of session variables [https://github.com/dimagi/commcare-hq/blob/765bb4030d0923a4ae887aabecf688e72045dd7b/corehq/apps/app_manager/suite_xml/sections/entries.py#L366] for every case. The modules could have all different case types, all the same, or a mix, and for modules that use the same case type, that case type may have a different meanings (e.g., a “person” case type that is sometimes a mother and sometimes a child), which all makes it difficult for HQ to determine the user’s intended application design. See below for more on how session variables are generated with child modules.

Menu structure

As described above the basic menu structure is quite simple however there is one property in particular
that affects the menu structure: module.put_in_root

This property determines whether the forms in a module should be shown under the module’s own menu item or
under the parent menu item:

	put_in_root

	Resulting menu

	True

	id=”<parent menu id>”

	False

	id=”<module menu id>” root=”<parent menu id>”

Notes:

	If the module has no parent then the parent is root.

	root=”root” is equivalent to excluding the root attribute altogether.

Session Variables

This is all good and well until we take into account the way the
Session [https://github.com/dimagi/commcare/wiki/Suite20#the-session] works on the mobile
which “prioritizes the most relevant piece of information to be determined by the user at any given time”.

This means that if all the forms in a module require the same case (actually just the same session IDs) then the
user will be asked to select the case before selecting the form. This is why when you build a module
where all forms require a case the case selection happens before the form selection.

From here on we will assume that all forms in a module have the same case management and hence require the same
session variables.

When we add a child module into the mix we need to make sure that the session variables for the child module forms match
those of the parent in two ways, matching session variable names and adding in any missing variables.
HQ will also update the references in expressions to match the changes in variable names.
See corehq.apps.app_manager.suite_xml.sections.entries.EntriesHelper.add_parent_datums for implementation.

Matching session variable names

For example, consider the session variables for these two modules:

module A:

case_id: load mother case

module B child of module A:

case_id_mother: load mother case
case_id_child: load child case

You can see that they are both loading a mother case but are using different session variable names.

To fix this we need to adjust the variable name in the child module forms otherwise the user will be asked
to select the mother case again:

case_id_mother -> case_id

module B final:

case_id: load mother case
case_id_child: load child case

Note:
If you have a case_id in both module A and module B, and you wish to access the ID of the case selected in
parent module within an expression like the case list filter, then you should use parent_id
instead of case_id

Inserting missing variables

In this case imagine our two modules look like this:

module A:

case_id: load patient case
case_id_new_visit: id for new visit case (uuid())

module B child of module A:

case_id: load patient case
case_id_child: load child case

Here we can see that both modules load the patient case and that the session IDs match so we don’t
have to change anything there.

The problem here is that forms in the parent module also add a case_id_new_visit variable to the session
which the child module forms do not. So we need to add it in:

module B final:

case_id: load patient case
case_id_new_visit: id for new visit case (uuid())
case_id_child: load child case

Note that we can only do this for session variables that are automatically computed and
hence does not require user input.

Shadow Modules

A shadow module is a module that piggybacks on another module’s commands (the “source” module). The shadow module has its own name, case list configuration, and case detail configuration, but it uses the same forms as its source module.

This is primarily for clinical workflows, where the case detail is a list of patients and the clinic wishes to be able to view differently-filtered queues of patients that ultimately use the same set of forms.

Shadow modules are behind the feature flag Shadow Modules.

Scope

The shadow module has its own independent:

	Name

	Menu mode (display module & forms, or forms only)

	Media (icon, audio)

	Case list configuration (including sorting and filtering)

	Case detail configuration

The shadow module inherits from its source:

	case type

	commands (which forms the module leads to)

	end of form behavior

Limitations

A shadow module can neither be a parent module nor have a parent module

A shadow module’s source can be a parent module. The shadow will automatically create a shadow version of any child modules as required.

A shadow module’s source can have a parent module. The shadow will appear as a child of that same parent.

Shadow modules are designed to be used with case modules. They may behave unpredictably if given an advanced module or reporting module as a source.

Shadow modules do not necessarily behave well when the source module uses custom case tiles. If you experience problems, make the shadow module’s case tile configuration exactly matches the source module’s.

Entries

A shadow module duplicates all of its parent’s entries. In the example below, m1 is a shadow of m0, which has one form. This results in two unique entries, one for each module, which share several properties.

<entry>
 <form>
 http://openrosa.org/formdesigner/86A707AF-3A76-4B36-95AD-FF1EBFDD58D8
 </form>
 <command id="m0-f0">
 <text>
 <locale id="forms.m0f0"/>
 </text>
 </command>
</entry>
<entry>
 <form>
 http://openrosa.org/formdesigner/86A707AF-3A76-4B36-95AD-FF1EBFDD58D8
 </form>
 <command id="m1-f0">
 <text>
 <locale id="forms.m0f0"/>
 </text>
 </command>
</entry>

Menu structure

In the simplest case, shadow module menus look exactly like other module menus. In the example below, m1 is a shadow of m0. The two modules have their own, unique menu elements.

<menu id="m0">
 <text>
 <locale id="modules.m0"/>
 </text>
 <command id="m0-f0"/>
</menu>
<menu id="m1">
 <text>
 <locale id="modules.m1"/>
 </text>
 <command id="m1-f0"/>
</menu>

Menus get more complex when shadow modules are mixed with parent/child modules. In the following example, m0 is a basic module, m1 is a child of m0, and m2 is a shadow of m0. All three modules have put_in_root=false (see Child Modules > Menu structure above). The shadow module has its own menu and also a copy of the child module’s menu. This copy of the child module’s menu is given the id m1.m2 to distinguish it from m1, the original child module menu.

<menu id="m0">
 <text>
 <locale id="modules.m0"/>
 </text>
 <command id="m0-f0"/>
</menu>
<menu root="m0" id="m1">
 <text>
 <locale id="modules.m1"/>
 </text>
 <command id="m1-f0"/>
</menu>
<menu root="m2" id="m1.m2"> <text>
 <locale id="modules.m1"/>
 </text> <command id="m1-f0"/>
</menu>
<menu id="m2"> <text>
 <locale id="modules.m2"/>
 </text> <command id="m2-f0"/>
</menu>

Legacy Child Shadow Behaviour

Prior to August 2020 shadow modules whose source was a parent had inconsistent behaviour.

The child-shadows were not treated in the same manner as other shadows - they inherited everything from their source, which meant they could never have their own case list filter, and were not shown in the UI. This was confusing. A side-effect of this was that display-only forms were not correctly interpreted by the phone. The ordering of child shadow modules also used to be somewhat arbitrary, and so some app builders had to find workarounds to get the ordering they wanted. Now in V2, what you see is what you get.

Legacy (V1) style shadow modules that have children can be updated to the new behaviour by clicking “Upgrade” on the settings page. This will create any real new shadow-children, as required. This will potentially rename the identifier for all subsequent modules (i.e. m3 might become m4 if a child module is added above it), which could lead to issues if you have very custom XML references to these modules anywhere. It might also change the ordering of your child shadow modules since prior to V2, ordering was inconsistent. All of these things should be easily testable once you upgrade. You can undo this action by reverting to a previous build.

If the old behaviour is desired for any reason, there is a feature flag “V1 Shadow Modules” that allows you to make old-style modules.

The Suite

An application’s suite.xml file controls its structure.

The full XML spec for the suite is availabe on the commcare-core wiki [https://github.com/dimagi/commcare/wiki/Suite20].

Overview

Suite generation starts with Application.create_suite, which delegates to SuiteGenerator.

Suite generation is organized based on its major XML elements: resources, entries, details, etc.
The suite is generated in two passes:

	corehq.apps.app_manager.suite_xml.sections generates independendent parts. A “section” is one of the major
elements that goes into the suite: resources, entries, details, etc. This logic relies on the app document itself.

	corehq.apps.app_manager.suite_xml.post_process handles logic that depends on the first pass being complete. Some of
this logic adds new elements, some manipulates existing elements. This logic relies on the app document and also on
the XML models generated by the first pass. Anything that deals with
stacks [https://github.com/dimagi/commcare-core/wiki/Suite20#stack] must be a post processor, to
guarantee that all menus have already been generated.

Challenges for developers in suite generation code:

	Language mixes CommCare concepts, such as “datum” and “menu”, with HQ concepts, such as “modules”

	Lots of branching

	Has evolved one feature at a time, sometimes without attention to how different features interact

	CommCare’s suite spec supports plenty of behavior that HQ doesn’t allow the app builder to configure.
In some areas, 20% of the HQ logic handles 80% of what’s actually supported, so the code is more complex than the
developer might expect. As an example of this, the suite code generally supports an arbitrary number of datums
per form, even though the vast majority of forms only require one or two cases.

A bright spot: test coverage for suite generation is good, and adding new tests is typically straightforward.

Sections

DetailContributor

Details represent the configuration for case lists and case details. The
reuse of the word “Detail” here is unfortunate. Details can be used
for other purposes, such as the referral_detail, but 99% of the
time they’re used for case list/detail.

The case list is the “short” detail and the case detail is the “long”
detail. A handful of configurations are only supported for one of
these, e.g., actions only get added to the short detail.

The detail element can be nested. HQ never nests short details, but it
nests long details to produce tabbed case details. Each tab has its own
<detail> element.

The bulk of detail configuration is in the display properties,
called “fields” and sometimes “columns” in the code. Each field has a
good deal of configuration, and the code transforms them into named
tuples while processing them. Each field has a format, one of about a
dozen options. Formats are typically either UI-based, such as
formatting a phone number to display as a link, or calculation-based,
such as configuring a property to display differently when it’s “late”,
i.e., is too far past some reference date.

Most fields map to a particular case property, with the exception of
calculated properties. These calculated properties are identified only
by number. A typical field might be called case_dob_1 in the suite,
indicating both its position and its case property, but a calculation
would be called case_calculated_property_1.

EntriesContributor

This is the largest and most complex of the suite sections, responsible
for generating an <entry> element for each form, including the
datums required for form entry. The EntriesHelper, which does all
of the heavy lifting here, is imported into other places in HQ that
need to know what datums a form requires, such as the session schema
generator for form builder and the UI for form linking.

When forms work with multiple datums, they need to be named in a way
that is predictable for app builders, who reference them inside forms.
This is most relevant to the “select parent first” feature and to
parent/child modules. See update_refs and rename_other_id,
both inner functions in add_parent_datums, plus this comment [https://github.com/dimagi/commcare-hq/blob/c9fa01d1ccbb73d8f07fefbe56a0bbe1dbe231f8/corehq/apps/app_manager/suite_xml/sections/entries.py#L966-L971] on
matching parent and child datums.

FixtureContributor

This contributor adds a tiny fixture with a demo user group.

It’s also the parent class for SchedulerFixtureContributor, a flagged feature.

MenuContributor

Menus approximately correspond to HQ modules.

Menus almost correspond to command lists, the screens in CommCare that ask the user to select a form or sub-menu.
However, if the suite contains multiple <menu> elements with the same id, they will be concatenated and
displayed as a single screen.

Menu ids will typically map to the module’s position in the application: the first menu is m0, second is
m1, etc.

Highlights of menu configuration:

	Display conditions, which become relevant attributes

	Display-only forms, which becomes the put_in_root attribute

	Grid style, to determine whether the command list should be displayed as a flat list or as a grid that
emphasizes the menu icons

Resource Contributors

These contributors let the suite know where to find external resources,.
These external resources are text files that are also part of the application’s CCZ.

	FormResourceContributor handles XForms

	LocaleResourceContributor handles the text files containing translations

	PracticeUserRestoreContributor handles a dummy restore used for Practice Mode

Post Processors

EndpointsHelper

This is support for session endpoints, which are a flagged feature for mobile that also form the basis of smart
links in web apps.

Endpoints define specific locations in the application using a stack, so they rely on similar logic to end of form
navigation. The complexity of generating endpoints is all delegated to WorkflowHelper.

InstancesHelper

Every instance referenced in an xpath expression needs to be added to the
relevant entry or menu node, so that CommCare knows what data to load when.
This includes case list calculations, form/menu display conditions, assertions,
etc.

HQ knows about a particular set of instances (locations, reports, etc.).
There’s factory-based code dealing with these “known” instances. When a new
feature involves any kind of XPath calculation, it needs to be scanned for
instances.

Instances are used to reference data beyond the scope of the current XML
document. Examples are the commcare session, casedb, lookup tables, mobile
reports, case search data etc.

Instances are added into the suite file in <entry> or <menu> elements
and directly in the form XML. This is done in post processing of the suite file
in corehq.apps.app_manager.suite_xml.post_process.instances.

How instances work

When running applications instances are initialized for the current context using an instance declaration
which ties the instance ID to the actual instance model:

<instance id=”my-instance” ref=”jr://fixture/my-fixture” />

This allows using the fixture with the specified ID:

instance(‘my-instance’)path/to/node

From the mobile code point of view the ID is completely user defined and only used to ‘register’
the instance in current context. The index ‘ref’ is used to determine which instance is attached
to the given ID.

Instances in CommCare HQ

In CommCare HQ we allow app builders to reference instance in many places in the application
but don’t require that the app builder define the full instance declaration.

When ‘building’ the app we rely on instance ID conventions to enable the build process to
determine what ‘ref’ to use for the instances used in the app.

For static instances like ‘casedb’ the instance ID must match a pre-defined name. For example

	casedb

	commcaresession

	groups

Other instances use a namespaced convention: “type:sub-type”. For example:

	commcare-reports:<uuid>

	item-list:<fixture name>

Custom instances

App builders can define custom instances in a form using the ‘CUSTOM_INSTANCES’ plugin

RemoteRequestsHelper

The <remote-request> descends from the <entry>.
Remote requests provide support for CommCare to request data from the server
and then allow the user to select an item from that data and use it as a datum for a form.
In practice, remote requests are only used for case search and claim workflows.

This case search config UI in app manager is a thin wrapper around the various elements that are part of
<remote-request>, which means RemoteRequestsHelper is not especially complicated, although it is rather
long.

Case search and claim is typically an optional part of a workflow.
In this use case, the remote request is accessed via an action, and the
rewind [https://github.com/dimagi/commcare-core/wiki/SessionStack#mark-and-rewind] construct
is used to go back to the main flow.
However, the flag USH_INLINE_SEARCH supports remote requests being made in the main flow of a session. When
using this flag, a <post> and query datums are added to a normal form <entry>. This makes search inputs
available after the search, rather than having them destroyed by rewinding.

This module includes SessionEndpointRemoteRequestFactory, which generates remote requests for use by session
endpoints. This functionality exists for the sake of smart links: whenever a user clicks a smart link,
any cases that are part of the smart link need to be claimed so the user can access them.

ResourceOverrideHelper

This is dead code. It supports a legacy feature, multi-master linked applications.

The actual flag has been removed, but a lot of related code still exists.

WorkflowHelper

This is primarily used for end of form navigation and form linking.
It contains logic to determine the proper sequence of commands to navigate a particular place in an app, such as a
specific case list. It also needs to provide any datums required to reach that place in the app.

Because CommCare’s UI logic is driven by the data currently in the user’s session and the data
needed by forms, rather than being directly configured, this means HQ needs to predict how CommCare’s UI logic will
behave, which is difficult and results in code that’s easily disturbed by new features that influence
navigation.

Understanding stacks in the CommCare Session [https://github.com/dimagi/commcare-core/wiki/SessionStack] is
useful for working with WorkflowHelper.

Some areas to be aware of:

	Datums can either require manual selection (from a case list) or can be automatically selected (such as the
usercase id).

	HQ names each datum, defaulting to case_id for datums selected from case lists.
When HQ determines that a form requires multiple datums, it creates a new id for the new datum, which will often
incorporate the case type. It also may need to rename datums that already exist - see
_replace_session_references_in_stack.

	To determine which datums are distinct and which represent the same piece of information, HQ has matching logic
in _find_best_match.

	get_frame_children generates the list of frame children that will navigate to a given form or module,
mimicking CommCare’s navigation logic

	Shadow modules complicate this entire area, because they use their source module’s forms but their own module
configuration.

	There are a bunch of advanced features with their own logic, such as advanced modules, but even the basic logic
is fairly complex.

	Within end of form navigation and form linking, the “previous screen” option is the most fragile. Form linking
has simpler code, since it pushes the complexity of the feature onto app builders.

Syncing local HQ instance with an Android Phone

No syncing or submitting, easy method

If you would like to use a url or barcode scanner to download the application to

your phone here is what you need to setup. You won’t be able to submit or sync

using this method, but it is easier.

Make sure your local django application is accessible over the network

The django server will need to be running on an ip address instead of localhost.

To do this, run the application using the following command, substituting your

local IP address.

./manage.py runserver 192.168.1.5:8000

Try accessing this url from the browser on your phone to make sure it works.

Make CommCare use this IP address

The url an application was created on gets stored for use by the app builder

during site creation. This means if you created a site and application

previously, while using a ‘localhost:8000’ url, you will have to make a code

tweak to have the app builder behave properly.

The easiest way to check this is to see what url is shown below the barcode on

the deploy screen.

If it is currently displaying a localhost:8000/a/yourapp/... url then open

localsettings.py and set BASE_ADDRESS = "192.168.1.5:8000" substituting

192.168.1.5 with your local IP address.

Try it out

With this set up, you should be able to scan the barcode from your phone to

download and install your own locally built CommCare application!

Submitting and syncing from your local HQ instance (harder method)

Install nginx

sudo apt-get install nginx or

brew install nginx

Install the configuration file

In /etc/nginx/nginx.conf, at the bottom of the http{} block, above any other site includes, add the line:

include /path/to/commcarehq/deployment/nginx/cchq_local_nginx.conf;

Start nginx

sudo nginx

Make sure your local django application is accessible over the network

./manage.py runserver

Try accessing http://localhost/a/domain and see if it works. nginx should

proxy all requests to localhost to your django server.

Make Commcare use your local IP address

Set the BASE_ADDRESS setting in localsettings.py to your IP address (e.g.

192.168.0.10), without a port.

Additionally, modify deployment/nginx/cchq_local_nginx.conf to replace localhost with
your IP address as server_name.
For example, set server_name as 192.168.0.10.
Then run sudo nginx -s reload or brew services restart nginx to reload configuration.

You should now be able to access http://your_ip_address/a/domain from a phone or other device on the
same network.

Note: You’ll have to update these if you ever change networks or get a new IP address.

Rebuild and redeploy your application

You’ll have to rebuild and redeploy your application to get it to sync.

Directly Modifying App Builds (CCZ files)

During development, it’s occasionally useful to directly edit app files.

CommCare apps are bundled as .ccz files, which are just zip files with a custom extension.

See ccz.sh [https://github.com/dimagi/commcare-hq/tree/master/scripts/ccz.sh] for utilities for unzipping, editing, and rezipping CCZ files. Doing this via the command line is often
cleaner than doing it an in OS, which may add additional hidden files.

Adding CommCare Builds to CommCare HQ

Using a management command

	./manage.py add_commcare_build –latest To fetch the latest released build from github

	./manage.py add_commcare_build –build_version 2.53.0 To manually specify the build number to use

In the web UI

	Go to http://HQ_ADDRESS/builds/edit_menu/

	In the second section Import a new build from the build server

	In the Version field input the version in x.y.z format

	Click Import Build

	In the first section Menu Options add the version to HQ to make sure the build is available in the app settings.

Web Apps JavaScript

This document is meant to orient developers to working with Web Apps. Its primary audience is developers who are familiar with CommCare HQ but not especially familiar with CommCare mobile or formplayer.

System Architecture

High-level pieces of the system:

	Web Apps is a piece of CommCare HQ that allows users to enter data in a web browser, providing a web equivalent to CommCare mobile. Like the rest of HQ, web apps is built on django, but it is much heavier on javascript and lighter on python than most areas of HQ. While it is hosted on HQ, its major “backend” is formplayer.

	Formplayer [https://github.com/dimagi/formplayer/] is a Java-based service for entering data into XForms. Web apps can be thought of as a UI for this service. In this vein, the bulk of web apps javascript implements a javascript application called “FormplayerFrontend”. This makes the word “formplayer” sometimes ambiguous in this document: usually it describes the Java-based service, but it also shows up in web apps code references.

	CloudCare is a legacy name for web apps. Web apps code is in the cloudcare django app. It should not be used in documentation or anything user-facing. It shouldn’t be used in code, either, unless needed for consistency. It mostly shows up in filenames and URLs.

Web apps is tightly coupled with formplayer, so check out the formplayer README [https://github.com/dimagi/commcare-hq/blob/master/docs/formplayer.rst].

Is Web Apps Part of HQ? Yes and No.

Web apps is a part of HQ, but once you move into an app, its communication with the rest of HQ is quite limited.

Ways in which web apps is a typical piece of HQ code:

	The cloudcare django app contains the HQ side of web apps.

	The cloudcare.views module contains views. Note that there’s just one major view for web apps, FormplayerMain, and another for app preview, PreviewAppView.

	When you look at the web apps home page, where there’s a tile for each app, those apps come from HQ.

	Web apps does have some interactions with HQ once you’re in an app:

	The Log In As action works via HQ

	HQ provides some system information, like the current user’s username and the mapbox API key, via the original context and initial page data

	HQ directly serves multimedia files

	Web apps calls HQ analytics code (Google Analytics, Kissmetrics, etc.)

However, in most ways, once you move into an app, web apps only interacts with formplayer and is just a thin UI layer.

Also, before going into an app, on the web apps home page, the sync and saved forms options are formplayer requests.

Example: Case Search

As an example, consider case search, where the user triggers a search that runs against all cases in the domain,
not just cases in their casedb, which requires a query to postgres.

If web apps were a typical area of HQ, this might be implemented as a single ajax request:

[image: _images/web_apps_case_search_false.png]
Instead, formplayer acts as an intermediary.
Web apps sends a navigation request to formplayer, which constructs and sends a search request to HQ,
which returns a search results response to formplayer, which transforms the results into a case list response and
sends that back to web apps.

Note that formplayer does a good deal of processing here. It’s formplayer that determines a search request is
needed, and it’s formplayer that processes the results and turns them into a table. Web apps doesn’t even know that a search happened.

[image: _images/web_apps_case_search_true.png]
This approach clearly isn’t minimizing network requests. However, this architecture is what allows CommCare mobile
and web apps to share the majority of their logic, which is huge for developing and maintaining features to work on
both platforms.

This architecture also makes formplayer responsible for security. Formplayer authorizes the user, via a request to
HQ. It also means that formplayer mediates all access to data, so the user never has access to the full
restore. This means that in-app limitations, like case list filters, are genuinely firm boundaries. You could
imagine a javascript implementation of formplayer, which would reduce network requests, but would involve the
browser making a request for the full restore, which the user could then inspect.

Anatomy of a Web Apps Feature

The relationships between HQ, formplayer, and mobile mean that web apps work frequently involves working in
multiple languages, in multiple repositories, which may have different release processes.

New features require some or all of the following:

	
	Repository

	Language

	App manager UI where the the feature is enabled & configured

	commcare-hq

	Python / HTML / JavaScript

	App build logic, typically changes to suite generation

	commcare-hq

	Python

	New model for the configuration

	commcare-core

	Java

	Formplayer processing to add the new feature to a response

	formplayer

	Java

	Web apps UI for the feature

	commcare-hq

	JavaScript / HTML

	CommCare Mobile UI for the new feature

	commcare-android

	Java

Not all features have all of these pieces:

	Some features don’t require any Java

	They might use existing flexible configuration, like adding a new appearance attribute value to support a new data entry widget

	They might rearrange existing constructs in a new way. CommCare supports a much broader set of functionality than what HQ allows users to configure.

	Some features don’t get implemented on mobile.

	Some features, like case search, have additional HQ work because they interact with HQ in ways beyond what’s described above.

Example: Registration from Case List

As an example, consider registration from the case list [https://confluence.dimagi.com/display/commcarepublic/Minimize+Duplicates+Method+1%3A+Registration+From+the+Case+List]:

	A CommCare HQ user goes to the module settings page in app builder and turns on the feature, selecting the registration form they want to be accessible from the case list.

	This adds a new attribute to their Application document - specifically, it populates case_list_form on a Module.

	When the user makes a new build of their app, the app building code reads the Application doc and writes out all of the application files, including the suite.xml.

	The module’s case list configuration is transformed into a detail [https://github.com/dimagi/commcare-core/wiki/Suite20#detail] element, which includes an action [https://github.com/dimagi/commcare-core/wiki/Suite20#action] element that represents the case list form.

	When a Web Apps user clicks the menu’s name to access the case list, web apps sends a navigate_menu request to formplayer that includes a set of selections (see navigation and replaying of sessions [https://github.com/dimagi/commcare-hq/blob/master/docs/formplayer.rst#navigation-and-replaying-of-sessions]).

	The formplayer response tells web apps what kind of sceen to display:

	The type is entities which tells web apps to display a case list UI

	The entities list contains the cases and their properties

	The actions list includes an action for the case list registration form, which tells web apps to display a button at the bottom of the case list with the given label, that when clicked will add the string action 0 to the selections list and then send formplayer another navigation request, which will cause formplayer to send back a form response for the registration form, which web apps will then display for the user.

Note how generic the concepts web apps deals with are: “entities” can be cases, fixture rows, ledger values, etc. Web apps doesn’t know what cases are, and it doesn’t know the difference between an action that triggers a case list registration form and an action that triggers a case search.

JavaScript Overview

The remainder of this document discusses the web apps front end, which is the javascript in
corehq.apps.cloudcare.static.cloudcare.js. As described above, in many ways this code is independent of the
rest of HQ.

Think of the web apps code as split into two major pieces: form entry and everything else.

Form entry contains all interaction while filling out a form: all the different types of questions, the logic for
validating answers as the user fills them out, etc. This code is written in a combination of knockout and vanilla
JS, and it’s quite old (pre-2014).

Wrapped around the form entry code is everything else, which is controlled by the FormplayerFrontend javascript
application. The single-page application (SPA) approach is unique in HQ.
This is also the only area of HQ that uses Backbone [https://backbonejs.org/] and Marionette [https://marionettejs.com/].
Most of this code was written, or substantially re-written, around 2016.
FormplayerFrontend controls:

	In-app navigation, case lists, case search, etc.

	Web apps home screen displaying all of a domain’s apps

	Syncing

	Saved forms

	Log In As

JavaScript Vocabulary

Tight coupling with formplayer means web apps tends to use formplayer/mobile/CommCare vocabulary rather than HQ vocabulary: “entities” instead of “cases”, etc.

The major CommCare/HQ concepts FormplayerFrontend deals with are apps, users, menus, and sessions. “Apps” and “users” are the same concepts they are in the rest of HQ, while a “menu” is a UI concept that covers the main web apps screens, and “sessions” means incomplete forms.

Apps

These are HQ apps. Most of the logic around apps has to do with displaying the home screen of web apps, where you see a tiled list of apps along with buttons for sync, settings, etc.

This home screen has access to a subset of data from each app’s couch document, similar but not identical to the “brief apps” used in HQ that are backed by the applications_brief couch view.

Once you enter an app, web apps no longer has access to this app document. All app functionality in web apps is designed as it is in mobile, with the feature’s configuration encoded in the form XML or suite.xml. That config is then used to generate the web apps UI and to formulate requests to formplayer.

Users

These are HQ users, although the model has very few of the many attributes of CouchUser.

Most of the time you’re only concerned with the current user, who is accessible by requesting currentUser from the FormplayerFrontEnd’s channel (see below for more on channels).

The users code also deals with the Log In As workflow. Log In As is often described as “restore as” in the code: the user has a restoreAs attribute with the username of the current Log In As user, the RestoreAsBanner is the yellow banner up top that shows who you’re logged in as, and the RestoreAsView is the Log In As screen. The current Log In As user is stored in a cookie so that users do not need to repeat the workflow often.

Menus

This is where the bulk of new web apps development happens. This contains the actual “menu” screen that lists forms & sub-menus, but it also contains case lists, case details, and case search screens.

menus/views.js [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views.js] contains the views for case list and case detail, while views/query.js [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js] contains the case search view.

Sessions

These are incomplete forms - the same incomplete forms workflow that happens on mobile, but on web apps, incomplete forms are created automatically instead of at the user’s request. When a user is in form entry, web apps creates an incomplete form in the background and stores the current answers frequently so they can be accessed if the user closes their browser window, etc. These expire after a few days, maybe a week, exact lifespan might be configurable by a project setting. They’re accessible from the web apps home screen.

JavaScript Directory Structure

All of this code is stored in corehq.apps.cloudcare.static.cloudcare.js

It has top-level directories for the two major areas described above: form_entry for in-form behavior and
formplayer for the FormplayerFrontend application. There are also a few top-level directories and files for
miscellaneous behavior.

form_entry

The form_entry directory [https://github.com/dimagi/commcare-hq/tree/master/corehq/apps/cloudcare/static/cloudcare/js/form_entry] contains the logic for viewing, filling out, and submitting a form.

This is written in knockout, and it’s probably the oldest code in this area.

Major files to be aware of:

	form_ui.js [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/form_entry/form_ui.js] defines Question and Container, the major abstractions used by form definitions. Container is the base abstraction for groups and for forms themselves.

	entries.js [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/form_entry/entries.js] defines Entry and its many subclasses, the widgets for entering data. The class hierarchy of entries has a few levels. There’s generally a class for each question type: SingleSelectEntry, TimeEntry, etc. Appearance attributes can also have their own classes, such as ComboboxEntry and GeoPointEntry.

	web_form_session.js [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/form_entry/web_form_session.js] defines the interaction for filling out a form. Web apps sends a request to formplayer every time a question is answered, so the session manages a lot of asynchronous requests, using a task queue. The session also handles loading forms, loading incomplete forms, and within-form actions like changing the form’s language.

Form entry has a fair amount of test coverage. There are entry-specific tests and also tests for web_form_session.

formplayer

The formplayer directory [https://github.com/dimagi/commcare-hq/tree/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer]
contains logic for selecting an app, navigating through modules, displaying case lists, and almost everything besides filling out a form.

This is written using Backbone and Marionette. Backbone is an MVC framework for writing SPAs, and Marionette is a library to simplify writing Backbone views.

FormplayerFrontend is the “application” in this SPA.

Miscellany

This is everything not in either the form_entry or formplayer directory.

debugger

This controls the debugger, the “Data Preview” bar that shows up at the bottom of app preview and web apps and lets the user evaluate XPath and look at the form data and the submission XML.

preview_app

This contains logic specific to app preview.

There isn’t much here: some initialization code and a plugin that lets you scroll by grabbing and dragging the app preview screen.

The app preview and web apps UIs are largely identical, but a few places do distinguish between them, using the environment attribute of the current user. Search for the constants PREVIEW_APP_ENVIRONMENT and WEB_APPS_ENVIRONMENT for examples.

hq_events.js [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/hq_events.js], although not in this directory, is only really relevant to app preview. It controls the ability to communicate with HQ, which is used for the “phone icons” on app preview: back, refresh, and switching between the standard “phone” mode and the larger “tablet” mode.

config.js

This controls the UI for the Web Apps Permissions page, in the Users section of HQ.
Web apps permissions are not part of the standard roles and permissions framework. They use their own model, which grants/denies permissions to apps based on user groups.

formplayer_inline.js

Inline formplayer is for the legacy “Edit Forms” behavior, which allowed users to edit submitted forms using the web apps UI.
This feature has been a deprecation path for quite a while, largely replaced by data corrections. However, there are still a small number of clients using it for workflows that data corrections doesn’t support.

utils.js

This contains miscellaneous utilities, mostly around error/success/progress messaging:

	Error and success message helpers

	Progress bar: the thin little sliver at the very top of both web apps and app preview

	Error and success messaging for syncing and the “settings” actions: clearing user data and breaking locks

	Sending formplayer errors to HQ so they show up in sentry

markdown.js

Code for initializing the markdown renderer including a bunch of code, injectMarkdownAnchorTransforms and its
helpers, related to some custom feature flags that integrate web apps with external applications.

JavaScript Architectural Concepts

There are a few ways that web apps is architecturally different from most HQ javascript, generally related to it being a SPA and being implemented in Backbone and Marionette.

It’s heavily asynchronous, since it’s a fairly thin UI on top of formplayer. Want to get the a case’s details? Ask
formplayer. Want to validate a question? Ask formplayer. Adding functionality? It will very likely require a
formplayer PR - see “Anatomy of a Web Apps Feature” above.

Web apps is also a relatively large piece of functionality to be controlled by a single set of javascript. It
doesn’t exactly use globals, but FormplayerFrontend is basically a god object, and it uses a global message
bus - see “Events” below.

Persistence

Web apps has only transient data. All persistent data is handled by formplayer and/or HQ. The data that’s specific to web apps consists mostly of user-related settings and is handled by the browser: cookies, local storage, or session storage.

The Log In As user is stored in a cookie. Local storage is used for the user’s display options, which are the settings for language, one question per screen, etc. Session storage is also used to support some location handling and case search workflows.

Note that these methods aren’t appropriate for sensitive data, which includes all project data. This makes it challenging to implement features like saved searches.

Application

FormplayerFrontend is a Marionette Application [https://marionettejs.com/docs/master/marionette.application.html], which ties together a bunch of views and manages their behavior. It’s defined in formplayer/app.js [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/app.js].

For day-to-day web apps development, it’s just useful to know that FormplayerFrontend controls basically everything, and that the initial hook into its behavior is the start event, so we have a before:start handler and a start handler.

Regions

Marionette’s regions [https://marionettejs.com/docs/master/marionette.region.html] are UI containers, defined in the FormplayerFrontend’s before:start handler.

We rarely touch the region-handling code, which defines the high-level structure of the page: the “main” region, the progress bar, breadcrumbs, and the restore as banner. The persistent case tile also has a region. Most web apps development happens within the main region.

It is sometimes useful to know how the breadcrumbs work. The breadcrumbs are tightly tied to formplayer’s selections-based navigation. See Navigation and replaying of sessions [https://github.com/dimagi/commcare-hq/blob/master/docs/formplayer.rst#navigation-and-replaying-of-sessions] for an overview and examples. The breadcrumbs use this same selections array, which is also an attribute of CloudcareURL, with one breadcrumb for each selection.

Backbone.Radio and Events

Marionette integrates with Backbone.Radio [https://marionettejs.com/docs/master/backbone.radio.html] to support a global message bus.

Although you can namespace channels, web apps uses a single formplayer channel for all messages, which is accessed using FormplayerFrontend.getChannel(). You’ll see calls to get the channel and then call request to get at a variety of global-esque data, especially the current user. All of these requests are handled by reply callbacks defined in FormplayerFrontend.

FormplayerFrontend also supports events, which behave similarly. Events are triggered directly on the FormplayerFrontend object, which defines on handlers. We tend to use events for navigation and do namespace some of them with :, leading to events like menu:select, menu:query, and menu:show:detail. Some helper events are not namespaced, such as showError and showSuccess.

Routing, URLs, and Middleware

As in many SPAs, all of web apps’ “URLs” are hash fragments appended to HQ’s main cloudcare URL, /a/<DOMAIN>/cloudcare/apps/v2/

Navigation is handled by a javascript router, Marionette.AppRouter, which extends Backbone’s router.

Web apps routes are defined in router.js [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/router.js].

Routes outside of an application use human-readable short names. For example:

	/a/<DOMAIN>/cloudcare/apps/v2/#apps is the web apps home screen, which lists available apps and actions like sync.

	/a/<DOMAIN>/cloudcare/apps/v2/#restore_as is the Log In As screen

Routes inside an application serialize the CloudcareURL object.

CloudcareURL contains the current state of navigation when you’re in an application. It’s basically a js object with getter and setter methods.

Most app-related data that needs to be passed to or from formplayer ends up as an attribute of CloudcareURL. It interfaces almost directly with formplayer, and most of its attributes are properties of formplayer’s SessionNavigationBean [https://github.com/dimagi/formplayer/blob/master/src/main/java/org/commcare/formplayer/beans/SessionNavigationBean.java].

CloudcareURL is defined in formplayer/utils/utils.js [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/utils/utils.js] although it probably justifies its own file.

URLs using CloudcareURL are not especially human-legible due to JSON serialization, URL encoding, and the obscurity of the attributes. Example URL for form entry:

/a/<DOMAIN>/cloudcare/apps/v2/#%7B%22appId%22%3A%226<APP_ID>%22%2C%22steps%22%3A%5B%221%22%2C%22<CASE_ID>%22%2C%220%22%5D%2C%22page%22%3Anull%2C%22search%22%3Anull%2C%22queryData%22%3A%7B%7D%2C%22forceManualAction%22%3Afalse%7D

The router also handles actions that may not sound like traditional navigation in the sense that they don’t change which screen the user is on. This includes actions like pagination or searching within a case list.

Other code generally interacts with the router by triggering an event (see above for more on events). Most of router.js consists of event handlers that then call the router’s API.

Every call to one of the router’s API functions also runs each piece of web apps middleware, defined in middleware.js [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/middleware.js]. This middleware doesn’t do much, but it’s a useful place for reset-type logic that should be called on each screen change: scrolling to the top of the page, making sure any form is cleared out, etc. It’s also where the “User navigated to…” console log messages come from.

Tests

There are tests in the spec directory. There’s decent test coverage for js-only workflows, but not for HTML interaction.

Marionette Views

Web apps development frequently happens in FormplayerFrontend views. These views are javascript classes that
inherit from Marionette.View [https://marionettejs.com/docs/master/marionette.view.html]. This section
describes the View attributes that web apps most frequently uses.

For code references, take a look at the query views [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js],
which control the case search screen, or the menus views [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views.js],
which control menus, case lists, and case details.

template and getTemplate

These attributes link view code with the relevant HTML template.

We typically use template and just fetch a template by its id, then run it through underscore’s _.template
function. The QueryListView [https://github.com/dimagi/commcare-hq/blob/1a60854e1bf075c64f4253184ba30abfd30ea488/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js#L273],
which controls the case search screen, is a good example, defining template as _.template($("#query-view-list-template").html() || "").

getTemplate is a callback, so it has access to this and allows for more complex logic. We use it in the
<MenuView
https://github.com/dimagi/commcare-hq/blob/9baa5a05181e3e74cdf8608223eeff69aca5c0d7/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views.js#L35-L43>__ to determine whether to display the menu in a list style or in a grid style.

tagName, className, and attributes

All views have a single encompassing container, which is added by Marionette, so it doesn’t show up in the view’s
HTML template. These attributes influence that container.

tagName, which can be a string or a callback, defines the HTML node type, typically div or tr.

className allows setting a CSS class on the container.

attributes allows setting HTML attributes. We mostly use this for accessibility, to set attributes like tabindex.

initialize, templateContext, and onRender

initialize is for any setup, particularly for storing any options that were passed into the view
(although this.options is available throughout the view).

templateContext is for building an object of context to pass to the template, as with _.template and django
views.

onRender is called every time Marionette renders the view. We use this primarily for attaching events to
content. Note that Marionette has its own attributes for event handling, discussed below, but onRender is
useful for non-standard events provided by third-party widgets like select2 and jQuery UI.

ui, events, and modelEvents

These attributes are for event handling.

ui is an object where keys are identifiers and values are jQuery selectors. Elements defined in ui are
available to other code in the view using this.ui. For an example, see how QueryListView [https://github.com/dimagi/commcare-hq/blob/1a60854e1bf075c64f4253184ba30abfd30ea488/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js#L288-L292]
defines ui elements for the case search screen’s submit and clear buttons.

events ties elements from ui with standard HTML events. Events references the event, the ui element, and
the callback to invoke. Again, QueryListView [https://github.com/dimagi/commcare-hq/blob/1a60854e1bf075c64f4253184ba30abfd30ea488/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js#L294-L297]
is a good example.

modelEvents attaches callbacks to events on the Backbone model, as opposed to ui events. We don’t use this
often, but QueryView [https://github.com/dimagi/commcare-hq/blob/1a60854e1bf075c64f4253184ba30abfd30ea488/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js#L193-L195],
which controls an individual search field on the case search screen, uses it to force the view to re-render
whenever the underlying model changes, so that select2 behaves properly.

childView, childViewContainer, and childViewOptions

These options apply to views that extend Marionette.CollectionView [https://marionettejs.com/docs/master/marionette.collectionview.html]. These views are structured to display a
list of child views. As an example, QueryListView [https://github.com/dimagi/commcare-hq/blob/d8ebdc04a9d9ea08f358cd695f93c501585ced2c/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js#L271]
controls the case search screen and has a child QueryView [https://github.com/dimagi/commcare-hq/blob/d8ebdc04a9d9ea08f358cd695f93c501585ced2c/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js#L271]
for each individual search field. The case list’s CaseListView [https://github.com/dimagi/commcare-hq/blob/9baa5a05181e3e74cdf8608223eeff69aca5c0d7/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views.js#L288]
is a more complex example, with a CaseView [https://github.com/dimagi/commcare-hq/blob/9baa5a05181e3e74cdf8608223eeff69aca5c0d7/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views.js#L224]
child view that has several subclasses.

childView names the view that is a child of this view.

childViewContainer tells Marionette where in the parent view to render the children. This can be an HTML node
name, analagous to tagName, or it can be a jQuery selector identifying a specific element in the view that
should contain the children.

childViewOptions allows the parent view to pass data to the children views. Some use cases:

	DetailTabListView [https://github.com/dimagi/commcare-hq/blob/9baa5a05181e3e74cdf8608223eeff69aca5c0d7/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views.js#L659-L663] * uses it to pass information about the parent to the child views.

	QueryListView [https://github.com/dimagi/commcare-hq/blob/d8ebdc04a9d9ea08f358cd695f93c501585ced2c/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views/query.js#L276] uses it to give the child views access to the entire parent view.

	MenuListView [https://github.com/dimagi/commcare-hq/blob/9baa5a05181e3e74cdf8608223eeff69aca5c0d7/corehq/apps/cloudcare/static/cloudcare/js/formplayer/menus/views.js#L115-L120] uses it to pass information that the parent view calculates, namely, the child’s index position in the collection.

Formplayer in HQ

This documentation describes how formplayer [https://github.com/dimagi/formplayer/] fits into the larger
CommCare system, especially how it relates to CommCare HQ development. For details on building, running, and
contributing to formplayer, see the formplayer repository.

What Is Formplayer?

Formplayer is a Java Spring Boot server that wraps commcare-core [https://github.com/dimagi/commcare-core]
and presents its main features as an HTTP API. CommCare HQ’s Web Apps, App Preview, and SMS Forms features are
built on top of it:

	Web Apps is a single-page application, inlined into a CommCare HQ template, that provides a web UI backed by the formplayer API.

	App Preview is essentially the same as web apps, but embedded as a cell-phone-shaped iframe within the App Builder.

	SMS Forms serializes a form filling session over SMS in a question / answer sequence that is handled by the main HQ process, which hits formplayer’s API to send answers and get the next question.

Repository Overview

[image: _images/formplayer_repo_overview.png]

	commcare-android [https://github.com/dimagi/commcare-android]: The UI layer of CommCare mobile.

	commcare-core [https://github.com/dimagi/commcare-core]: The CommCare engine, this powers both CommCare mobile and formplayer. Mobile uses the master branch, while formplayer uses the formplayer branch. The two branches have a fairly small diff.

	formplayer [https://github.com/dimagi/formplayer]

	commcare-hq [https://github.com/dimagi/commcare-hq]: HQ hosts web apps and the processes that run SMS forms.

Relevant Architectural Decisions

While a full detailing of formplayer’s architecture is beyond the scope of this document, a few architectural
decisions are particularly useful for HQ devs who are new to formplayer to understand.

Sandboxes

Sharing the commcare-core code between mobile and formplayer allows us to keep CommCare Android and web apps
essentially compatible. However, because commcare-core was first written for mobile some of the
paradigms it uses make more sense on mobile than on the web. Mobile is offline-first, so submitting
up newly entered data and syncing back down changes others have made are intentional steps designed not to block
someone who was unable to reach the server for hours, days, or longer. That model makes very
little sense on the always-online Web Apps, but the sync/restore process is still a core part of the working model.
There’s even a “Sync” button shown to the user in the web apps UI.

Rather than always fetching the latest data from the source of truth, formplayer works off of locally synced subsets of data
like those that would be on people’s phones if every user had their own phone. These “sandboxes” are stored as Sqlite DB files,
as they are on the phone. A phone typically has one db file and one user, whereas on formplayer, there
are as many db files as there are users, i.e. tens of thousands. Each file has its own slice of the data synced
down from the source of truth, but always just a little bit out of date if anyone’s updated it after their last
sync.

Request routing

Each user is tied by a formplayer_session cookie directly to a machine. The cookie is just a routing hint that
contains the user id but doesn’t constitute authentication. That sticky association only changes if we add or
remove machines, and in that case, the minimum number of associations are changed to rebalance it because we use
“consistent hashing” [http://nginx.org/en/docs/http/ngx_http_upstream_module.html#hash].
In steady state, one user’s requests will always be served by the same machine.

An obvious side effect of that is that if a machine is down, all users assigned to that machine will not be able to do anything until the
machine is back up. During a formplayer deploy, when we have to restart all formplayer processes, a rolling
restart doesn’t help uptime, since for every individual user their machine’s process will be down while it restarts.

Routing implications for adding and removing machines

It’s expensive to delete a user’s sqlite sandbox, because rebuilding it requires requesting a full restore from
HQ, but it’s always safe to delete it, because that rebuild from the source of truth will get the user back to
normal. This property makes removing machines a safe operation.
Similarly, adding new machines doesn’t pose an issue because the subset of users
that get routed to them will just have their sqlite db file rebuilt on that machine the next time it’s needed.
These sandbox db files effectively serve as a cache.

What does cause a problem is if a user is associated with machine A, and then gets switched over to machine
B, and then goes back to machine A. In that situation, any work done on machine A wouldn’t get synced to machine B
until the next time the user did a “sync” on machine B. Until then, they would be working from stale data. This is
especially a problem for SMS Forms, where the user doesn’t have an option to explicitly sync, and where if the
underlying case database switches mid-form or between consecutive forms to a stale one, the user will see very
unintuitive behavior. Formplayer currently doesn’t have a concept of “this user has made a request handled by a
different formplayer machine since the last time this machine saw this user”; if it did and it forced a sync in
that situation, that would mostly solve this problem. This problem can show up if you expand the cluster and then
immediately scale it back down by removing the new machines.

Lastly, sqlite db files don’t hang around forever. So that stale files don’t take up ever more disk, all formplayer
sqlite db files not modified in the last 5 days are regularly deleted. The “5 days” constant is set by
formplayer_purge_time_spec [https://github.com/dimagi/commcare-cloud/blob/e5871a3dca4c444beb55855a7ba6b8f4e3473c8f/environments/production/public.yml#L61].

Balancing issues for large numbers of machines

Each user has a widely variable amount of traffic, and the more machines there are in the system, the wider the spread
becomes between the least-traffic machine and the most-traffic machine, both statistically and in practice.

If you randomly select 10,000 values from [1, 10, 100, 100] and then divide them into n chunks,
the sum of the values in each chunk have a wider distribution the
larger n is. Here the values represent each user and how much traffic they generate, so this is meant to show
that the more machines you have for a fixed number of users using this rigid load balancing method, the wider the
spread is between the least-used and most-used machine.

This means that fewer, larger machines is better than more smaller machines. However, we have also found
that formplayer performance drops sharply when you go from running on
machines with 64G RAM and 30G java heap to machines with 128G RAM and (still) 30G java heap. So for the time being
our understanding is that the max machine size is 64G RAM to run formplayer on. This, of course, limits our ability
to mitigate the many-machines load imbalance problem.

Navigation

The purpose of this section is to introduce formplayer navigation in the context of CommCare HQ. CommCare allows
for a wide variety of behavior, but applications built in HQ use a subset of this behavior and a few common
workflows.

For a full picture of CommCare, see the commcare-core wiki [https://github.com/dimagi/commcare-core/wiki/], in
particular

	CommCare Session [https://github.com/dimagi/commcare-core/wiki/SessionStack]

	CommCare Session External Instance Definition [https://github.com/dimagi/commcare-core/wiki/commcaresession]

	CommCare 2.0 Suite Definition [https://github.com/dimagi/commcare-core/wiki/Suite20]

Note: This document uses case-centric language, because that is the entity most often used in HQ. Any references to
cases could be changed to any model that is backed by a similar XML structure.

The CommCare Session

A single CommCare session is (loosely) defined as the series of actions taken by a user from the time that they
view the home screen until the time that they press “Submit” in a form, plus the data
that is collected and persisted along the way as those those actions are taken.

The end goal of a session is to complete a form. This implies:

	Every CommCare form has specific pieces of data that it needs to have access to in order to function properly.

	Forms always get that data by referencing the session, i.e. instance('commcaresession')/session/data/blahblahblah

	The flow of a CommCare session is always structured to ensure that a user has “collected” all of the data that a certain form needs before allowing the user to enter that form.

The session is implemented by the class CommCareSession [https://github.com/dimagi/commcare-core/blob/master/src/main/java/org/commcare/session/CommCareSession.java],
with its data stored in CommCareSession.collectedDatums. The session also keeps track of the current menu or form id, in CommCaseSession.currentCmd.
CommCareSession.getNeededData [https://github.com/dimagi/commcare-core/blob/d791a58880cfe22e4d23b7deaef12a0cb1e4aeee/src/main/java/org/commcare/session/CommCareSession.java#L193-L217]
determines what information is needed next, based on the current command on the data needed by entries associated
with that command, and MenuSessionRunnerService (see below) uses that need to determine what screen to show.

Each piece of data in the session is either:

	“Action history” - information about the actions that a user has taken in the session so far. This is useful to implement “back” navigation, and it is also a necessary part of formplayer being a RESTful service (see the section below on replaying sessions).

	“Collected data” - pieces of raw app data that will be used later within some form in the app, like case ids

The actions a user can take in the session are:

	Select a menu - this adds a “command id”, which identifies the menu, to the session

	Select a case (or confirm selection of a case) - this adds a “datum” to the session, the case’s id, which both serves as a record of the selection action and identifies the case.

	Select a form - this adds a “command id”, which identifies the form, to the session

Screens

This section answers the question, “After each user action in a CommCare app, how does CommCare decide what screen to show next?”

There are three principles used to answer this question:

	Order matters: CommCare will never instruct the user to collect a datum that is listed later in a <session> block before one listed earlier in that same block. This allows <datum>s that come later in the list to refer to ones that came earlier, which is useful in workflows such as selecting a case that must be the child of a previously selected case.

	Equality of datums: CommCare is at all times aware of a universe of all datums which are required by at least one form in the app - some of which may overlap. The most notable effect of this is that if all of the possible actions a user is considering all require the same datum, CommCare will ask the user to select that datum before moving on to select the action.

	Never collect unnecessary data

At any given time, there is one piece of data that the app is focused on acquiring, and the screen that CommCare shows is determined by the ‘type’ of that piece of data:

	If CommCare is looking for a “datum”, it will show a case list

	If CommCare is looking for a “command id”, it will show a menu screen

Before the “Start” button is pressed, CommCare is always looking for a command id (module or form), which is why the app’s root module menu is always the first screen to be shown.

commcare-core, the engine shared by CommCare mobile, the CommCare CLI [https://confluence.dimagi.com/display/commcarepublic/CommCare+CLI], and formplayer, has the following types of screens:

	MenuScreen - Displays a list of menus and/or forms.

	EntityScreen - Displays a case list.

	QueryScreen - Used for case search and claim, see section below. This is the screen the displays search fields. Search results are displayed using an EntityScreen.

	SyncScreen - Used for case search and claim, see section below. This screen isn’t visible to the user, but it controls the sending of the claim request and then syncing.

formplayer uses these same screens, but FormplayerQueryScreen and FormplayerSyncScreen extend
QueryScreen and SyncScreen. This means that formplayer and the CLI use different logic for case search &
claim.

A screen’s job is to handle input, which often includes updating the session - either setting the currentCmd or
adding an item to collectedDatums`.

The EntityScreen is a special case, since it handles what, from the user’s perspective, are two screens: the
case list and the case detail confirmation. EntityScreen acts as a “host” screen, extending
CompoundScreenHost. The EntityDetailSubscreen, which handles the case detail, is not a full Screen but
rather a Subscreen that updates its host, the entity screen, which is then in charge of updating the session.

Case lists that allow for the selection of multiple entities have further special handling, described in
formplayer docs [https://github.com/dimagi/formplayer/wiki/Multi-Select-Case-Lists].

Selections

User activity in CommCare is oriented around navigating to and then submitting forms. User actions are represented
as a series of “selections” that begin at the app’s initial list of menus and eventually end in form entry.

The selections list keeps track of actions the user has taken in the current session. Every time a user takes a
navigation action (selecting a menu, case, or form), web apps updates the selections list and sends it to
formplayer as part of a navigate_menu request.

A single selection can be:

	An integer index. This is used for lists of menus and/or forms and represents the position of the selected item.

	A case id. This indicates that the user selected the given case.

	The keyword action and an integer index, such as action 0. This represents the user selecting an action on a detail screen. The index represents the position of the action in the detail’s list of actions.

Replaying sessions

For an example, consider the selections [1, 'abc123', 0]. These indicate that a user selected the second visible menu, then selected case
abc123, then selected the first visible menu (or form). This might have mapped to the following requests:

	navigate_menu_start to view the first screen, a list of menus

	navigate_menu with selections [1] to select the first menu, which leads to a case list

	get_details with selections [1] to select a case and show its details

	navigate_menu with selections [1, 'abc123'] to confirm the case selection, which leads to a list of forms

	navigate_menu with selections [1, 'abc123', 0] to select the first form

	submit-all to submit the form when complete, which sends the user back to the first list of menus

Because formplayer is a RESTful service, each of these individual request plays through all of the given
selections, even those that were already completed earlier. If an early selection contained an expensive operation,
that operation can slow down requests for the rest of the session. Selections that cause side effects will cause
them repeatedly.

MenuSessionRunnerService [https://github.com/dimagi/formplayer/blob/master/src/main/java/org/commcare/formplayer/services/MenuSessionRunnerService.java]
controls formplayer navigation. This largely happens in advanceSessionWithSelections, which loops over the
selections list, replaying the full session as described above.

On each iteration, advanceSessionWithSelections determines the current screen based on the state of the
MenuSession and then adds the next selection. It handles special navigation, which mostly relates to case
search and claim (see below). When it runs out of selections, it returns the current menu, which is a response
bean.

Case Search and Claim

Case search and claim allows a user to gain access to a case not already in their casedb. Case search and claim are
implemented using a “remote request”, which is an extension of an entry. While an entry’s purpose is to get the
user into an XForm, a remote request’s purpose is to send a request to the server (HQ).

From the case list, the user takes a case search action. This presents them with a multi-field search screen, the
QueryScreen. Their search inputs are sent as a request to HQ, which queries ElasticSearch for all cases in the
domain and sends an XML document back with the results. Formplayer displays these results as a case list, an
EntityScreen. When the user selects and then confirms a case, formplayer sends a POST request to HQ. This
request, configured as part of the app, creates an extension case for the selected case. When this request returns,
formplayer syncs, causing the selected case to be added to the user’s casedb. CommCare then “rewinds” to the
case list where the user started, selecting the case they claimed and moving them on to the next form or menu,
using a mark/rewind mechanism discussed
elsewhere [https://github.com/dimagi/commcare-core/wiki/SessionStack#mark-and-rewind].

CommCare treats case search and claim as pieces of data to be gathered. Just as CommCare
typically is expecting either a command (a menu or form) or a datum (a case), it can instead expect a
QUERY_REQUEST or a SYNC_REQUEST, which indicate it should display a QueryScreen or handle a
SyncScreen (send the post request and subsequent sync).

Alternate Case Search Workflows

For projects using CommCare mobile, case search and claim is typically an unusual workflow. However, projects that
use web apps, and therefore have guaranteed connectivity, may use it much more heavily, even to the point that the user
is unaware of their casedb and always uses case search to find cases.

To support this approach, HQ allows apps to be configured with several alternate navigation flows. These workflows
are gated by the USH_CASE_CLAIM_UPDATES feature flag.

The default case search and claim workflow shows the user the following screens:

	A menu screen, where the user selects a form/menu that requires a case

	A case list screen displaying the user’s casedb, where the user elects to go into case search

	A case search screen, with search inputs for various fields

	A case list screen displaying the results of the search

The alternate case search workflows allow the user to skip the casedb case list, the case search screen, or both.

To handle this skipping behavior, every iteration over the selections list in
MenuSessionRunnerService.advanceSessionWithSelections checks to see if there are any “automatic” actions
needed, in autoAdvanceSession.

Device Restore Optimization

This document is based on the definitions and requirements for restore logic
outlined in new-idea-for-extension-cases.md [https://gist.github.com/dannyroberts/f184daad468fb7debf10].

Important terms from that document that are also used in this document:

A case is available if

	it is open and not an extension case

	it is open and is the extension of an available case.

A case is live if any of the following are true:

	it is owned and available

	it has a live child

	it has a live extension

	it is open and is the exension of a live case

Dealing with shards

Observation: the decision to shard by case ID means that the number of levels in
a case hierarchy impacts restore performance. The minimum number of queries
needed to retrieve all live cases for a device can equal the number of levels
in the hierarchy. The maximum is unbounded.

Since cases are sharded by case ID…

	Quotes from How Sharding Works [https://medium.com/@jeeyoungk/how-sharding-works-b4dec46b3f6]

	Non-partitioned queries do not scale with respect to the size of cluster,
thus they are discouraged.

	Queries spanning multiple partitions … tend to be inefficient, so such
queries should be done sparingly.

	A particular cross-partition query may be required frequently and
efficiently. In this case, data needs to be stored in multiple partitions to
support efficient reads.

	Potential optimizations to allow PostgreSQL to do more of the heavy lifting
for us.

	Shard case_index by domain.

	Probably not? Some domains are too large.

	Copy related case index data into all relevant shards to allow a query to
run on a single shard.

	Nope. Effectively worse than sharding by domain: would copy entire case
index to every shard because in a given set of live cases that is the
same size as or larger than the number of shards, each case will probably
live in a different shard.

	Re-shard based on ownership rather than case ID

	Maybe use hierarchical keys since ownership is strictly hierarchical. This
may simplify the sharding function.

	Copy or move data between shards when ownership changes.

Data Structure

Simplified/minimal table definitions used in sample queries below.

cases
 domain char
 case_id char
 owner_id char
 is_open bool

case_index
 domain char
 parent_id char
 child_id char
 child_type enum (CHILD|EXTENSION)

Presence of a row in the case_index adjacency list table implies that the
referenced cases are available. The case_index is updated when new data is
received during a device sync: new case relationships are inserted and
relationships for closed cases are deleted. All information in the
case_index table is also present in the CommCareCaseIndex and
CommCareCase tables. Likewise for the cases table, which is a subset
of CommCareCase.

Case Study: UATBC case structure

Sources: eNikshay App Design and Feedback - Case Structure [https://docs.google.com/spreadsheets/d/1yNvDsWOnryTYooMs1snAQ3pD1R6wfSQN_1ICZbvKhXU/edit?pli=1#gid=670651589] and
case_utils.py [https://github.com/dimagi/commcare-hq/blob/master/custom/enikshay/case_utils.py]. These sources contain conflicting information. For example:

	case_utils.py [https://github.com/dimagi/commcare-hq/blob/master/custom/enikshay/case_utils.py] references prescription and voucher while the sheet [https://docs.google.com/spreadsheets/d/1yNvDsWOnryTYooMs1snAQ3pD1R6wfSQN_1ICZbvKhXU/edit?pli=1#gid=670651589]
does not.

	case_utils.py [https://github.com/dimagi/commcare-hq/blob/master/custom/enikshay/case_utils.py] has referral related to episode, not person as in the
sheet [https://docs.google.com/spreadsheets/d/1yNvDsWOnryTYooMs1snAQ3pD1R6wfSQN_1ICZbvKhXU/edit?pli=1#gid=670651589].

[image: _images/uatbc-case-structure.png]
 [https://docs.google.com/drawings/d/1JIEfV5Ak693HXwsksL0jtYsWDHvBI-VHohYcb6yiDxY/edit]With the current sharding (by case ID) configuration, the maximum number of
queries needed to get all live cases for a device is 5 because there are 5
levels in the case hierarchy. Update: this is wrong; it could be more than 5.
Example: if a case retrieved in the 5th query has unvisited children, then at
least one more query is necessary. Because any given case may have multiple
parents, the maximum number of queries is unbounded.

Algorithm to minimize queries while sharding on case ID

The algorithm (Python):

next_ids = get_cases_owned_by_device(owner_ids)
live_ids = set(next_ids)
while next_ids:
 related_ids = set(get_related_cases(next_ids))
 if not related_ids:
 break
 next_ids = related_ids - live_ids
 live_ids.update(related_ids)

All queries below are simplified for the purposes of demonstration. They use the
simplified table definitions from the Data Structure section in this
document, and they only return case IDs. If this algorithm is implemented it
will likely make sense to expand the queries to retrieve all case data,
including case relationship data, and to query directly from
CommCareCaseIndex and CommCareCase.

The term “child” is a general term used to refer to a case that is related to
another case by retaining a reference to the other case in its set of parent
indices. It does not refer to the more restrictive “child” relationship type.

Definitions:

	OWNER_DOMAIN - the domain for which the query is being executed.

	OWNER_IDS - a set of user and group IDs for the device being restored.

	NEXT_IDS - a set of live case IDs.

get_cases_owned_by_device() retrieves all open cases that are not extension
cases given a set of owner IDs for a device. That is, it retrieves all live
cases that are directly owned by a device (user and groups). The result of this
function can be retrieved with a single query:

select cx.case_id
from cases cx
 left outer join case_index ci
 on ci.domain = cx.domain and ci.child_id = cx.case_id
where
 cx.domain = OWNER_DOMAIN and
 cx.owner_id in OWNER_IDS and
 (ci.child_id is null or ci.child_type != EXTENSION) and
 cx.is_open = true

get_related_cases() retrieves all live cases related to the given set of
live case IDs. The result of this function can be retrieved with a single
query:

-- parent cases (outgoing)
select parent_id, child_id, child_type
from case_index
where domain = OWNER_DOMAIN
 and child_id in NEXT_IDS
union
-- child cases (incoming)
select parent_id, child_id, child_type
from case_index
where domain = OWNER_DOMAIN
 and parent_id in NEXT_IDS
 and child_type = EXTENSION

The IN operator used to filter on case ID sets should be optimized [https://dba.stackexchange.com/questions/91247/optimizing-a-postgres-query-with-a-large-in] since
case ID sets may be large.

Each of the above queries is executed on all shards and the results from each
shard are merged into the final result set.

One query to rule them all.

Objective: retrieve all live cases for a device with a single query. This query
answers the question Which cases end up on a user’s phone? [https://gist.github.com/dannyroberts/f184daad468fb7debf10#which-cases-end-up-on-a-users-phone] The sharding
structure will need to be changed if we want to use something like this.

with owned_case_ids as (
 select case_id
 from cases
 where
 domain = OWNER_DOMAIN and
 owner_id in OWNER_IDS and
 is_open = true
), recursive parent_tree as (
 -- parent cases (outgoing)
 select parent_id, child_id, child_type, array[child_id] as path
 from case_index
 where domain = OWNER_DOMAIN
 and child_id in owned_case_ids
 union
 -- parents of parents (recursive)
 select ci.parent_id, ci.child_id, ci.child_type, path || ci.child_id
 from case_index ci
 inner join parent_tree as refs on ci.child_id = refs.parent_id
 where ci.domain = OWNER_DOMAIN
 and not (ci.child_id = any(refs.path)) -- stop infinite recursion
), recursive child_tree as (
 -- child cases (incoming)
 select parent_id, child_id, child_type, array[parent_id] as path
 from case_index
 where domain = OWNER_DOMAIN
 and (parent_id in owned_case_ids or parent_id in parent_tree)
 and child_type = EXTENSION
 union
 -- children of children (recursive)
 select
 ci.parent_id,
 ci.child_id,
 ci.child_type,
 path || ci.parent_id
 from case_index ci
 inner join child_tree as refs on ci.parent_id = refs.child_id
 where ci.domain = OWNER_DOMAIN
 and not (ci.parent_id = any(refs.path)) -- stop infinite recursion
 and child_type = EXTENSION
)
select
 case_id as parent_id,
 null as child_id,
 null as child_type,
 null as path
from owned_case_ids
union
select * from parent_tree
union
select * from child_tree

Q & A

	Do we have documentation on existing restore logic?

	Yes: new-idea-for-extension-cases.md [https://gist.github.com/dannyroberts/f184daad468fb7debf10]

	See also child/extension test cases [https://github.com/dimagi/commcare-core/blob/master/src/test/resources/case_relationship_tests.json]

	new-idea-for-extension-cases.md [https://gist.github.com/dannyroberts/f184daad468fb7debf10]: “[an extension case has] the ability (like
a child case) to go out in the world and live its own life.”

What does it mean for an extension case to “live its own life”? Is it
meaningful to have an extension case apart from the parent of which it is an
extension? How are the attributes of an extension case “living its own life”
different from one that is not living it’s own life (I’m assuming not living
its own life means it has the same lifecycle as its parent).

	Danny Roberts:

haha i mean that may have been a pretty loosely picked phrase

I think I specifically just meant you can assign it an owner separate from
its parent’s

	Is there an ERD or something similar for UATBC cases and their relationships?

	Case structure diagram [https://www.dropbox.com/work/UATBC/Tech/SDD?preview=UATBC-+System+Design+Document+(SDD)+-+Case+Structure.jpg] (outdated)

	SDD _EY Comments_v5_eq.docx [https://www.dropbox.com/work/UATBC/tech/SDD?preview=SDD+_EY+Comments_v5_eq.docx] (page 24, outdated)

	eNikshay App Design and Feedback - Case Structure [https://docs.google.com/spreadsheets/d/1yNvDsWOnryTYooMs1snAQ3pD1R6wfSQN_1ICZbvKhXU/edit?pli=1#gid=670651589] - Kriti

	case_utils.py [https://github.com/dimagi/commcare-hq/blob/master/custom/enikshay/case_utils.py] - Farid

Locations

Location Permissions

Normal Access

Location Types - Users who can edit apps on the domain can edit location types.
Locations - There is an “edit_locations” and a “view_locations” permission.

Restricted Access and Whitelist

Many large projects have mid-level users who should have access to a subset of
the project based on the organization’s hierarchy.

This is handled by a special permission called “Full Organization Access” which
is enabled by default on all user roles. To restrict data access based on a
user’s location, projects may create a user role with this permission disabled.

This is checked like so:

user.has_permission(domain, 'access_all_locations')

We have whitelisted portions of HQ that have been made to correctly handle
these restricted users. Anything not explicitly whitelisted is inaccessible to
restricted users.

How data is associated with locations

Restricted users only have access to their section of the hierarchy. Here’s a
little about what that means conceptually, and how to implement these
restrictions.

Locations: Restricted users should be able to see and edit their own locations
and any descendants of those locations, as well as access data at those locations. See
also user_can_access_location_id

Users: If a user is assigned to an accessible location, the user is also
accessible. See also user_can_access_other_user

Groups: Groups are never accessible.

Forms: Forms are associated with a location via the submitting user, so if that
user is currently accessible, so is the form. Note that this means that moving
a user will affect forms even retroactively. See also can_edit_form_location

Cases: Case accessibility is determined by case owner. If the owner is a user,
then the user must be accessible for the case to be accessible. If the owner is
a location, then it must be accessible. If the owner is a case-sharing group,
the case is not accessible to any restricted users. See also
user_can_access_case

The SQLLocation queryset method accessible_to_user is helpful when
implementing these restrictions. Also refer to the standard reports, which do
this sort of filtering in bulk.

Whitelist Implementation

There is LocationAccessMiddleware which controls this whitelist. It
intercepts every request, checks if the user has restricted access to the
domain, and if so, only allows requests to whitelisted views. This middleware
also guarantees that restricted users have a location assigned. That is, if a
user should be restricted, but does not have an assigned location, they can’t
see anything. This is to prevent users from obtaining full access in the event
that their location is deleted or improperly assigned.

The other component of this is uitabs. The menu bar and the sidebar on HQ are
composed of a bunch of links and names, essentially. We run the url for each of
these links against the same check that the middleware uses to see if it should
be visible to the user. In this way, they only see menu and sidebar links that
are accessible.

To mark a view as location safe, you apply the @location_safe decorator to
it. This can be applied directly to view functions, view classes, HQ report
classes, or tastypie resources (see implentation and existing usages for
examples).

UCR and Report Builder reports will be automatically marked as location safe if
the report contains a location choice provider. This is done using the
conditionally_location_safe decorator, which is provided with a function that
in this case checks that the report has at least one location choice provider.

When marking a view as location safe, you must also check for restricted users
by using either request.can_access_all_locations or
user.has_permission(domain, 'access_all_locations') and limit the data
returned accordingly.

You should create a user who is restricted and click through the desired
workflow to make sure it still makes sense, there could be for instance, ajax
requests that must also be protected, or links to features the user shouldn’t
see.

Reporting

	A report is
	a logical grouping of indicators with common config options (filters etc)

The way reports are produced in CommCare is still evolving so there are a number
of different frameworks and methods for generating reports. Some of these are
legacy frameworks and should not be used for any future reports.

Recommended approaches for building reports

Things to keep in mind:

	report API

	sqlagg [https://github.com/dimagi/sql-agg]

	couchdbkit-aggregate [https://github.com/dimagi/couchdbkit-aggregate] (legacy)

Example Custom Report Scaffolding

class MyBasicReport(GenericTabularReport, CustomProjectReport):
 name = "My Basic Report"
 slug = "my_basic_report"
 fields = ('corehq.apps.reports.filters.dates.DatespanFilter',)

 @property
 def headers(self):
 return DataTablesHeader(DataTablesColumn("Col A"),
 DataTablesColumnGroup(
 "Group 1",
 DataTablesColumn("Col B"),
 DataTablesColumn("Col C")),
 DataTablesColumn("Col D"))

 @property
 def rows(self):
 return [
 ['Row 1', 2, 3, 4],
 ['Row 2', 3, 2, 1]
]

Hooking up reports to CommCare HQ

Custom reports can be configured in code or in the database. To configure custom reports in code
follow the following instructions.

First, you must add the app to HQ_APPS in settings.py. It must have an __init__.py and a
models.py for django to recognize it as an app.

Next, add a mapping for your domain(s) to the custom reports module root to the DOMAIN_MODULE_MAP
variable in settings.py.

Finally, add a mapping to your custom reports to __init__.py in your custom reports submodule:

from myproject import reports

CUSTOM_REPORTS = (
 ('Custom Reports', (
 reports.MyCustomReport,
 reports.AnotherCustomReport,
)),
)

Reporting on data stored in SQL

As described above there are various ways of getting reporting data into
and SQL database. From there we can query the data in a number of ways.

Extending the SqlData class

The SqlData class allows you to define how to query the data
in a declarative manner by breaking down a query into a number of components.

	
class corehq.apps.reports.sqlreport.SqlData(config=None)

	
	
property columns

	Returns a list of Column objects. These are used to
make up the from portion of the SQL query.

	
property distinct_on

	Returns a list of column names to create the
DISTINCT ON portion of the SQL query

	
property filter_values

	Return a dict mapping the filter keys to actual values e.g. {“enddate”: date(2013, 1, 1)}

	
property filters

	Returns a list of filter statements. Filters are instances of sqlagg.filters.SqlFilter.
See the sqlagg.filters module for a list of standard filters.

e.g. [EQ(‘date’, ‘enddate’)]

	
property group_by

	Returns a list of ‘group by’ column names.

	
property keys

	The list of report keys (e.g. users) or None to just display all
the data returned from the query. Each value in this list
should be a list of the same dimension as the ‘group_by’ list.
If group_by is None then keys must also be None.

These allow you to specify which rows you expect in the output
data. Its main use is to add rows for keys that don’t exist in
the data.

	e.g.
	group_by = [‘region’, ‘sub_region’]
keys = [[‘region1’, ‘sub1’], [‘region1’, ‘sub2’] …]

	
table_name = None

	The name of the table to run the query against.

This approach means you don’t write any raw SQL. It also allows you to
easily include or exclude columns, format column values and combine values
from different query columns into a single report column (e.g. calculate percentages).

In cases where some columns may have different filter values e.g. males vs females,
sqlagg will handle executing the different queries and combining the results.

This class also implements the corehq.apps.reports.api.ReportDataSource.

See Report API and sqlagg [https://github.com/dimagi/sql-agg] for more info.

e.g.

class DemoReport(SqlTabularReport, CustomProjectReport):
 name = "SQL Demo"
 slug = "sql_demo"
 fields = ('corehq.apps.reports.filters.dates.DatespanFilter',)

 # The columns to include the the 'group by' clause
 group_by = ["user"]

 # The table to run the query against
 table_name = "user_report_data"

 @property
 def filters(self):
 return [
 BETWEEN('date', 'startdate', 'enddate'),
]

 @property
 def filter_values(self):
 return {
 "startdate": self.datespan.startdate_param_utc,
 "enddate": self.datespan.enddate_param_utc,
 "male": 'M',
 "female": 'F',
 }

 @property
 def keys(self):
 # would normally be loaded from couch
 return [["user1"], ["user2"], ['user3']]

 @property
 def columns(self):
 return [
 DatabaseColumn("Location", SimpleColumn("user_id"), format_fn=self.username),
 DatabaseColumn("Males", CountColumn("gender"), filters=self.filters+[EQ('gender', 'male')]),
 DatabaseColumn("Females", CountColumn("gender"), filters=self.filters+[EQ('gender', 'female')]),
 AggregateColumn(
 "C as percent of D",
 self.calc_percentage,
 [SumColumn("indicator_c"), SumColumn("indicator_d")],
 format_fn=self.format_percent)
]

 _usernames = {"user1": "Location1", "user2": "Location2", 'user3': "Location3"} # normally loaded from couch
 def username(self, key):
 return self._usernames[key]

 def calc_percentage(num, denom):
 if isinstance(num, Number) and isinstance(denom, Number):
 if denom != 0:
 return num * 100 / denom
 else:
 return 0
 else:
 return None

 def format_percent(self, value):
 return format_datatables_data("%d%%" % value, value)

Report API

Part of the evolution of the reporting frameworks has been the development of
a report api. This is essentially just a change in the architecture of
reports to separate the data from the display. The data can be produced
in various formats but the most common is an list of dicts.

e.g.

data = [
 {
 'slug1': 'abc',
 'slug2': 2
 },
 {
 'slug1': 'def',
 'slug2': 1
 }
 ...
]

This is implemented by creating a report data source class that extends
corehq.apps.reports.api.ReportDataSource and overriding the
get_data() function.

	
class corehq.apps.reports.api.ReportDataSource(config=None)

	
	
get_data(start=None, limit=None)

	Intention: Override

	Parameters:

	slugs – List of slugs to return for each row. Return all values if slugs = None or [].

	Returns:

	A list of dictionaries mapping slugs to values.

e.g.
[{‘village’: ‘Mazu’, ‘births’: 30, ‘deaths’: 28},{…}]

	
slugs()

	Intention: Override

	Returns:

	A list of available slugs.

These data sources can then be used independently or the CommCare reporting
user interface and can also be reused for multiple use cases such as
displaying the data in the CommCare UI as a table, displaying it in a map,
making it available via HTTP etc.

An extension of this base data source class is the corehq.apps.reports.sqlreport.SqlData
class which simplifies creating data sources that get data by running
an SQL query. See section on SQL reporting for more info.

e.g.

class CustomReportDataSource(ReportDataSource):
 def get_data(self):
 startdate = self.config['start']
 enddate = self.config['end']

 ...

 return data

config = {'start': date(2013, 1, 1), 'end': date(2013, 5, 1)}
ds = CustomReportDataSource(config)
data = ds.get_data()

Reporting: Maps in HQ

What is the “Maps Report”?

We now have map-based reports in HQ.
The “maps report” is not really a report, in the sense that it does not query or calculate any data on its own.
Rather, it’s a generic front-end visualization tool that consumes data from some other place… other places such as another (tabular) report, or case/form data (work in progress).

To create a map-based report, you must configure the map report template [https://github.com/dimagi/commcare-hq/blob/8af9177910fa3ae5642a68d8085071e91c1356f6/corehq/apps/reports/standard/inspect.py#L685] with specific parameters.
These are:

	data_source – the backend data source which will power the report (required)

	display_config – customizations to the display/behavior of the map itself (optional, but suggested for anything other than quick prototyping)

This is how this configuration actually takes place:

	subclass the map report to provide/generate the config parameters.
You should not need to subclass any code functionality.
This is useful for making a more permanent map configuration, and when the configuration needs to be dynamically generated based on other data or domain config (e.g., for CommTrack [https://github.com/dimagi/commcare-hq/blob/8af9177910fa3ae5642a68d8085071e91c1356f6/corehq/apps/reports/commtrack/maps.py#L7])

Orientation

Abstractly, the map report consumes a table of data from some source.
Each row of the table is a geographical feature (point or region).
One column is identified as containing the geographical data for the feature.
All other columns are arbitrary attributes of that feature that can be visualized on the map.
Another column may indicate the name of the feature.

The map report contains, obviously, a map.
Features are displayed on the map, and may be styled in a number of ways based on feature attributes.
The map also contains a legend generated for the current styling.
Below the map is a table showing the raw data.
Clicking on a feature or its corresponding row in the table will open a detail popup.
The columns shown in the table and the detail popup can be customized.

Attribute data is generally treated as either being numeric data or enumerated data (i.e., belonging to a number of discrete categories).
Strings are inherently treated as enum data.
Numeric data can be treated as enum data be specifying thresholds: numbers will be mapped to enum ‘buckets’ between consecutive thresholds (e.g, thresholds of 10, 20 will create enum categories: < 10, 10-20, > 20).

Styling

Different aspects of a feature’s marker on the map can be styled based on its attributes.
Currently supported visualizations (you may see these referred to in the code as “display axes” or “display dimensions”) are:

	varying the size (numeric data only)

	varying the color/intensity (numeric data (color scale) or enum data (fixed color palette))

	selecting an icon (enum data only)

Size and color may be used concurrently, so one attribute could vary size while another varies the color… this is useful when the size represents an absolute magnitude (e.g., # of pregnancies) while the color represents a ratio (% with complications).
Region features (as opposed to point features) only support varying color.

A particular configuration of visualizations (which attributes are mapped to which display axes, and associated styling like scaling, colors, icons, thresholds, etc.) is called a metric.
A map report can be configured with many different metrics.
The user selects one metric at a time for viewing.
Metrics may not correspond to table columns one-to-one, as a single column may be visualized multiple ways, or in combination with other columns, or not at all (shown in detail popup only).
If no metrics are specified, they will be auto-generated from best guesses based on the available columns and data feeding the report.

There are several sample reports that comprehensively demo the potential styling options:

	Demo 1 [https://www.commcarehq.org/a/commtrack-public-demo/reports/maps_demo/]

	Demo 2 [https://www.commcarehq.org/a/commtrack-public-demo/reports/maps_demo2/]

See Display Configuration

Data Sources

Set this config on the data_source property.
It should be a dict with the following properties:

	geo_column – the column in the returned data that contains the geo point (default: "geo")

	adapter – which data adapter to use (one of the choices below)

	extra arguments specific to each data adapter

Note that any report filters in the map report are passed on verbatim to the backing data source.

One column of the data returned by the data source must be the geodata (in geo_column).
For point features, this can be in the format of a geopoint xform question (e.g, 42.366 -71.104).
The geodata format for region features is outside the scope of the document.

report

Retrieve data from a ReportDataSource (the abstract data provider of Simon’s new reporting framework – see Report API)

Parameters:

	report – fully qualified name of ReportDataSource class

	report_params – dict of static config parameters for the ReportDataSource (optional)

legacyreport

Retrieve data from a GenericTabularReport which has not yet been refactored to use Simon’s new framework.
Not ideal and should only be used for backwards compatibility.
Tabular reports tend to return pre-formatted data, while the maps report works best with raw data (for example, it won’t know 4% or 30 mg are numeric data, and will instead treat them as text enum values). Read more.

Parameters:

	report – fully qualified name of tabular report view class (descends from GenericTabularReport)

	report_params – dict of static config parameters for the ReportDataSource (optional)

case

Pull case data similar to the Case List.

(In the current implementation, you must use the same report filters as on the regular Case List report)

Parameters:

	geo_fetch – a mapping of case types to directives of how to pull geo data for a case of that type. Supported directives:

	name of case property containing the geopoint data

	"link:xxx" where xxx is the case type of a linked case; the adapter will then serach that linked case for geo-data based on the directive of the linked case type (not supported yet)

In the absence of any directive, the adapter will first search any linked Location record (not supported yet), then try the gps case property.

csv and geojson

Retrieve static data from a csv or geojson file on the server (only useful for testing/demo– this powers the demo reports, for example).

Display Configuration

Set this config on the display_config property.
It should be a dict with the following properties:

(Whenever ‘column’ is mentioned, it refers to a column slug as returned by the data adapter)

All properties are optional. The map will attempt sensible defaults.

	name_column – column containing the name of the row; used as the header of the detail popup

	column_titles – a mapping of columns to display titles for each column

	detail_columns – a list of columns to display in the detail popup

	table_columns – a list of columns to display in the data table below the map

	enum_captions – display captions for enumerated values.
A dict where each key is a column and each value is another dict mapping enum values to display captions.
These enum values reflect the results of any transformations from metrics (including _other, _null, and -).

	numeric_format – a mapping of columns to functions that apply the appropriate numerical formatting for that column.
Expressed as the body of a function that returns the formatted value (return statement required!).
The unformatted value is passed to the function as the variable x.

	detail_template – an underscore.js template to format the content of the detail popup

	metrics – define visualization metrics (see Styling).
An array of metrics, where each metric is a dict like so:

	auto – column.
Auto-generate a metric for this column with no additional manual input.
Uses heuristics to determine best presentation format.

OR

	title – metric title in sidebar (optional)

AND one of the following for each visualization property you want to control

	size (static) – set the size of the marker (radius in pixels)

	size (dynamic) – vary the size of the marker dynamically.
A dict in the format:

	column – column whose data to vary by

	baseline – value that should correspond to a marker radius of 10px

	min – min marker radius (optional)

	max – max marker radius (optional)

	color (static) – set the marker color (css color value)

	color (dynamic) – vary the color of the marker dynamically.
A dict in the format:

	column – column whose data to vary by

	categories – for enumerated data; a mapping of enum values to css color values.
Mapping key may also be one of these magic values:

	_other: a catch-all for any value not specified

	_null: matches rows whose value is blank; if absent, such rows will be hidden

	colorstops – for numeric data.
Creates a sliding color scale.
An array of colorstops, each of the format [<value>, <css color>].

	thresholds – (optional) a helper to convert numerical data into enum data via “buckets”.
Specify a list of thresholds.
Each bucket comprises a range from one threshold up to but not including the next threshold.
Values are mapped to the bucket whose range they lie in.
The “name” (i.e., enum value) of a bucket is its lower threshold.
Values below the lowest threshold are mapped to a special bucket called "-".

	icon (static) – set the marker icon (image url)

	icon (dynamic) – vary the icon of the marker dynamically.
A dict in the format:

	column – column whose data to vary by

	categories – as in color, a mapping of enum values to icon urls

	thresholds – as in color

size and color may be combined (such as one column controlling size while another controls the color).
icon must be used on its own.

For date columns, any relevant number in the above config (thresholds, colorstops, etc.) may be replaced with a date (in ISO format).

Raw vs. Formatted Data

Consider the difference between raw and formatted data.
Numbers may be formatted for readability (12,345,678, 62.5%, 27 units); enums may be converted to human-friendly captions; null values may be represented as -- or n/a.
The maps report works best when it has the raw data and can perform these conversions itself.
The main reason is so that it may generate useful legends, which requires the ability to appropriately format values that may never appear in the report data itself.

There are three scenarios of how a data source may provide data:

	(worst) only provide formatted data

Maps report cannot distinguish numbers from strings from nulls.
Data visualizations will not be useful.

	(sub-optimal) provide both raw and formatted data (most likely via the legacyreport adapter)

Formatted data will be shown to the user, but maps report will not know how to format data for display in legends, nor will it know all possible values for an enum field – only those that appear in the data.

	(best) provide raw data, and explicitly define enum lists and formatting functions in the report config

Exports

Docs in corehq/apps/export/README.md [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/export/README.md]

Change Feeds

The following describes our approach to change feeds on HQ.
For related content see this presentation on the topic [https://docs.google.com/presentation/d/1YPWUJbic87UYz3bqocJCsnYrnaEZkn8nCM2VZOXQRmg/edit]
though be advised the presentation was last updated in 2015 and is somewhat out of date.

What they are

A change feed is modeled after the CouchDB _changes feed.
It can be thought of as a real-time log of “changes” to our database.
Anything that creates such a log is called a “(change) publisher”.

Other processes can listen to a change feed and then do something with the results.
Processes that listen to changes are called “subscribers”.
In the HQ codebase “subscribers” are referred to as “pillows” and most of the change feed functionality is provided via the pillowtop module.
This document refers to pillows and subscribers interchangeably.

Common use cases for change subscribers:

	
	ETL (our main use case)
	
	Saving docs to ElasticSearch

	Custom report tables

	UCR data sources

	Cache invalidation

Architecture

We use kafka [http://kafka.apache.org/] as our primary back-end to facilitate change feeds.
This allows us to decouple our subscribers from the underlying source of changes so that they can be database-agnostic.
For legacy reasons there are still change feeds that run off of CouchDB’s _changes feed however these are in the process of being phased out.

Topics

Topics are a kafka concept that are used to create logical groups (or “topics”) of data.
In the HQ codebase we use topics primarily as a 1:N mapping to HQ document classes (or doc_type s).
Forms and cases currently have their own topics, while everything else is lumped in to a “meta” topic.
This allows certain pillows to subscribe to the exact category of change/data they are interested in
(e.g. a pillow that sends cases to elasticsearch would only subscribe to the “cases” topic).

Document Stores

Published changes are just “stubs” but do not contain the full data that was affected.
Each change should be associated with a “document store” which is an abstraction that represents a way to retrieve the document from its original database.
This allows the subscribers to retrieve the full document while not needing to have the underlying source hard-coded (so that it can be changed).
To add a new document store, you can use one of the existing subclasses of DocumentStore or roll your own.

Publishing changes

Publishing changes is the act of putting them into kafka from somewhere else.

From Couch

Publishing changes from couch is easy since couch already has a great change feed implementation with the _changes API.
For any database that you want to publish changes from the steps are very simple.
Just create a ConstructedPillow with a CouchChangeFeed feed pointed at the database you wish to publish from and a KafkaProcessor to publish the changes.
There is a utility function (get_change_feed_pillow_for_db) which creates this pillow object for you.

From SQL

Currently SQL-based change feeds are published from the app layer.
Basically, you can just call a function that publishes the change in a .save() function (or a post_save signal).
See the functions in form_processors.change_publishers [https://github.com/dimagi/commcare-hq/blob/master/corehq/form_processor/change_publishers.py] and their usages for an example of how that’s done.

It is planned (though unclear on what timeline) to find an option to publish changes directly from SQL to kafka to avoid race conditions and other issues with doing it at the app layer.
However, this change can be rolled out independently at any time in the future with (hopefully) zero impact to change subscribers.

From anywhere else

There is not yet a need/precedent for publishing changes from anywhere else, but it can always be done at the app layer.

Subscribing to changes

It is recommended that all new change subscribers be instances (or subclasses) of ConstructedPillow.
You can use the KafkaChangeFeed object as the change provider for that pillow, and configure it to subscribe to one or more topics.
Look at usages of the ConstructedPillow class for examples on how this is done.

Porting a new pillow

Porting a new pillow to kafka will typically involve the following steps.
Depending on the data being published, some of these may be able to be skipped (e.g. if there is already a publisher for the source data, then that can be skipped).

	Setup a publisher, following the instructions above.

	Setup a subscriber, following the instructions above.

	For non-couch-based data sources, you must setup a DocumentStore class for the pillow, and include it in the published feed.

	For any pillows that require additional bootstrap logic (e.g. setting up UCR data tables or bootstrapping elasticsearch indexes) this must be hooked up manually.

Mapping the above to CommCare-specific details

Topics

The list of topics used by CommCare can be found in corehq.apps.change_feed.topics.py [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/change_feed/topics.py#L9].
For most data models there is a 1:1 relationship between the data model and the model in CommCare HQ, with the exceptions
of forms and cases, which each have two topics - one for the legacy CouchDB-based forms/cases, and one for the SQL-based
models (suffixed by -sql).

Contents of the feed

Generally the contents of each change in the feed will documents that mirror the ChangeMeta class in
pillowtop.feed.interface [https://github.com/dimagi/commcare-hq/blob/master/corehq/ex-submodules/pillowtop/feed/interface.py#L9],
in the form of a serialized JSON dictionary. An example once deserialized might look something like this:

{
 "document_id": "95dece4cd7c945ec83c6d2dd04d38673",
 "data_source_type": "sql",
 "data_source_name": "form-sql",
 "document_type": "XFormInstance",
 "document_subtype": "http://commcarehq.org/case",
 "domain": "dimagi",
 "is_deletion": false,
 "document_rev": null,
 "publish_timestamp": "2019-09-18T14:31:01.930921Z",
 "attempts": 0
}

Details on how to interpret these can be found in the comments of the linked class.

The document_id, along with the document_type and data_source_type should be sufficient to retrieve the
underlying raw document out from the feed from the Document Store (see above).

Pillows

Overview

What are pillows

Pillows are a component of the publisher/subscriber design pattern that
is used for asynchronous communication.

A pillow subscribes to a change feed, and when changes are received, performs
specific operations related to that change.

Why do we need pillows

In CommCare HQ, pillows are primarily used to update secondary databases like
Elasticsearch and User Configurable Reports (UCRs). Examples of other use cases
are invalidating cache or checking if alerts need to be sent.

How do pillows receive changes

We use Kafka as our message queue, which allows producers to publish changes to
the queue, and consumers (i.e. pillows) to listen for and process those changes.

Kafka uses _topics_ to organize related changes, and pillows can listen for
changes to one or more specific topics.

Why the name

Pillows, as part of the pillowtop framework, were created by us to consume and
process changes from the CouchDB change feed. Our usage of pillows has since
expanded beyond CouchDB.

Deconstructing a Pillow

All pillows inherit from the ConstructedPillow class. A pillow consists of a
few parts:

	Change Feed

	Checkpoint

	Processor(s)

	Change Event Handler

Change Feed

The brief overview is that a change feed publishes changes which a pillow can
subscribe to. When setting up a pillow, an instance of a ChangeFeed class is
created and configured to only contain changes the pillow cares about.

For more information about change feeds, see Change Feeds.

Checkpoint

The checkpoint is a json field that tells processor where to start the change
feed.

Processors

A processor is a method that operates on the incoming change. Historically, we
had one processor per pillow, however we have since shifted to favor multiple
processors for each pillow. This way, all processors can operate on the change
which ensures all operations relevant for a change happen within relatively the
same time window.

When creating a processor you should be aware of how much time it will take to
process the record. A useful baseline is:

86400 seconds per day / # of expected changes per day = how long your processor should take

Note that it should be faster than this as most changes will come in at once
instead of evenly distributed throughout the day.

Change Event Handler

This fires after each change has been processed. The main use case is to save
the checkpoint to the database.

Error Handling

Errors

Pillows can fail to process a change for a number of reasons. The most common
causes of pillow errors are a code bug, or a failure in a dependent service
(e.g., attempting to save a change to Elasticsearch but it is unreachable).

Errors encountered in processors are handled by creating an instance of the
PillowError database model.

Retries

The run_pillow_retry_queue command is configured to run continuously in a
celery queue, and looks for new PillowError objects to retry. A pillow has the
option to disable retrying errors via the retry_errors property.

If the related pillow reads from a Kafka change feed, the change associated with
the error is re-published into Kafka. However if it reads from a Couch change
feed, the pillow’s processor is called directly with the change passed in. In
both cases, the PillowError is deleted, a new one will be created if it fails
again.

Monitoring

There are several datadog metrics with the prefix commcare.change_feed that
can be helpful for monitoring pillows. Generally these metrics will have tags
for pillow name, topic, and partition to filter on.

	Metric (not including commcare.change_feed)

	Description

	change_lag

	The current time - when the last change processed was put into the queue

	changes.count

	Number of changes processed

	changes.success

	Number of changes processed successfully

	changes.exceptions

	Number of changes processed with an exception

	processor.timing

	Time spent in processing a document.
Different tags for extract/transform/load steps.

	processed_offsets

	Latest offset that has been processed by the pillow

	current_offsets

	The current offsets of each partition in kafka (useful for math in dashboards)

	need_processing

	current_offsets - processed_offsets

	Generally when planning for pillows, you should:
	
	
	Minimize change_lag
	
	ensures changes are processed in a reasonable time (e.g., up to date reports for users)

	
	Minimize changes.exceptions
	
	ensures consistency across application (e.g., secondary databases contain accurate data)

	more exceptions mean more load since they will be reprocessed at a later time

	
	Minimize number of pillows running
	
	minimizes server resources required

The ideal setup would have 1 pillow with no exceptions and 0 second lag.

Troubleshooting

A pillow is falling behind

Otherwise known as “pillow lag”, a pillow can fall behind for a few reasons:

	The processor is too slow for the number of changes that are coming in.

	There was an issue with the change feed that caused the checkpoint to be
“rewound”.

	A processor continues to fail so changes are re-queued and processed again
later.

Lag is inherent to asynchronous change processing, so the question is what
amount of lag is acceptable for users.

Optimizing a processor

To solve #1 you should use any monitors that have been set up to attempt to
pinpoint the issue.
commcare.change_feed.processor.timing can help determine what
processors/pillows are the root cause of slow processing.

If this is a UCR pillow use the profile_data_source management command to
profile the expensive data sources.

Parallel Processors

To scale pillows horizontally do the following:

	Look for what pillows are behind. This can be found in the change feed
dashboard or the hq admin system info page.

	Ensure you have enough resources on the pillow server to scale the pillows.
This can be found through datadog.

	Decide what topics need to have added partitions in kafka. There is no way
to scale a couch pillow horizontally. Removing partitions isn’t
straightforward, so you should attempt scaling in small increments. Also
make sure pillows are able to split partitions easily by using powers of 2.

	Run ./manage.py add_kafka_partition <topic> <number partitions to have>

	In the commcare-cloud repo environments/<env>/app-processes.yml file
change num_processes to the pillows you want to scale.

	On the next deploy multiple processes will be used when starting pillows

Note that pillows will automatically divide up partitions based on the number of partitions
and the number of processes for the pillow. It doesn’t have to be one to one, and you don’t
have to specify the mapping manually. That means you can create more partitions than you need
without changing the number of pillow processes and just restart pillows
for the change to take effect. Later you can just change the number of processes without touching
the number of partitions, and and just update the supervisor conf and restarting pillows
for the change to take effect.

The UCR pillows also have options to split the pillow into multiple. They
include ucr_divsion, include_ucrs and exclude_ucrs. Look to the pillow
code for more information on these.

Rewound Checkpoint

Occasionally checkpoints will be “rewound” to a previous state causing pillows
to process changes that have already been processed. This usually happens when
a couch node fails over to another. If this occurs, stop the pillow, wait for
confirmation that the couch nodes are up, and fix the checkpoint using:
./manage.py fix_checkpoint_after_rewind <pillow_name>

Many pillow exceptions

commcare.change_feed.changes.exceptions has tag exception_type that reports the name and path of the exception encountered.
These exceptions could be from coding errors or from infrastructure issues.
If they are from infrastructure issues (e.g. ES timeouts) some solutions could be:

	Scale ES cluster (more nodes, shards, etc)

	Reduce number of pillow processes that are writing to ES

	Reduce other usages of ES if possible (e.g. if some custom code relies on ES, could it use UCRs, https://github.com/dimagi/commcare-hq/pull/26241)

Problem with checkpoint for pillow name: First available topic offset for topic is num1 but needed num2

This happens when the earliest checkpoint that kafka knows about for a topic is
after the checkpoint the pillow wants to start at. This often happens if a
pillow has been stopped for a month and has not been removed from the settings.

To fix this you should verify that the pillow is no longer needed in the
environment. If it isn’t, you can delete the checkpoint and re-deploy. This
should eventually be followed up by removing the pillow from the settings.

If the pillow is needed and should be running you’re in a bit of a pickle. This
means that the pillow is not able to get the required document ids from kafka.
It also won’t be clear what documents the pillows has and has not processed. To
fix this the safest thing will be to force the pillow to go through all relevant
docs. Once this process is started you can move the checkpoint for that pillow
to the most recent offset for its topic.

Pillows

	
corehq.pillows.case.get_case_pillow(pillow_id='case-pillow', ucr_division=None, include_ucrs=None, exclude_ucrs=None, num_processes=1, process_num=0, ucr_configs=None, skip_ucr=False, processor_chunk_size=10, topics=None, dedicated_migration_process=False, **kwargs)

	Return a pillow that processes cases. The processors include, UCR and elastic processors

	Processors:
	
	corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor (disabled when skip_ucr=True)

	pillowtop.processors.elastic.BulkElasticProcessor

	corehq.pillows.case_search.get_case_search_processor()

	corehq.messaging.pillow.CaseMessagingSyncProcessor

	
corehq.pillows.xform.get_xform_pillow(pillow_id='xform-pillow', ucr_division=None, include_ucrs=None, exclude_ucrs=None, num_processes=1, process_num=0, ucr_configs=None, skip_ucr=False, processor_chunk_size=10, topics=None, dedicated_migration_process=False, **kwargs)

	Generic XForm change processor

	Processors:
	
	
	corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor
	
	(disabled when skip_ucr=True)

	pillowtop.processors.elastic.BulkElasticProcessor

	
	corehq.pillows.user.UnknownUsersProcessor
	
	(disabled when RUN_UNKNOWN_USER_PILLOW=False)

	
	pillowtop.form.FormSubmissionMetadataTrackerProcessor
	
	(disabled when RUN_FORM_META_PILLOW=False)

	corehq.apps.data_interfaces.pillow.CaseDeduplicationPillow`

	
corehq.pillows.case.get_case_to_elasticsearch_pillow(pillow_id='CaseToElasticsearchPillow', num_processes=1, process_num=0, **kwargs)

	Return a pillow that processes cases to Elasticsearch.

	Processors:
	
	pillowtop.processors.elastic.ElasticProcessor

	
corehq.pillows.xform.get_xform_to_elasticsearch_pillow(pillow_id='XFormToElasticsearchPillow', num_processes=1, process_num=0, **kwargs)

	XForm change processor that sends form data to Elasticsearch

	Processors:
	
	pillowtop.processors.elastic.ElasticProcessor

	
corehq.pillows.user.get_user_pillow(pillow_id='user-pillow', num_processes=1, dedicated_migration_process=False, process_num=0, skip_ucr=False, processor_chunk_size=10, **kwargs)

	Processes users and sends them to ES and UCRs.

	Processors:
	
	pillowtop.processors.elastic.BulkElasticProcessor()

	corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor()

	
corehq.pillows.user.get_user_pillow_old(pillow_id='UserPillow', num_processes=1, process_num=0, **kwargs)

	Processes users and sends them to ES.

	Processors:
	
	pillowtop.processors.elastic.ElasticProcessor()

	
corehq.apps.userreports.pillow.get_location_pillow(pillow_id='location-ucr-pillow', include_ucrs=None, num_processes=1, process_num=0, ucr_configs=None, **kwargs)

	Processes updates to locations for UCR

Note this is only applicable if a domain on the environment has LOCATIONS_IN_UCR flag enabled.

	Processors:
	
	corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor()

	
corehq.pillows.groups_to_user.get_group_pillow(pillow_id='group-pillow', num_processes=1, process_num=0, **kwargs)

	Group pillow

	Processors:
	
	corehq.pillows.groups_to_user.GroupsToUsersProcessor

	corehq.pillows.group.get_group_to_elasticsearch_processor()

	
corehq.pillows.group.get_group_pillow_old(pillow_id='GroupPillow', num_processes=1, process_num=0, **kwargs)

	Group pillow (old). Sends Group data to Elasticsearch

	Processors:
	
	corehq.pillows.group.get_group_to_elasticsearch_processor

	
corehq.pillows.groups_to_user.get_group_to_user_pillow(pillow_id='GroupToUserPillow', num_processes=1, process_num=0, **kwargs)

	Group pillow that updates user data in Elasticsearch with group membership

	Processors:
	
	corehq.pillows.groups_to_user.GroupsToUsersProcessor

	
corehq.pillows.ledger.get_ledger_to_elasticsearch_pillow(pillow_id='LedgerToElasticsearchPillow', num_processes=1, process_num=0, **kwargs)

	Ledger pillow

Note that this pillow’s id references Elasticsearch, but it no longer saves to ES.
It has been kept to keep the checkpoint consistent, and can be changed at any time.

	Processors:
	
	corehq.pillows.ledger.LedgerProcessor

	
corehq.pillows.domain.get_domain_kafka_to_elasticsearch_pillow(pillow_id='KafkaDomainPillow', num_processes=1, process_num=0, **kwargs)

	Domain pillow to replicate documents to ES

	Processors:
	
	pillowtop.processors.elastic.ElasticProcessor

	
corehq.pillows.sms.get_sql_sms_pillow(pillow_id='SqlSMSPillow', num_processes=1, process_num=0, processor_chunk_size=10, **kwargs)

	SMS Pillow

	Processors:
	
	pillowtop.processors.elastic.BulkElasticProcessor

	
corehq.apps.userreports.pillow.get_kafka_ucr_pillow(pillow_id='kafka-ucr-main', ucr_division=None, include_ucrs=None, exclude_ucrs=None, topics=None, num_processes=1, process_num=0, dedicated_migration_process=False, processor_chunk_size=10, **kwargs)

	UCR pillow that reads from all Kafka topics and writes data into the UCR database tables.

	Processors:
	
	corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor

	
corehq.apps.userreports.pillow.get_kafka_ucr_static_pillow(pillow_id='kafka-ucr-static', ucr_division=None, include_ucrs=None, exclude_ucrs=None, topics=None, num_processes=1, process_num=0, dedicated_migration_process=False, processor_chunk_size=10, **kwargs)

	UCR pillow that reads from all Kafka topics and writes data into the UCR database tables.

Only processes static UCR datasources (configuration lives in the codebase instead of the database).

	Processors:
	
	corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor

	
corehq.pillows.synclog.get_user_sync_history_pillow(pillow_id='UpdateUserSyncHistoryPillow', num_processes=1, process_num=0, **kwargs)

	Synclog pillow

	Processors:
	
	corehq.pillows.synclog.UserSyncHistoryProcessor()

	
corehq.pillows.application.get_app_to_elasticsearch_pillow(pillow_id='ApplicationToElasticsearchPillow', num_processes=1, process_num=0, **kwargs)

	App pillow

	Processors:
	
	pillowtop.processors.elastic.BulkElasticProcessor

	
corehq.pillows.app_submission_tracker.get_form_submission_metadata_tracker_pillow(pillow_id='FormSubmissionMetadataTrackerPillow', num_processes=1, process_num=0, **kwargs)

	This gets a pillow which iterates through all forms and marks the corresponding app
as having submissions.

	Processors:
	
	pillowtop.processors.form.FormSubmissionMetadataTrackerProcessor

	
corehq.pillows.user.get_unknown_users_pillow(pillow_id='unknown-users-pillow', num_processes=1, process_num=0, **kwargs)

	This pillow adds users from xform submissions that come in to the User Index if they don’t exist in HQ

	Processors:
	
	corehq.pillows.user.UnknownUsersProcessor

	
corehq.messaging.pillow.get_case_messaging_sync_pillow(pillow_id='case_messaging_sync_pillow', topics=None, num_processes=1, process_num=0, processor_chunk_size=10, **kwargs)

	Pillow for synchronizing messaging data with case data.

	Processors:
	
	corehq.messaging.pillow.CaseMessagingSyncProcessor

	
corehq.pillows.case_search.get_case_search_to_elasticsearch_pillow(pillow_id='CaseSearchToElasticsearchPillow', num_processes=1, process_num=0, **kwargs)

	Populates the case search Elasticsearch index.

	Processors:
	
	corehq.pillows.case_search.CaseSearchPillowProcessor

	
corehq.pillows.cacheinvalidate._get_cache_invalidation_pillow(pillow_id, couch_db, couch_filter=None)

	Pillow that listens to changes and invalidates the cache whether it’s a single doc being cached or a view.

	Processors:
	
	corehq.pillows.cache_invalidate_pillow.CacheInvalidateProcessor

	
corehq.apps.change_feed.pillow.get_change_feed_pillow_for_db(pillow_id, couch_db, default_topic=None)

	Generic pillow for inserting Couch documents into Kafka.

	Reads from:
	
	CouchDB

	Writes to:
	
	Kafka

Processors

	
class corehq.pillows.user.UnknownUsersProcessor

	Monitors forms for user_ids we don’t know about and creates an entry in ES for the user.

	Reads from:
	
	Kafka topics: form-sql, form

	XForm data source

	Writes to:
	
	UserES index

	
class corehq.apps.change_feed.pillow.KafkaProcessor(data_source_type, data_source_name, default_topic)

	Generic processor for CouchDB changes to put those changes in a kafka topic

	Reads from:
	
	CouchDB change feed

	Writes to:
	
	Specified kafka topic

	DeletedCouchDoc SQL table

	
class corehq.pillows.groups_to_user.GroupsToUsersProcessor

	When a group changes, this updates the user doc in UserES

	Reads from:
	
	Kafka topics: group

	Group data source (CouchDB)

	Writes to:
	
	UserES index

	
corehq.pillows.group.get_group_to_elasticsearch_processor()

	Inserts group changes into ES

	Reads from:
	
	Kafka topics: group

	Group data source (CouchDB)

	Writes to:
	
	GroupES index

	
class corehq.pillows.ledger.LedgerProcessor

	Updates ledger section and entry combinations (exports), daily consumption and case location ids

	Reads from:
	
	Kafka topics: ledger

	Ledger data source

	Writes to:
	
	LedgerSectionEntry postgres table

	Ledger data source

	
class corehq.pillows.cacheinvalidate.CacheInvalidateProcessor

	Invalidates cached CouchDB documents

	Reads from:
	
	CouchDB

	Writes to:
	
	Redis

	
class corehq.pillows.synclog.UserSyncHistoryProcessor

	Updates the user document with reporting metadata when a user syncs

Note when USER_REPORTING_METADATA_BATCH_ENABLED is True that this is written to a postgres table.
Entries in that table are then batched and processed separately.

	Reads from:
	
	CouchDB (user)

	SynclogSQL table

	Writes to:
	
	CouchDB (user) (when batch processing disabled) (default)

	UserReportingMetadataStaging (SQL) (when batch processing enabled)

	
class pillowtop.processors.form.FormSubmissionMetadataTrackerProcessor

	Updates the user document with reporting metadata when a user submits a form

Also marks the application as having submissions.

Note when USER_REPORTING_METADATA_BATCH_ENABLED is True that this is written to a postgres table.
Entries in that table are then batched and processed separately

	Reads from:
	
	CouchDB (user and app)

	XForm data source

	Writes to:
	
	CouchDB (app)

	CouchDB (user) (when batch processing disabled) (default)

	UserReportingMetadataStaging (SQL) (when batch processing enabled)

	
class corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor(table_manager)

	Generic processor for UCR.

	Reads from:
	
	SQLLocation

	Form data source

	Case data source

	Writes to:
	
	UCR database

	
class pillowtop.processors.elastic.ElasticProcessor(adapter, doc_filter_fn=None, change_filter_fn=None)

	Generic processor to transform documents and insert into ES.

Processes one document at a time.

	Reads from:
	
	Usually Couch

	Sometimes SQL

	Writes to:
	
	ES

	
class pillowtop.processors.elastic.BulkElasticProcessor(adapter, doc_filter_fn=None, change_filter_fn=None)

	Generic processor to transform documents and insert into ES.

Processes one “chunk” of changes at a time (chunk size specified by pillow).

	Reads from:
	
	Usually Couch

	Sometimes SQL

	Writes to:
	
	ES

	
corehq.pillows.case_search.get_case_search_processor()

	Case Search

	Reads from:
	
	Case data source

	Writes to:
	
	Case Search ES index

	
class corehq.messaging.pillow.CaseMessagingSyncProcessor

	
	Reads from:
	
	Case data source

	Update Rules

	Writes to:
	
	PhoneNumber

	Runs rules for SMS (can be many different things)

Monitoring Email Events with Amazon SES

If you are using Amazon SES as your email provider (through SMTP), you can monitor what happens to emails sent through commcare’s messaging features (broadcasts, reminders, etc).

We use Amazon’s Simple Notification System to send callbacks to the /log_email_event endpoint.

	Add SES_CONFIGURATION_SET to localsettings. Call this something memorable e.g. production-email-events. You’ll use this name later. Deploy localsettings, and restart services (this needs to be done before the next steps). Also add a SNS_EMAIL_EVENT_SECRET, which should be treated like a password, and should be environment specific.

	Create an SNS Topic here https://console.aws.amazon.com/sns/v3/home?region=us-east-1#/topics .

	Add a subscription which points to https://{HQ_ADDRESS}/log_email_event/{SNS_EMAIL_EVENT_SECRET}. Where the secret you created in step 1 should be added at the end of the address. This should automatically get confirmed. If it doesn’t, ensure there is no firewall or something else blocking access to this endpoint.

	Create an SES Configuration Set, with the name you created in step 1.

	Add the SNS topic you created in step 2 as the desination for this configuration step. Select the event types you want - we currently support Send, Delivery, and Bounce.

	Messages you send with the X-COMMCAREHQ-MESSAGE-ID and X-SES-CONFIGURATION-SET headers should now receive notification updates. The X-COMMCAREHQ-MESSAGE-ID headers should include the ID of a MessagingSubEvent.

User Configurable Reporting

An overview of the design, API and data structures used here.

The docs on
reporting [https://commcare-hq.readthedocs.io/reporting.html],
pillows [https://commcare-hq.readthedocs.io/pillows.html],
and change feeds [https://commcare-hq.readthedocs.io/change_feeds.html],
are useful background.

	Data Flow

	Data Sources

	Data Source Filtering

	Filter type overview

	Expressions

	JSON snippets for expressions

	Constant Expression

	Property Name Expression

	Property Path Expression

	Jsonpath Expression

	Conditional Expression

	Switch Expression

	Coalesce Expression

	Array Index Expression

	Split String Expression

	Iterator Expression

	Base iteration number expressions

	Related document expressions

	Ancestor location expression

	Nested expressions

	Dict expressions

	“Add Days” expressions

	“Add Hours” expressions

	“Add Months” expressions

	“Diff Days” expressions

	“Month Start Date” and “Month End Date” expressions

	“Evaluator” expression

	‘Get Case Sharing Groups’ expression

	‘Get Reporting Groups’ expression

	Filter, Sort, Map and Reduce Expressions

	map_items Expression

	filter_items Expression

	sort_items Expression

	reduce_items Expression

	flatten expression

	Named Expressions

	Boolean Expression Filters

	Operators

	Compound filters

	“And” Filters

	“Or” Filters

	“Not” Filters

	Practical Examples

	Indicators

	Indicator Properties

	Indicator types

	Boolean indicators

	Expression indicators

	Choice list indicators

	Ledger Balance Indicators

	Practical notes for creating indicators

	Fractions

	Saving Multiple Rows per Case/Form

	Data Cleaning and Validation

	Report Configurations

	Samples

	Report Filters

	Numeric Filters

	Date filters

	Quarter filters

	Pre-Filters

	Dynamic choice lists

	Choice providers

	Choice lists

	Drilldown by Location

	Internationalization

	Report Columns

	Field columns

	Percent columns

	Formats

	AggregateDateColumn

	IntegerBucketsColumn

	SumWhenColumn and SumWhenTemplateColumn

	Expanded Columns

	Expression columns

	The “aggregation” column property

	Column IDs

	Calculating Column Totals

	Internationalization

	Aggregation

	No aggregation

	Aggregate by ‘username’ column

	Aggregate by two columns

	Transforms

	Translations and arbitrary mappings

	Displaying Readable User Name (instead of user ID)

	Displaying username instead of user ID

	Displaying username minus @domain.commcarehq.org instead of user ID

	Displaying owner name instead of owner ID

	Displaying month name instead of month index

	Rounding decimals

	Generic number formatting

	Round to the nearest whole number

	Rich text formatting with Markdown

	Always round to 3 decimal places

	Date formatting

	Converting an ethiopian date string to a gregorian date

	Converting a gregorian date string to an ethiopian date

	Charts

	Pie charts

	Aggregate multibar charts

	Multibar charts

	Sort Expression

	Distinct On

	Pick distinct by a single column

	Pick distinct result based on two columns

	Mobile UCR

	Filters

	Custom Calendar Month

	Export

	Export example

	Practical Notes

	Getting Started

	Static data sources

	Static configurable reports

	Custom configurable reports

	Extending User Configurable Reports

	Scaling UCR

	Profiling data sources

	Faster Reporting

	Asynchronous Indicators

	Inspecting database tables

Data Flow

Reporting is handled in multiple stages. Here is the basic workflow.

Raw data (form or case) → [Data source config] → Row in database table →
[Report config] → Report in HQ

Both the data source config and report config are JSON documents that
live in the database. The data source config determines how raw data
(forms and cases) gets mapped to rows in an intermediary table, while
the report config(s) determine how that report table gets turned into an
interactive report in the UI.

A UCR table is created when a new data source is created.
The table’s structure is updated whenever the UCR is “rebuilt”, which happens when the data source config is edited.
Rebuilds can also be kicked off manually via either rebuild_indicator_table or the UI.
Rebuilding happens asynchronously. Data in the table is refreshed continuously by pillows.

Data Sources

Each data source configuration maps a filtered set of the raw data to
indicators. A data source configuration consists of two primary
sections:

	A filter that determines whether the data is relevant for the data
source

	A list of indicators in that data source

In addition to these properties there are a number of relatively
self-explanatory fields on a data source such as the table_id and
display_name, and a few more nuanced ones. The full list of
available fields is summarized in the following table:

	Field

	Description

	filter

	Determines whether the
data is relevant for
the data source

	indicators

	List of indicators to
save

	table_id

	A unique ID for the
table

	display_name

	A display name for the
table that shows up in
UIs

	base_item_expression

	Used for making tables
off of repeat or list
data

	named_expressions

	A list of named
expressions that can
be referenced in other
filters and indicators

	named_filters

	A list of named
filters that can be
referenced in other
filters and indicators

Data Source Filtering

When setting up a data source configuration, filtering defines what data
applies to a given set of indicators. Some example uses of filtering on
a data source include:

	Restricting the data by document type (e.g. cases or forms). This is
a built-in filter.

	Limiting the data to a particular case or form type

	Excluding demo user data

	Excluding closed cases

	Only showing data that meets a domain-specific condition
(e.g. pregnancy cases opened for women over 30 years of age)

Filter type overview

There are currently four supported filter types. However, these can be
used together to produce arbitrarily complicated expressions.

	Filter Type

	Description

	boolean_expression

	A expression / logic statement (more below)

	and

	An “and” of other filters - true if all are true

	or

	An “or” of other filters - true if any are true

	not

	A “not” or inverse expression on a filter

To understand the boolean_expression type, we must first explain
expressions.

Expressions

An expression is a way of representing a set of operations that should
return a single value. Expressions can basically be thought of as
functions that take in a document and return a value:

Expression: function(document) → value

In normal math/python notation, the following are all valid expressions
on a doc (which is presumed to be a dict object:

	"hello"

	7

	doc["name"]

	doc["child"]["age"]

	doc["age"] < 21

	"legal" if doc["age"] > 21 else "underage"

In user configurable reports the following expression types are
currently supported (note that this can and likely will be extended in
the future):

	Expression Type

	Description

	Example

	identity

	Just returns whatever
is passed in

	doc

	constant

	A constant

	"hello",
4,
2014-12-20

	property_name

	A reference to the
property in a document

	doc["name"]

	property_path

	A nested reference to a
property in a document

	doc["child"]["age"]

	conditional

	An if/else expression

	"legal" if doc["age"] > 21 else "minor"

	switch

	A switch statement

	if doc["age"] == 21: "legal"
elif doc["age"] == 60: "senior"
else: ...

	array_index

	An index into an array

	doc[1]

	split_string

	Splitting a string and
grabbing a specific
element from it by
index

	doc["foobar"].split(' ')[0]

	iterator

	Combine multiple
expressions into a list

	[doc.name, doc.age, doc.gender]

	related_doc

	A way to reference
something in another
document

	form.case.owner_id

	root_doc

	A way to reference the
root document
explicitly (only needed
when making a data
source from
repeat/child data)

	repeat.parent.name

	ancestor_location

	A way to retrieve the
ancestor of a
particular type from a
location

	

	nested

	A way to chain any two
expressions together

	f1(f2(doc))

	dict

	A way to emit a
dictionary of key/value
pairs

	{"name": "test", "value": f(doc)}

	add_days

	A way to add days to a
date

	my_date + timedelta(days=15)

	add_months

	A way to add months to
a date

	my_date + relative delta(months=15)

	month_start_date

	First day in the month
of a date

	2015-01-20
->
2015-01-01

	month_end_date

	Last day in the month
of a date

	2015-01-20
->
2015-01-31

	diff_days

	A way to get duration
in days between two
dates

	(to_date - from-date).days

	evaluator

	A way to do arithmetic
operations

	a + b*c / d

	base_iteration_number

	Used with
base_item_expression
` <#saving-multiple-ro
ws-per-caseform>`__
- a way to get the
current iteration
number (starting from
0).

	loop.index

Following expressions act on a list of objects or a list of lists (for
e.g. on a repeat list) and return another list or value. These
expressions can be combined to do complex aggregations on list data.

	Expression Type

	Description

	Example

	filter_items

	Filter a list of items
to make a new list

	[1, 2, 3, -1, -2, -3]
->
[1, 2, 3]
(filter numbers
greater than zero)

	map_items

	Map one list to another
list

	[{'name': 'a', sex: 'f'}, {'name': 'b', gender: 'm'}]
->
['a', 'b']
(list of names from list of child data)

	sort_items

	Sort a list based on an
expression

	[{'name': 'a', age: 5}, {'name': 'b', age: 3}]
->
[{'name': 'b', age: 3}, {'name': 'a', age: 5}]
(sort child data by age)

	reduce_items

	Aggregate a list of
items into one value

	sum on
[1, 2, 3]
-> 6

	flatten

	Flatten multiple lists
of items into one list

	[[1, 2], [4, 5]]
->
[1, 2, 4, 5]

JSON snippets for expressions

Here are JSON snippets for the various expression types. Hopefully they
are self-explanatory.

Constant Expression

	
class corehq.apps.userreports.expressions.specs.ConstantGetterSpec(_obj=None, **kwargs)

	There are two formats for constant expressions. The simplified format is
simply the constant itself. For example "hello", or 5.

The complete format is as follows. This expression returns the constant
"hello":

{
 "type": "constant",
 "constant": "hello"
}

Property Name Expression

	
class corehq.apps.userreports.expressions.specs.PropertyNameGetterSpec(_obj=None, **kwargs)

	This expression returns doc["age"]:

{
 "type": "property_name",
 "property_name": "age"
}

An optional "datatype" attribute may be specified, which will
attempt to cast the property to the given data type. The options are
“date”, “datetime”, “string”, “integer”, and “decimal”. If no datatype
is specified, “string” will be used.

Property Path Expression

	
class corehq.apps.userreports.expressions.specs.PropertyPathGetterSpec(_obj=None, **kwargs)

	This expression returns doc["child"]["age"]:

{
 "type": "property_path",
 "property_path": ["child", "age"]
}

An optional "datatype" attribute may be specified, which will
attempt to cast the property to the given data type. The options are
“date”, “datetime”, “string”, “integer”, and “decimal”. If no datatype
is specified, “string” will be used.

Jsonpath Expression

	
class corehq.apps.userreports.expressions.specs.JsonpathExpressionSpec(_obj=None, **kwargs)

	This will execute the jsonpath expression against the current doc
and emit the result.

{
 "type": "jsonpath",
 "jsonpath": "form..case.name",
}

Given the following doc:

{
 "form": {
 "case": {"name": "a"},
 "nested": {
 "case": {"name": "b"},
 },
 "list": [
 {"case": {"name": "c"}},
 {
 "nested": {
 "case": {"name": "d"}
 }
 }
]
 }
}

This above expression will evaluate to ["a", "b", "c", "d"].
Another example is form.list[0].case.name which will evaluate to "c".

See also the jsonpath evaluator function.

For more information consult the following resources:

	Article by Stefan Goessner [https://goessner.net/articles/JsonPath/]

	JSONPath expression syntax [https://goessner.net/articles/JsonPath/index.html#e2]

	JSONPath Online Evaluator [https://jsonpath.com/]

Conditional Expression

	
class corehq.apps.userreports.expressions.specs.ConditionalExpressionSpec(_obj=None, **kwargs)

	This expression returns "legal" if doc["age"] > 21 else "underage":

{
 "type": "conditional",
 "test": {
 "operator": "gt",
 "expression": {
 "type": "property_name",
 "property_name": "age",
 "datatype": "integer"
 },
 "type": "boolean_expression",
 "property_value": 21
 },
 "expression_if_true": {
 "type": "constant",
 "constant": "legal"
 },
 "expression_if_false": {
 "type": "constant",
 "constant": "underage"
 }
}

Note that this expression contains other expressions inside it! This is
why expressions are powerful. (It also contains a filter, but we haven’t
covered those yet - if you find the "test" section confusing, keep
reading…)

Note also that it’s important to make sure that you are comparing values
of the same type. In this example, the expression that retrieves the age
property from the document also casts the value to an integer. If this
datatype is not specified, the expression will compare a string to the
21 value, which will not produce the expected results!

Switch Expression

	
class corehq.apps.userreports.expressions.specs.SwitchExpressionSpec(_obj=None, **kwargs)

	This expression returns the value of the expression for the case that
matches the switch on expression. Note that case values may only be
strings at this time.

{
 "type": "switch",
 "switch_on": {
 "type": "property_name",
 "property_name": "district"
 },
 "cases": {
 "north": {
 "type": "constant",
 "constant": 4000
 },
 "south": {
 "type": "constant",
 "constant": 2500
 },
 "east": {
 "type": "constant",
 "constant": 3300
 },
 "west": {
 "type": "constant",
 "constant": 65
 },
 },
 "default": {
 "type": "constant",
 "constant": 0
 }
}

Coalesce Expression

	
class corehq.apps.userreports.expressions.specs.CoalesceExpressionSpec(_obj=None, **kwargs)

	This expression returns the value of the expression provided, or the
value of the default_expression if the expression provided evaluates to a
null or blank string.

{
 "type": "coalesce",
 "expression": {
 "type": "property_name",
 "property_name": "district"
 },
 "default_expression": {
 "type": "constant",
 "constant": "default_district"
 }
}

Array Index Expression

	
class corehq.apps.userreports.expressions.specs.ArrayIndexExpressionSpec(_obj=None, **kwargs)

	This expression returns doc["siblings"][0]:

{
 "type": "array_index",
 "array_expression": {
 "type": "property_name",
 "property_name": "siblings"
 },
 "index_expression": {
 "type": "constant",
 "constant": 0
 }
}

It will return nothing if the siblings property is not a list, the index
isn’t a number, or the indexed item doesn’t exist.

Split String Expression

	
class corehq.apps.userreports.expressions.specs.SplitStringExpressionSpec(_obj=None, **kwargs)

	This expression returns (doc["foo bar"]).split(' ')[0]:

{
 "type": "split_string",
 "string_expression": {
 "type": "property_name",
 "property_name": "multiple_value_string"
 },
 "index_expression": {
 "type": "constant",
 "constant": 0
 },
 "delimiter": ","
}

The delimiter is optional and is defaulted to a space. It will return
nothing if the string_expression is not a string, or if the index isn’t
a number or the indexed item doesn’t exist. The index_expression is also
optional. Without it, the expression will return the list of elements.

Iterator Expression

	
class corehq.apps.userreports.expressions.specs.IteratorExpressionSpec(_obj=None, **kwargs)

	{
 "type": "iterator",
 "expressions": [
 {
 "type": "property_name",
 "property_name": "p1"
 },
 {
 "type": "property_name",
 "property_name": "p2"
 },
 {
 "type": "property_name",
 "property_name": "p3"
 },
],
 "test": {}
}

This will emit [doc.p1, doc.p2, doc.p3]. You can add a test
attribute to filter rows from what is emitted - if you don’t specify
this then the iterator will include one row per expression it contains
regardless of what is passed in. This can be used/combined with the
base_item_expression to emit multiple rows per document.

Base iteration number expressions

	
class corehq.apps.userreports.expressions.specs.IterationNumberExpressionSpec(_obj=None, **kwargs)

	These are very simple expressions with no config. They return the index
of the repeat item starting from 0 when used with a
base_item_expression.

{
 "type": "base_iteration_number"
}

Related document expressions

	
class corehq.apps.userreports.expressions.specs.RelatedDocExpressionSpec(_obj=None, **kwargs)

	This can be used to lookup a property in another document. Here’s an
example that lets you look up form.case.owner_id from a form.

{
 "type": "related_doc",
 "related_doc_type": "CommCareCase",
 "doc_id_expression": {
 "type": "property_path",
 "property_path": ["form", "case", "@case_id"]
 },
 "value_expression": {
 "type": "property_name",
 "property_name": "owner_id"
 }
}

Ancestor location expression

	
class corehq.apps.locations.ucr_expressions.AncestorLocationExpression(_obj=None, **kwargs)

	This is used to return a json object representing the ancestor of the
given type of the given location. For instance, if we had locations
configured with a hierarchy like country -> state -> county -> city,
we could pass the location id of Cambridge and a location type of state
to this expression to get the Massachusetts location.

{
 "type": "ancestor_location",
 "location_id": {
 "type": "property_name",
 "name": "owner_id"
 },
 "location_type": {
 "type": "constant",
 "constant": "state"
 }
}

If no such location exists, returns null.

Optionally you can specifiy location_property to return a single property
of the location.

{
 "type": "ancestor_location",
 "location_id": {
 "type": "property_name",
 "name": "owner_id"
 },
 "location_type": {
 "type": "constant",
 "constant": "state"
 },
 "location_property": "site_code"
}

Nested expressions

	
class corehq.apps.userreports.expressions.specs.NestedExpressionSpec(_obj=None, **kwargs)

	These can be used to nest expressions. This can be used, e.g. to pull a
specific property out of an item in a list of objects.

The following nested expression is the equivalent of a property_path
expression to ["outer", "inner"] and demonstrates the functionality.
More examples can be found in the practical examples.

{
 "type": "nested",
 "argument_expression": {
 "type": "property_name",
 "property_name": "outer"
 },
 "value_expression": {
 "type": "property_name",
 "property_name": "inner"
 }
}

Dict expressions

	
class corehq.apps.userreports.expressions.specs.DictExpressionSpec(_obj=None, **kwargs)

	These can be used to create dictionaries of key/value pairs. This is
only useful as an intermediate structure in another expression since the
result of the expression is a dictionary that cannot be saved to the
database.

See the practical examples
for a way this can be used in a base_item_expression to emit
multiple rows for a single form/case based on different properties.

Here is a simple example that demonstrates the structure. The keys of
properties must be text, and the values must be valid expressions
(or constants):

{
 "type": "dict",
 "properties": {
 "name": "a constant name",
 "value": {
 "type": "property_name",
 "property_name": "prop"
 },
 "value2": {
 "type": "property_name",
 "property_name": "prop2"
 }
 }
}

“Add Days” expressions

	
class corehq.apps.userreports.expressions.date_specs.AddDaysExpressionSpec(_obj=None, **kwargs)

	Below is a simple example that demonstrates the structure. The
expression below will add 28 days to a property called “dob”. The
date_expression and count_expression can be any valid expressions, or
simply constants.

{
 "type": "add_days",
 "date_expression": {
 "type": "property_name",
 "property_name": "dob",
 },
 "count_expression": 28
}

“Add Hours” expressions

	
class corehq.apps.userreports.expressions.date_specs.AddHoursExpressionSpec(_obj=None, **kwargs)

	Below is a simple example that demonstrates the structure. The
expression below will add 12 hours to a property called “visit_date”.
The date_expression and count_expression can be any valid expressions, or
simply constants.

{
 "type": "add_hours",
 "date_expression": {
 "type": "property_name",
 "property_name": "visit_date",
 },
 "count_expression": 12
}

“Add Months” expressions

	
class corehq.apps.userreports.expressions.date_specs.AddMonthsExpressionSpec(_obj=None, **kwargs)

	add_months offsets given date by given number of calendar months. If
offset results in an invalid day (for e.g. Feb 30, April 31), the day of
resulting date will be adjusted to last day of the resulting calendar
month.

The date_expression and months_expression can be any valid expressions,
or simply constants, including negative numbers.

{
 "type": "add_months",
 "date_expression": {
 "type": "property_name",
 "property_name": "dob",
 },
 "months_expression": 28
}

“Diff Days” expressions

	
class corehq.apps.userreports.expressions.date_specs.DiffDaysExpressionSpec(_obj=None, **kwargs)

	diff_days returns number of days between dates specified by
from_date_expression and to_date_expression. The
from_date_expression and to_date_expression can be any valid
expressions, or simply constants.

{
 "type": "diff_days",
 "from_date_expression": {
 "type": "property_name",
 "property_name": "dob",
 },
 "to_date_expression": "2016-02-01"
}

“Month Start Date” and “Month End Date” expressions

	
class corehq.apps.userreports.expressions.date_specs.MonthStartDateExpressionSpec(_obj=None, **kwargs)

	month_start_date returns date of first day in the month of given
date and month_end_date returns date of last day in the month of
given date.

The date_expression can be any valid expression, or simply constant

{
 "type": "month_start_date",
 "date_expression": {
 "type": "property_name",
 "property_name": "dob",
 },
}

“Evaluator” expression

	
class corehq.apps.userreports.expressions.specs.EvalExpressionSpec(_obj=None, **kwargs)

	evaluator expression can be used to evaluate statements that contain
arithmetic (and simple python like statements). It evaluates the
statement specified by statement which can contain variables as
defined in context_variables.

{
 "type": "evaluator",
 "statement": "a + b - c + 6",
 "context_variables": {
 "a": 1,
 "b": 20,
 "c": {
 "type": "property_name",
 "property_name": "the_number_two"
 }
 }
}

This returns 25 (1 + 20 - 2 + 6).

statement

The expression statement to be evaluated.

context_variables

A dictionary of Expressions where keys are names of variables used in the statement
and values are expressions to generate those variables.

Variable types must be one of:

	str

	int

	float

	bool

	date

	datetime

If context_variables is omitted, the current context of the expression will be used.

Expression limitations

Only a single expression is permitted.

Available operators:

	math operators [https://en.wikibooks.org/wiki/Python_Programming/Basic_Math#Mathematical_Operators] (except the power operator)

	modulus [https://en.wikibooks.org/wiki/Python_Programming/Operators#Modulus]

	negation [https://en.wikibooks.org/wiki/Python_Programming/Operators#Negation]

	comparison operators [https://en.wikibooks.org/wiki/Python_Programming/Operators#Comparison]

	logical operators [https://en.wikibooks.org/wiki/Python_Programming/Operators#Logical_Operators]

In addition, expressions can perform the following operations:

	index: case[‘name’]

	slice: cases[0:2]

	if statements: 1 if case.name == ‘bob’ else 0

	list comprehension: [i for i in range(3)]

	dict, list, set construction: {“a”: 1, “b”: set(cases), “c”: list(range(4))}

Available Functions

Only the following functions are available in the evaluation context:

	
context()

	Get the current evaluation context.
See also root_context().

	
date(value, fmt=None)

	Parse a string value as a date or timestamp. If fmt is not supplied
the string is assumed to be in ISO 8601 [https://www.cl.cam.ac.uk/~mgk25/iso-time.html] format.

	Parameters:

	fmt – If supplied, use this format specification to parse the date.
See the Python documentation for Format Codes [https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes].

	
float(value)

	Convert value to a floating point number.

	
int(value)

	Convert value to an int. Value can be a number or
a string representation of a number.

	
jsonpath(expr, as_list=False, context=None)

	Evaluate a jsonpath expression.

See also Jsonpath Expression.

jsonpath("form.case.name")
jsonpath("name", context=jsonpath("form.case"))
jsonpath("form..case", as_list=True)

	Parameters:

	
	expr – The jsonpath expression.

	as_list – When set to True, always return the full list of matches, even if it is emtpy.
If set to False then the return value will be None if no matches are found.
If a single match is found the matched value will be returned.
If more than one match is found, they will all be returned as a list.

	context – Optional context for evaluation. If not supplied the full context of the evaluator
will be used.

	Returns:

	See as_list.

	
named(name, context=None)

	Call a named expression.
See also Named Expressions.

named("my-named-expression")
named("my-named-expression", context=form.case)

	
rand()

	Generate a random number between 0 and 1

	
randint(max)

	Generate a random integer between 0 and max

	
range(start[, stop][, skip])

	Produces a sequence of integers from start (inclusive) to stop (exclusive) by step.
Note that for performance reasons this is limited to 100 items or less.
See range [https://docs.python.org/3/library/functions.html?#range].

	
root_context()

	Get the root context of the evaluation. Similar to the root_doc expression.

See also context().

	
round(value, ndigits=None)

	Round a number to the nearest integer or ndigits
after the decimal point. See round [https://docs.python.org/3/library/functions.html?#round].

	
str(value)

	Convert value to a string.

	
timedelta_to_seconds(delta)

	Convert a TimeDelta object into seconds.
This is useful for getting the number of seconds between two dates.

timedelta_to_seconds(time_end - time_start)

	
today()

	Return the current UTC date.

See also Evaluator Examples.

‘Get Case Sharing Groups’ expression

	
class corehq.apps.userreports.expressions.specs.CaseSharingGroupsExpressionSpec(_obj=None, **kwargs)

	get_case_sharing_groups will return an array of the case sharing
groups that are assigned to a provided user ID. The array will contain
one document per case sharing group.

{
 "type": "get_case_sharing_groups",
 "user_id_expression": {
 "type": "property_path",
 "property_path": ["form", "meta", "userID"]
 }
}

‘Get Reporting Groups’ expression

	
class corehq.apps.userreports.expressions.specs.ReportingGroupsExpressionSpec(_obj=None, **kwargs)

	get_reporting_groups will return an array of the reporting groups that
are assigned to a provided user ID. The array will contain one document
per reporting group.

{
 "type": "get_reporting_groups",
 "user_id_expression": {
 "type": "property_path",
 "property_path": ["form", "meta", "userID"]
 }
}

Filter, Sort, Map and Reduce Expressions

We have following expressions that act on a list of objects or list of
lists. The list to operate on is specified by items_expression. This
can be any valid expression that returns a list. If the
items_expression doesn’t return a valid list, these might either
fail or return one of empty list or None value.

map_items Expression

	
class corehq.apps.userreports.expressions.list_specs.MapItemsExpressionSpec(_obj=None, **kwargs)

	map_items performs a calculation specified by map_expression on
each item of the list specified by items_expression and returns a
list of the calculation results. The map_expression is evaluated
relative to each item in the list and not relative to the parent
document from which the list is specified. For e.g. if
items_expression is a path to repeat-list of children in a form
document, map_expression is a path relative to the repeat item.

items_expression can be any valid expression that returns a list. If
this doesn’t evaluate to a list an empty list is returned. It may be
necessary to specify a datatype of array if the expression could
return a single element.

map_expression can be any valid expression relative to the items in
above list.

{
 "type": "map_items",
 "items_expression": {
 "datatype": "array",
 "type": "property_path",
 "property_path": ["form", "child_repeat"]
 },
 "map_expression": {
 "type": "property_path",
 "property_path": ["age"]
 }
}

Above returns list of ages. Note that the property_path in
map_expression is relative to the repeat item rather than to the
form.

filter_items Expression

	
class corehq.apps.userreports.expressions.list_specs.FilterItemsExpressionSpec(_obj=None, **kwargs)

	filter_items performs filtering on given list and returns a new
list. If the boolean expression specified by filter_expression
evaluates to a True value, the item is included in the new list and
if not, is not included in the new list.

items_expression can be any valid expression that returns a list. If
this doesn’t evaluate to a list an empty list is returned. It may be
necessary to specify a datatype of array if the expression could
return a single element.

filter_expression can be any valid boolean expression relative to
the items in above list.

{
 "type": "filter_items",
 "items_expression": {
 "datatype": "array",
 "type": "property_name",
 "property_name": "family_repeat"
 },
 "filter_expression": {
 "type": "boolean_expression",
 "expression": {
 "type": "property_name",
 "property_name": "gender"
 },
 "operator": "eq",
 "property_value": "female"
 }
}

sort_items Expression

	
class corehq.apps.userreports.expressions.list_specs.SortItemsExpressionSpec(_obj=None, **kwargs)

	sort_items returns a sorted list of items based on sort value of
each item.The sort value of an item is specified by sort_expression.
By default, list will be in ascending order. Order can be changed by
adding optional order expression with one of DESC (for
descending) or ASC (for ascending) If a sort-value of an item is
None, the item will appear in the start of list. If sort-values of
any two items can’t be compared, an empty list is returned.

items_expression can be any valid expression that returns a list. If
this doesn’t evaluate to a list an empty list is returned. It may be
necessary to specify a datatype of array if the expression could
return a single element.

sort_expression can be any valid expression relative to the items in
above list, that returns a value to be used as sort value.

{
 "type": "sort_items",
 "items_expression": {
 "datatype": "array",
 "type": "property_path",
 "property_path": ["form", "child_repeat"]
 },
 "sort_expression": {
 "type": "property_path",
 "property_path": ["age"]
 }
}

reduce_items Expression

	
class corehq.apps.userreports.expressions.list_specs.ReduceItemsExpressionSpec(_obj=None, **kwargs)

	reduce_items returns aggregate value of the list specified by
aggregation_fn.

items_expression can be any valid expression that returns a list. If
this doesn’t evaluate to a list, aggregation_fn will be applied on
an empty list. It may be necessary to specify a datatype of
array if the expression could return a single element.

aggregation_fn is one of following supported functions names.

	Function Name

	Example

	count

	['a', 'b'] -> 2

	sum

	[1, 2, 4] -> 7

	min

	[2, 5, 1] -> 1

	max

	[2, 5, 1] -> 5

	first_item

	['a', 'b'] -> ‘a’

	last_item

	['a', 'b'] -> ‘b’

	join

	['a', 'b'] -> ‘ab’

{
 "type": "reduce_items",
 "items_expression": {
 "datatype": "array",
 "type": "property_name",
 "property_name": "family_repeat"
 },
 "aggregation_fn": "count"
}

This returns number of family members

flatten expression

	
class corehq.apps.userreports.expressions.list_specs.FlattenExpressionSpec(_obj=None, **kwargs)

	flatten takes list of list of objects specified by
items_expression and returns one list of all objects.

items_expression is any valid expression that returns a list of
lists. It this doesn’t evaluate to a list of lists an empty list is
returned. It may be necessary to specify a datatype of array if
the expression could return a single element.

{
 "type": "flatten",
 "items_expression": {},
}

Named Expressions

	
class corehq.apps.userreports.expressions.specs.NamedExpressionSpec(_obj=None, **kwargs)

	Last, but certainly not least, are named expressions. These are special
expressions that can be defined once in a data source and then used
throughout other filters and indicators in that data source. This allows
you to write out a very complicated expression a single time, but still
use it in multiple places with a simple syntax.

Named expressions are defined in a special section of the data source.
To reference a named expression, you just specify the type of
"named" and the name as follows:

{
 "type": "named",
 "name": "my_expression"
}

This assumes that your named expression section of your data source
includes a snippet like the following:

{
 "my_expression": {
 "type": "property_name",
 "property_name": "test"
 }
}

This is just a simple example - the value that "my_expression" takes
on can be as complicated as you want and it can also reference other named
expressions as long as it doesn’t reference itself of create a recursive cycle.

See also the named evaluator function.

Boolean Expression Filters

A boolean_expression filter combines an expression, an operator,
and a property value (a constant), to produce a statement that is
either True or False. Note: in the future the constant value
may be replaced with a second expression to be more general, however
currently only constant property values are supported.

Here is a sample JSON format for simple boolean_expression filter:

{
 "type": "boolean_expression",
 "expression": {
 "type": "property_name",
 "property_name": "age",
 "datatype": "integer"
 },
 "operator": "gt",
 "property_value": 21
}

This is equivalent to the python statement: doc["age"] > 21

Operators

The following operators are currently supported:

	Operator

	Description

	Value type

	Example

	eq

	is equal

	constant

	doc["age"] == 21

	not_eq

	is not equal

	constant

	doc["age"] != 21

	in

	single value is in a list

	list

	doc["color"] in ["red", "blue"]

	in_multi

	a value is in a multi select

	list

	selected(doc["color"], "red")

	any_in_multi

	one of a list of values in in a multiselect

	list

	selected(doc["color"], ["red", "blue"])

	lt

	is less than

	number

	doc["age"] < 21

	lte

	is less than or equal

	number

	doc["age"] <= 21

	gt

	is greater than

	number

	doc["age"] > 21

	gte

	is greater than or equal

	number

	doc["age"] >= 21

	regex

	matches regular expression

	string

	re.search("^([Rr]ed|[Bb]lue)$", doc["color"])

Compound filters

Compound filters build on top of boolean_expression filters to
create boolean logic. These can be combined to support arbitrarily
complicated boolean logic on data. There are three types of filters,
and, or, and not filters. The JSON representation of these is
below. Hopefully these are self explanatory.

“And” Filters

The following filter represents the statement:
doc["age"] < 21 and doc["nationality"] == "american":

{
 "type": "and",
 "filters": [
 {
 "type": "boolean_expression",
 "expression": {
 "type": "property_name",
 "property_name": "age",
 "datatype": "integer"
 },
 "operator": "lt",
 "property_value": 21
 },
 {
 "type": "boolean_expression",
 "expression": {
 "type": "property_name",
 "property_name": "nationality",
 },
 "operator": "eq",
 "property_value": "american"
 }
]
}

“Or” Filters

The following filter represents the statement:
doc["age"] > 21 or doc["nationality"] == "european":

{
 "type": "or",
 "filters": [
 {
 "type": "boolean_expression",
 "expression": {
 "type": "property_name",
 "property_name": "age",
 "datatype": "integer",
 },
 "operator": "gt",
 "property_value": 21
 },
 {
 "type": "boolean_expression",
 "expression": {
 "type": "property_name",
 "property_name": "nationality",
 },
 "operator": "eq",
 "property_value": "european"
 }
]
}

“Not” Filters

The following filter represents the statement:
!(doc["nationality"] == "european"):

{
 "type": "not",
 "filter": [
 {
 "type": "boolean_expression",
 "expression": {
 "type": "property_name",
 "property_name": "nationality",
 },
 "operator": "eq",
 "property_value": "european"
 }
]
}

Note that this could be represented more simply using a single filter
with the ``not_eq`` operator, but “not” filters can represent more
complex logic than operators generally, since the filter itself can be
another compound filter.

Practical Examples

See practical examples for some practical examples
showing various filter types.

Indicators

Now that we know how to filter the data in our data source, we are still
left with a very important problem: how do we know what data to save?
This is where indicators come in. Indicators are the data outputs - what
gets computed and put in a column in the database.

A typical data source will include many indicators (data that will later
be included in the report). This section will focus on defining a single
indicator. Single indicators can then be combined in a list to fully
define a data source.

The overall set of possible indicators is theoretically any function
that can take in a single document (form or case) and output a value.
However the set of indicators that are configurable is more limited than
that.

Indicator Properties

All indicator definitions have the following properties:

	Property

	Description

	type

	A specified type for the
indicator. It must be one
of the types listed below.

	column_id

	The database column where
the indicator will be
saved.

	display_name

	A display name for the
indicator (not widely used,
currently).

	comment

	A string describing the
indicator

Additionally, specific indicator types have other type-specific
properties. These are covered below.

Indicator types

The following primary indicator types are supported:

	Indicator Type

	Description

	boolean

	Save 1 if a filter is
true, otherwise 0.

	expression

	Save the output of an
expression.

	choice_list

	Save multiple columns, one
for each of a predefined set
of choices

	ledger_balances

	Save a column for each
product specified,
containing ledger data

Note/todo: there are also other supported formats, but they are just
shortcuts around the functionality of these ones they are left out of
the current docs.

Boolean indicators

Now we see again the power of our filter framework defined above!
Boolean indicators take any arbitrarily complicated filter expression
and save a 1 to the database if the expression is true, otherwise a
0. Here is an example boolean indicator which will save 1 if a
form has a question with ID is_pregnant with a value of "yes":

{
 "type": "boolean",
 "column_id": "col",
 "filter": {
 "type": "boolean_expression",
 "expression": {
 "type": "property_path",
 "property_path": ["form", "is_pregnant"],
 },
 "operator": "eq",
 "property_value": "yes"
 }
}

Expression indicators

Similar to the boolean indicators - expression indicators leverage the
expression structure defined above to create arbitrarily complex
indicators. Expressions can store arbitrary values from documents (as
opposed to boolean indicators which just store 0‘s and 1‘s).
Because of this they require a few additional properties in the
definition:

	Property

	Description

	datatype

	The datatype of the
indicator. Current valid
choices are: “date”,
“datetime”, “string”,
“decimal”, “integer”, and
“small_integer”.

	is_nullable

	Whether the database column
should allow null values.

	is_primary_key

	Whether the database column
should be (part of?) the
primary key. (TODO: this
needs to be confirmed)

	create_index

	Creates an index on this
column. Only applicable if
using the SQL backend

	expression

	Any expression.

	transform

	(optional) transform to be
applied to the result of
the expression. (see
“Report Columns >
Transforms” section below)

Here is a sample expression indicator that just saves the “age” property
to an integer column in the database:

{
 "type": "expression",
 "expression": {
 "type": "property_name",
 "property_name": "age"
 },
 "column_id": "age",
 "datatype": "integer",
 "display_name": "age of patient"
}

Choice list indicators

Choice list indicators take a single choice column (select or
multiselect) and expand it into multiple columns where each column
represents a different choice. These can support both single-select and
multi-select quesitons.

A sample spec is below:

{
 "type": "choice_list",
 "column_id": "col",
 "display_name": "the category",
 "property_name": "category",
 "choices": [
 "bug",
 "feature",
 "app",
 "schedule"
],
 "select_style": "single"
}

Ledger Balance Indicators

Ledger Balance indicators take a list of product codes and a ledger
section, and produce a column for each product code, saving the value
found in the corresponding ledger.

	Property

	Description

	ledger_section

	The ledger section to
use for this indicator,
for example, “stock”

	product_codes

	A list of the products
to include in the
indicator. This will be
used in conjunction with
the column_id to
produce each column
name.

	case_id_expression

	An expression used to
get the case where each
ledger is found. If not
specified, it will use
the row’s doc id.

{
 "type": "ledger_balances",
 "column_id": "soh",
 "display_name": "Stock On Hand",
 "ledger_section": "stock",
 "product_codes": ["aspirin", "bandaids", "gauze"],
 "case_id_expression": {
 "type": "property_name",
 "property_name": "_id"
 }
}

This spec would produce the following columns in the data source:

	soh_aspirin

	soh_bandaids

	soh_gauze

	20

	11

	5

	67

	32

	9

If the ledger you’re using is a due list and you wish to save the dates
instead of integers, you can change the “type” from “ledger_balances” to
“due_list_date”.

Practical notes for creating indicators

These are some practical notes for how to choose what indicators to
create.

Fractions

All indicators output single values. Though fractional indicators are
common, these should be modeled as two separate indicators (for
numerator and denominator) and the relationship should be handled in the
report UI config layer.

Saving Multiple Rows per Case/Form

You can save multiple rows per case/form by specifying a root level
base_item_expression that describes how to get the repeat data from
the main document. You can also use the root_doc expression type to
reference parent properties and the base_iteration_number expression
type to reference the current index of the item. This can be combined
with the iterator expression type to do complex data source
transforms. This is not described in detail, but the following sample
(which creates a table off of a repeat element called “time_logs” can be
used as a guide). There are also additional examples in the practical examples:

{
 "domain": "user-reports",
 "doc_type": "DataSourceConfiguration",
 "referenced_doc_type": "XFormInstance",
 "table_id": "sample-repeat",
 "display_name": "Time Logged",
 "base_item_expression": {
 "type": "property_path",
 "property_path": ["form", "time_logs"]
 },
 "configured_filter": {
 },
 "configured_indicators": [
 {
 "type": "expression",
 "expression": {
 "type": "property_name",
 "property_name": "start_time"
 },
 "column_id": "start_time",
 "datatype": "datetime",
 "display_name": "start time"
 },
 {
 "type": "expression",
 "expression": {
 "type": "property_name",
 "property_name": "end_time"
 },
 "column_id": "end_time",
 "datatype": "datetime",
 "display_name": "end time"
 },
 {
 "type": "expression",
 "expression": {
 "type": "property_name",
 "property_name": "person"
 },
 "column_id": "person",
 "datatype": "string",
 "display_name": "person"
 },
 {
 "type": "expression",
 "expression": {
 "type": "root_doc",
 "expression": {
 "type": "property_name",
 "property_name": "name"
 }
 },
 "column_id": "name",
 "datatype": "string",
 "display_name": "name of ticket"
 }
]
}

Data Cleaning and Validation

Note this is only available for “static” data sources that are created in the HQ repository.

When creating a data source it can be valuable to have strict validation on the type of data that can be inserted.
The attribute validations at the top level of the configuration can use UCR expressions to determine if the data is invalid.
If an expression is deemed invalid, then the relevant error is stored in the InvalidUCRData model.

{
 "domain": "user-reports",
 "doc_type": "DataSourceConfiguration",
 "referenced_doc_type": "XFormInstance",
 "table_id": "sample-repeat",
 "base_item_expression": {},
 "validations": [{
 "name": "is_starred_valid",
 "error_message": "is_starred has unexpected value",
 "expression": {
 "type": "boolean_expression",
 "expression": {
 "type": "property_name",
 "property_name": "is_starred"
 },
 "operator": "in",
 "property_value": ["yes", "no"]
 }
 }],
 "configured_filter": { },
 "configured_indicators": []
}

Report Configurations

A report configuration takes data from a data source and renders it in
the UI. A report configuration consists of a few different sections:

	Report Filters - These map to filters that show
up in the UI, and should translate to queries that can be made to
limit the returned data.

	Aggregation - This defines what each row of the
report will be. It is a list of columns forming the primary key of
each row.

	Report Columns - Columns define the report
columns that show up from the data source, as well as any aggregation
information needed.

	Charts - Definition of charts to display on the report.

	Sort Expression - How the rows in the report
are ordered.

	Distinct On - Pick distinct rows from result based
on columns.

Samples

Here are some sample configurations that can be used as a reference
until we have better documentation.

	Dimagi chart
report [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/userreports/examples/dimagi/dimagi-chart-report.json]

	GSID form
report [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/userreports/examples/gsid/gsid-form-report.json]

Report Filters

The documentation for report filters is still in progress. Apologies for
brevity below.

A note about report filters versus data source filters

Report filters are completely different from data source filters. Data
source filters limit the global set of data that ends up in the table,
whereas report filters allow you to select values to limit the data
returned by a query.

Numeric Filters

Numeric filters allow users to filter the rows in the report by
comparing a column to some constant that the user specifies when viewing
the report. Numeric filters are only intended to be used with numeric
(integer or decimal type) columns. Supported operators are =, ≠, <, ≤,
>, and ≥.

ex:

{
 "type": "numeric",
 "slug": "number_of_children_slug",
 "field": "number_of_children",
 "display": "Number of Children"
}

Date filters

Date filters allow you filter on a date. They will show a datepicker in
the UI.

{
 "type": "date",
 "slug": "modified_on",
 "field": "modified_on",
 "display": "Modified on",
 "required": false
}

Date filters have an optional compare_as_string option that allows
the date filter to be compared against an indicator of data type
string. You shouldn’t ever need to use this option (make your column
a date or datetime type instead), but it exists because the
report builder needs it.

Quarter filters

Quarter filters are similar to date filters, but a choice is restricted
only to the particular quarter of the year. They will show inputs for
year and quarter in the UI.

{
 "type": "quarter",
 "slug": "modified_on",
 "field": "modified_on",
 "display": "Modified on",
 "required": false
}

Pre-Filters

Pre-filters offer the kind of functionality you get from data source
filters. This makes it easier to use one
data source for many reports, especially if some of those reports just
need the data source to be filtered slightly differently. Pre-filters do
not need to be configured by app builders in report modules; fields with
pre-filters will not be listed in the report module among the other
fields that can be filtered.

A pre-filter’s type is set to “pre”:

{
 "type": "pre",
 "field": "at_risk_field",
 "slug": "at_risk_slug",
 "datatype": "string",
 "pre_value": "yes"
}

If pre_value is scalar (i.e. datatype is “string”, “integer”,
etc.), the filter will use the “equals” operator. If pre_value is
null, the filter will use “is null”. If pre_value is an array, the
filter will use the “in” operator. e.g.

{
 "type": "pre",
 "field": "at_risk_field",
 "slug": "at_risk_slug",
 "datatype": "array",
 "pre_value": ["yes", "maybe"]
}

(If pre_value is an array and datatype is not “array”, it is
assumed that datatype refers to the data type of the items in the
array.)

You can optionally specify the operator that the prevalue filter uses by
adding a pre_operator argument. e.g.

{
 "type": "pre",
 "field": "at_risk_field",
 "slug": "at_risk_slug",
 "datatype": "array",
 "pre_value": ["maybe", "yes"],
 "pre_operator": "between"
}

Note that instead of using eq, gt, etc, you will need to use
=, >, etc.

Dynamic choice lists

Dynamic choice lists provide a select widget that will generate a list
of options dynamically.

The default behavior is simply to show all possible values for a column,
however you can also specify a choice_provider to customize this
behavior (see below).

Simple example assuming “village” is a name:

{
 "type": "dynamic_choice_list",
 "slug": "village",
 "field": "village",
 "display": "Village",
 "datatype": "string"
}

Choice providers

Currently the supported choice_providers are supported:

	Field

	Description

	location

	Select a location by name

	user

	Select a user

	owner

	Select a possible case owner owner (user, group, or location)

Location choice providers also support three additional configuration
options:

	“include_descendants” - Include descendants of the selected locations
in the results. Defaults to false.

	“show_full_path” - Display the full path to the location in the
filter. Defaults to false. The default behavior shows all
locations as a flat alphabetical list.

	“location_type” - Includes locations of this type only. Default is to not
filter on location type.

Example assuming “village” is a location ID, which is converted to names
using the location choice_provider:

{
 "type": "dynamic_choice_list",
 "slug": "village",
 "field": "location_id",
 "display": "Village",
 "datatype": "string",
 "choice_provider": {
 "type": "location",
 "include_descendants": true,
 "show_full_path": true,
 "location_type": "district"
 }
}

Choice lists

Choice lists allow manual configuration of a fixed, specified number of
choices and let you change what they look like in the UI.

{
 "type": "choice_list",
 "slug": "role",
 "field": "role",
 "choices": [
 {"value": "doctor", "display": "Doctor"},
 {"value": "nurse"}
]
}

Drilldown by Location

This filter allows selection of a location for filtering by drilling
down from top level.

{
 "type": "location_drilldown",
 "slug": "by_location",
 "field": "district_id",
 "include_descendants": true,
 "max_drilldown_levels": 3
}

	“include_descendants” - Include descendant locations in the results.
Defaults to false.

	“max_drilldown_levels” - Maximum allowed drilldown levels. Defaults
to 99

Internationalization

Report builders may specify translations for the filter display value.
Also see the sections on internationalization in the Report Column and
the translations transform.

{
 "type": "choice_list",
 "slug": "state",
 "display": {"en": "State", "fr": "État"},
}

Report Columns

Reports are made up of columns. The currently supported column types
ares:

	field which represents a single value

	percent which combines two values in to a
percent

	aggregate_date which aggregates data by
month

	expanded which expands a select question into
multiple columns

	expression which can do calculations on
data in other columns

Field columns

Field columns have a type of "field". Here’s an example field column
that shows the owner name from an associated owner_id:

{
 "type": "field",
 "field": "owner_id",
 "column_id": "owner_id",
 "display": "Owner Name",
 "format": "default",
 "transform": {
 "type": "custom",
 "custom_type": "owner_display"
 },
 "aggregation": "simple"
}

Percent columns

Percent columns have a type of "percent". They must specify a
numerator and denominator as separate field columns. Here’s an
example percent column that shows the percentage of pregnant women who
had danger signs.

{
 "type": "percent",
 "column_id": "pct_danger_signs",
 "display": "Percent with Danger Signs",
 "format": "both",
 "denominator": {
 "type": "field",
 "aggregation": "sum",
 "field": "is_pregnant",
 "column_id": "is_pregnant"
 },
 "numerator": {
 "type": "field",
 "aggregation": "sum",
 "field": "has_danger_signs",
 "column_id": "has_danger_signs"
 }
}

Formats

The following percentage formats are supported.

	Format

	Description

	example

	percent

	A whole number percentage (the default format)

	33%

	fraction

	A fraction

	1/3

	both

	Percentage and fraction

	33% (1/3)

	numeric_percent

	Percentage as a number

	33

	decimal

	Fraction as a decimal number

	.333

AggregateDateColumn

AggregateDate columns allow for aggregating data by month over a given
date field. They have a type of "aggregate_date". Unlike regular
fields, you do not specify how aggregation happens, it is automatically
grouped by month.

Here’s an example of an aggregate date column that aggregates the
received_on property for each month (allowing you to count/sum
things that happened in that month).

{
 "column_id": "received_on",
 "field": "received_on",
 "type": "aggregate_date",
 "display": "Month"
 }

AggregateDate supports an optional “format” parameter, which accepts the
same format
string [https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior]
as Date formatting. If you don’t specify a
format, the default will be “%Y-%m”, which will show as, for example,
“2008-09”.

Keep in mind that the only variables available for formatting are
year and month, but that still gives you a fair range, e.g.

	format

	Example result

	“%Y-%m”

	“2008-09”

	“%B, %Y”

	“September, 2008”

	“%b (%y)”

	“Sep (08)”

IntegerBucketsColumn

Bucket columns allow you to define a series of ranges with corresponding names,
then group together rows where a specific field’s value falls within those ranges.
These ranges are inclusive, since they are implemented using the between operator.
It is the user’s responsibility to make sure the ranges do not overlap; if a value
falls into multiple ranges, it is undefined behavior which bucket it will be assigned to.

Here’s an example that groups children based on their age at the time of
registration:

{
 "display": "age_range",
 "column_id": "age_range",
 "type": "integer_buckets",
 "field": "age_at_registration",
 "ranges": {
 "infant": [0, 11],
 "toddler": [12, 35],
 "preschooler": [36, 60]
 },
 "else_": "older"
}

The "ranges" attribute maps conditional expressions to labels. If the field’s value
does not fall into any of these ranges, the row will receive the "else_" value, if provided.

SumWhenColumn and SumWhenTemplateColumn

Note: SumWhenColumn usage is limited to static reports, and SumWhenTemplateColumn
usage is behind a feature flag.

Sum When columns allow you to aggregate data based on arbitrary conditions.

The SumWhenColumn allows any expression.

The SumWhenTemplateColumn is used in conjunction with a subclass of SumWhenTemplateSpec.
The template defines an expression and typically accepts binds. An example:

Example using sum_when:

{
 "display": "under_six_month_olds",
 "column_id": "under_six_month_olds",
 "type": "sum_when",
 "field": "age_at_registration",
 "whens": [
 ["age_at_registration < 6", 1],
],
 "else_": 0
}

Equivalent example using sum_when_template:

{
 "display": "under_x_month_olds",
 "column_id": "under_x_month_olds",
 "type": "sum_when_template",
 "field": "age_at_registration",
 "whens": [
 {
 "type": "under_x_months",
 "binds": [6],
 "then": 1
 }
],
 "else_": 0
}

Expanded Columns

Expanded columns have a type of "expanded". Expanded columns will be
“expanded” into a new column for each distinct value in this column of
the data source. For example:

If you have a data source like this:

+---------|----------|-------------+
| Patient | district | test_result |
+---------|----------|-------------+
Joe	North	positive
Bob	North	positive
Fred	South	negative
+---------|----------|-------------+

and a report configuration like this:

aggregation columns:
["district"]

columns:
[
 {
 "type": "field",
 "field": "district",
 "column_id": "district",
 "format": "default",
 "aggregation": "simple"
 },
 {
 "type": "expanded",
 "field": "test_result",
 "column_id": "test_result",
 "format": "default"
 }
]

Then you will get a report like this:

+----------|----------------------|----------------------+
| district | test_result-positive | test_result-negative |
+----------|----------------------|----------------------+
| North | 2 | 0 |
| South | 0 | 1 |
+----------|----------------------|----------------------+

Expanded columns have an optional parameter "max_expansion"
(defaults to 10) which limits the number of columns that can be created.
WARNING: Only override the default if you are confident that there will
be no adverse performance implications for the server.

Expression columns

Expression columns can be used to do just-in-time calculations on the
data coming out of reports. They allow you to use any UCR expression on
the data in the report row. These can be referenced according to the
column_ids from the other defined column. They can support
advanced use cases like doing math on two different report columns, or
doing conditional logic based on the contents of another column.

A simple example is below, which assumes another called “number” in the
report and shows how you could make a column that is 10 times that
column.

{
 "type": "expression",
 "column_id": "by_tens",
 "display": "Counting by tens",
 "expression": {
 "type": "evaluator",
 "statement": "a * b",
 "context_variables": {
 "a": {
 "type": "property_name",
 "property_name": "number"
 },
 "b": 10
 }
 }
}

Expression columns cannot be used in aggregations or filters.
If you need to group by a derived value, then you must add that directly to your data source.

The “aggregation” column property

The aggregation column property defines how the column should be
aggregated. If the report is not doing any aggregation, or if the column
is one of the aggregation columns this should always be "simple"
(see Aggregation below for more information on
aggregation).

The following table documents the other aggregation options, which can
be used in aggregate reports.

	Format

	Description

	simple

	No aggregation

	avg

	Average (statistical mean) of the values

	count_unique

	Count the unique values found

	count

	Count all rows

	min

	Choose the minimum value

	max

	Choose the maximum value

	sum

	Sum the values

Column IDs

Column IDs in percentage fields must be unique for the whole report.
If you use a field in a normal column and in a percent column you must
assign unique column_id values to it in order for the report to
process both.

Calculating Column Totals

To sum a column and include the result in a totals row at the bottom of
the report, set the calculate_total value in the column
configuration to true.

Not supported for the following column types: - expression

Internationalization

Report columns can be translated into multiple languages. To translate
values in a given column check out the translations
transform below. To specify
translations for a column header, use an object as the display value
in the configuration instead of a string. For example:

{
 "type": "field",
 "field": "owner_id",
 "column_id": "owner_id",
 "display": {
 "en": "Owner Name",
 "he": "שם"
 },
 "format": "default",
 "transform": {
 "type": "custom",
 "custom_type": "owner_display"
 },
 "aggregation": "simple"
}

The value displayed to the user is determined as follows: - If a display
value is specified for the users language, that value will appear in the
report. - If the users language is not present, display the "en"
value. - If "en" is not present, show an arbitrary translation from
the display object. - If display is a string, and not an object,
the report shows the string.

Valid display languages are any of the two or three letter language
codes available on the user settings page.

Aggregation

Aggregation in reports is done using a list of columns to aggregate on.
This defines how indicator data will be aggregated into rows in the
report. The columns represent what will be grouped in the report, and
should be the column_ids of valid report columns. In most simple
reports you will only have one level of aggregation. See examples below.

No aggregation

Note that if you use is_primary_key in any of your columns, you must
include all primary key columns here.

["doc_id"]

Aggregate by ‘username’ column

["username"]

Aggregate by two columns

["column1", "column2"]

Transforms

Transforms can be used in two places - either to manipulate the value of
a column just before it gets saved to a data source, or to transform the
value returned by a column just before it reaches the user in a report.
Here’s an example of a transform used in a report config ‘field’ column:

{
 "type": "field",
 "field": "owner_id",
 "column_id": "owner_id",
 "display": "Owner Name",
 "format": "default",
 "transform": {
 "type": "custom",
 "custom_type": "owner_display"
 },
 "aggregation": "simple"
}

The currently supported transform types are shown below:

Translations and arbitrary mappings

The translations transform can be used to give human readable strings:

{
 "type": "translation",
 "translations": {
 "lmp": "Last Menstrual Period",
 "edd": "Estimated Date of Delivery"
 }
}

And for translations:

{
 "type": "translation",
 "translations": {
 "lmp": {
 "en": "Last Menstrual Period",
 "es": "Fecha Última Menstruación",
 },
 "edd": {
 "en": "Estimated Date of Delivery",
 "es": "Fecha Estimada de Parto",
 }
 }
}

To use this in a mobile ucr, set the 'mobile_or_web' property to
'mobile'

{
 "type": "translation",
 "mobile_or_web": "mobile",
 "translations": {
 "lmp": "Last Menstrual Period",
 "edd": "Estimated Date of Delivery"
 }
}

Displaying Readable User Name (instead of user ID)

This takes a user_id value and changes it to HQ’s best guess at the user’s display name,
using their first and last name, if available, then falling back to their username.

{
 "type": "custom",
 "custom_type": "user_display_including_name"
}

Displaying username instead of user ID

{
 "type": "custom",
 "custom_type": "user_display"
}

Displaying username minus @domain.commcarehq.org instead of user ID

{
 "type": "custom",
 "custom_type": "user_without_domain_display"
}

Displaying owner name instead of owner ID

{
 "type": "custom",
 "custom_type": "owner_display"
}

Displaying month name instead of month index

{
 "type": "custom",
 "custom_type": "month_display"
}

Rounding decimals

Rounds decimal and floating point numbers to two decimal places.

{
 "type": "custom",
 "custom_type": "short_decimal_display"
}

Generic number formatting

Rounds numbers using Python’s built in
formatting [https://docs.python.org/2.7/library/string.html#string-formatting].

See below for a few simple examples. Read the docs for complex ones. The
input to the format string will be a number not a string.

If the format string is not valid or the input is not a number then the
original input will be returned.

Round to the nearest whole number

{
 "type": "number_format",
 "format_string": "{0:.0f}"
}

Rich text formatting with Markdown

This can be used to do some rich text formatting, using [Markdown](https://www.markdownguide.org/).

There is no configuration required, it will assume the input is valid, markdown-ready text.

{
 "type": "markdown"
}

This transform works for report columns only.
Using it in a data source will add HTML markup, but it will not be displayed properly in HQ.

Always round to 3 decimal places

{
 "type": "number_format",
 "format_string": "{0:.3f}"
}

Date formatting

Formats dates with the given format string. See
here [https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior]
for an explanation of format string behavior. If there is an error
formatting the date, the transform is not applied to that value.

{
 "type": "date_format",
 "format": "%Y-%m-%d %H:%M"
}

Converting an ethiopian date string to a gregorian date

Converts a string in the YYYY-MM-DD format to a gregorian date. For
example, 2009-09-11 is converted to date(2017, 5, 19). If it is unable
to convert the date, it will return an empty string.

{
 "type": "custom",
 "custom_type": "ethiopian_date_to_gregorian_date"
}

Converting a gregorian date string to an ethiopian date

Converts a string in the YYYY-MM-DD format to an ethiopian date. For
example, 2017-05-19 is converted to date(2009, 09, 11). If it is unable
to convert the date, it will return an empty string.

{
 "type": "custom",
 "custom_type": "gregorian_date_to_ethiopian_date"
}

Charts

There are currently three types of charts supported. Pie charts, and two
types of bar charts.

Pie charts

A pie chart takes two inputs and makes a pie chart. Here are the inputs:

	Field

	Description

	aggregation_colu
mn

	The column you want to group - typically a column
from a select question

	value_column

	The column you want to sum - often just a count

Here’s a sample spec:

{
 "type": "pie",
 "title": "Remote status",
 "aggregation_column": "remote",
 "value_column": "count"
}

Aggregate multibar charts

An aggregate multibar chart is used to aggregate across two columns
(typically both of which are select questions). It takes three inputs:

	Field

	Description

	primary_aggregation

	The primary aggregation. These will be the
x-axis on the chart.

	secondary_aggregati
on

	The secondary aggregation. These will be the
slices of the bar (or individual bars in
“grouped” format)

	value_column

	The column you want to sum - often just a
count

Here’s a sample spec:

{
 "type": "multibar-aggregate",
 "title": "Applicants by type and location",
 "primary_aggregation": "remote",
 "secondary_aggregation": "applicant_type",
 "value_column": "count"
}

Multibar charts

A multibar chart takes a single x-axis column (typically a user, date,
or select question) and any number of y-axis columns (typically
indicators or counts) and makes a bar chart from them.

	Field

	Description

	x_axis_column

	This will be the x-axis on the chart.

	y_axis_columns

	These are the columns to use for the secondary
axis. These will be the slices of the bar (or
individual bars in “grouped” format).

Here’s a sample spec:

{
 "type": "multibar",
 "title": "HIV Mismatch by Clinic",
 "x_axis_column": "clinic",
 "y_axis_columns": [
 {
 "column_id": "diagnoses_match_no",
 "display": "No match"
 },
 {
 "column_id": "diagnoses_match_yes",
 "display": "Match"
 }
]
}

Sort Expression

A sort order for the report rows can be specified. Multiple fields, in
either ascending or descending order, may be specified. Example:

Field should refer to report column IDs, not database fields.

[
 {
 "field": "district",
 "order": "DESC"
 },
 {
 "field": "date_of_data_collection",
 "order": "ASC"
 }
]

Distinct On

Can be used to limit the rows in a report based on a single column or set of columns.
The top most row is picked in case of duplicates.

This is different from aggregation in sense that this is done after fetching
the rows, whereas aggregation is done before selecting the rows.

This is used in combination with a sort expression to have predictable results.

Please note that the columns used in distinct on clause should also be present
in the sort expression as the first set of columns in the same order.

Pick distinct by a single column

Sort expression should have column1 and then other columns if needed

[
 {
 "field": "column1",
 "order": "DESC"
 },
 {
 "field": "column2",
 "order": "ASC"
 }
]

and distinct on would be

["column1"]

Pick distinct result based on two columns

Sort expression should have column1 and column2 in same order,
More columns can be added after these if needed

[
 {
 "field": "column1",
 "order": "DESC"
 },
 {
 "field": "column2",
 "order": "ASC"
 }
]

and distinct on would be

["column1", "column2"]

Mobile UCR

Mobile UCR is a beta feature that enables you to make application
modules and charts linked to UCRs on mobile. It also allows you to send
down UCR data from a report as a fixture which can be used in standard
case lists and forms throughout the mobile application.

The documentation for Mobile UCR is very sparse right now.

Filters

On mobile UCR, filters can be automatically applied to the mobile
reports based on hardcoded or user-specific data, or can be displayed to
the user.

The documentation of mobile UCR filters is incomplete. However some are
documented below.

Custom Calendar Month

When configuring a report within a module, you can filter a date field
by the ‘CustomMonthFilter’. The choice includes the following options: -
Start of Month (a number between 1 and 28) - Period (a number between 0
and n with 0 representing the current month).

Each custom calendar month will be “Start of the Month” to (“Start of
the Month” - 1). For example, if the start of the month is set to 21,
then the period will be the 21th of the month -> 20th of the next month.

Examples: Assume it was May 15: Period 0, day 21, you would sync April
21-May 15th Period 1, day 21, you would sync March 21-April 20th Period
2, day 21, you would sync February 21 -March 20th

Assume it was May 20: Period 0, day 21, you would sync April 21-May 20th
Period 1, day 21, you would sync March 21-April 20th Period 2, day 21,
you would sync February 21-March 20th

Assume it was May 21: Period 0, day 21, you would sync May 21-May 21th
Period 1, day 21, you would sync April 21-May 20th Period 2, day 21, you
would sync March 21-April 20th

Export

A UCR data source can be exported, to back an excel dashboard, for
instance. The URL for exporting data takes the form
https://www.commcarehq.org/a/[domain]/configurable_reports/data_sources/export/[data source id]/

The export supports a “$format” parameter which can be any
of the following options: html, csv, xlsx, xls. The default format is
csv.

This export can also be filtered to restrict the results returned. The
filtering options are all based on the field names:

	URL parameter

	Value

	Description

	{field_name}

	{exact value}

	require an exact match

	{field_name}-range

	{start}..{end}

	return results in range

	{field_name}-lastndays

	{number}

	restrict to the last n days

This is configured in export_data_source and tested in
test_export. It should be pretty straightforward to add support for
additional filter types.

Export example

Let’s say you want to restrict the results to only cases owned by a
particular user, opened in the last 90 days, and with a child between 12
and 24 months old as an xlsx file. The querystring might look like this:

?$format=xlsx&owner_id=48l069n24myxk08hl563&opened_on-lastndays=90&child_age-range=12..24

Practical Notes

Some rough notes for working with user configurable reports.

Getting Started

The easiest way to get started is to start with sample data and reports.

Create a simple app and submit a few forms. You can then use report builder to create a report.
Start at a/DOMAIN/reports/builder/select_source/ and create a report based on your form, either a form list or
form summary.

When your report is created, clicking “Edit” will bring you to the report builder editor.
An individual report can be viewed in the UCR editor by changing the report builder URL,
/a/DOMAIN/reports/builder/edit/REPORT_ID/ to the UCR URL, /a/DOMAIN/configurable_reports/reports/edit/REPORT_ID/.
In this view, you can examine the columns, filters, and aggregation columns that report builder created.

The UCR config UI also includes pages to add new data sources, imports reports, etc.,
all based at /a/DOMAIN/configurable_reports/. If you add a new report via the UCR UI and copy in the
columns, filters, etc. from a report builder report, that new report will then automatically open in the UCR UI when you edit it.
You can also take an existing report builder report and set my_report.report_meta.created_by_builder to false
to force it to open in the UCR UI in the future.

Two example UCRs, a case-based UCR for the dimagi domain and a form-based UCR for the gsid domain,
are checked into source code. Their data source specs and report specs are in corehq/apps/userreports/examples/.

The tests are also a good source of documentation for the various filter and indicator formats that are supported.

When editing data sources, you can check the progress of rebuilding using my_datasource.meta.build.finished

Static data sources

As well as being able to define data sources via the UI which are stored
in the database you can also define static data sources which live as
JSON documents in the source repository.

These are mainly useful for custom reports.

They conform to a slightly different style:

{
 "domains": ["live-domain", "test-domain"],
 "config": {
 ... put the normal data source configuration here
 }
}

Having defined the data source you need to use the static_ucr_data_source_paths
extension point to make CommCare aware of your data source.
Now when the static data source pillow is run it will pick up the data
source and rebuild it.

Alternatively, the legacy method is to add the path to the data
source file to the STATIC_DATA_SOURCES setting in settings.py.

Changes to the data source require restarting the pillow which will
rebuild the SQL table. Alternately you can use the UI to rebuild the
data source (requires Celery to be running).

Static configurable reports

Configurable reports can also be defined in the source repository.
Static configurable reports have the following style:

{
 "domains": ["my-domain"],
 "data_source_table": "my_table",
 "report_id": "my-report",
 "config": {
 ... put the normal report configuration here
 }
}

Having defined the report you need to use the static_ucr_report_paths
extension point to make CommCare aware of your report.

Alternatively, the legacy method is to add the path to the data
source file to the STATIC_UCR_REPORTS setting in settings.py.

Custom configurable reports

Sometimes a client’s needs for a rendered report are outside of the
scope of the framework. To render the report using a custom Django
template or with custom Excel formatting, define a subclass of
ConfigurableReportView and override the necessary functions. Then
include the python path to the class in the field
custom_configurable_report of the static report and don’t forget to
include the static report in STATIC_DATA_SOURCES in settings.py.

Extending User Configurable Reports

When building a custom report for a client, you may find that you want
to extend UCR with custom functionality. The UCR framework allows
developers to write custom expressions, and register them with the
framework. To do so:

	Define a function that returns an expression object

def custom_expression(spec, evaluation_context):
 ...

	Extend the custom_ucr_expressions extension point:

from corehq.apps.userreports.extension_points import custom_ucr_expressions

@custom_ucr_expressions.extend()
def ucr_expressions():
 return [
 ('expression_name', 'path.to.custom_expression'),
]

See also:

	CommCare Extension documentation for more details on using extensions.

	custom_ucr_expressions docstring for full extension point details.

	location_type_name: A way to get location type from a location
document id.

	location_parent_id: A shortcut to get a location’s parent ID a
location id.

	get_case_forms: A way to get a list of forms submitted for a
case.

	get_subcases: A way to get a list of subcases (child cases) for a
case.

	indexed_case: A way to get an indexed case from another case.

You can find examples of these in practical examples.

Scaling UCR

Profiling data sources

You can use
./manage.py profile_data_source <domain> <data source id> <doc id>
to profile a datasource on a particular doc. It will give you
information such as functions that take the longest and number of
database queries it initiates.

Faster Reporting

If reports are slow, then you can add create_index to the data
source to any columns that have filters applied to them.

Asynchronous Indicators

If you have an expensive data source and the changes come in faster than
the pillow can process them, you can specify asynchronous: true in
the data source. This flag puts the document id in an intermediary table
when a change happens which is later processed by a celery queue. If
multiple changes are submitted before this can be processed, a new entry
is not created, so it will be processed once. This moves the bottle neck
from kafka/pillows to celery.

The main benefit of this is that documents will be processed only once
even if many changes come in at a time. This makes this approach ideal
datasources that don’t require ‘live’ data or where the source documents
change very frequently.

It is also possible achieve greater parallelization than is currently
available via pillows since multiple Celery workers can process the
changes.

A diagram of this workflow can be found
here [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/userreports/examples/async_indicator.png]

Inspecting database tables

The easiest way to inspect the database tables is to use the sql command
line utility.

This can be done by runnning ./manage.py dbshell or using psql.

The naming convention for tables is:
config_report_[domain name]_[table id]_[hash].

In postgres, you can see all tables by typing \dt and use sql
commands to inspect the appropriate tables.

UCR Examples

This page lists some common examples/design patterns for user
configurable reports and CommCare HQ data models.

Data source filters

The following are example filter expressions that are common in data
sources.

Filters on forms

The following filters apply to data sources built on top of forms.

Filter by a specific form type using the XMLNS

{
 "type": "boolean_expression",
 "expression": {
 "type": "property_name",
 "property_name": "xmlns"
 },
 "operator": "eq",
 "property_value": "http://openrosa.org/formdesigner/my-registration-form"
}

Filter by a set of form types using the XMLNS

{
 "type": "boolean_expression",
 "expression": {
 "type": "property_name",
 "property_name": "xmlns"
 },
 "operator": "in",
 "property_value": [
 "http://openrosa.org/formdesigner/my-registration-form",
 "http://openrosa.org/formdesigner/my-follow-up-form",
 "http://openrosa.org/formdesigner/my-close-form"
]
}

Filters on cases

The following filters apply to data sources built on top of cases.

Filter by a specific case type

{
 "type": "boolean_expression",
 "expression": {
 "type": "property_name",
 "property_name": "type"
 },
 "operator": "eq",
 "property_value": "child"
}

Filter by multiple case types

{
 "type": "boolean_expression",
 "expression": {
 "type": "property_name",
 "property_name": "type"
 },
 "operator": "in",
 "property_value": ["child", "mother"]
}

Filter by only open cases

NOTE: this should be changed to use boolean datatypes once those exist.

{
 "type": "boolean_expression",
 "expression": {
 "type": "property_name",
 "property_name": "closed",
 "datatype": null

 },
 "operator": "eq",
 "property_value": false
}

Data source indicators

Count every contributing row (form or case)

{
 "type": "expression",
 "expression": {
 "type": "constant",
 "constant": 1
 },
 "column_id": "count",
 "datatype": "integer",
 "display_name": "count of forms"
}

Save a form property directly to a table

The following indicator stubs show how to save various properties to a
data source. These can be copied directly into data sources or modified
to suit specific apps/forms.

Submission date (received on)

This saves the submission date as a date object. If you want to
include the time change the datatypes to "datetime".

{
 "type": "expression",
 "expression": {
 "type": "property_name",
 "property_name": "received_on",
 "datatype": "date"
 },
 "display_name": "Submission date",
 "datatype": "date",
 "column_id": "received_on"
}

User ID

{
 "display_name": "User ID",
 "datatype": "string",
 "expression": {
 "type": "property_path",
 "property_path": [
 "form",
 "meta",
 "userID"
]
 },
 "is_primary_key": false,
 "transform": {},
 "is_nullable": true,
 "type": "expression",
 "column_id": "user_id"
}

A text or choice property

This is the same type of indicator that should be used for typical
Impact 123 indicators. In the example below, the indicator is inside a
form group question called “impact123”.

{
 "type": "expression",
 "expression": {
 "type": "property_path",
 "property_path": ["form", "impact123", "cc_impact_1"]
 },
 "column_id": "impact1",
 "display_name": "Impact 1",
 "datatype": "string"
}

Related doc lookups

Get an owner name - whether it’s a user, group or location

{
 "datatype":"string",
 "type":"expression",
 "column_id":"owner_name",
 "expression":{
 "test":{
 "operator":"eq",
 "expression":{
 "value_expression":{
 "type":"property_name",
 "property_name":"doc_type"
 },
 "type":"related_doc",
 "related_doc_type":"Group",
 "doc_id_expression":{
 "type":"property_name",
 "property_name":"owner_id"
 }
 },
 "type":"boolean_expression",
 "property_value":"Group"
 },
 "expression_if_true":{
 "value_expression":{
 "type":"property_name",
 "property_name":"name"
 },
 "type":"related_doc",
 "related_doc_type":"Group",
 "doc_id_expression":{
 "type":"property_name",
 "property_name":"owner_id"
 }
 },
 "type":"conditional",
 "expression_if_false":{
 "type":"conditional",
 "test":{
 "operator":"eq",
 "expression":{
 "value_expression":{
 "type":"property_name",
 "property_name":"doc_type"
 },
 "type":"related_doc",
 "related_doc_type":"CommCareUser",
 "doc_id_expression":{
 "type":"property_name",
 "property_name":"owner_id"
 }
 },
 "type":"boolean_expression",
 "property_value":"CommCareUser"
 },
 "expression_if_true":{
 "value_expression":{
 "type":"property_name",
 "property_name":"username"
 },
 "type":"related_doc",
 "related_doc_type":"CommCareUser",
 "doc_id_expression":{
 "type":"property_name",
 "property_name":"owner_id"
 }
 },
 "expression_if_false":{
 "value_expression":{
 "type":"property_name",
 "property_name":"name"
 },
 "type":"related_doc",
 "related_doc_type":"Location",
 "doc_id_expression":{
 "type":"property_name",
 "property_name":"owner_id"
 }
 }
 }
 }
}

Get a case property from a form that modifies the case

The following expression looks up a case name from a form that
references that case.

To lookup a different property, or for more complex form/case
relationships and advanced modules just adjust the property paths.

{
 "type":"related_doc",
 "related_doc_type":"CommCareCase",
 "doc_id_expression":{
 "type": "property_path",
 "property_path": [
 "form",
 "case",
 "@case_id"
]
 },
 "value_expression":{
 "type":"property_path",
 "property_path": [
 "name"
]
 }
}

Note: this is an example expression. To use it in a data source just
wrap it in a column.

Get a custom user data property from a form submission

{
 "datatype":"string",
 "type":"expression",
 "column_id":"confirmed_referral_target",
 "expression":{
 "type":"related_doc",
 "related_doc_type":"CommCareUser",
 "doc_id_expression":{
 "type": "property_path",
 "property_path": [
 "form",
 "meta",
 "userID"
]
 },
 "value_expression":{
 "type":"property_path",
 "property_path": [
 "user_data",
 "confirmed_referral_target"
]
 }
 }
}

Getting the parent case ID from a case

{
 "type": "nested",
 "argument_expression": {
 "type": "array_index",
 "array_expression": {
 "type": "property_name",
 "property_name": "indices"
 },
 "index_expression": {
 "type": "constant",
 "constant": 0
 }
 },
 "value_expression": {
 "type": "property_name",
 "property_name": "referenced_id"
 }
}

Getting the location type from a location doc id

location_id_expression can be any expression that evaluates to a
valid location id.

{
 "datatype":"string",
 "type":"expression",
 "expression": {
 "type": "location_type_name",
 "location_id_expression": {
 "type": "property_name",
 "property_name": "_id"
 }
 },
 "column_id": "district"
}

Getting a location’s parent ID

location_id_expression can be any expression that evaluates to a
valid location id.

{
 "type":"expression",
 "expression": {
 "type": "location_parent_id",
 "location_id_expression": {
 "type": "property_name",
 "property_name": "location_id"
 }
 },
 "column_id": "parent_location"
}

Base Item Expressions

Emit multiple rows (one per non-empty case property)

In this example we take 3 case properties and save one row per property
if it exists.

{
 "type": "iterator",
 "expressions": [
 {
 "type": "property_name",
 "property_name": "p1"
 },
 {
 "type": "property_name",
 "property_name": "p2"
 },
 {
 "type": "property_name",
 "property_name": "p3"
 },
],
 "test": {
 "type": "not",
 "filter": {
 "type": "boolean_expression",
 "expression": {
 "type": "identity",
 },
 "operator": "in",
 "property_value": ["", null]
 }
 }
}

Emit multiple rows of complex data

In this example we take 3 case properties and emit the property name
along with the value (only if non-empty). Note that the test must also
change in this scenario.

{
 "type": "iterator",
 "expressions": [
 {
 "type": "dict",
 "properties": {
 "name": "p1",
 "value": {
 "type": "property_name",
 "property_name": "p1"
 }
 }
 },
 {
 "type": "dict",
 "properties": {
 "name": "p2",
 "value": {
 "type": "property_name",
 "property_name": "p2"
 }
 }
 },
 {
 "type": "dict",
 "properties": {
 "name": "p3",
 "value": {
 "type": "property_name",
 "property_name": "p3"
 }
 }
 }
],
 "test": {
 "type": "not",
 "filter": {
 "type": "boolean_expression",
 "expression": {
 "type": "property_name",
 "property_name": "value"
 },
 "operator": "in",
 "property_value": ["", null],
 }
 }
}

Evaluator Examples

Age in years to age in months

In the above example, age_in_years can be replaces with another
expression to get the property from the doc

{
 "type": "evaluator",
 "statement": "30.4 * age_in_years",
 "context_variables": {
 "age_in_years": {
 "type": "property_name",
 "property_name": "age"
 }
 }
}

This will lookup the property age and substituite its value in the
statement

weight_gain example

{
 "type": "evaluator",
 "statement": "weight_2 - weight_1",
 "context_variables": {
 "weight_1": {
 "type": "property_name",
 "property_name": "weight_at_birth"
 },
 "weight_2": {
 "type": "property_name",
 "property_name": "weight_at_1_year"
 }
 }
}

This will return value of weight_at_1_year - weight_at_birth

diff_seconds example

"expression": {
 "type": "evaluator",
 "statement": "timedelta_to_seconds(time_end - time_start)",
 "context_variables": {
 "time_start": {
 "datatype": "datetime",
 "type": "property_path",
 "property_path": [
 "form",
 "meta",
 "timeStart"
]
 },
 "time_end": {
 "datatype": "datetime",
 "type": "property_path",
 "property_path": [
 "form",
 "meta",
 "timeEnd"
]
 }
 }
}

This will return the difference in seconds between two times (i.e. start
and end of form)

Date format

These examples using Python f-strings [https://docs.python.org/3/reference/lexical_analysis.html#f-strings] to format the dates.

Convert a datetime to a formatted string

2022-01-01T15:32:54.109971Z

 UCR FAQ

UCR FAQ

What is UCR?

UCR stands for ‘User Configurable Report’. They are user-generated
reports, created within HQ via Reports > Create New Report

Report Errors

The database table backing your report does not exist yet. Please wait while the report is populated.

This problem is probably occurring for you locally. On staging and
production environments, report tables are generated upon save by an
asynchronous Celery task. Even with CELERY_TASK_ALWAYS_EAGER=True in
settings.py, the code currently will not generate these synchronously.
You can manually generate them via the following management command:

./manage.py rebuild_tables_by_domain <domain-name> --initiated_by <HQ_user_id>

 Messaging in CommCare HQ

Messaging in CommCare HQ

The term “messaging” in CommCare HQ commonly refers to the set of frameworks that allow the following types of use
cases:

	sending SMS to contacts

	receiving SMS from contacts and performing pre-configured actions based on the content

	time-based and rule-based schedules to send messages to contacts

	creating alerts based on configurable criteria

	sending outbound calls to contacts and initiating an Interactive Voice Response (IVR) session

	collecting data via SMS surveys

	sending email alerts to contacts

The purpose of this documentation is to show how all of those use cases are performed technically by CommCare HQ.
The topics below cover this material and should be followed in the order presented below if you have no prior
knowledge of the messaging frameworks used in CommCare HQ.

	Messaging Definitions
	General Messaging Terms

	Messaging Terms Commonly Used in CommCare HQ

	Contacts
	Users

	Cases

	Future State

	Outbound SMS

	Inbound SMS

	SMS Backends
	Outbound

	Inbound

	Rate Limiting

	Load Balancing

	Backend Selection

	Scheduled Messages
	Definitions

	Conditional Alerts / Case Update Rules

	Lifecycle of a Rule

	Queueing

	Event Handlers

	Keywords

 Messaging Definitions

Messaging Definitions

General Messaging Terms

	SMS Gateway
	a third party service that provides an API for sending and receiving SMS

	Outbound SMS
	an SMS that is sent from the SMS Gateway to a contact

	Inbound SMS
	an SMS that is sent from a contact to the SMS Gateway

	Mobile Terminating (MT) SMS
	an outbound SMS

	Mobile Originating (MO) SMS
	an inbound SMS

	Dual Tone Multiple Frequencies (DTMF) tones:
	the tones made by a telephone when pressing a button such as number 1, number 2, etc.

	Interactive Voice Response (IVR) Session:
	a phone call in which the user is prompted to make choices using DTMF tones and the flow of the call
can change based on those choices

	IVR Gateway
	a third party service that provides an API for handling IVR sessions

	International Format (also referred to as E.164 Format) for a Phone Number:
	a format for a phone number which makes it so that it can be reached from any other country; the format
typically starts with +, then the country code, then the number, though there may be some subtle
operations to perform on the number before putting into international format, such as removing a leading
zero

	SMS Survey
	a way of collecting data over SMS that involves asking questions one SMS at a time and waiting for a
contact’s response before sending the next SMS

	Structured SMS
	a way for collecting data over SMS that involves collecting all data points in one SMS rather than
asking one question at a time as in an SMS Survey; for example: “REGISTER Joe 25” could be one way
to define a Structured SMS that registers a contact named Joe whose age is 25.

Messaging Terms Commonly Used in CommCare HQ

	SMS Backend
	the code which implements the API of a specific SMS Gateway

	IVR Backend
	the code which implements the API of a specific IVR Gateway

	Two-way Phone Number
	a phone number that the system has tied to a single contact in a single domain, so that the system
can not only send oubound SMS to the contact, but the contact can also send inbound SMS and have
the system process it accordingly; the system currently only considers a number to be two-way
if there is a corehq.apps.sms.models.PhoneNumber [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py]
entry for it that has verified = True

	One-way Phone Number
	a phone number that has not been tied to a single contact, so that the system can only send outbound
SMS to the number; one-way phone numbers can be shared across many contacts in many domains, but only
one of those numbers can be a two-way phone number

 Contacts

Contacts

A contact is a single person that we want to interact with through messaging. In CommCare HQ, at the time of
writing, contacts can either be users (CommCareUser, WebUser) or cases (CommCareCase).

In order for the messaging frameworks to interact with a contact, the contact must implement the
corehq.apps.sms.mixin.CommCareMobileContactMixin [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/mixin.py].

Contacts have phone numbers which allows CommCare HQ to interact with them. All phone numbers for contacts
must be stored in International Format, and the frameworks always assume a phone number is given in
International Format.

Regarding the + sign before the phone number, the rule of thumb is to never store the + when storing
phone numbers, and to always display it when displaying phone numbers.

Users

A user’s phone numbers are stored as the phone_numbers attribute on the CouchUser class, which is just a
list of strings.

At the time of writing, WebUsers are only allowed to have one-way phone numbers.

CommCareUsers are allowed to have two-way phone numbers, but in order to have a phone number be considered
to be a two-way phone number, it must first be verified. The verification process is initiated on the
edit mobile worker page and involves sending an outbound SMS to the phone number and having it be
acknowledged by receiving a validated response from it.

Cases

At the time of writing, cases are allowed to have only one phone number. The following case properties are
used to define a case’s phone number:

	contact_phone_number
	the phone number, in International Format

	contact_phone_number_is_verified
	must be set to 1 in order to consider the phone number a two-way phone number; the point here is that
the health worker registering the case should verify the phone number and the form should set this
case property to 1 if the health worker has identified the phone number as verified

If two cases are registered with the same phone number and both set the verified flag to 1, it will only
be granted two-way phone number status to the case who registers it first.

If a two-way phone number can be granted for the case, a corehq.apps.sms.models.PhoneNumber [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py]
entry with verified set to True is created for it. This happens automatically by running celery task
run_case_update_rules_on_save [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/data_interfaces/tasks.py#L202]
for a case each time a case is saved.

Future State

Forcing the verification workflows before granting a phone number two-way phone number status has proven to
be challenging for our users. In a (hopefully soon) future state, we will be doing away with all verification
workflows and automatically consider a phone number to be a two-way phone number for the contact who registers
it first.

 Outbound SMS

Outbound SMS

The SMS framework uses a queuing architecture to make it easier to scale SMS processing power horizontally.

The process to send an SMS from within the code is as follows. The only step you need to do is the first, and
the rest happen automatically.

	
	Invoke one of the send_sms* functions found in corehq.apps.sms.api [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/api.py]:
	
	send_sms
	used to send SMS to a one-way phone number represented as a string

	send_sms_to_verified_number
	use to send SMS to a two-way phone number represented as a PhoneNumber object

	send_sms_with_backend
	used to send SMS with a specific SMS backend

	send_sms_with_backend_name
	used to send SMS with the given SMS backend name which will be resolved to an SMS backend

	The framework creates a corehq.apps.sms.models.QueuedSMS [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py]
object representing the SMS to be sent.

	The SMS Queue polling process (python manage.py run_sms_queue), which runs as a supervisor process on one of
the celery machines, picks up the QueuedSMS object and passes it to corehq.apps.sms.tasks.process_sms [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/tasks.py].

	process_sms attempts to send the SMS. If an error happens, it is retried up to 2 more times on 5 minute
intervals. After 3 total attempts, any failure causes the SMS to be marked with error = True.

	Whether the SMS was processed successfully or not, the QueuedSMS object is deleted and replaced by an identical
looking corehq.apps.sms.models.SMS [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py]
object for reporting.

At a deeper level, process_sms performs the following important functions for outbound SMS. To find out other
more detailed functionality provided by process_sms, see the code.

	If the domain has restricted the times at which SMS can be sent, check those and requeue the SMS if it
is not currently an allowed time.

	
	Select an SMS backend by looking in the following order:
	
	If using a two-way phone number, look up the SMS backend with the name given in the backend_id property

	If the domain has a default SMS backend specified, use it

	Look up an appropriate global SMS backend by checking the phone number’s prefix against the global
SQLMobileBackendMapping entries

	Use the catch-all global backend (found from the global SQLMobileBackendMapping entry with prefix = ‘*’)

	If the SMS backend has configured rate limiting or load balancing across multiple numbers, enforce those
constraints.

	Pass the SMS to the send() method of the SMS Backend, which is an instance of
corehq.apps.sms.models.SQLSMSBackend [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py].

 Inbound SMS

Inbound SMS

Inbound SMS uses the same queueing architecture as outbound SMS does.

The entry point to processing an inbound SMS is the corehq.apps.sms.api.incoming [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/api.py]
function. All SMS backends which accept inbound SMS call the incoming function.

From there, the following functions are performed at a high level:

	The framework creates a corehq.apps.sms.models.QueuedSMS [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py]
object representing the SMS to be processed.

	The SMS Queue polling process (python manage.py run_sms_queue), which runs as a supervisor process on one of
the celery machines, picks up the QueuedSMS object and passes it to
corehq.apps.sms.tasks.process_sms [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/tasks.py].

	process_sms attempts to process the SMS. If an error happens, it is retried up to 2 more times on 5 minute
intervals. After 3 total attempts, any failure causes the SMS to be marked with error = True.

	Whether the SMS was processed successfully or not, the QueuedSMS object is deleted and replaced by an identical
looking corehq.apps.sms.models.SMS [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py]
object for reporting.

At a deeper level, process_sms performs the following important functions for inbound SMS. To find out other
more detailed functionality provided by process_sms, see the code.

	Look up a two-way phone number for the given phone number string.

	If a two-way phone number is found, pass the SMS on to each inbound SMS handler
(defined in settings.SMS_HANDLERS) until one of them returns True, at which point processing stops.

	If a two-way phone number is not found, try to pass the SMS on to the SMS handlers that don’t require
two-way phone numbers (the phone verification workflow, self-registration over SMS workflows)

 SMS Backends

SMS Backends

We have one SMS Backend class per SMS Gateway that we make available.

SMS Backends are defined by creating a new directory under corehq.messaging.smsbackends [https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/smsbackends],
and the code for each backend has two main parts:

	The outbound part of the backend which is represented by a class that subclasses
corehq.apps.sms.models.SQLSMSBackend [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py]

	The inbound part of the backend which is represented by a view that subclasses
corehq.apps.sms.views.IncomingBackendView [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/views.py]

Outbound

The outbound part of the backend code is responsible for interacting with the
SMS Gateway’s API to send an SMS.

All outbound SMS backends are subclasses of SQLSMSBackend, and you can’t use a
backend until you’ve created an instance of it and saved it in the database.
You can have multiple instances of backends, if for example, you have multiple
accounts with the same SMS gateway.

Backend instances can either be global, in which case they are shared by all
projects in CommCare HQ, or they can belong to a specific project. If belonged
to a specific project, a backend can optionally be shared with other projects
as well.

To write the outbound backend code:

	Create a subclass of corehq.apps.sms.models.SQLSMSBackend [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py]
and implement the unimplemented methods:

	get_api_id
	should return a string that uniquely identifies the backend type (but
is shared across backend instances); we choose to not use the class
name for this since class names can change but the api id should never
change; the api id is only used for sms billing to look up sms rates
for this backend type

	get_generic_name
	a displayable name for the backend

	get_available_extra_fields
	each backend likely needs to store additional information, such as a
username and password for authenticating with the SMS gateway; list
those fields here and they will be accessible via the backend’s config
property

	get_form_class
	should return a subclass of corehq.apps.sms.forms.BackendForm [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/forms.py],
which should:

	have form fields for each of the fields in get_available_extra_fields, and

	implement the gateway_specific_fields property, which should return a
crispy forms rendering of those fields

	send
	takes a corehq.apps.sms.models.QueuedSMS [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py]
object as an argument and is responsible for interfacing with the SMS
Gateway’s API to send the SMS; if you want the framework to retry the
SMS, raise an exception in this method, otherwise if no exception is
raised the framework takes that to mean the process was successful.
Unretryable error responses may be recorded on the message object with
msg.set_gateway_error(message) where message is the error message
or code returned by the gateway.

	Add the backend to settings.HQ_APPS and settings.SMS_LOADED_SQL_BACKENDS

	Run ./manage.py makemigrations sms; Django will just create a proxy model
for the backend model, but no database changes will occur

	Add an outbound test for the backend in corehq.apps.sms.tests.test_backends [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/tests/test_backends.py].
This will test that the backend is reachable by the framework, but any
testing of the direct API connection with the gateway must be tested
manually.

Once that’s done, you should be able to create instances of the backend by
navigating to Messaging -> SMS Connectivity (for domain-level backend
instances) or Admin -> SMS Connectivity and Billing (for global backend
instances). To test it out, set it as the default backend for a project and try
sending an SMS through the Compose SMS interface.

Things to look out for:

	Make sure you use the proper encoding of the message when you implement the
send() method. Some gateways are picky about the encoding needed. For
example, some require everything to be UTF-8. Others might make you choose
between ASCII and Unicode. And for the ones that accept Unicode, you might
need to sometimes convert it to a hex representation. And remember that
get/post data will be automatically url-encoded when you use python requests.
Consult the documentation for the gateway to see what is required.

	The message limit for a single SMS is 160 7-bit structures. That works out to
140 bytes, or 70 words. That means the limit for a single message is
typically 160 GSM characters, or 70 Unicode characters. And it’s actually a
little more complicated than that since some simple ASCII characters (such as
‘{’) take up two GSM characters, and each carrier uses the GSM alphabet
according to language.

So the bottom line is, it’s difficult to know whether the given text will fit
in one SMS message or not. As a result, you should find out if the gateway
supports Concatenated SMS, a process which seamlessly splits up long messages
into multiple SMS and stiches them back up without you having to do any
additional work. You may need to have the gateway enable a setting to do this
or include an additional parameter when sending SMS to make this work.

	If this gateway has a phone number that people can reply to (whether a long
code or short code), you’ll want to add an entry to the sms.Phoneblacklist
model for the gateway’s phone number so that the system won’t allow sending
SMS to this number as a precaution. You can do so in the Django admin, and
you’ll want to make sure that send_sms and can_opt_in are both False on the
record.

Inbound

The inbound part of the backend code is responsible for exposing a view which
implements the API that the SMS Gateway expects so that the gateway can connect
to CommCare HQ and notify us of inbound SMS.

To write the inbound backend code:

	Create a subclass of corehq.apps.sms.views.IncomingBackendView [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/views.py],
and implement the unimplemented property:

	backend_class
	should return the subclass of SQLSMSBackend that was written above

	Implement either the get() or post() method on the view based on the
gateway’s API. The only requirement of the framework is that this method call
the corehq.apps.sms.api.incoming [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/api.py]
function, but you should also:

	pass self.backend_couch_id as the backend_id kwarg to incoming()

	if the gateway gives you a unique identifier for the SMS in their system,
pass that identifier as the backend_message_id kwarg to incoming(); this
can help later with debugging

	Create a url for the view. The url pattern should accept an api key and look
something like: r’^sms/(?P<api_key>[w-]+)/$’ . The API key used will need
to match the inbound_api_key of a backend instance in order to be processed.

	Let the SMS Gateway know the url to connect to, including the API Key. To get
the API Key, look at the value of the inbound_api_key property on the
backend instance. This value is generated automatically when you first
create a backend instance.

What happens behind the scenes is as follows:

	A contact sends an inbound SMS to the SMS Gateway

	The SMS Gateway connects to the URL configured above.

	The view automatically looks up the backend instance by api key and rejects
the request if one is not found.

	Your get() or post() method is invoked which parses the parameters
accordingly and passes the information to the inbound incoming() entry
point.

	The Inbound SMS framework takes it from there as described in the Inbound SMS
section.

NOTE: The api key is part of the URL because it’s not always easy to make the
gateway send us an extra arbitrary parameter on each inbound SMS.

Rate Limiting

You may want (or need) to limit the rate at which SMS get sent from a given
backend instance. To do so, just override the get_sms_rate_limit() method in
your SQLSMSBackend, and have it return the maximum number of SMS that can be
sent in a one minute period.

Load Balancing

If you want to load balance the Outbound SMS traffic automatically across
multiple phone numbers, do the following:

	Make your BackendForm subclass the corehq.apps.sms.forms.LoadBalancingBackendFormMixin [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/forms.py]

	Make your SQLSMSBackend subclass the corehq.apps.sms.models.PhoneLoadBalancingMixin [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py]

	Make your SQLSMSBackend’s send method take a orig_phone_number kwarg. This
will be the phone number to use when sending. This is always sent to the
send() method, even if there is just one phone number to load balance over.

From there, the framework will automatically handle managing the phone numbers
through the create/edit gateway UI and balancing the load across the numbers
when sending. When choosing the originating phone number, the destination
number is hashed and that hash is used to choose from the list of load
balancing phone numbers, so that a recipient always receives messages from the
same originating number.

If your backend uses load balancing and rate limiting, the framework applies
the rate limit to each phone number separately as you would expect.

Backend Selection

There’s also an Automatic Choose option, which selects a backend for each message based on the
phone number’s prefix. Domains can customize their prefix mappings, and there’s a global mapping that
HQ will fall back to if no domain-specific mapping is defined.

These prefix-backend mappings are stored in SQLMobileBackend. The global mappings can be accessed with
[(m.prefix, m.backend) for m in SQLMobileBackendMapping.objects.filter(is_global=True)]

On production, this currently returns

('27', <SQLMobileBackend: Global Backend 'GRAPEVINE-ZA'>),
('999', <SQLMobileBackend: Global Backend 'MOBILE_BACKEND_TEST'>),
('1', <SQLMobileBackend: Global Backend 'MOBILE_BACKEND_TWILIO'>),
('258', <SQLMobileBackend: Global Backend 'MOBILE_BACKEND_MOZ'>),
('266', <SQLMobileBackend: Global Backend 'GRAPEVINE-ZA'>),
('265', <SQLMobileBackend: Global Backend 'MOBILE_BACKEND_TWILIO'>),
('91', <SQLMobileBackend: Global Backend 'MOBILE_BACKEND_UNICEL'>),
('268', <SQLMobileBackend: Global Backend 'GRAPEVINE-ZA'>),
('256', <SQLMobileBackend: Global Backend 'MOBILE_BACKEND_YO'>),
('*', <SQLMobileBackend: Global Backend 'MOBILE_BACKEND_MACH'>)

 Scheduled Messages

Scheduled Messages

The messaging framework supports scheduling messages to be sent on a one-time or recurring basis.

It uses a queuing architecture similar to the SMS framework, to make it easier to scale
reminders processing power horizontally.

An earlier incarnation of this framework was called “reminders”, so some code references to reminders remain, such
as the reminder_queue.

Definitions

Scheduled messages are represented in the UI as “broadcasts” and “conditional alerts.”

Broadcasts, represented by the subclasses of corehq.messaging.scheduling.models.abstract.Broadcast [https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/models/abstract.py],
allow configuring a recurring schedule to send a particular message type and content to a particular set of recipients.

Conditional alerts, represented by corehq.apps.data_interfaces.models.AutomaticUpdateRule [http://github.com/dimagi/commcare-hq/blob/master/corehq/apps/data_interfaces/models.py],
contain a similar recurring schedule but act on cases. They are configured to trigger on when cases meet a set of
criteria, such as a case property changing to a specific value.

The two models share much of their code. This document primarily addresses conditional alerts and will refer to
them as “rules,” as most of the code does.

A rule definition, defines the rules for:

	what criteria cause a reminder to be triggered

	when the message should send once the criteria are fulfilled

	who the message should go to

	on what schedule and frequency the message should continue to be sent

	the content to send

	what causes the rule to stop

Conditional Alerts / Case Update Rules

A conditional alert, represented by corehq.apps.data_interfaces.models.AutomaticUpdateRule [http://github.com/dimagi/commcare-hq/blob/master/corehq/apps/data_interfaces/models.py],
defines an instance of a rule definition and keeps track of the state of the rule instance throughout its lifetime.

For example, a conditional alert definition may define a rule for sending an SMS to a case of type patient, and
sending an SMS appointment reminder to the case 2 days before the case’s appointment_date case property.

As soon as a case is created or updated in the given project to meet the criteria of having type patient
and having an appointment_date, the framework will create a reminder instance to track it.
After the message is sent 2 days before the appointment_date, the rule instance is deactivated
to denote that it has completed the defined schedule and should not be sent again.

In order to keep messaging responsive to case changes, every time a case is saved, the
corehq.messaging.tasks.sync_case_for_messaging [https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py]
function is called to handle any changes. This is controlled via case-pillow.

Similarly, any time a rule is updated, a
corehq.messaging.tasks.run_messaging_rule [https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py]
task is spawned to rerun it against all cases in the project.

The aim of the framework is to always be completely responsive to all changes. So in the example above,
if a case’s appointment_date changes before the appointment reminder is actually sent, the framework will
update the schedule instance (more on these below) automatically in order to reflect the new appointment date. And if the
appointment reminder went out months ago but a new appointment_date value is given to the case for a new
appointment, the same instance is updated again to reflect a new message that must go out.

Similarly, if the rule definition is updated to use a different case property other than appointment_date,
all existing schedule instances are deleted and any new ones are created if they meet the criteria.

Lifecycle of a Rule

As mentioned above, whe a rule is changed, all cases of the relevant type in the domain are re-processed.
The steps of this process are as follows:

	When a conditional alert is created or activated, a
corehq.messaging.tasks.initiate_messaging_rule_run [https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py]
task is spawned.

	This locks the rule, so that it cannot be edited from the UI, and spawns a
corehq.messaging.tasks.run_messaging_rule [https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py]
task.

	This task spawns a
corehq.messaging.tasks.sync_case_for_messaging_rule [https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py]
task for every case of the rule’s case type. It also adds a
corehq.messaging.tasks.set_rule_complete [https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py]
task to unlock the rule when all of the sync_case tasks are finished.

	This task calls corehq.apps.data_interfaces.models.AutomaticUpdateRule.run_rule [https://github.com/dimagi/commcare-hq/blob/7e7c4af896cd0eeeb747bb19cc663741189d23d6/corehq/apps/data_interfaces/models.py#L310]
on its case.

	run_rule checks whether or not the case meets the rule’s criteria and acts accordingly. When the case
matches, this calls run_actions_when_case_matches and then when_case_matches. Conditional alert actions
use CreateScheduleInstanceActionDefinition which implements when_case_matches to call
corehq.messaging.scheduling.tasks.refresh_case_alert_schedule_instances [https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/tasks.py]
or
corehq.messaging.scheduling.tasks.refresh_case_timed_schedule_instances [https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/tasks.py]
depending on whether the rule is immediate or scheduled.

	The refresh functions act on subclasses of
corehq.messaging.scheduling.tasks.ScheduleInstanceRefresher [https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/tasks.py],
which create, update, and delete “schedule instance” objects, which are subclasses of
corehq.messaging.scheduling.scheduling_partitioned.models.ScheduleInstance [https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/scheduling_partitioned/models.py].
These schedule instances track their schedule, recipients, and state relating to their next event. They are
processed by a queue (see next section).

Queueing

All of the schedule instances in the database represent the queue of messages that should be sent.
The way a schedule instance is processed is as follows:

	The polling process (python manage.py queue_schedule_instances), which runs as a supervisor process on
one of the celery machines, constantly polls for schedules that should be processed by querying for schedule
instances that have a next_event_due property that is in the past.

	Once a schedule instance that needs to be processed has been identified, the framework spawns one of several
tasks from corehq.messaging.scheduling.tasks [https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/tasks.py]
to handle it. These tasks include handle_alert_schedule_instance, handle_timed_schedule_instance,
handle_case_alert_schedule_instance, and handle_case_timed_schedule_instance.

	The handler looks at the schedule instances and instructs it to 1) take the appropriate action that has been
configured (for example, send an sms), and 2) update the state of the instance so that it gets scheduled
for the next action it must take based on the reminder definition. This is handled by
corehq.messaging.scheduling.scheduling_partitioned.models.ScheduleInstance.handle_current_event [https://github.com/dimagi/commcare-hq/blob/7e7c4af896cd0eeeb747bb19cc663741189d23d6/corehq/messaging/scheduling/scheduling_partitioned/models.py#L354]

A second queue (python manage.py run_sms_queue), which is set up similarly on each celery machine that consumes
from the reminder_queue,handles the sending of messages.

Event Handlers

A rule (or broadcast) sends content of one type. At the time of writing, the content a reminder definition can
be configured to send includes:

	SMS

	SMS Survey

	Emails

	Push Notifications

In the case of SMS SurveysSessions, the survey content is defined using a form in an app which is then
played to the recipients over SMS or Whatsapp.

 Keywords

Keywords

A Keyword (corehq.apps.sms.models.Keyword [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py])
defines an action or set of actions to be taken when an inbound SMS is received whose first word matches the keyword configuration.

Any number of actions can be taken, which include:

	Replying with an SMS or SMS Survey

	Sending an SMS or SMS Survey to another contact or group of contacts

	Processing the SMS as a Structured SMS

Keywords tie into the Inbound SMS framework through the keyword handler
(corehq.apps.sms.handlers.keyword.sms_keyword_handler [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/handlers/keyword.py],
see settings.SMS_HANDLERS), and use the Reminders framework to carry out their action(s).

Behind the scenes, all actions besides processing Structured SMS create a reminder definition to be sent
immediately. So any functionality provided by a reminder definition can be added to be supported as a
Keyword action.

 API

API

For user facing API documentation see https://help.commcarehq.org/display/commcarepublic/Data+APIs

Bulk User Resource

Resource name: bulk_user

First version available: v0.5

This resource is used to get basic user data in bulk, fast. This is especially useful if you need to get, say, the name and phone number of every user in your domain for a widget.

Currently the default fields returned are:

id
email
username
first_name
last_name
phone_numbers

Supported Parameters:

	q - query string

	limit - maximum number of results returned

	offset - Use with limit to paginate results

	fields - restrict the fields returned to a specified set

Example query string:

?q=foo&fields=username&fields=first_name&fields=last_name&limit=100&offset=200

This will return the first and last names and usernames for users matching the query “foo”. This request is for the third page of results (200-300)

Additional notes:

It is simple to add more fields if there arises a significant use case.

Potential future plans:
Support filtering in addition to querying.
Support different types of querying.
Add an order_by option

 CommCare FHIR Integration

CommCare FHIR Integration

CommCare HQ offers three ways of sharing data over FHIR:

	Data forwarding allows CommCare cases to be sent to remote FHIR
services.

	The FHIR Importer fetches resources from a remote FHIR API and
imports them as CommCare cases.

	The FHIR API exposes CommCare cases as FHIR resources.

FHIR-related functionality is enabled using the “FHIR integration”
feature flag.

	Mapping case properties using the Data Dictionary

	Advanced mapping using the Admin interface

	Forwarding Cases to a FHIR API
	Overview

	Data design

	App building
	Searching for patients by name

	Multiple values from a single question

	A note about using advanced modules

	Mapping using the Data Dictionary

	Mapping using the Admin interface

	Testing

	Importing cases from a remote FHIR service
	Overview

	Configuring a FHIRImportConfig

	Mapping imported FHIR resource properties

	Configuring related resources

	Testing FHIRImportConfig configuration

	The FHIR API
	Using the FHIR API
	A CommCare HQ Sandbox

	A Reference API Client

Mapping case properties using the Data Dictionary

The FHIR Resources to be sent by data forwarding, or shared by the FHIR
API, are configured using the Data Dictionary. (Under the “Data” menu,
choose “View All”, and navigate to “Data Dictionary”)

The Data Dictionary is enabled using the “Data Dictionary” feature flag.

[image: ../_images/data_dictionary.png]
For example, let us imagine mapping a “person” case type to the
“Patient” FHIR resource type. You would select the “person” case type
from the list of case types on the left.

Set the value of the “FHIR ResourceType” dropdown to “Patient”.

The Data Dictionary supports simple mapping of case properties. You will
see a table of case properties, and a column titled “FHIR Resource
Property Path”. This is where to enter the JSONPath [https://goessner.net/articles/JsonPath/] to the resource
property to set.

An example will help to illustrate this: Imagine the “person” case type
has a “first_name” case property, and assume we want to map its value
to the patient’s given name.

	Check the structure of a FHIR Patient [https://www.hl7.org/fhir/patient.html#resource] on the HL7 website.

	Note Patient.name has a cardinality of “0..*”, so it is a list.

	Check the HumanName [https://www.hl7.org/fhir/datatypes.html#HumanName] datatype.

	Note Patient.name.given also has a cardinality of “0..*”.

	Refer to JSONPath expression syntax [https://goessner.net/articles/JsonPath/index.html#e2] to see how to refer to
Patient’s first given name. … You will find it is
$.name[0].given[0]. (To become more familiar with JSONPath,
playing with the JSONPath Online Evaluator [https://jsonpath.com/] can be fun and useful.)

	Fill the value “$.name[0].given[0]” into the “FHIR Resource Property
Path” field for the “first_name” case property.

	You can test this using a tool like the Postman REST Client [https://www.postman.com/product/rest-client/] or the
RESTED Firefox add-on [https://addons.mozilla.org/en-US/firefox/addon/rested/] / Chrome extension [https://chrome.google.com/webstore/detail/rested/eelcnbccaccipfolokglfhhmapdchbfg], call the CommCare
FHIR API endpoint for a patient. e.g.
https://www.commcarehq.org/a/<domain>/fhir/R4/Patient/<case-id>
(You will need to configure the REST client for
API key authentication [https://confluence.dimagi.com/display/commcarepublic/Authentication#Authentication-ApiKeyauthentication].) You will get a result similar to the
following:

{
 "id": "<case-id>",
 "resourceType": "Patient",
 "name": [
 {
 "given": [
 "Jane"
]
 }
]
}

	Use JSONPath to map the rest of the case properties you wish to
represent in the Patient resource. For a simpler example, a
“date_of_birth” case property would be mapped to “$.birthDate”.

Playing with the JSONPath Online Evaluator [https://jsonpath.com/] can be fun and useful way
to become more familiar with JSONPath.

Advanced mapping using the Admin interface

The Data Dictionary is meant to offer as simple an interface as possible
for mapping case properties to FHIR resource properties. But what about
FHIR resource properties whose values are not stored in case properties?
Or FHIR resource properties whose data types are not the same as their
corresponding case properties?

This can done using the Admin site, and is accessible to superusers.

Mappings are configured using ValueSource definitions. For more
information about ValueSource, see the
Value Source documentation.

Open the Admin site, and navigate to “FHIR” > “FHIR resource types”.

There is a list of case types that have been mapped to resource types.
Filter by domain if the list is long. Select the resource-type/case-type
pair to configure.

Let us imagine we are configuring mappings from a “vaccine_dose” case
type to the “Immunization” FHIR resource type.

If there are already mappings from case properties to resource
properties, they are listed under “FHIR resource properties”. They
appear in the “Calculated value source” column, and shown as a JSON
document. e.g.

{
 "case_property": "vaccine_type_code",
 "jsonpath": "$.vaccineCode.coding[0].code"
}

Continuing with the vaccineCode example, a remote service will need more
context to make sense of a code. The Admin interface allows us to
specify the coding system that the code applies to. The following two
resource properties specify that the code is a CPT 2021 vaccine code.

{
 "jsonpath": "$.vaccineCode.coding[0].system",
 "value": "http://www.ama-assn.org/go/cpt"
}

{
 "jsonpath": "$.vaccineCode.coding[0].version",
 "value": "2021"
}

These set the “system” and “version” properties of the Coding instance
to constant values.

Next, let us take a look at mapping a property from a parent case. The
Immunization resource type has a “programEligibility” property. This is
its coding system:

{
 "jsonpath": "$.programEligibility[0].coding[0].system",
 "value": "http://terminology.hl7.org/CodeSystem/immunization-program-eligibility"
}

If the value for programEligibility is stored on CommCare’s “person”
case type, the parent case of the “vaccine_dose” case, here is how to
specify a value from the “person” case’s “eligible” case property:

{
 "supercase_value_source": {
 "jsonpath": "$.programEligibility[0].coding[0].code",
 "case_property": "eligible"
 },
 "identifier": "parent",
 "referenced_type": "person",
 "relationship": "child"
}

Casting data types is another important use case for the Admin
interface. Here is an example of how we ensure that an integer is sent
in JSON format as an integer and not a string:

{
 "case_property": "dose_number",
 "jsonpath": "$.protocolApplied.doseNumberPositiveInt",
 "external_data_type": "cc_integer"
}

We use the same approach to cast a string of space-separated values to a
list of strings. This is particularly useful for the given names of a
patient:

{
 "case_property": "given_names",
 "jsonpath": "$.name[0].given",
 "external_data_type": "fhir_list_of_string",
 "commcare_data_type": "cc_text"
}

For a complete list of the data types available, refer to
corehq/motech/const.py [https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/const.py#L34] and corehq/motech/fhir/const.py [https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/fhir/const.py#L31] in the
source code.

Note

Mappings are not designed for transforming values, just, well,
mapping them. It is better to do more complex transformations inside
a CommCare form, and store the result in a hidden value question.
See the Multiple values from a single question section under Forwarding Cases to a FHIR API
as an example.

 Forwarding Cases to a FHIR API

Forwarding Cases to a FHIR API

Overview

CommCare can forward case data to a FHIR API. Patient data can be
treated differently from other data, in order to follow a workflow to
avoid duplicating patient records.

This documentation follows the process to set up this kind of
integration.

The “FHIR Integration” feature flag will need to be enabled.

Data design

The first step is to determine what data to send.

A spreadsheet offers a good medium for documenting the FHIR
resource types that are required, and their properties.

You will want columns for the CommCare case property name, the path to
the corresponding value in the FHIR resource (values can be nested, e.g.
“Encounter.subject.reference), and, if they aren’t both strings/text,
the data types of the CommCare and FHIR values.

It is useful to build the spreadsheet alongside the
HL7 FHIR reference documentation so that it is easy to
look up FHIR resource property data types and value sets where
applicable.

This process will result in a good understanding of what the CommCare
app needs to include, question types to use, and the values for multiple
choice questions.

It can also be helpful to have an example of the FHIR resource you need
to create. In addition to the case property values you need, this will
also show you other values, like the code system that a code belongs to.
e.g.

{
 /* case property values: */
 "code": "91300",
 "display": "Pfizer-BioNTech COVID-19 Vaccine",

 /* other values: */
 "system": "http://www.ama-assn.org/go/cpt",
 "version": "2021"
}

App building

The second step is to build the CommCare app for collecting the data to
be sent.

Searching for patients by name

CommCare’s Data Forwarding to FHIR can be configured to register
Patients as their cases are registered in CommCare, and to search for
patients, so as to avoid duplication.

You can find these options when setting up data forwarding: Go to
“Project Settings” > “Data Forwarding”, under “Forward Cases to a FHIR
API”, click “+ Add a service to forward to”.

Check “Enable patient registration” to register patients. If this is not
checked then patients registered in CommCare will not be created on the
remote FHIR service.

Check “Enable patient search” checkbox to search the FHIR service for an
existing patient that matches the CommCare patient. If this is not
checked and patient registration is enabled, then CommCare will always
create a new patient a patient is registered in CommCare.

If searching for patients is enabled, CommCare has some additional
requirements of an app, regarding patients’ names.

Patient search uses three patient name properties:

	Patient.name[0].given

	Patient.name[0].family

	Patient.name[0].text

It is worth stressing that CommCare only uses the first “name” instance
of the Patient resource. If the resource has multiple values for name,
patient search ignores the later values.

Patients are searched for using Patient.name[0].text and their
CommCare case ID first. A good approach is for the patient registration
form to join their given name with their family name to determine their
full name, and map that to Patient.name[0].text. (It also makes a
good case name.)

Patients are also searched for using “given” and “family” names
together. If integration uses patient search, apps should ensure that at
least one of those case properties has a value; ideally both.

Multiple values from a single question

A few data types in FHIR, like Coding for example, have more than
one property that an integrator might want to set using a single
multiple choice question in an app. For Coding, we might want to set
the values of both the “code” and “display” properties.

The way an app can achieve this is to use a separator to split the
question’s chosen value. e.g. The “Johnson & Johnson” option of a
“Vaccine type” multiple choice question could have a choice value of
91303|Janssen_COVID-19_Vaccine. The form could have two hidden value
questions:

	“vaccine_type_code”, calculated as

substring-before(#form/vaccine_type, '|')

	“vaccine_type_name”, calculated as

replace(substring-after(#form/vaccine_type, '|'), '_', ' ')

A note about using advanced modules

CommCare can send multiple FHIR resources in a single API call. It does
this by wrapping them in a transaction bundle. If the remote FHIR API
does not support this, it is possible to build an app that only sends
one resource at a time. This is done by ensuring that each form
submission touches no more than one case type that is configured for
FHIR integration.

When a basic module creates a child case, the form submission will
include both the existing parent case and the new child case. If both
the parent and child case types are mapped to FHIR resource types, then
CommCare will send both resources in a bundle.

We can use an advanced module for creating child cases. They allow us to
limit form submissions to only include the new child case.

It is worth stressing that this is not normally necessary, but it may be
useful to know that a CommCare app can be built in such a way that it
sends only one FHIR resource at a time.

Mapping using the Data Dictionary

CommCare maps case types to FHIR resource types using the Data
Dictionary. See Mapping case properties using the Data Dictionary.

Mapping using the Admin interface

More advanced mapping is done using the Admin interface. See
Advanced mapping using the Admin interface.

Testing

App builders and integrators can check the integration as the app is
being built, and the case properties are being mapped to FHIR resource
properties. The following command starts a HAPI FHIR Docker container:

$ docker run -it -p 8425:8080 smartonfhir/hapi-5:r4-synthea

For a cloud-based environment, a public HAPI FHIR server is available at
https://hapi.fhir.org/ for testing. (Do not sent PHI to a public
server.)

The FHIR API base URL for the Docker container will be
http://localhost:8425/hapi-fhir-jpaserver/fhir/. For the public HAPI
FHIR server it is http://hapi.fhir.org/baseR4.

In CommCare HQ, navigate to “Project Settings” > “Connection Settings” >
“Add Connection Settings” to add an entry for the HAPI FHIR instance.

Then under “Project Settings” > “Data Forwarding” > “Forward Cases to a
FHIR API”, add a service. Select the HAPI FHIR server. You can check
“Enable patient search” to test this feature. If you leave it unchecked,
CommCare will register a new FHIR Patient for every CommCare client case
you create, without searching for an existing Patient.

[image: ../_images/data_forwarding.png]
With data forwarding set up, repeat the following steps to test the app
and data mapping:

	Complete a form using your app.

	Check “Remote API Logs” to see what requests were made.

	Select a request to see the request and response details.

	Search for the corresponding resource in HAPI FHIR to confirm the
result.

Testing as the app is built catches problems early, and increases
confidence in the app and the integration.

 Importing cases from a remote FHIR service

Importing cases from a remote FHIR service

Overview

CommCare can poll a remote FHIR service, and import resources as new
CommCare cases, or update existing ones.

There are three different strategies available to import resources of a
particular resource type:

	Import all of them.

	Import some of them based on a search filter.

	Import only the ones that are referred to by resources of a different
resource type.

The first two strategies are simple enough. An example of the third
strategy might be if we want CommCare to import ServiceRequests (i.e.
referrals) from a remote FHIR service, and we want to import only the
Patients that those referrals are for.

CommCare can import only those Patients, and also create parent-child
case relationships linking a ServiceRequest as a child case of the
Patient.

Configuring a FHIRImportConfig

Currently, all configuration is managed via Django Admin (except for
adding Connection Settings).

Warning

Django Admin cannot filter select box values by domain. Name your
Connection Setting with the name of your domain so that typing the
domain name in the select box will find it fast.

In Django Admin, navigate to FHIR > FHIR Import Configs. If you have any
FHIRImportConfig instances, they will be listed there, and you can
filter by domain. To add a new one, click “Add FHIR Import Config +”.

The form is quite straight forward. You will need to provide the ID of a
mobile worker in the “Owner ID” field. All cases that are imported will
be assigned to this user.

This workflow will not scale for large projects. When such a project
comes up, we have planned for two approaches, and will implement one or
both based on the project’s requirements:

	Set the owner to a user, group or location.

	Assign a FHIRImportConfig to a CommCare location, and set ownership
to the mobile worker at that location.

Mapping imported FHIR resource properties

Resource properties are mapped via the Admin interface using
ValueSource definitions, similar to Advanced mapping using the Admin interface for
data forwarding and the FHIR API. But there are a few important
differences:

The first difference is that FHIRRepeater and the FHIR API use
FHIRResourceType instances (rendered as “FHIR Resource Types” in Django
Admin) to configure mapping; FHIRImportConfig uses
FHIRImportResourceType instances (“FHIR Import Resource Types”).

To see what this looks like, navigate to FHIR > FHIR Importer Resource
Types, and click “Add FHIR Importer Resource Type”.

Select the FHIR Import Config, set the name of the FHIR resource type,
and select the case type.

Note

The resource types you can import are not limited to the resource
types that can be managed using the Data Dictionary. But if you want
to send the same resources back to FHIR when they are modified in
CommCare, then you will either need to stick to the Data Dictionary
FHIR resource types limitation, or add the resource type you want to
the list in corehq/motech/fhir/const.py [https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/fhir/const.py#L35].)

The “Import related only” checkbox controls that third import strategy
mentioned earlier.

“Search params” is a dictionary of search parameters and their values to
filter the resources to be imported. Reference documentation for the
resource type will tell you what search parameters are available. (e.g.
Patient search parameters [https://www.hl7.org/fhir/patient.html#search])

“Import related only” and the “Search params” are applied together, to
allow you to filter related resources.

There is a second important difference between FHIRImportResourceType
and FHIRResourceType: With FHIRResourceType, the ValueSource
configurations are used for building a FHIR resource. With
FHIRImportResourceType they are used for navigating a FHIR resource.

So FHIRResourceType might include ValueSource configs for setting a
Patient’s phone number. They might look like this:

{
 "jsonpath":"$.telecom[0].system",
 "value": "phone"
}

{
 "jsonpath":"$.telecom[0].value",
 "case_property": "phone_number"
}

When we are navigating an imported resource to find the value of the
Patient’s phone number, we don’t know whether it will be the first item
in the “telecom” list. Instead, we search the “telecom” list for the
item whose “system” is set to “phone”. That is defined like this:

{
 "jsonpath":"$.telecom[?system='phone'].value",
 "case_property": "phone_number"
}

The third difference is that although the mappings will look the same
for the most part, they may map to different case properties. This is
because we have found that projects often want a mobile worker to check
some of the imported values before overwriting existing values on the
case. It is wise to confirm with the delivery team how to treat case
properties that can be edited.

Configuring related resources

If a FHIR Importer resource type has “Import related only” checked, we
need to configure how the resource type is related.

Navigate to FHIR > JSON Path to resource types, and click “Add JSON Path
to resource type”.

A ServiceRequest.subject is a reference to the Patient it is referring.

Set “Resource type” to “ServiceRequest”.

Set “JSONPath” to “$.subject.reference”.

Set “Related resource type” to “Patient”.

If the “Related resource is parent” checkbox is not checked, then
CommCare will just create a case for the Patient. If it is checked, then
CommCare will also create an index on the case for the ServiceRequest as
a child case, and link it to the case for the Patient as its parent
case.

The child-to-parent relationship will follow the direction of the
reference. So if a Foo resource has a reference to a Bar resource,
then in CommCare the “foo” case will be the child of the “bar” case.

Testing FHIRImportConfig configuration

To make sure your configuration works as expected, add some test data to
a FHIR server, and import it.

Here is a script I used for adding test data:

add_service_request.py:

#!/usr/bin/env python3
from datetime import date, timedelta
from random import choice
import requests
import string

BASE_URL = 'http://localhost:8425/hapi-fhir-jpaserver/fhir/' # ends in '/'

GIVEN_NAMES = 'Alice Bethany Claire Deborah Eilidh Francesca'.split()
FAMILY_NAMES = 'Apple Barker Carter Davenport Erridge Franks'.split()
NOTE = 'Patient missed appt. Pls follow up.'

def add_patient():
 given_name = choice(GIVEN_NAMES)
 family_name = choice(FAMILY_NAMES)
 full_name = f'{given_name} {family_name}'
 patient = {
 'resourceType': 'Patient',
 'name': [{
 'given': [given_name],
 'family': family_name,
 'text': full_name,
 }],
 'telecom': [{
 'system': 'phone',
 'value': create_phone_number(),
 }],
 }
 response = requests.post(
 f'{BASE_URL}Patient/',
 json=patient,
 headers={'Accept': 'application/json'},
)
 assert 200 <= response.status_code < 300, response.text
 return response.json()['id'], full_name

def add_service_request(patient_id, patient_name):
 service_request = {
 'resourceType': 'ServiceRequest',
 'status': 'active',
 'intent': 'directive',
 'subject': {
 'reference': f'Patient/{patient_id}',
 'display': patient_name,
 },
 'note': [{
 'text': NOTE,
 }]
 }
 response = requests.post(
 f'{BASE_URL}ServiceRequest/',
 json=service_request,
 headers={'Accept': 'application/json'},
)
 assert 200 <= response.status_code < 300, response.text

def create_phone_number():
 number = ''.join([choice(string.digits) for _ in range(9)])
 return f'0{number[0:2]} {number[2:5]} {number[5:]}'

if __name__ == '__main__':
 patient_id, patient_name = add_patient()
 add_service_request(patient_id, patient_name)

From a Python console, run your import with:

>>> from corehq.motech.fhir.tasks import run_daily_importers
>>> run_daily_importers()

 The FHIR API

The FHIR API

CommCare offers a FHIR R4 API. It returns responses in JSON.

The FHIR API is not yet targeted at external users. API users must be
superusers.

The API focuses on the Patient resource. The endpoint for a Patient
would be
https://www.commcarehq.org/a/<domain>/fhir/R4/Patient/<case-id>

To search for the patient’s Observations, the API accepts the
“patient_id” search filter. For example,
https://www.commcarehq.org/a/<domain>/fhir/R4/Observation/?patient_id=<case-id>

Using the FHIR API

Dimagi offers tools to help others use the CommCare HQ FHIR API:

A CommCare HQ Sandbox

The sandbox is a suite of Docker containers that launches a complete
CommCare HQ instance and the services it needs:

	Clone the CommCare HQ repository:

$ git clone https://github.com/dimagi/commcare-hq.git

	Launch CommCare HQ using the script provided:

$ scripts/docker runserver

CommCare HQ is now accessible at http://localhost:8000/

A Reference API Client

A simple example of a web service that calls the CommCare HQ FHIR API
to retrieve patient data is available as a reference.

You can find it implemented using the Flask [https://github.com/dimagi/commcare-fhir-web-app/] Python web framework, or
FastAPI [https://github.com/dimagi/commcare-fhir-web-app/tree/fast_api] for async Python.

 The MOTECH OpenMRS & Bahmni Module

The MOTECH OpenMRS & Bahmni Module

See the MOTECH README [https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/README.md#the-openmrs--bahmni-module>] for a brief introduction to OpenMRS and Bahmni
in the context of MOTECH.

	OpenmrsRepeater

	OpenMRS Repeater Location

	OpenmrsConfig

	An OpenMRS Patient

	OpenmrsCaseConfig

	PatientFinder

	Creating Missing Patients

	WeightedPropertyPatientFinder

	OpenmrsFormConfig

	Provider

	Atom Feed Integration

	Adding cases for OpenMRS patients

	Importing OpenMRS Encounters

	How to Inspect an Observation or a Diagnosis

OpenmrsRepeater

	
class corehq.motech.openmrs.repeaters.OpenmrsRepeater(*args, **kwargs)

	OpenmrsRepeater is responsible for updating OpenMRS patients
with changes made to cases in CommCare. It is also responsible for
creating OpenMRS “visits”, “encounters” and “observations” when a
corresponding visit form is submitted in CommCare.

The OpenmrsRepeater class is different from most repeater
classes in three details:

	It has a case type and it updates the OpenMRS equivalent of cases
like the CaseRepeater class, but it reads forms like the
FormRepeater class. So it subclasses CaseRepeater but its
payload format is form_json.

	It makes many API calls for each payload.

	It can have a location.

	Parameters:

	
	repeater_type (CharField [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.CharField]) – Repeater type

	id (UUIDField [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.UUIDField]) – Primary key: Id

	domain (CharIdField) – Domain

	name (CharField [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.CharField]) – Name

	format (CharField [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.CharField]) – Format

	request_method (CharField [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.CharField]) – Request method

	is_paused (BooleanField [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.BooleanField]) – Is paused

	next_attempt_at (DateTimeField [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.DateTimeField]) – Next attempt at

	last_attempt_at (DateTimeField [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.DateTimeField]) – Last attempt at

	options (JSONField) – Options

	connection_settings_id (IntegerField [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.IntegerField]) – Connection settings id

	is_deleted (BooleanField [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.BooleanField]) – Is deleted

	last_modified (DateTimeField [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.DateTimeField]) – Last modified

	date_created (DateTimeField [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.DateTimeField]) – Date created

Reverse relationships:

	Parameters:

	repeat_records (Reverse ForeignKey [https://docs.djangoproject.com/en/stable/ref/models/fields/#django.db.models.ForeignKey] from SQLRepeatRecord) – All repeat records of this repeater (related name of repeater)

OpenMRS Repeater Location

Assigning an OpenMRS repeater to a location allows a project to
integrate with multiple OpenMRS/Bahmni servers.

Imagine a location hierarchy like the following:

	(country) South Africa

	(province) Gauteng

	(province) Western Cape

	(district) City of Cape Town

	(district) Central Karoo

	(municipality) Laingsburg

Imagine we had an OpenMRS server to store medical records for the city
of Cape Town, and a second OpenMRS server to store medical records for
the central Karoo.

When a mobile worker whose primary location is set to Laingsburg submits
data, MOTECH will search their location and the locations above it until
it finds an OpenMRS server. That will be the server that their data is
forwarded to.

When patients are imported from OpenMRS, either using its Atom Feed API
or its Reporting API, and new cases are created in CommCare, those new
cases must be assigned an owner.

The owner will be the first mobile worker found in the OpenMRS
server’s location. If no mobile workers are found, the case’s owner will
be set to the location itself. A good way to manage new cases is to have
just one mobile worker, like a supervisor, assigned to the same location
as the OpenMRS server. In the example above, in terms of organization
levels, it would make sense to have a supervisor at the district level
and other mobile workers at the municipality level.

See also: PatientFinder

OpenmrsConfig

	
class corehq.motech.openmrs.openmrs_config.OpenmrsConfig(_obj=None, **kwargs)

	Configuration for an OpenMRS repeater is stored in an
OpenmrsConfig document.

The case_config property maps CommCare case properties (mostly)
to patient data, and uses the OpenmrsCaseConfig document schema.

The form_configs property maps CommCare form questions (mostly)
to event, encounter and observation data, and uses the
OpenmrsFormConfig document schema.

An OpenMRS Patient

The way we map case properties to an OpenMRS patient is based on how
OpenMRS represents a patient. Here is an example of an OpenMRS patient
(with some fields removed):

{
 "uuid": "d95bf6c9-d1c6-41dc-aecf-1c06bd71386c",
 "display": "GAN200000 - Test DrugDataOne",

 "identifiers": [
 {
 "uuid": "6c5ab204-a128-48f9-bfb2-3f65fd06785b",
 "identifier": "GAN200000",
 "identifierType": {
 "uuid": "81433852-3f10-11e4-adec-0800271c1b75",
 }
 }
],

 "person": {
 "uuid": "d95bf6c9-d1c6-41dc-aecf-1c06bd71386c",
 "display": "Test DrugDataOne",
 "gender": "M",
 "age": 3,
 "birthdate": "2014-01-01T00:00:00.000+0530",
 "birthdateEstimated": false,
 "dead": false,
 "deathDate": null,
 "causeOfDeath": null,
 "deathdateEstimated": false,
 "birthtime": null,

 "attributes": [
 {
 "display": "primaryContact = 1234",
 "uuid": "2869508d-3484-4eb7-8cc0-ecaa33889cd2",
 "value": "1234",
 "attributeType": {
 "uuid": "c1f7fd17-3f10-11e4-adec-0800271c1b75",
 "display": "primaryContact"
 }
 },
 {
 "display": "caste = Tribal",
 "uuid": "06ab9ef7-300e-462f-8c1f-6b65edea2c80",
 "value": "Tribal",
 "attributeType": {
 "uuid": "c1f4239f-3f10-11e4-adec-0800271c1b75",
 "display": "caste"
 }
 },
 {
 "display": "General",
 "uuid": "b28e6bbc-91aa-4ba4-8714-cdde0653eb90",
 "value": {
 "uuid": "c1fc20ab-3f10-11e4-adec-0800271c1b75",
 "display": "General"
 },
 "attributeType": {
 "uuid": "c1f455e7-3f10-11e4-adec-0800271c1b75",
 "display": "class"
 }
 }
],

 "preferredName": {
 "display": "Test DrugDataOne",
 "uuid": "760f18ea-9321-4c31-9a43-338089fc5b4b",
 "givenName": "Test",
 "familyName": "DrugDataOne"
 },

 "preferredAddress": {
 "display": "123",
 "uuid": "c41f82e2-6af2-459c-96ff-26b66c8887ae",
 "address1": "123",
 "address2": "gp123",
 "address3": "Raigarh",
 "cityVillage": "RAIGARH",
 "countyDistrict": "Raigarh",
 "stateProvince": "Chattisgarh",
 "country": null,
 "postalCode": null
 },

 "names": [
 {
 "display": "Test DrugDataOne",
 "uuid": "760f18ea-9321-4c31-9a43-338089fc5b4b",
 "givenName": "Test",
 "familyName": "DrugDataOne"
 }
],

 "addresses": [
 {
 "display": "123",
 "uuid": "c41f82e2-6af2-459c-96ff-26b66c8887ae",
 "address1": "123",
 "address2": "gp123",
 "address3": "Raigarh",
 "cityVillage": "RAIGARH",
 "countyDistrict": "Raigarh",
 "stateProvince": "Chattisgarh",
 "country": null,
 "postalCode": null
 }
]
 }
}

There are several things here to note:

	A patient has a UUID, identifiers, and a person.

	Other than “uuid”, most of the fields that might correspond to case
properties belong to “person”.

	“person” has a set of top-level items like “gender”, “age”,
“birthdate”, etc. And then there are also “attributes”. The top-level
items are standard OpenMRS person properties. “attributes” are custom,
and specific to this OpenMRS instance. Each attribute is identified by
a UUID.

	There are two kinds of custom person attributes:

	Attributes that take any value (of its data type). Examples from
above are “primaryContact = 1234” and “caste = Tribal”.

	Attributes whose values are selected from a set. An example from
above is “class”, which is set to “General”. OpenMRS calls these
values “Concepts”, and like everything else in OpenMRS each concept
value has a UUID.

	A person has “names” and a “preferredName”, and similarly “addresses”
and “preferredAddress”. Case properties are only mapped to
preferredName and preferredAddress. We do not keep track of other
names and addresses.

OpenmrsCaseConfig

Now that we know what a patient looks like, the OpenmrsCaseConfig
schema will make more sense. It has the following fields that correspond
to OpenMRS’s fields:

	patient_identifiers

	person_properties

	person_attributes

	person_preferred_name

	person_preferred_address

Each of those assigns values to a patient one of three ways:

	It can assign a constant. This uses the “value” key. e.g.

"person_properties": {
 "birthdate": {
 "value": "Oct 7, 3761 BCE"
 }
}

	It can assign a case property value. Use “case_property” for this.
e.g.

"person_properties": {
 "birthdate": {
 "case_property": "dob"
 }
}

	It can map a case property value to a concept UUID. Use
“case_property” with “value_map” to do this. e.g.

"person_attributes": {
 "c1f455e7-3f10-11e4-adec-0800271c1b75": {
 "case_property": "class",
 "value_map": {
 "sc": "c1fcd1c6-3f10-11e4-adec-0800271c1b75",
 "general": "c1fc20ab-3f10-11e4-adec-0800271c1b75",
 "obc": "c1fb51cc-3f10-11e4-adec-0800271c1b75",
 "other_caste": "c207073d-3f10-11e4-adec-0800271c1b75",
 "st": "c20478b6-3f10-11e4-adec-0800271c1b75"
 }
 }
}

Note

An easy mistake when configuring person_attributes: The
OpenMRS UUID of a person attribute type is different from the
UUID of its concept. For the person attribute type UUID,
navigate to Administration > Person >
*Manage PersonAttribute Types and select the person attribute
type you want. Note the greyed-out UUID. This is the UUID that
you need. If the person attribute type is a concept, navigate
to Administration > Concepts > View Concept Dictionary
and search for the person attribute type by name. Select it
from the search results. Note the UUID of the concept is
different. Select each of its answers. Use their UUIDs in
value_map.

There are two more OpenmrsCaseConfig fields:

	match_on_ids

	patient_finder

match_on_ids is a list of patient identifiers. They can be all or a
subset of those given in OpenmrsCaseConfig.patient_identifiers. When a
case is updated in CommCare, these are the IDs to be used to select the
corresponding patient from OpenMRS. This is done by
repeater_helpers.get_patient_by_id()

This is sufficient for projects that import their patient cases from
OpenMRS, because each CommCare case will have a corresponding OpenMRS
patient, and its ID, or IDs, will have been set by OpenMRS.

Note

MOTECH has the ability to create or update the values of
patient identifiers. If an app offers this ability to users,
then that identifier should not be included in
match_on_ids. If the case was originally matched using
only that identifier and its value changes, MOTECH may be
unable to match that patient again.

For projects where patient cases can be registered in CommCare, there
needs to be a way of finding a corresponding patient, if one exists.

If repeater_helpers.get_patient_by_id() does not return a patient,
we need to search OpenMRS for a corresponding patient. For this we use
PatientFinders. OpenmrsCaseConfig.patient_finder will determine
which class of PatientFinder the OpenMRS repeater must use.

PatientFinder

	
class corehq.motech.openmrs.finders.PatientFinder(_obj=None, **kwargs)

	The PatientFinder base class was developed as a way to
handle situations where patient cases are created in CommCare
instead of being imported from OpenMRS.

When patients are imported from OpenMRS, they will come with at
least one identifier that MOTECH can use to match the case in
CommCare with the corresponding patient in OpenMRS. But if the case
is registered in CommCare then we may not have an ID, or the ID
could be wrong. We need to search for a corresponding OpenMRS
patient.

Different projects may focus on different kinds of case properties,
so it was felt that a base class would allow some flexibility.

The PatientFinder.wrap() method allows you to wrap documents of
subclasses.

The PatientFinder.find_patients() method must be implemented by
subclasses. It returns a list of zero, one, or many patients. If it
returns one patient, the OpenmrsRepeater.find_or_create_patient()
will accept that patient as a true match.

Note

The consequences of a false positive (a Type II error) are
severe: A real patient will have their valid values
overwritten by those of someone else. So PatientFinder
subclasses should be written and configured to skew
towards false negatives (Type I errors). In other words,
it is much better not to choose a patient than to choose
the wrong patient.

Creating Missing Patients

If a corresponding OpenMRS patient is not found for a CommCare case,
then PatientFinder has the option to create a patient in
OpenMRS. This is managed with the optional create_missing property.
Its value defaults to false. If it is set to true, then it will
create a new patient if none are found.

For example:

"patient_finder": {
 "doc_type": "WeightedPropertyPatientFinder",
 "property_weights": [
 {"case_property": "given_name", "weight": 0.5},
 {"case_property": "family_name", "weight": 0.6}
],
 "searchable_properties": ["family_name"],
 "create_missing": true
}

If more than one matching patient is found, a new patient will not be
created.

All required properties must be included in the payload. This is sure to
include a name and a date of birth, possibly estimated. It may include
an identifier. You can find this out from the OpenMRS Administration UI,
or by testing the OpenMRS REST API.

WeightedPropertyPatientFinder

	
class corehq.motech.openmrs.finders.WeightedPropertyPatientFinder(*args, **kwargs)

	The WeightedPropertyPatientFinder class finds OpenMRS patients
that match CommCare cases by assigning weights to case properties,
and adding the weights of matching patient properties to calculate a
confidence score.

OpenmrsFormConfig

MOTECH sends case updates as changes to patient properties and
attributes. Form submissions can also create Visits, Encounters and
Observations in OpenMRS.

Configure this in the “Encounters config” section of the OpenMRS
Forwarder configuration.

An example value of “Encounters config” might look like this:

[
 {
 "doc_type": "OpenmrsFormConfig",
 "xmlns": "http://openrosa.org/formdesigner/9481169B-0381-4B27-BA37-A46AB7B4692D",
 "openmrs_start_datetime": {
 "form_question": "/metadata/timeStart",
 "external_data_type": "omrs_date"
 },
 "openmrs_visit_type": "c22a5000-3f10-11e4-adec-0800271c1b75",
 "openmrs_encounter_type": "81852aee-3f10-11e4-adec-0800271c1b75",
 "openmrs_observations": [
 {
 "doc_type": "ObservationMapping",
 "concept": "5090AAAAAAAAAAAAAAAAAAAAAAAAAAAA",
 "value": {
 "form_question": "/data/height"
 }
 },
 {
 "doc_type": "ObservationMapping",
 "concept": "e1e055a2-1d5f-11e0-b929-000c29ad1d07",
 "value": {
 "form_question": "/data/lost_follow_up/visit_type",
 "value_map": {
 "Search": "e1e20e4c-1d5f-11e0-b929-000c29ad1d07",
 "Support": "e1e20f5a-1d5f-11e0-b929-000c29ad1d07"
 }
 },
 "case_property": "last_visit_type"
 }
]
 }
]

This example uses two form question values, “/data/height” and
“/data/lost_follow_up/visit_type”. They are sent as values of OpenMRS
concepts “5090AAAAAAAAAAAAAAAAAAAAAAAAAAAA” and
“e1e055a2-1d5f-11e0-b929-000c29ad1d07” respectively.

The OpenMRS concept that corresponds to the form question “/data/height”
accepts a numeric value.

The concept for “/data/lost_follow_up/visit_type” accepts a discrete set
of values. For this we use FormQuestionMap to map form question
values, in this example “Search” and “Support”, to their corresponding
concept UUIDs in OpenMRS.

The case_property setting for ObservationMapping is optional.
If it is set, when Observations are imported from OpenMRS (see
Atom Feed Integration below) then the given
case property will be updated with the value from OpenMRS. If the
observation mapping is uses FormQuestionMap or CasePropertyMap
with value_map (like the “last_visit_type” example above), then the
CommCare case will be updated with the CommCare value that corresponds
to the OpenMRS value’s UUID.

Set the UUIDs of openmrs_visit_type and openmrs_encounter_type
appropriately according to the context of the form in the CommCare app.

openmrs_start_datetime is an optional setting. By default, MOTECH
will set the start of the visit and the encounter to the time when the
form was completed on the mobile worker’s device.

To change which timestamp is used, the following values for
form_question are available:

	“/metadata/timeStart”: The timestamp, according to the mobile worker’s
device, when the form was started

	“/metadata/timeEnd”: The timestamp, according to the mobile worker’s
device, when the form was completed

	“/metadata/received_on”: The timestamp when the form was submitted
to HQ.

The value’s default data type is datetime. But some organisations may
need the value to be submitted to OpenMRS as just a date. To do this,
set external_data_type to omrs_date, as shown in the example.

Provider

Every time a form is completed in OpenMRS, it
creates a new Encounter [https://wiki.openmrs.org/display/docs/Encounters+and+observations].

Observations about a patient, like their height or their blood pressure,
belong to an Encounter; just as a form submission in CommCare can have
many form question values.

The OpenMRS Data Model [https://wiki.openmrs.org/display/docs/Data+Model]
documentation explains that an Encounter can be associated with health
care providers.

It is useful to label data from CommCare by creating a Provider in
OpenMRS for CommCare.

OpenMRS configuration has a field called “Provider UUID”, and the value
entered here is stored in OpenmrsConfig.openmrs_provider.

There are three different kinds of entities involved in setting up a
provider in OpenMRS: A Person instance; a Provider instance; and a User
instance.

Use the following steps to create a provider for CommCare:

From the OpenMRS Administration page, choose “Manage Persons” and click
“Create Person”. Name, date of birth, and gender are mandatory fields.
“CommCare Provider” is probably a good name because OpenMRS will split
it into a given name (“CommCare”) and a family name (“Provider”).
CommCare HQ’s first Git commit is dated 2009-03-10, so that seems close
enough to a date of birth. OpenMRS equates gender with sex, and is quite
binary about it. You will have to decided whether CommCare is male or
female. When you are done, click “Create Person”. On the next page,
“City/Village” is a required field. You can set “State/Province” to
“Other” and set “City/Village” to “Cambridge”. Then click “Save Person”.

Go back to the OpenMRS Administration page, choose “Manage Providers”
and click “Add Provider”. In the “Person” field, type the name of the
person you just created. You can also give it an Identifier, like
“commcare”. Then click Save.

You will need the UUID of the new Provider. Find the Provider by
entering its name, and selecting it.

Make a note of the greyed UUID. This is the value you will need for
“Provider UUID” in the configuration for the OpenMRS Repeater.

Next, go back to the OpenMRS Administration page, choose “Manage Users”
and click “Add User”. Under “Use a person who already exists” enter the
name of your new person and click “Next”. Give your user a username
(like “commcare”), and a password. Under “Roles” select “Provider”.
Click “Save User”.

Now CommCare’s “Provider UUID” will be recognised by OpenMRS as a
provider. Copy the value of the Provider UUID you made a note of earlier
into your OpenMRS configuration in CommCare HQ.

Atom Feed Integration

The OpenMRS Atom Feed Module [https://wiki.openmrs.org/display/docs/Atom+Feed+Module]
allows MOTECH to poll feeds of updates to patients and encounters. The
feed adheres to the
Atom syndication format [https://validator.w3.org/feed/docs/rfc4287.html].

An example URL for the patient feed would be like
“http://www.example.com/openmrs/ws/atomfeed/patient/recent”.

Example content:

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <title>Patient AOP</title>
 <link rel="self" type="application/atom+xml" href="http://www.example.com/openmrs/ws/atomfeed/patient/recent" />
 <link rel="via" type="application/atom+xml" href="http://www.example.com/openmrs/ws/atomfeed/patient/32" />
 <link rel="prev-archive" type="application/atom+xml" href="http://www.example.com/openmrs/ws/atomfeed/patient/31" />
 <author>
 <name>OpenMRS</name>
 </author>
 <id>bec795b1-3d17-451d-b43e-a094019f6984+32</id>
 <generator uri="https://github.com/ICT4H/atomfeed">OpenMRS Feed Publisher</generator>
 <updated>2018-04-26T10:56:10Z</updated>
 <entry>
 <title>Patient</title>
 <category term="patient" />
 <id>tag:atomfeed.ict4h.org:6fdab6f5-2cd2-4207-b8bb-c2884d6179f6</id>
 <updated>2018-01-17T19:44:40Z</updated>
 <published>2018-01-17T19:44:40Z</published>
 <content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/patient/e8aa08f6-86cd-42f9-8924-1b3ea021aeb4?v=full]]></content>
 </entry>
 <entry>
 <title>Patient</title>
 <category term="patient" />
 <id>tag:atomfeed.ict4h.org:5c6b6913-94a0-4f08-96a2-6b84dbced26e</id>
 <updated>2018-01-17T19:46:14Z</updated>
 <published>2018-01-17T19:46:14Z</published>
 <content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/patient/e8aa08f6-86cd-42f9-8924-1b3ea021aeb4?v=full]]></content>
 </entry>
 <entry>
 <title>Patient</title>
 <category term="patient" />
 <id>tag:atomfeed.ict4h.org:299c435d-b3b4-4e89-8188-6d972169c13d</id>
 <updated>2018-01-17T19:57:09Z</updated>
 <published>2018-01-17T19:57:09Z</published>
 <content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/patient/e8aa08f6-86cd-42f9-8924-1b3ea021aeb4?v=full]]></content>
 </entry>
</feed>

Similarly, an encounter feed URL would be like
“http://www.example.com/openmrs/ws/atomfeed/encounter/recent”.

Example content:

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <title>Patient AOP</title>
 <link rel="self" type="application/atom+xml" href="https://13.232.58.186/openmrs/ws/atomfeed/encounter/recent" />
 <link rel="via" type="application/atom+xml" href="https://13.232.58.186/openmrs/ws/atomfeed/encounter/335" />
 <link rel="prev-archive" type="application/atom+xml" href="https://13.232.58.186/openmrs/ws/atomfeed/encounter/334" />
 <author>
 <name>OpenMRS</name>
 </author>
 <id>bec795b1-3d17-451d-b43e-a094019f6984+335</id>
 <generator uri="https://github.com/ICT4H/atomfeed">OpenMRS Feed Publisher</generator>
 <updated>2018-06-13T08:32:57Z</updated>
 <entry>
 <title>Encounter</title>
 <category term="Encounter" />
 <id>tag:atomfeed.ict4h.org:af713a2e-b961-4cb0-be59-d74e8b054415</id>
 <updated>2018-06-13T05:08:57Z</updated>
 <published>2018-06-13T05:08:57Z</published>
 <content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/bahmnicore/bahmniencounter/0f54fe40-89af-4412-8dd4-5eaebe8684dc?includeAll=true]]></content>
 </entry>
 <entry>
 <title>Encounter</title>
 <category term="Encounter" />
 <id>tag:atomfeed.ict4h.org:320834be-e9c8-4b09-a99e-691dff18b3e4</id>
 <updated>2018-06-13T05:08:57Z</updated>
 <published>2018-06-13T05:08:57Z</published>
 <content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/bahmnicore/bahmniencounter/0f54fe40-89af-4412-8dd4-5eaebe8684dc?includeAll=true]]></content>
 </entry>
 <entry>
 <title>Encounter</title>
 <category term="Encounter" />
 <id>tag:atomfeed.ict4h.org:fca253aa-b917-4166-946e-9da9baa901da</id>
 <updated>2018-06-13T05:09:12Z</updated>
 <published>2018-06-13T05:09:12Z</published>
 <content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/bahmnicore/bahmniencounter/c6d6c248-8cd4-4e96-a110-93668e48e4db?includeAll=true]]></content>
 </entry>
</feed>

At the time of writing, the Atom feeds do not use ETags or offer HEAD
requests. MOTECH uses a GET request to fetch the document, and checks
the timestamp in the <updated> tag to tell whether there is new
content.

The feeds are paginated, and the page number is given at the end of the
href attribute of the <link rel="via" ... tag, which is found at
the start of the feed. A <link rel="next-archive" ... tag indicates
that there is a next page.

MOTECH stores the last page number polled in the
OpenmrsRepeater.atom_feed_status["patient"].last_page and
OpenmrsRepeater.atom_feed_status["encounter"]last_page properties.
When it polls again, it starts at this page, and iterates
next-archive links until all have been fetched.

If this is the first time MOTECH is polling an Atom feed, it uses the
/recent URL (as given in the example URL above) instead of starting
from the very beginning. This is to allow Atom feed integration to be
enabled for ongoing projects that may have a lot of established data.
Administrators should be informed that enabling Atom feed integration
will not import all OpenMRS patients into CommCare, but it will add
CommCare cases for patients created in OpenMRS from the moment Atom
feed integration is enabled.

Adding cases for OpenMRS patients

MOTECH needs three kinds of data in order to add a case for an OpenMRS
patient:

	The case type. This is set using the OpenMRS Repeater’s “Case
Type” field (i.e. OpenmrsRepeater.white_listed_case_types). It must
have exactly one case type specified.

	The case owner. This is determined using the OpenMRS Repeater’s
“Location” field (i.e. OpenmrsRepeater.location_id). The owner is set
to the first mobile worker (specifically CommCareUser instance) found
at that location.

	The case properties to set. MOTECH uses the patient_identifiers,
person_properties, person_preferred_name, person_preferred_address,
and person_attributes given in “Patient config”
(OpenmrsRepeater.openmrs_config.case_config) to map the values of an
OpenMRS patient to case properties. All and only the properties in
“Patient config” are mapped.

The name of cases updated from the Atom feed are set to the display
name of the person (not the display name of patient because it often
includes punctuation and an identifier).

When a new case is created, its case’s owner is determined by the
CommCare location of the OpenMRS repeater. (You can set the location
when you create or edit the OpenMRS repeater in Project Settings >
Data Forwarding.) The case will be assigned to the first mobile worker
found at the repeater’s location. The intention is that this mobile
worker would be a supervisor who can pass the case to the appropriate
person.

Importing OpenMRS Encounters

MOTECH can import both patient data and data about encounters using Atom
feed integration. This can be used for updating case properties,
associating clinical diagnoses with a patient, or managing referrals.

Bahmni includes diagnoses in the data of an encounter. The structure of
a diagnosis is similar to that of an observation. Diagnoses can only be
imported from Bahmni; Bahmni does not offer an API for adding or
updating diagnoses in Bahmni. Configurations for observations and
diagnoses are specified separately in the OpenmrsFormConfig
definition to make the distinction obvious.

Here is an example OpenmrsFormConfig:

[
 {
 "doc_type": "OpenmrsFormConfig",
 "xmlns": "http://openrosa.org/formdesigner/9ECA0608-307A-4357-954D-5A79E45C3879",
 "openmrs_form": null,
 "openmrs_visit_type": "c23d6c9d-3f10-11e4-adec-0800271c1b75",

 "openmrs_start_datetime": {
 "direction": "in",
 "jsonpath": "encounterDateTime",
 "case_property": "last_clinic_visit_date",
 "external_data_type": "omrs_datetime",
 "commcare_data_type": "cc_date"
 },

 "openmrs_encounter_type": "81852aee-3f10-11e4-adec-0800271c1b75",
 "openmrs_observations": [
 {
 "doc_type": "ObservationMapping",
 "concept": "f8ca5471-4e76-4737-8ea4-7555f6d5af0f",
 "value": {
 "case_property": "blood_group"
 },
 "case_property": "blood_group",
 "indexed_case_mapping": null
 },

 {
 "doc_type": "ObservationMapping",
 "concept": "397b9631-2911-435a-bf8a-ae4468b9c1d4",
 "value": {
 "direction": "in",
 "case_property": "[unused when direction = 'in']"
 },
 "case_property": null,
 "indexed_case_mapping": {
 "doc_type": "IndexedCaseMapping",
 "identifier": "parent",
 "case_type": "referral",
 "relationship": "extension",
 "case_properties": [
 {
 "jsonpath": "value",
 "case_property": "case_name",
 "value_map": {
 "Alice": "397b9631-2911-435a-bf8a-111111111111",
 "Bob": "397b9631-2911-435a-bf8a-222222222222",
 "Carol": "397b9631-2911-435a-bf8a-333333333333"
 }
 },
 {
 "jsonpath": "value",
 "case_property": "owner_id",
 "value_map": {
 "111111111111": "397b9631-2911-435a-bf8a-111111111111",
 "222222222222": "397b9631-2911-435a-bf8a-222222222222",
 "333333333333": "397b9631-2911-435a-bf8a-333333333333"
 }
 },
 {
 "jsonpath": "encounterDateTime",
 "case_property": "referral_date",
 "commcare_data_type": "date",
 "external_data_type": "posix_milliseconds"
 },
 {
 "jsonpath": "comment",
 "case_property": "referral_comment"
 }
]
 }
 }
],

 "bahmni_diagnoses": [
 {
 "doc_type": "ObservationMapping",
 "concept": "all",
 "value": {
 "direction": "in",
 "case_property": "[unused when direction = 'in']"
 },
 "case_property": null,
 "indexed_case_mapping": {
 "doc_type": "IndexedCaseMapping",
 "identifier": "parent",
 "case_type": "diagnosis",
 "relationship": "extension",
 "case_properties": [
 {
 "jsonpath": "codedAnswer.name",
 "case_property": "case_name"
 },
 {
 "jsonpath": "certainty",
 "case_property": "certainty"
 },
 {
 "jsonpath": "order",
 "case_property": "is_primary",
 "value_map": {
 "yes": "PRIMARY",
 "no": "SECONDARY"
 }
 },
 {
 "jsonpath": "diagnosisDateTime",
 "case_property": "diagnosis_datetime"
 }
]
 }
 }
]
 }
]

There is a lot happening in that definition. Let us look at the
different parts.

"xmlns": "http://openrosa.org/formdesigner/9ECA0608-307A-4357-954D-5A79E45C3879",

Atom feed integration uses the same configuration as data forwarding,
because mapping case properties to observations normally applies to both
exporting data to OpenMRS and importing data from OpenMRS.

For data forwarding, when the form specified by that XMLNS is submitted,
MOTECH will export corresponding observations.

For Atom feed integration, when a new encounter appears in the
encounters Atom feed, MOTECH will use the mappings specified for any
form to determine what data to import. In other words, this XMLNS value
is not used for Atom feed integration. It is only used for data
forwarding.

"openmrs_start_datetime": {
 "direction": "in",
 "jsonpath": "encounterDateTime",
 "case_property": "last_clinic_visit_date",
 "external_data_type": "omrs_datetime",
 "commcare_data_type": "cc_date"
},

Data forwarding can be configured to set the date and time of the start
of an encounter. Atom feed integration can be configured to import the
start of the encounter. "direction": "in" tells MOTECH that these
settings only apply to importing via the Atom feed.
"jsonpath": "encounterDateTime" fetches the value from the
“encounterDateTime” property in the document returned from OpenMRS.
"case_property": "last_clinic_visit_date" saves that value to the
“last_clinic_visit_date” case property. The data type settings convert
the value from a datetime to a date.

{
 "doc_type": "ObservationMapping",
 "concept": "f8ca5471-4e76-4737-8ea4-7555f6d5af0f",
 "value": {
 "case_property": "blood_group"
 },
 "case_property": "blood_group",
 "indexed_case_mapping": null
},

The first observation mapping is configured for both importing and
exporting. When data forwarding exports data, it uses
"value": {"case_property": "blood_group"} to determine which value
to send. When MOTECH imports via the Atom feed, it uses
"case_property": "blood_group", "indexed_case_mapping": null to
determine what to do with the imported value. These specific settings
tell MOTECH to save the value to the “blood_group” case property, and
not to create a subcase.

The next observation mapping gets more interesting:

{
 "doc_type": "ObservationMapping",
 "concept": "397b9631-2911-435a-bf8a-ae4468b9c1d4",
 "value": {
 "direction": "in",
 "case_property": "[unused when direction = 'in']"
 },
 "case_property": null,
 "indexed_case_mapping": {
 "doc_type": "IndexedCaseMapping",
 "identifier": "parent",
 "case_type": "referral",
 "relationship": "extension",
 "case_properties": [
 {
 "jsonpath": "value",
 "case_property": "case_name",
 "value_map": {
 "Alice": "397b9631-2911-435a-bf8a-111111111111",
 "Bob": "397b9631-2911-435a-bf8a-222222222222",
 "Carol": "397b9631-2911-435a-bf8a-333333333333"
 }
 },
 {
 "jsonpath": "value",
 "case_property": "owner_id",
 "value_map": {
 "111111111111": "397b9631-2911-435a-bf8a-111111111111",
 "222222222222": "397b9631-2911-435a-bf8a-222222222222",
 "333333333333": "397b9631-2911-435a-bf8a-333333333333"
 }
 },
 {
 "jsonpath": "encounterDateTime",
 "case_property": "referral_date",
 "commcare_data_type": "date",
 "external_data_type": "posix_milliseconds"
 },
 {
 "jsonpath": "comment",
 "case_property": "referral_comment"
 }
]
 }
}

"value": {"direction": "in" … tells MOTECH only to use this
observation mapping for importing via the Atom feed.

“indexed_case_mapping” is for creating a subcase. “identifier” is the
name of the index that links the subcase to its parent, and the value
“parent” is convention in CommCare; unless there are very good reasons
to use a different value, “parent” should always be used.

"case_type": "referral" gives us a clue about what this
configuration is for. The set of possible values of the OpenMRS concept
will be IDs of people, who OpenMRS/Bahmni users can choose to refer
patients to. Those people will have corresponding mobile workers in
CommCare. This observation mapping will need to map the people in
OpenMRS to the mobile workers in CommCare.

"relationship": "extension" sets what kind of subcase to create.
CommCare uses two kinds of subcase relationships: “child”; and
“extension”. Extension cases are useful for referrals and diagnoses for
two reasons: if the patient case is removed, CommCare will automatically
remove its referrals and diagnoses; and mobile workers who have access
to a patient case will also be able to see all their diagnoses and
referrals.

The observation mapping sets four case properties:

	case_name: This is set to the name of the person to whom the patient
is being referred.

	owner_id: This is the most important aspect of a referral system.
“owner_id” is a special case property that sets the owner of the
case. It must be set to a mobile worker’s ID. When this is done, that
mobile worker will get the patient case sent to their device on the
next sync.

	referral_date: The date on which the OpenMRS observation was made.

	comment: The comment, if any, given with the observation.

The configuration for each case property has a “jsonpath” setting to
specify where to get the value from the JSON data of the observation
given by the OpenMRS API. See How to Inspect an Observation or a Diagnosis below.

Inspecting the observation also helps us with a subtle and confusing
setting:

{
 "jsonpath": "encounterDateTime",
 "case_property": "referral_date",
 "commcare_data_type": "date",
 "external_data_type": "posix_milliseconds"
},

The value for the “referral_date” case property comes from the
observation’s “encounterDateTime” property. This property has the same
name as the “encounterDateTime” property of the encounter. (We used it
earlier under the “openmrs_start_datetime” setting to set the
“last_clinic_visit_date” case property on the patient case.)

What is confusing is that “external_data_type” is set to “omrs_datetime”
for encounter’s “encounterDateTime” property. But here, for the
observation, “external_data_type” is set to “posix_milliseconds”. An
“omrs_datetime” value looks like "2018-01-18T01:15:09.000+0530". But
a “posix_milliseconds” value looks like 1516218309000

The only way to know that is to inspect the JSON data returned by the
OpenMRS API.

The last part of the configuration deals with Bahmni diagnoses:

"bahmni_diagnoses": [
 {
 "doc_type": "ObservationMapping",
 "concept": "all",
 "value": {
 "direction": "in",
 "case_property": "[unused when direction = 'in']"
 },
 "case_property": null,
 "indexed_case_mapping": {
 "doc_type": "IndexedCaseMapping",
 "identifier": "parent",
 "case_type": "diagnosis",
 "relationship": "extension",
 "case_properties": [
 {
 "jsonpath": "codedAnswer.name",
 "case_property": "case_name"
 },
 {
 "jsonpath": "certainty",
 "case_property": "certainty"
 },
 {
 "jsonpath": "order",
 "case_property": "is_primary",
 "value_map": {
 "yes": "PRIMARY",
 "no": "SECONDARY"
 }
 },
 {
 "jsonpath": "diagnosisDateTime",
 "case_property": "diagnosis_datetime"
 }
]
 }
 }
]

At a glance, it is clear that like the configuration for referrals, this
configuration also uses extension cases. There are a few important
differences.

"concept": "all" tells MOTECH to import all Bahmni diagnosis
concepts, not just those that are explicitly configured.

"value": {"direction": "in" … The OpenMRS API does not offer the
ability to add or modify a diagnosis. “direction” will always be set to
“in”.

The case type of the extension case is “diagnosis”. This configuration
sets four case properties. “case_name” should be considered a mandatory
case property. It is set to the name of the diagnosis. The value of
“jsonpath” is determined by inspecting the JSON data of an example
diagnosis. The next section gives instructions for how to do that.
Follow the instructions, and as a useful exercise, try to see how the
JSON path “codedAnswer.name” was determined from the sample JSON data
of a Bahmni diagnosis given by the OpenMRS API.

How to Inspect an Observation or a Diagnosis

To see what the JSON representation of an OpenMRS observation or Bahmni
diagnosis is, you can use the official Bahmni demo server [https://demo.mybahmni.org/bahmni/home/].

	Log in as “superman” with the password “Admin123”.

	Click “Registration” and register a patient.

	Click the “home” button to return to the dashboard, and click
“Clinical”.

	Select your new patient, and create an observation or a diagnosis for
them.

	In a new browser tab or window, open the Encounter Atom feed [https://demo.mybahmni.org/openmrs/ws/atomfeed/encounter/recent].

	Right-click and choose “View Page Source”.

	Find the URL of the latest encounter in the “CDATA” value in the
“content” tag. It will look similar to this:
“/openmrs/ws/rest/v1/bahmnicore/bahmniencounter/<UUID>?includeAll=true”

	Construct the full URL, e.g.
“https://demo.mybahmni.org/openmrs/ws/rest/v1/bahmnicore/bahmniencounter/<UUID>?includeAll=true”
where “<UUID>” is the UUID of the encounter.

	The OpenMRS REST Web Services API does not make it easy [https://wiki.openmrs.org/display/docs/REST+Web+Services+API+For+Clients#RESTWebServicesAPIForClients-ResponseFormat] to get a
JSON-formatted response using a browser. You can use a REST API
Client like Postman [https://www.getpostman.com/], or you can use a command line tool like
curl [https://curl.haxx.se/] or Wget [https://www.gnu.org/software/wget/].

Fetch the content with the “Accept” header set to “application/json”.

Using curl

$ curl -u superman:Admin123 -H "Accept: application/json" \
 "https://demo.mybahmni.org/...?includeAll=true" > encounter.json

Using wget

$ wget --user=superman --password=Admin123 \
 --header="Accept: application/json" \
 -O encounter.json \
 "https://demo.mybahmni.org/...?includeAll=true"

Open encounter.json in a text editor that can automatically
format JSON for you. (Atom [https://atom.io/] with the pretty-json [https://atom.io/packages/pretty-json] package
installed is not a bad choice.)

 How Data Mapping Works

How Data Mapping Works

DHIS2-, OpenMRS- and FHIR Integration all use the ValueSource class to
map CommCare data to API resources.

A ValueSource is given in JSON format. e.g.

{
 "case_property": "active",
 "jsonpath": "$.active"
}

This ValueSource maps the value from the case property named “active” to
the “active” property of an API resource.

Different Sources of Values

The ValueSource class supports several different sources of values:

	case_property: As seen above, a ValueSource can be used for
fetching a value from a case property, or setting a value on a case
property.

	form_question: Fetches a value from a form question. e.g.
“/data/foo/bar” will get the value of a form question named “bar” in
the group “foo”. Form metadata is also available, e.g.
“/metadata/received_on” is the server time when the form submission
was received. You can find more details in the source code at
corehq.motech.value_source:FormQuestion

	case_owner_ancestor_location_field: Specifies a location metadata
field name. The ValueSource will start at the location of the case
owner, traverse up their location hierarchy, and return the first
value it finds for a location with that field. This can be used for
mapping CommCare locations to locations or organization units in a
remote system.

	form_user_ancestor_location_field: Specifies a location metadata
field name. Similar to case_owner_ancestor_location_field but for
forms instead of cases. The ValueSource will start at the location of
the user who submitted the form, traverse up their location hierarchy,
and return the first value it finds for a location with that field.
This can be used for mapping CommCare locations to locations or
organization units in a remote system.

	subcase_value_source: Defines a ValueSource to be evaluated on the
subcases of a case. e.g.

{
 "subcase_value_source": {"case_property": "name"}
 "case_type": "child",
 "is_closed": false,
 "jsonpath": "$.childrensNames"
}

	supercase_value_source: Defines a ValueSource to be evaluated on
the parent/host case of a case. e.g.

{
 "supercase_value_source": {"case_property": "name"}
 "referenced_type": "mother",
 "jsonpath": "$.mothersName"
}

	value: A constant value. This can be used for exporting a
constant, or it can be combined with case_property for importing a
constant value to a case property. See
corehq.motech.value_source:ConstantValue for more details.

Data Types

Integrating structured data with remote systems can involve converting
data from one format or data type to another. Use data type declarations
to cast the data type of a value.

For standard OpenMRS properties (person properties, name properties and
address properties) MOTECH will set data types correctly, and
integrators do not need to worry about them.

But administrators may want a value that is a date in CommCare to a
datetime in a remote system, or vice-versa. To convert from one to the
other, set data types for value sources.

The default is for both the CommCare data type and the external data
type not to be set. e.g.

{
 "expectedDeliveryDate": {
 "case_property": "edd",
 "commcare_data_type": null,
 "external_data_type": null
 }
}

To set the CommCare data type to a date and the OpenMRS data type to a
datetime for example, use the following:

{
 "expectedDeliveryDate": {
 "case_property": "edd",
 "commcare_data_type": "cc_date",
 "external_data_type": "omrs_datetime"
 }
}

For the complete list of CommCare data types, see MOTECH constants [https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/const.py].
For the complete list of DHIS2 data types, see DHIS2 constants [https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/dhis2/const.py]. For
the complete list of OpenMRS data types, see OpenMRS constants [https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/openmrs/const.py].

Import-Only and Export-Only Values

In configurations like OpenMRS Atom feed integration that involve both
sending data to OpenMRS and importing data from OpenMRS, sometimes some
values should only be imported, or only exported.

Use the direction property to determine whether a value should only
be exported, only imported, or (the default behaviour) both.

For example, to import a patient value named “hivStatus” as a case
property named “hiv_status” but not export it, use
"direction": "in":

{
 "hivStatus": {
 "case_property": "hiv_status",
 "direction": "in"
 }
}

To export a form question, for example, but not import it, use
"direction": "out":

{
 "hivStatus": {
 "case_property": "hiv_status",
 "direction": "out"
 }
}

Omit direction, or set it to null, for values that should be
both imported and exported.

Getting Values From JSON Documents

JSONPath has emerged as a standard for navigating JSON documents. It
is supported by PostgreSQL [https://www.postgresql.org/docs/12/functions-json.html#FUNCTIONS-SQLJSON-PATH], SQL Server [https://docs.microsoft.com/en-us/sql/relational-databases/json/json-path-expressions-sql-server], and others. ValueSource
uses it to read values from JSON API resources.

And, in the case of FHIR Integration, it also uses it to build FHIR
resources.

See the article by Stefan Goessner [https://goessner.net/articles/JsonPath/], who created JSONPath, for more
details.

OpenMRS observations and Bahmni diagnoses can be imported as extension
cases of CommCare case. This is useful for integrating patient
referrals, or managing diagnoses.

Values from the observation or diagnosis can be imported to properties
of the extension case. MOTECH needs to traverse the JSON response from
the remote system in order to get the right value. Value sources can use
JSONPath to do this.

Here is a simplified example of a Bahmni diagnosis to get a feel for
JSONPath:

{
 "certainty": "CONFIRMED",
 "codedAnswer": {
 "conceptClass": "Diagnosis",
 "mappings": [
 {
 "code": "T68",
 "name": "Hypothermia",
 "source": "ICD 10 - WHO"
 }
],
 "shortName": "Hypothermia",
 "uuid": "f7e8da66-f9a7-4463-a8ca-99d8aeec17a0"
 },
 "creatorName": "Eric Idle",
 "diagnosisDateTime": "2019-10-18T16:04:04.000+0530",
 "order": "PRIMARY"
}

The JSONPath for “certainty” is simply “certainty”.

The JSONPath for “shortName” is “codedAnswer.shortName”.

The JSONPath for “code” is “codedAnswer.mappings[0].code”.

For more details, see How to Inspect an Observation or a Diagnosis in the documentation
for the MOTECH OpenMRS & Bahmni Module.

The value_source Module

	
class corehq.motech.value_source.CaseOwnerAncestorLocationField(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, case_owner_ancestor_location_field: str [https://docs.python.org/3/library/stdtypes.html#str])

	A reference to a location metadata value. The location may be the
case owner, the case owner’s location, or the first ancestor
location of the case owner where the metadata value is set.

e.g.

{
 "doc_type": "CaseOwnerAncestorLocationField",
 "location_field": "openmrs_uuid"
}

	
__init__(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, case_owner_ancestor_location_field: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Method generated by attrs for class CaseOwnerAncestorLocationField.

	
classmethod wrap(data)

	Allows us to duck-type JsonObject, and useful for doing
pre-instantiation transforms / dropping unwanted attributes.

	
class corehq.motech.value_source.CaseProperty(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, case_property: str [https://docs.python.org/3/library/stdtypes.html#str])

	A reference to a case property value.

e.g. Get the value of a case property named “dob”:

{
 "case_property": "dob"
}

	
__init__(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, case_property: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Method generated by attrs for class CaseProperty.

	
class corehq.motech.value_source.CasePropertyConstantValue(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value: str [https://docs.python.org/3/library/stdtypes.html#str], value_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] = 'cc_text', case_property: str [https://docs.python.org/3/library/stdtypes.html#str])

	
	
__init__(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value: str [https://docs.python.org/3/library/stdtypes.html#str], value_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] = 'cc_text', case_property: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Method generated by attrs for class CasePropertyConstantValue.

	
class corehq.motech.value_source.ConstantValue(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value: str [https://docs.python.org/3/library/stdtypes.html#str], value_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] = 'cc_text')

	ConstantValue provides a ValueSource for constant values.

value must be cast as value_data_type.

get_value() returns the value for export. Use
external_data_type to cast the export value.

get_import_value() and deserialize() return the value for
import. Use commcare_data_type to cast the import value.

>>> one = ConstantValue.wrap({
... "value": 1,
... "value_data_type": COMMCARE_DATA_TYPE_INTEGER,
... "commcare_data_type": COMMCARE_DATA_TYPE_DECIMAL,
... "external_data_type": COMMCARE_DATA_TYPE_TEXT,
... })
>>> info = CaseTriggerInfo("test-domain", None)
>>> one.deserialize("foo")
1.0
>>> one.get_value(info) # Returns '1.0', not '1'. See note below.
'1.0'

Note

one.get_value(info) returns '1.0', not '1', because
get_commcare_value() casts value as
commcare_data_type first. serialize() casts it from
commcare_data_type to external_data_type.

This may seem counter-intuitive, but we do it to preserve the
behaviour of ValueSource.serialize().

	
__init__(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value: str [https://docs.python.org/3/library/stdtypes.html#str], value_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] = 'cc_text') → None [https://docs.python.org/3/library/constants.html#None]

	Method generated by attrs for class ConstantValue.

	
deserialize(external_value: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Converts the value’s external data type or format to its data
type or format for CommCare, if necessary, otherwise returns the
value unchanged.

	
class corehq.motech.value_source.FormQuestion(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, form_question: str [https://docs.python.org/3/library/stdtypes.html#str])

	A reference to a form question value.

e.g. Get the value of a form question named “bar” in the group
“foo”:

{
 "form_question": "/data/foo/bar"
}

Note

Normal form questions are prefixed with “/data”. Form
metadata, like “received_on” and “userID”, are prefixed
with “/metadata”.

The following metadata is available:

	Name

	Description

	deviceID

	An integer that identifies the user’s device

	timeStart

	The device time when the user opened the form

	timeEnd

	The device time when the user completed the form

	received_on

	The server time when the submission was received

	username

	The user’s username without domain suffix

	userID

	A large unique number expressed in hexadecimal

	instanceID

	A UUID identifying this form submission

	
__init__(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, form_question: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Method generated by attrs for class FormQuestion.

	
class corehq.motech.value_source.FormUserAncestorLocationField(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, form_user_ancestor_location_field: str [https://docs.python.org/3/library/stdtypes.html#str])

	A reference to a location metadata value. The location is the form
user’s location, or the first ancestor location of the form user
where the metadata value is set.

e.g.

{
 "doc_type": "FormUserAncestorLocationField",
 "location_field": "dhis_id"
}

	
__init__(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, form_user_ancestor_location_field: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Method generated by attrs for class FormUserAncestorLocationField.

	
classmethod wrap(data)

	Allows us to duck-type JsonObject, and useful for doing
pre-instantiation transforms / dropping unwanted attributes.

	
class corehq.motech.value_source.SubcaseValueSource(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, subcase_value_source: dict [https://docs.python.org/3/library/stdtypes.html#dict], case_types: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, is_closed: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None)

	A reference to a list of child/extension cases.

Evaluates nested ValueSource config, allowing for recursion.

	
__init__(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, subcase_value_source: dict [https://docs.python.org/3/library/stdtypes.html#dict], case_types: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, is_closed: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Method generated by attrs for class SubcaseValueSource.

	
set_external_value(external_data, info)

	Builds external_data by reference.

Currently implemented for dicts using JSONPath but could be
implemented for other types as long as they are mutable.

	
class corehq.motech.value_source.SupercaseValueSource(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, supercase_value_source: dict [https://docs.python.org/3/library/stdtypes.html#dict], identifier: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, referenced_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, relationship: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None)

	A reference to a list of parent/host cases.

Evaluates nested ValueSource config, allowing for recursion.

	
__init__(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, supercase_value_source: dict [https://docs.python.org/3/library/stdtypes.html#dict], identifier: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, referenced_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, relationship: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Method generated by attrs for class SupercaseValueSource.

	
set_external_value(external_data, info)

	Builds external_data by reference.

Currently implemented for dicts using JSONPath but could be
implemented for other types as long as they are mutable.

	
class corehq.motech.value_source.ValueSource(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Subclasses model a reference to a value, like a case property or a
form question.

Use the get_value() method to fetch the value using the
reference, and serialize it, if necessary, for the external system
that it is being sent to.

	
__init__(*, external_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, commcare_data_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, direction: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, value_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] | None [https://docs.python.org/3/library/constants.html#None] = None, jsonpath: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Method generated by attrs for class ValueSource.

	
deserialize(external_value: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Converts the value’s external data type or format to its data
type or format for CommCare, if necessary, otherwise returns the
value unchanged.

	
get_value(case_trigger_info: CaseTriggerInfo) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Returns the value referred to by the ValueSource, serialized for
the external system.

	
serialize(value: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Converts the value’s CommCare data type or format to its data
type or format for the external system, if necessary, otherwise
returns the value unchanged.

	
set_external_value(external_data: dict [https://docs.python.org/3/library/stdtypes.html#dict], info: CaseTriggerInfo)

	Builds external_data by reference.

Currently implemented for dicts using JSONPath but could be
implemented for other types as long as they are mutable.

	
classmethod wrap(data: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Allows us to duck-type JsonObject, and useful for doing
pre-instantiation transforms / dropping unwanted attributes.

	
corehq.motech.value_source.deserialize(value_source_config: JsonDict, external_value: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Converts the value’s external data type or format to its data
type or format for CommCare, if necessary, otherwise returns the
value unchanged.

	
corehq.motech.value_source.get_case_location(case)

	If the owner of the case is a location, return it. Otherwise return
the owner’s primary location. If the case owner does not have a
primary location, return None.

	
corehq.motech.value_source.get_form_question_values(form_json)

	Given form JSON, returns question-value pairs, where questions are
formatted “/data/foo/bar”.

e.g. Question “bar” in group “foo” has value “baz”:

>>> get_form_question_values({'form': {'foo': {'bar': 'baz'}}})
{'/data/foo/bar': 'baz'}

	
corehq.motech.value_source.get_import_value(value_source_config: JsonDict, external_data: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Returns the external value referred to by the value source
definition, deserialized for CommCare.

	
corehq.motech.value_source.get_value(value_source_config: JsonDict, case_trigger_info: CaseTriggerInfo) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Returns the value referred to by the value source definition,
serialized for the external system.

 General Overview

General Overview

What is SSO?

Single sign-on (SSO) defines a scheme for authenticating a user with a single
username and password across several related, but independent, applications.

Note

Pay attention the difference between authentication and authorization.

Authentication is the process used to identify whether the credentials a user provides are valid

Authorization is the process used to determine the set of permissions to grant a user
that determines what they can view or edit on the system.

Types of Protocols

Two of the most common types of protocols for SSO in web applications are
OIDC (OpenID Connect) and SAML (Security Assertion Markup Language).

CommCare HQ currently uses SAML 2.0 to handle SSO handshake procedures. It is
a very mature and secure protocol and is the standard for most enterprise
applications.

OIDC is an authentication layer built on top of OAuth 2.0. When compared to SAML
it is considered a less mature protocol, but offers the pros of being lightweight
and mobile + API friendly. However, not all Identity Providers support OIDC,
while all of them likely support SAML. In the future we may consider OIDC
support if necessary.

How Does SSO Work?

SSO is based on a trust relationship between an application, the Service
Provider (SP) and an Identity Provider (IdP). CommCare HQ in this case acts as
the Service Provider.

To create this trust, x509 certificates are exchanged between the IdP and the SP.
The IdP uses the certificate to securely sign (and sometimes encrypt) identity
information that it sends back to the SP in the form of a token. Because the SP
knows the IdP’s public certificate, it knows that the information it receives
is coming from a trusted source and knows it’s safe to login the user based on
the username that it receives in the token.

 Architecture

Architecture

Note

Everything related to SSO on CommCare HQ can be found in corehq.apps.sso

We have four primary models in our current SSO architecture, which is
based on the SAML 2.0 protocol.

IdentityProvider

The IdentityProvider model is responsible for storing all the certificate
information for a given Identity Provider (IdP), like Azure AD.

It is also linked to a BillingAccount. This link determines what project spaces
fall under the jurisdiction of the IdentityProvider. Any project space that has
a Subscription linked to the BillingAccount owner will automatically trust
the authentication information provided when a user is logged in with SSO.

Note

While the project spaces subscribed under an IdentityProvider’s BillingAccount
automatically trust the IdP’s authentication of a user, a user who signs
into CommCare HQ with SSO via that IdP will not automatically gain access
to that project space.

Authorization is still managed within CommCare HQ, and a user has to be
invited to a project in order to have access to that project.

However, SSO allows a user to login to HQ without the need for going through
the usual sign-up process.

AuthenticatedEmailDomain

A user on CommCare HQ is tied to an IdentityProvider based on the email domain
of their username. An email domain is the portion of an email address that
follows the @ sign.

We tie email domains to IdentityProviders with the AuthenticatedEmailDomain
model.

If a user’s email domain matches an AuthenticatedEmailDomain, during the
SSO login process they will be directed to the login workflow determined by
the active IdentityProvider associated with the AuthenticatedEmailDomain.

Note

A user will only be forced to use SSO at login and sign up if
ENFORCE_SSO_LOGIN in localsettings is set to True. Otherwise, they
will be able to login with a username and password (if they created an
account originally this way) or by visiting the IdentityProvider’s
login URL (see the get_login_url method).

UserExemptFromSingleSignOn

Even if the ENFORCE_SSO_LOGIN flag in localsettings is set to True, we
still need to allow certain users the ability to always login to CommCare HQ
with their username and password. Generally, these users are one or two
enterprise admins (or other special users).

We require at least one user to be exempt from SSO login in the event that
the IdentityProvider is misconfigured or the certificate expires and a user
needs to gain access to their enterprise console to fix the situation.

TrustedIdentityProvider

Project spaces that are not associated with the BillingAccount tied to a given
IdentityProvider do not automatically trust users who have authenticated
with that IdentityProvider.

In order for a user to access a project space that is outside of their
IdentityProvider’s jurisdiction, an admin of that project space must first
agree to trust the IdentityProvider associated with that user.

This trust can either be established from the Web Users list or when inviting
a web user that is using SSO to the project.

Once a trust is established, any user authenticating with that IdentityProvider
who is also a member of the project space can now access the project space as if
they had logged in with a username and password.

 Local Setup

Local Setup

Note

Before you begin, please understand that if you are trying to use SAML
authentication from localhost, it will likely fail on the round-trip
handshake, as it is not a public server.

Pre-Requisites

First, ensure that you have accounting admin privileges
(see add_operations_user management command)

Create a Project

	Navigate to + Add Project

	Project Name: sparrow

	(Click) Create Project

Create an Enterprise Software Plan

	Navigate to Accounting –> Software Plans.

	
	(Click) + Add New Software Plan
	
	Name: Sparrow Test Flight

	Edition: Enterprise

	[x] Is customer software plan

	(Click) Create Software Plan

	
	Navigate to Roles and Features tab.
	
	Role: Enterprise Plan (enterprise_plan_v0)

	
	Add Features
	
	Choose User Advanced –> (Click) Add Feature

	Choose SMS Advanced –> (Click) Add Feature

	
	Add Products
	
	Choose CommCare Advanced –> (Click) Add Product

	(Click) Update Plan Version

	
	Navigate to Version Summary tab.
	
	Observe: Sparrow Test Flight (v1) details look ok.

Update the Billing Account for Initial Project

	
	Navigate to Accounting –> Billing Accounts.
	
	
	Report Filters
	
	(Click) Apply

	Navigate to account named Account for Project sparrow.

	
	On to Account tab.
	
	Name: Sparrow Inc

	
	Client Contact Emails:
	
	client@example.edu

	admin@example.edu

	Dimagi Contact Email: user@example.org

	[x] Account is Active

	[x] Is Customer Billing Account

	
	Enterprise Admin Emails:
	
	admin@example.edu

	
	Navigate to Subscriptions tab.
	
	(Click) Edit (should be only one existing subscription)

	
	Navigate to Upgrade/Downgrade tab.
	
	Edition: Enterprise

	New Software Plan: Sparrow Test Flight (v1)

	Note: Upgrade. (or suitable upgrade note)

	(Click) Change Subscription

Add more projects to this subscription

	
	Add a new project.
	
	Navigate to + Add Project

	Project Name: song-sparrow

	(Click) Create Project

	
	Navigate to Accounting –> Subscriptions.
	
	
	Report Filters
	
	Project Space: song-sparrow

	(Click) Apply

	Locate subscription for the project (should be only one)

	(Click) Edit

	
	Navigate to the Upgrade/Downgrade tab.
	
	Edition: Enterprise

	New Software Plan: Sparrow Test Flight (v1)

	Note: Upgrade. (or suitable upgrade note)

	(Click) Change Subscription

	
	Navigate to the Subscription tab.
	
	Transfer Subscription To: Sparrow Inc

	(Click) Update Subscription

	Repeat…

Configure an Identity Provider

	Navigate to Accounting –> Identity Providers (SSO).

	(Click) + Add New Identity Provider

	Billing Account Owner: Sparrow Inc

	Public Name: Azure AD for Sparrow Inc

	Slug for SP Endpoints: sparrow

	(Click) Create Identity Provider

	Navigate to Authenticated Email Domains tab.

	@: example.edu

	(Click) Add Email Domain

	Navigate to SSO Exempt Users tab.

	admin@example.edu

	(Click) Add User

	Navigate to Identity Provider tab.

	[x] Allow Enterprise Admins to edit SSO Enterprise Settings

	(Click) Update Configuration

	(Click) Edit Enterprise Settings (below “Allow…” checkbox)

	Configure IdP settings…

 Adding a New Identity Provider Type

Adding a New Identity Provider Type

Note

These instructions are for adding a new Identity Provider Type / Service (e.g. Okta, OneLogin, Azure AD, etc.).
To add a new active Identity Provider, you can follow the steps in Local Setup or in our SSO Enterprise Guides
on Confluence.

Before Beginning

What Protocol will be used?

As of the writing of this documentation, there are only two protocols used for SSO (SAML and OIDC/OAuth2). We
support both. Of the two, OIDC is generally easier to implement than SAML but the Identity Provider you wish to add
may have a preference for one over the other. For instance, Azure AD’s workflows clearly prefer SAML.

Another thing to note about protocol choice is that OIDC is generally easier to test locally, while SAML requires
testing on a publicly accessible machine like staging.

Steps for Adding the IdP Type

1. Make model changes and add migrations

You should add the new IdentityProviderType to corehq.apps.sso.models and create a migration for the sso app.
Then you should add the IdentityProviderType to the appropriate protocol in IdentityProviderProtocol’s
get_supported_types() method.

2. Test out the new provider type locally or on staging

Note

It is important to consider how we will support this new Identity Provider in the long term. Once a new IdP Type is
added, we will need to ensure that we can properly do regression tests during QA for any changed SSO code. In order
to do this, it’s best to ensure that we are able to setup a developer/test account with the Identity Provider.

You can follow the steps in Local Setup of this section to add the new Identity Provider. The biggest challenge
will likely be determining where to obtain all the requirements necessary to set up the connection in the Provider’s UI.
For instance, with OIDC you need to take note of where the Issuer URL, Client ID, and Client Secret
are in the UI. Some Identity Providers are more challenging to find these than others!

Note

Pay attention to the language and field order of our forms in comparison with what a user might encounter in the
Identity Provider’s UI. It might be appropriate to change the order of certain fields, sections and/or language
for the Enterprise Admin SSO forms to match what the user sees in their provider’s UI.

Now you can activate the IdentityProvider. It’s easiest to use dimagi.org as the email domain to map users to,
as this is a domain alias for our email accounts (e.g. emails from foo@dimagi.com will also go to foo@dimagi.org).
Please do NOT use dimagi.com!

If you are doing tests on staging, take note you will likely have to deactivate and remove the email domain from
another Identity Provider (like Azure AD or One Login) that previously used this email domain for QA. Also, if you plan
to test on staging, the Dimagi SSO enterprise account mapped to the dimagi-sso-1, dimagi-sso-2, and dimagi-sso-3
domains will be ready to test this new IdP.

3. Log in as an SSO user

With the new IdentityProvider configured and active, you can now log in as an SSO user from the login screen. During this
test you can identify any additional code changes that need to be made. For instance, a new OIDC IdentityProvider might
not send the expected user_data through, so changes might need to be made where that data is accessed
(see corehq.apps.sso.views.oidc). A new SAML provider might require changes to get_saml2_config() that are specific
to its requirements (see corehq.apps.sso.configuration), but make sure that the existing IdentityProvider’s configurations
remain unchanged.

4. Walk through workflows with our technical writer

Once you have verified that your changes are correctly logging in users and not throwing any errors, it’s time to proceed
to setting up a meeting with a technical writer so that the setup process with the new Identity Provider can be
appropriately documented on Confluence for our Enterprise partners. Another goal of this meeting should be to document
any steps for the QA team to follow when setting up the Identity Provider.

5. Initiate QA

Now it’s time to initiate QA on staging for the new IdentityProviderType. In your QA request, be sure to include the
new setup information as documented by our technical writer and any credentials or sign up steps for QA to obtain a
developer account.

6. Determine whether a penetration test is required

If the only code changes required were language updates and adding a new IdentityProviderType this step can be skipped.
However, if you needed to update something like the SAML configuration, code in the SSOBackend, or
areas where authentication / user verification currently happens, then it might be a good idea to schedule a penetration
test with our security firm.

7. Pilot test with the Enterprise Partner on Production

Once QA is complete and our security firm has verified that no vulnerabilities exist (if applicable), it is time to
onboard our Enterprise Partner in the production environment. This will involve using the Login Enforcement option and
the “SSO Test Users” feature that you will find in the Edit Identity Provider form. When Login Enforcement is set to
Test, then only the SSO Test Users listed will be required to login with SSO from the homepage. This is a great way
for the Enterprise partner to test their setup and processes without immediately forcing all users under their email
domain to sign in with SSO.

 Internationalization

Internationalization

This page contains the most common techniques needed for managing CommCare HQ
localization strings. For more comprehensive information, consult the
Django Docs translations page [https://docs.djangoproject.com/en/dev/topics/i18n/translation/]
or this helpful blog post [http://blog.bessas.me/post/65775299341/using-gettext-in-django].

How translations work

There are three major components to the translations system - identifying
strings that need to be translated, having human translators write translations
for those strings, and then actually inserting those translations when
appropriate.

	./manage.py makemessages scans the source code and pulls out strings
that have been tagged for translation. It does not actually execute code, and
you should not put anything other than string literals in there. No string
formatting, no variable references, nothing.

	Transifex is a third party site we use for translating these strings. Human
translators look at the strings generated by makemessages and type up
appropriate translations. They have no context beyond what’s in the string
itself. Be nice to them and give template variables names, so instead of “{}
version” they see “{build_date} version”, which will be easier to understand.

	Finally, strings are actually translated when the code is executed on the
production servers. gettext is a simple function call that takes the
string provided and looks for it in the translations for the active language.
If present, it returns the corresponding translation. You can think of it
like this

TRANSLATIONS = {
 "en": {"hello": None},
 "es": {"hello": "hola"},
 "fra": {"hello": "bonjour"},
}

def naive_gettext(str):
 return TRANSLATIONS[get_language()][str] or str

Concrete Examples

Examples

	What’s in code

	What gets stored

	Comments

	_("Hello!")

	“Hello”

	

	_("Hello, {}").format(name)

	“Hello, {}”

	Hard for the translator to understand

	_("Hello, {name}").format(name=name)

	“Hello, {name}”

	Much better

	_("I have a {} {}").format(color, animal)

	“I have a {} {}”

	Inscrutable, and the translator can’t reorder the args

	_("Hello, {name}".format(name=name))

	“Hello, {name}”

	This is an error, it’ll be interpolated before the lookup, and that
string won’t be present in the translations file

	_(f"Today is {day}")

	“Today is {day}”

	Also an error, for the same reason.

	DAY = "Friday"; _(DAY)

	
	DAY isn’t a string. This is an error, it won’t even appear in the
translations file.

	_("Hello, ") + name

	“Hello, “

	Bad idea. The translator can’t move name to the beginning or middle.

	_("Hello, ") + name + _(". How are you?")

	“Hello, ” “. How are you?”

	Even worse. This will result in two strings that will not be translated
together.

Tagging strings in views

TL;DR: gettext should be used in code that will be run per-request.
gettext_lazy should be used in code that is run at module import.

The management command makemessages pulls out strings marked for
translation so they can be translated via transifex. All three gettext
functions mark strings for translation. The actual translation is performed
separately. This is where the gettext functions differ.

	gettext: The function immediately returns the translation for the
currently selected language.

	gettext_lazy: The function converts the string to a translation
“promise” object. This is later coerced to a string when rendering a
template or otherwise forcing the promise.

	gettext_noop: This function only marks a string as translation string,
it does not have any other effect; that is, it always returns the string
itself. This should be considered an advanced tool and generally avoided.
It could be useful if you need access to both the translated and untranslated
strings.

The most common case is just wrapping text with gettext.

from django.utils.translation import gettext as _

def my_view(request):
 messages.success(request, _("Welcome!"))

Typically when code is run as a result of a module being imported, there is
not yet a user whose locale can be used for translations, so it must be
delayed. This is where gettext_lazy comes in. It will mark a string for
translation, but delay the actual translation as long as possible.

class MyAccountSettingsView(BaseMyAccountView):
 urlname = 'my_account_settings'
 page_title = gettext_lazy("My Information")
 template_name = 'settings/edit_my_account.html'

When variables are needed in the middle of translated strings, interpolation
can be used as normal. However, named variables should be used to ensure
that the translator has enough context.

message = _("User '{user}' has successfully been {action}.").format(
 user=user.raw_username,
 action=_("Un-Archived") if user.is_active else _("Archived"),
)

This ends up in the translations file as:

msgid "User '{user}' has successfully been {action}."

Using gettext_lazy

The gettext_lazy method will work in the majority of translation situations.
It flags the string for translation but does not translate it until it is
rendered for display. If the string needs to be immediately used or
manipulated by other methods, this might not work.

When using the value immediately, there is no reason to do lazy translation.

return HttpResponse(gettext("An error was encountered."))

It is easy to forget to translate form field names, as Django normally builds
nice looking text for you. When writing forms, make sure to specify labels with
a translation flagged value. These will need to be done with gettext_lazy.

class BaseUserInfoForm(forms.Form):
 first_name = forms.CharField(label=gettext_lazy('First Name'), max_length=50, required=False)
 last_name = forms.CharField(label=gettext_lazy('Last Name'), max_length=50, required=False)

gettext_lazy, a cautionary tale

gettext_lazy returns a proxy object, not a string, which can cause
complications. These proxies will be coerced to a string when used as one, using
the user’s language if a request is active and available, and using the default
language (English) otherwise.

>>> group_name = gettext_lazy("mobile workers")
>>> type(group_name)
django.utils.functional.lazy.<locals>.__proxy__
>>> group_name.upper()
'MOBILE WORKERS'
>>> type(group_name.upper())
str

Converting gettext_lazy proxy objects to json will crash. You should use
corehq.util.json.CommCareJSONEncoder to properly coerce it to a string.

>>> import json
>>> from django.utils.translation import gettext_lazy
>>> json.dumps({"message": gettext_lazy("Hello!")})
TypeError: Object of type __proxy__ is not JSON serializable
>>> from corehq.util.json import CommCareJSONEncoder
>>> json.dumps({"message": gettext_lazy("Hello!")}, cls=CommCareJSONEncoder)
'{"message": "Hello!"}'

Tagging strings in template files

There are two ways translations get tagged in templates.

For simple and short plain text strings, use the trans template tag.

{% trans "Welcome to CommCare HQ" %}

More complex strings (requiring interpolation, variable usage or those that
span multiple lines) can make use of the blocktrans tag.

If you need to access a variable from the page context:

{% blocktrans %}This string will have {{ value }} inside.{% endblocktrans %}

If you need to make use of an expression in the translation:

{% blocktrans with amount=article.price %}
 That will cost $ {{ amount }}.
{% endblocktrans %}

This same syntax can also be used with template filters:

{% blocktrans with myvar=value|filter %}
 This will have {{ myvar }} inside.
{% endblocktrans %}

In general, you want to avoid including HTML in translations. This will make it
easier for the translator to understand and manipulate the text. However, you
can’t always break up the string in a way that gives the translator enough
context to accurately do the translation. In that case, HTML inside the
translation tags will still be accepted.

{% blocktrans %}
 Manage Mobile Workers <small>for CommCare Mobile and
 CommCare HQ Reports</small>
{% endblocktrans %}

Text passed as constant strings to template block tag also needs to be translated.
This is most often the case in CommCare with forms.

{% crispy form _("Specify New Password") %}

Tagging strings in JavaScript

Happily, Django also has support for translations in JavaScript.

JavaScript has a gettext function that works exactly the same as in python:

gettext("Welcome to CommCare HQ")

gettext is available globally in HQ, coming from django.js [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/hqwebapp/static/hqwebapp/js/django.js]
which is available via the base RequireJS setup [https://github.com/dimagi/commcare-hq/blob/f922211689b39240fcf16efe36d9dc13382977b8/corehq/apps/hqwebapp/templates/hqwebapp/partials/requirejs.html#L28],
so it doesn’t need to be added as a dependency to modules that use it.

For translations with interpolated variables, use Underscore’s _.template [https://underscorejs.org/#template]
function similarly to python’s string formatting, calling gettext on the template and __then__ interpolating
variables:

_.template(gettext("Hello, <%- name %>, it is <%- day %>."))({
 name: firstName,
 day: today,
})

Keeping translations up to date

Once a string has been added to the code, we can update the .po file by
running makemessages.

To do this for all langauges:

$ django-admin makemessages --all

It will be quicker for testing during development to only build one language:

$ django-admin makemessages -l fra

After this command has run, your .po files will be up to date. To have content
in this file show up on the website you still need to compile the strings.

$ django-admin compilemessages

You may notice at this point that not all tagged strings with an associated
translation in the .po shows up translated. That could be because Django made
a guess on the translated value and marked the string as fuzzy. Any string
marked fuzzy will not be displayed and is an indication to the translator to
double check this.

Example:

#: corehq/__init__.py:103
#, fuzzy
msgid "Export Data"
msgstr "Exporter des cas"

 UI Helpers

UI Helpers

There are a few useful UI helpers in our codebase which you should
be aware of. Save time and create consistency.

Paginated CRUD View

Use corehq.apps.hqwebapp.views.CRUDPaginatedViewMixin the with a TemplateView subclass (ideally
one that also subclasses corehq.apps.hqwebapp.views.BasePageView or BaseSectionPageView) to have
a paginated list of objects which you can create, update, or delete.

The Basic Paginated View

In its very basic form (a simple paginated view) it should look like:

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedViewMixin):
 # your template should extend hqwebapp/base_paginated_crud.html
 template_name = 'puppyapp/paginated_puppies.html

 # all the user-visible text
 limit_text = "puppies per page"
 empty_notification = "you have no puppies"
 loading_message = "loading_puppies"

 # required properties you must implement:

 @property
 def total(self):
 # How many documents are you paginating through?
 return Puppy.get_total()

 @property
 def column_names(self):
 # What will your row be displaying?
 return [
 "Name",
 "Breed",
 "Age",
]

 @property
 def page_context(self):
 # This should at least include the pagination_context that CRUDPaginatedViewMixin provides
 return self.pagination_context

 @property
 def paginated_list(self):
 """
 This should return a list (or generator object) of data formatted as follows:
 [
 {
 'itemData': {
 'id': <id of item>,
 <json dict of item data for the knockout model to use>
 },
 'template': <knockout template id>
 }
]
 """
 for puppy in Puppy.get_all()[self.skip:self.skip + self.limit]:
 yield {
 'itemData': {
 'id': puppy._id,
 'name': puppy.name,
 'breed': puppy.breed,
 'age': puppy.age,
 },
 'template': 'base-puppy-template',
 }

 def post(self, *args, **kwargs):
 return self.paginate_crud_response

The template should use knockout templates [http://knockoutjs.com/documentation/template-binding.html]
to render the data you pass back to the view. Each template will have access to
everything inside of itemData. Here’s an example:

{% extends 'hqwebapp/base_paginated_crud.html' %}

{% block pagination_templates %}
<script type="text/html" id="base-puppy-template">
 <td data-bind="text: name"></td>
 <td data-bind="text: breed"></td>
 <td data-bind="text: age"></td>
</script>
{% endblock %}

Allowing Creation in your Paginated View

If you want to create data with your paginated view, you must implement the following:

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedMixin):
 ...
 def get_create_form(self, is_blank=False):
 if self.request.method == 'POST' and not is_blank:
 return CreatePuppyForm(self.request.POST)
 return CreatePuppyForm()

 def get_create_item_data(self, create_form):
 new_puppy = create_form.get_new_puppy()
 return {
 'itemData': {
 'id': new_puppy._id,
 'name': new_puppy.name,
 'breed': new_puppy.breed,
 'age': new_puppy.age,
 },
 # you could use base-puppy-template here, but you might want to add an update button to the
 # base template.
 'template': 'new-puppy-template',
 }

The form returned in get_create_form() should make use of
crispy forms [https://django-crispy-forms.readthedocs.org/en/latest/].

from django import forms
from crispy_forms.helper import FormHelper
from crispy_forms.layout import Layout
from crispy_forms.bootstrap import StrictButton, InlineField

class CreatePuppyForm(forms.Form):
 name = forms.CharField()
 breed = forms.CharField()
 dob = forms.DateField()

 def __init__(self, *args, **kwargs):
 super(CreatePuppyForm, self).__init__(*args, **kwargs)
 self.helper = FormHelper()
 self.helper.form_style = 'inline'
 self.helper.form_show_labels = False
 self.helper.layout = Layout(
 InlineField('name'),
 InlineField('breed'),
 InlineField('dob'),
 StrictButton(
 format_html('<i class="fa fa-plus"></i> {}', "Create Puppy"),
 css_class='btn-primary',
 type='submit'
)
)

 def get_new_puppy(self):
 # return new Puppy
 return Puppy.create(self.cleaned_data)

Allowing Updating in your Paginated View

If you want to update data with your paginated view, you must implement the following:

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedMixin):
 ...
 def get_update_form(self, initial_data=None):
 if self.request.method == 'POST' and self.action == 'update':
 return UpdatePuppyForm(self.request.POST)
 return UpdatePuppyForm(initial=initial_data)

 @property
 def paginated_list(self):
 for puppy in Puppy.get_all():
 yield {
 'itemData': {
 'id': puppy._id,
 ...
 # make sure you add in this line, so you can use the form in your template:
 'updateForm': self.get_update_form_response(
 self.get_update_form(puppy.inital_form_data)
),
 },
 'template': 'base-puppy-template',
 }

 @property
 def column_names(self):
 return [
 ...
 # if you're adding another column to your template, be sure to give it a name here...
 _('Action'),
]

 def get_updated_item_data(self, update_form):
 updated_puppy = update_form.update_puppy()
 return {
 'itemData': {
 'id': updated_puppy._id,
 'name': updated_puppy.name,
 'breed': updated_puppy.breed,
 'age': updated_puppy.age,
 },
 'template': 'base-puppy-template',
 }

The UpdatePuppyForm should look something like:

class UpdatePuppyForm(CreatePuppyForm):
 item_id = forms.CharField(widget=forms.HiddenInput())

 def __init__(self, *args, **kwargs):
 super(UpdatePuppyForm, self).__init__(*args, **kwargs)
 self.helper.form_style = 'default'
 self.helper.form_show_labels = True
 self.helper.layout = Layout(
 Div(
 Field('item_id'),
 Field('name'),
 Field('breed'),
 Field('dob'),
 css_class='modal-body'
),
 FormActions(
 StrictButton(
 "Update Puppy",
 css_class='btn btn-primary',
 type='submit',
),
 HTML('<button type="button" class="btn btn-default" data-dismiss="modal">Cancel</button>'),
 css_class="modal-footer'
)
)

 def update_puppy(self):
 return Puppy.update_puppy(self.cleaned_data)

You should add the following to your base-puppy-template knockout template:

<script type="text/html" id="base-puppy-template">
 ...
 <td> <!-- actions -->
 <button type="button"
 data-toggle="modal"
 data-bind="
 attr: {
 'data-target': '#update-puppy-' + id
 }
 "
 class="btn btn-primary">
 Update Puppy
 </button>

 <div class="modal fade"
 data-bind="
 attr: {
 id: 'update-puppy-' + id
 }
 ">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button"
 class="close"
 data-dismiss="modal"
 aria-hidden="true">×</button>
 <h3>
 Update puppy <strong data-bind="text: name">:
 </h3>
 </div>
 <div class="modal-body">
 <div data-bind="html: updateForm"></div>
 </div>
 </div>
 </div>
 </div>
 </td>
</script>

Allowing Deleting in your Paginated View

If you want to delete data with your paginated view, you should implement something like the following:

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedMixin):
 ...

 def get_deleted_item_data(self, item_id):
 deleted_puppy = Puppy.get(item_id)
 deleted_puppy.delete()
 return {
 'itemData': {
 'id': deleted_puppy._id,
 ...
 },
 'template': 'deleted-puppy-template', # don't forget to implement this!
 }

You should add the following to your base-puppy-template knockout template:

<script type="text/html" id="base-puppy-template">
 ...
 <td> <!-- actions -->
 ...
 <button type="button"
 data-toggle="modal"
 data-bind="
 attr: {
 'data-target': '#delete-puppy-' + id
 }
 "
 class="btn btn-danger">
 <i class="fa fa-remove"></i> Delete Puppy
 </button>

 <div class="modal fade"
 data-bind="
 attr: {
 id: 'delete-puppy-' + id
 }
 ">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button>
 <h3>
 Delete puppy <strong data-bind="text: name">?
 </h3>
 </div>
 <div class="modal-body">
 <p class="lead">
 Yes, delete the puppy named <strong data-bind="text: name">.
 </p>
 </div>
 <div class="modal-footer">
 <button type="button"
 class="btn btn-default"
 data-dismiss="modal">
 Cancel
 </button>
 <button type="button"
 class="btn btn-danger delete-item-confirm"
 data-loading-text="Deleting Puppy...">
 <i class="fa fa-remove"></i> Delete Puppy
 </button>
 </div>
 </div>
 </div>
 </div>
 </td>
</script>

Refreshing The Whole List Base on Update

If you want to do something that affects an item’s position in the list (generally, moving it to the top), this is
the feature you want.

You implement the following method (note that a return is not expected):

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedMixin):
 ...

 def refresh_item(self, item_id):
 # refresh the item here
 puppy = Puppy.get(item_id)
 puppy.make_default()
 puppy.save()

Add a button like this to your template:

<button type="button"
 class="btn refresh-list-confirm"
 data-loading-text="Making Default...">
 Make Default Puppy
</button>

Now go on and make some CRUD paginated views!

 Using Class-Based Views in CommCare HQ

Using Class-Based Views in CommCare HQ

We should move away from function-based views in django and use class-based views instead.
The goal of this section is to point out the infrastructure we’ve already set up to
keep the UI standardized.

The Base Classes

There are two styles of pages in CommCare HQ. One page is centered (e.g. registration,
org settings or the list of projects). The other is a two column, with the left gray column
acting as navigation and the right column displaying the primary content (pages under major sections
like reports).

A Basic (Centered) Page

To get started, subclass BasePageView in corehq.apps.hqwebapp.views. BasePageView is a subclass
of django’s TemplateView.

class MyCenteredPage(BasePageView):
 urlname = 'my_centered_page'
 page_title = "My Centered Page"
 template_name = 'path/to/template.html'

 @property
 def page_url(self):
 # often this looks like:
 return reverse(self.urlname)

 @property
 def page_context(self):
 # You want to do as little logic here.
 # Better to divvy up logical parts of your view in other instance methods or properties
 # to keep things clean.
 # You can also do stuff in the get() and post() methods.
 return {
 'some_property': self.compute_my_property(),
 'my_form': self.centered_form,
 }

	urlname
	This is what django urls uses to identify your page

	page_title
	This text will show up in the <title> tag of your template. It will also show up in the
primary heading of your template.

If you want to do use a property in that title that would only be available after your
page is instantiated, you should override:

@property
def page_name(self):
 return format_html("This is a page for {}", self.kitten.name)

page_name will not show up in the <title> tags, as you can include html in this name.

	template_name
	Your template should extend hqwebapp/base_page.html

It might look something like:

{% extends 'hqwebapp/base_page.html' %}

{% block js %}{{ block.super }}
 {# some javascript imports #}
{% endblock %}

{% block js-inline %}{{ block.super }}
 {# some inline javascript #}
{% endblock %}

{% block page_content %}
 My page content! Woo!
{% endblock %}

{% block modals %}{{ block.super }}
 {# a great place to put modals #}
{% endblock %}

A Section (Two-Column) Page

To get started, subclass BaseSectionPageView in corehq.apps.hqwebapp.views. You should
implement all the things described in the minimal setup for A Basic (Centered) Page
in addition to:

class MySectionPage(BaseSectionPageView):
 ... # everything from BasePageView

 section_name = "Data"
 template_name = 'my_app/path/to/template.html'

 @property
 def section_url(self):
 return reverse('my_section_default')

Note

Domain Views

If your view uses domain, you should subclass BaseDomainView. This inserts the domain
name as into the main_context and adds the login_and_domain_required permission.
It also implements page_url to assume the basic reverse for a page in a project:
reverse(self.urlname, args=[self.domain])

	section_name
	This shows up as the root name on the section breadcrumbs.

	template_name
	Your template should extend hqwebapp/bootstrap3/base_section.html

It might look something like:

{% extends 'hqwebapp/bootstrap3/base_section.html' %}

{% block js %}{{ block.super }}
 {# some javascript imports #}
{% endblock %}

{% block js-inline %}{{ block.super }}
 {# some inline javascript #}
{% endblock %}

{% block main_column %}
 My page content! Woo!
{% endblock %}

{% block modals %}{{ block.super }}
 {# a great place to put modals #}
{% endblock %}

Adding to Urlpatterns

Your urlpatterns should look something like:

urlpatterns = patterns(
 'corehq.apps.my_app.views',
 ...,
 url(r'^my/page/path/$', MyCenteredPage.as_view(), name=MyCenteredPage.urlname),
)

Hierarchy

If you have a hierarchy of pages, you can implement the following in your class:

class MyCenteredPage(BasePageView):
 ...

 @property
 def parent_pages(self):
 # This will show up in breadcrumbs as MyParentPage > MyNextPage > MyCenteredPage
 return [
 {
 'title': MyParentPage.page_title,
 'url': reverse(MyParentPage.urlname),
 },
 {
 'title': MyNextPage.page_title,
 'url': reverse(MyNextPage.urlname),
 },
]

If you have a hierarchy of pages, it might be wise to implement a BaseParentPageView or
Base<InsertSectionName>View that extends the main_context property. That way all of the
pages in that section have access to the section’s context. All page-specific context should
go in page_context.

class BaseKittenSectionView(BaseSectionPageView):

 @property
 def main_context(self):
 main_context = super(BaseParentView, self).main_context
 main_context.update({
 'kitten': self.kitten,
 })
 return main_context

Permissions

To add permissions decorators to a class-based view, you need to decorate the dispatch
instance method.

class MySectionPage(BaseSectionPageView):
 ...

 @method_decorator(can_edit)
 def dispatch(self, request, *args, **kwargs)
 return super(MySectionPage, self).dispatch(request, *args, **kwargs)

GETs and POSTs (and other http methods)

Depending on the type of request, you might want to do different things.

class MySectionPage(BaseSectionPageView):
 ...

 def get(self, request, *args, **kwargs):
 # do stuff related to GET here...
 return super(MySectionPage, self).get(request, *args, **kwargs)

 def post(self, request, *args, **kwargs):
 # do stuff related to post here...
 return self.get(request, *args, **kwargs) # or any other HttpResponse object

Limiting HTTP Methods

If you want to limit the HTTP request types to just GET or POST, you just have to override the
http_method_names class property:

class MySectionPage(BaseSectionPageView):
 ...
 http_method_names = ['post']

Note

Other Allowed Methods

put, delete, head, options, and trace are all allowed methods by default.

 Forms in HQ

Forms in HQ

See the HQ Style Guide for guidance on form UI, whether you’re creating a custom HTML form or using crispy forms.

Making forms CSRF safe

HQ is protected against cross site request forgery attacks i.e. if a POST/PUT/DELETE request doesn’t pass csrf token to corresponding View, the View will reject those requests with a 403 response. All HTML forms and AJAX calls that make such requests should contain a csrf token to succeed. Making a form or AJAX code pass csrf token is easy and the Django docs give detailed instructions on how to do so. Here we list out examples of HQ code that does that

	If crispy form is used to render HTML form, csrf token is included automagically

	For raw HTML form, use {% csrf_token %} tag in the form HTML, see tag_csrf_example [https://github.com/dimagi/commcare-hq/pull/9580/files#diff-b707708b04006cb99be5064dedbc8240R41].

	If request is made via AJAX, it will be automagically protected by ajax_csrf_setup.js (which is included in base bootstrap template) as long as your template is inherited from the base template. (ajax_csrf_setup.js overrides $.ajaxSettings.beforeSend to accomplish this)

	If an AJAX call needs to override beforeSend itself, then the super $.ajaxSettings.beforeSend should be explicitly called to pass csrf token. See ajax_csrf_example [https://github.com/dimagi/commcare-hq/commit/75c4fd0c638c2c79c8a1f765b70b1ac4709b043a#diff-3cfc511ef8ce8d4f15a3b64d1a113d26R125]

	If HTML form is created in Javascript using raw nodes, csrf-token node should be added to that form. See js_csrf_example_1 [https://github.com/dimagi/commcare-hq/commit/a3964b2f2f1f2839df1516934b66d11dbc90faaf#diff-8380c7394c4bb525b5a02ebabc97e08fR198] and js_csrf_example_2 [https://github.com/dimagi/commcare-hq/commit/fadf34936a4fabdf92e2e14503d39f1efb502aa2#diff-88a89488da4f667449d6a54763ab905aR9]

	If an inline form is generated using outside of RequestContext using render_to_string or its cousins, use csrf_inline custom tag. See inline_csrf_example [https://github.com/dimagi/commcare-hq/commit/b12e0457b8e3b5c3accd5ef9f57a90b3018c7828#diff-597545574657c656fd164ce865186edaR1158]

	If a View needs to be exempted from csrf check (for whatever reason, say for API), use csrf_exampt decorator to avoid csrf check. See csrf_exempt_example [https://github.com/dimagi/commcare-hq/pull/9736/files#diff-a8527f8793e60d01dedc1bc05c822d76R174]

	For any other special unusual case refer to Django docs. Essentially, either the HTTP request needs to have a csrf-token or the corresponding View should be exempted from CSRF check.

 Dimagi JavaScript Guide

Dimagi JavaScript Guide

Dimagi’s internal JavaScript guide for use in the CommCare HQ project.

Javascript code should be functional in all current major browsers,
following the ECMAScript 2015 (ES6) standards, and should follow the
guidelines described in this document.

Table of contents

Overview

	Static Files Organization

Dependencies

	Managing Dependencies

	Historical Background on Module Patterns

	RequireJS Migration Guide

	Third-Party Libraries

	External Packages

Best practices

	Integration Patterns

	Security

	Static Files

	Inheritance

	Code Review

Development Process

	Testing

	Linting

 Static Files Organization

Static Files Organization

All* JavaScript code should be in a .js file and encapsulated as a
module using hqDefine.

JavaScript files belong in the static directory of a Django app,
which we structure as follows:

myapp/
 static/myapp/
 css/
 font/
 images/
 js/ <= JavaScript
 less/
 lib/ <= Third-party code: This should be rare, since most third-party code should be coming from yarn
 spec/ <= JavaScript tests
 ... <= May contain other directories for data files, i.e., `json/`
 templates/myapp/
 mytemplate.html

* There are a few places we do intentionally use script blocks, such as
configuring less.js in CommCare HQ’s main template,
hqwebapp/base.html. These are places where there are just a few
lines of code that are truly independent of the rest of the site’s
JavaScript. They are rare.

 Managing Dependencies

Managing Dependencies

HQ’s JavaScript is being gradually migrated from a legacy, unstructured
coding style the relies on the ordering of script tags to instead use
RequireJS for dependency management. This means that dependencies are
managed differently depending on which area of the code you’re working
in. This page is a developer’s guide to understanding which area you’re
working in and what that means for your code.

How do I know whether or not I’m working with RequireJS?

You are likely working with RequireJS, as most of HQ has been migrated.
However, several major areas have not been migrated: app manager,
reports, and web apps. Test code also does not currently use RequireJS;
see
Testing [https://github.com/dimagi/commcare-hq/blob/master/docs/js-guide/testing.rst]
for working with tests.

To tell for sure, look at your module’s hqDefine call, at the top of
the file.

RequireJS modules look like this, with all dependencies loaded as part
of hqDefine:

hqDefine("my_app/js/my_file", [
 "knockout",
 "hqwebapp/js/initial_page_data"
], function (
 ko,
 initialPageData
) {
 var myObservable = ko.observable(initialPageData.get("thing"));
 ...
});

Non-RequireJS modules look like this, with no list and no function
parameters. HQ modules are loaded using hqImport in the body, and
third party libraries aren’t declared at all, instead relying on
globals:

hqDefine("my_app/js/my_file", function () {
 var myObservable = ko.observable(hqImport("hqwebapp/js/initial_page_data").get("thing"));
 ...
});

How do I write a new page?

New code should be written in RequireJS, which is oriented around a
single “entry point” into the page.

Most pages have some amount of logic only relevant to that page, so they
have a file that includes that logic and then depends on other modules
for shared logic.

data_dictionary.js [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/data_dictionary/static/data_dictionary/js/data_dictionary.js]
fits this common pattern:

hqDefine("data_dictionary/js/data_dictionary", [// Module name must match filename
 "jquery", // Common third-party dependencies
 "knockout",
 "underscore",
 "hqwebapp/js/initial_page_data", // Dependencies on HQ files always match the file's path
 "hqwebapp/js/main",
 "analytix/js/google",
 "hqwebapp/js/knockout_bindings.ko", // This one doesn't need a named parameter because it only adds
 // knockout bindings and is not referenced in this file
], function (
 $, // These common dependencies use these names for compatibility
 ko, // with non-requirejs pages, which rely on globals
 _,
 initialPageData, // Any dependency that will be referenced in this file needs a name.
 hqMain,
 googleAnalytics
) {
 /* Function definitions, knockout model definitions, etc. */

 var dataUrl = initialPageData.reverse('data_dictionary_json'); // Refer to dependencies by their named parameter
 ...

 $(function () {
 /* Logic to run on documentready */
 });

 // Other code isn't going to depend on this module, so it doesn't return anything or returns 1
});

To register your module as the RequireJS entry point, add the
requirejs_main template tag to your HTML page, near the top but
outside of any other block:

{% requirejs_main 'data_dictionary/js/data_dictionary' %}

Some pages don’t have any unique logic but do rely on other modules.
These are usually pages that use some common widgets but don’t have
custom UI interactions.

If your page only relies on a single js module, you can use that as the
module’s entry point:

{% requirejs_main 'locations/js/widgets' %}

If your page relies on multiple modules, it still needs one entry point.
You can handle this by making a module that has no body, just a set of
dependencies, like in
gateway_list.js [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/static/sms/js/gateway_list.js]:

hqDefine("sms/js/gateway_list", [
 "hqwebapp/js/crud_paginated_list_init",
 "hqwebapp/js/bootstrap3/widgets",
], function () {
 // No page-specific logic, just need to collect the dependencies above
});

Then in your HTML page:

{% requirejs_main 'sms/js/gateway_list' %}

The exception to the above is if your page inherits from a page that
doesn’t use RequireJS. This is rare, but one example would be adding a
new page to app manager that inherits from managed_app.html.

How do I add a new dependency to an existing page?

RequireJS

Add the new module to your module’s hqDefine list of dependencies.
If the new dependency will be directly referenced in the body of the
module, also add a parameter to the hqDefine callback:

hqDefine("my_app/js/my_module", [
 ...
 "hqwebapp/js/my_new_dependency",
], function (
 ...,
 myDependency
) {
 ...
 myDependency.myFunction();
});

Non-RequireJS

In your HTML template, add a script tag to your new dependency. Your
template likely already has scripts included in a js block:

{% block js %}{{ block.super }}
 ...
 <script src="{% static 'hqwebapp/js/my_new_dependency.js' %}"></script>
{% endblock js %}

In your JavaScript file, use hqImport to get access to your new
dependency:

hqDefine("my_app/js/my_module", function () {
 ...
 var myDependency = hqImport("hqwebapp/js/my_new_dependency");
 myDependency.myFunction();
});

Do not add the RequireJS-style dependency list and parameters. It’s
easy to introduce bugs that won’t be visible until the module is
actually migrated, and migrations are harder when they have pre-existing
bugs. See the troubleshooting section of the RequireJS Migration
Guide [https://github.com/dimagi/commcare-hq/blob/master/docs/js-guide/migrating.rst#troubleshooting]
if you’re curious about the kinds of issues that crop up.

How close are we to a world where we’ll just have one set of conventions?

As above, most code is migrated, but most of the remaining areas have
significant complexity.

hqDefine.sh [https://github.com/dimagi/commcare-hq/blob/master/scripts/codechecks/hqDefine.sh]
generates metrics for the current status of the migration and locates
umigrated files. At the time of writing:

$./scripts/codechecks/hqDefine.sh

98% (825/843) of HTML files are free of inline scripts
88% (375/427) of JS files use hqDefine
59% (249/427) of JS files specify their dependencies
91% (765/843) of HTML files are free of script tags

Why aren’t we using something more fully-featured, more modern, or cooler than RequireJS?

This migration began quite a while ago. At the time, the team discussed
options and selected RequireJS. The majority of the work done to move to
RequireJS has been around reorganizing code into modules and explicitly
declaring dependencies, which would be necessary for any kind of modern
dependency management. We are not permanently wedded to RequireJS,
although it is unlikely that we will migrate to another tool while a
significant amount of code is still in the legacy state.

 Historical Background on Module Patterns

Historical Background on Module Patterns

This page discusses the evolution of HQ’s javascript module usage. For
practical documentation on writing modules, see Managing
Dependencies [https://github.com/dimagi/commcare-hq/blob/master/docs/js-guide/dependencies.rst].

We talk about JavaScript modules, but (at least pre-ES6) JavaScript has
no built in support for modules. It’s easy to say that, but think about
how crazy that is. If this were Python, it would mean your program’s
main file has to directly list all of the files that will be needed, in
the correct order, and then the files share state through global
variables. That’s insane.

And it’s also JavaScript. Fortunately, there are things you can do to
enforce and respect the boundaries that keep us sane by following one of
a number of patterns.

We’re in the process of migrating to
RequireJS [https://requirejs.org/]. Part of this process has
included developing a lighter-weight alternative module system called
hqDefine.

hqDefine serves as a stepping stone between legacy code and
requirejs modules: it adds encapsulation but not full-blown dependency
management. New code is written in RequireJS, but hqDefine exists to
support legacy code that does not yet use RequireJS.

Before diving into hqDefine, I want to talk first about the status
quo convention for sanity with no module system. As we’ll describe, it’s
a step down from our current preferred choice, but it’s still miles
ahead of having no convention at all.

The Crockford Pattern

The Crockford module pattern was popularized in Douglas Crockford’s
classic 2008 book JavaScript: The Good Parts. (At least that’s how we
heard about it here at Dimagi.) It essentially has two parts.

	The first and more important of the two parts is to limit the
namespace footprint of each file to a single variable using a
closure ((function () { /* your code here */ }());).

	The second is to pick a single global namespace that you “own” (at
Yahoo where he worked, theirs was YAHOO; ours is COMMCAREHQ)
and assign all your modules to properties (or properties of
properties, etc.) of that one global namespace.

Putting those together, it looks something like this:

MYNAMESPACE.myModule = function () {
 // things inside here are private
 var myPrivateGreeting = "Hello";
 // unless you put them in the return object
 var sayHi = function (name) {
 console.log(myPrivateGreeting + " from my module, " + name);
 };
 return {
 sayHi: sayHi,
 favoriteColor: "blue",
 };
}();

This uses a pattern so common in JavaScript that it has its own acronym
“IIFE” for “Immediately Invoked Function Expression”. By wrapping the
contents of the module in a function expression, you can use variables
and functions local to your module and inaccessible from outside it.

I should also note that within our code, we’ve largely only adopted the
first of the two steps; i.e. we do not usually expose our modules under
COMMCAREHQ, but rather as a single module MYMODULE or
MyModule. Often we even slip into exposing these “public” values
(sayHi and favoriteColor in the example above) directly as
globals, and you can see how looseness in the application of this
pattern can ultimately degenerate into having barely any system at all.
Notably, however, exposing modules as globals or even individual
functions as globals—but while wrapping their contents in a closure— is
still enormously preferable to being unaware of the convention entirely.
For example, if you remove the closure from the example above (don’t
do this), you get:

/* This is a toxic example, do not follow */

// actually a global
var myPrivateGreeting = "Hello";
// also a global
var sayHi = function (name) {
 console.log(myPrivateGreeting + " from my module, " + name);
};
// also a global
myModule = {
 sayHi: sayHi,
 favoriteColor: "blue",
};

In this case, myPrivateGreeting (now poorly named), sayHi, and
myModule would now be in the global namespace and thus can be
directly referenced or overwritten, possibly unintentionally, by any
other JavaScript run on the same page.

Despite being a great step ahead from nothing, this module pattern falls
short in a number of ways.

	It relies too heavily on programmer discipline, and has too many ways
in which it is easy to cut corners, or even apply incorrectly with
good intentions

	If you use the COMMCAREHQ.myJsModule approach, it’s easy to end
up with unpredictable naming.

	If you nest properties like COMMCAREHQ.myApp.myJsModule, you need
boilerplate to make sure COMMCAREHQ.myApp isn’t undefined. We
never solved this properly and everyone just ended up avoiding it by
not using the COMMCAREHQ namespace.

	From the calling code, especially without using the COMMCAREHQ
namespace, there’s little to cue a reader as to where a function or
module is coming from; it’s just getting plucked out of thin (and
global) air

This is why we are now using our own lightweight module system,
described in the next sesion.

hqDefine

There are many great module systems out there, so why did we write our
own? The answer’s pretty simple: while it’s great to start with
require.js or system.js, with a code base HQ’s size, getting from here
to there is nearly impossible without an intermediate step.

Using the above example again, using hqDefine, you’d write your file
like this:

// file commcare-hq/corehq/apps/myapp/static/myapp/js/myModule.js
hqDefine('myapp/js/myModule', function () {
 // things inside here are private
 var myPrivateGreeting = "Hello";
 // unless you put them in the return object
 var sayHi = function (name) {
 console.log(myPrivateGreeting + " from my module, " + name);
 };
 return {
 sayHi: sayHi,
 favoriteColor: "blue",
 };
});

and when you need it in another file

// some other file
function () {
 var sayHi = hqImport('myapp/js/myModule').sayHi;
 // ... use sayHi ...
}

If you compare it to the above example, you’ll notice that the closure
function itself is exactly the same. It’s just being passed to
hqDefine instead of being called directly.

hqDefine is an intermediate step on the way to full support for AMD
modules, which in HQ is implemented using RequireJS. hqDefine checks
whether or not it is on a page that uses AMD modules and then behaves in
one of two ways: * If the page has been migrated, meaning it uses AMD
modules, hqDefine just delegates to define. * If the page has
not been migrated, hqDefine acts as a thin wrapper around the
Crockford module pattern. hqDefine takes a function, calls it
immediately, and puts it in a namespaced global; hqImport then looks
up the module in that global.

In the first case, by handing control over to RequireJS,
hqDefine/hqImport also act as a module loader. But in the
second case, they work only as a module dereferencer, so in order to
use a module, it still needs to be included as a <script> on your
html page:

<script src="{% static 'myapp/js/myModule.js' %}"></script>

Note that in the example above, the module name matches the end of the
filename, the same name used to identify the file when using the
static tag, but without the js extension. This is necessary for
RequireJS to work properly. For consistency, all modules, regardless of
whether or not they are yet compatible with RequireJS, should be named
to match their filename.

hqDefine and hqImport provide a consistent interface for both
migrated and unmigrated pages, and that interface is also consistent
with RequireJS, making it easy to eventually “flip the switch” and
remove them altogether once all code is compatible with RequireJS.

 RequireJS Migration Guide

RequireJS Migration Guide

This page is a guide to upgrading legacy code in HQ to use RequireJS.
For information on how to work within existing code, see Managing
Dependencies [https://github.com/dimagi/commcare-hq/blob/master/docs/js-guide/dependencies.rst].
Both that page and Historical Background on Module
Patterns [https://github.com/dimagi/commcare-hq/blob/master/docs/js-guide/module-history.rst]
are useful background for this guide.

	Background: modules and pages

	Basic Migration Process

	Troubleshooting

Background: modules and pages

The RequireJS migration deals with both pages (HTML) and modules
(JavaScript). Any individual page is either migrated or not. Individual
modules are also migrated or not, but a “migrated” module may be used on
both RequireJS and non-RequireJS pages.

Logic in hqModules.js determines whether or not we’re in a RequireJS
environment and changes the behavior of hqDefine accordingly. In a
RequireJS environment, hqDefine just passes through to RequireJS’s
define. Once all pages have been migrated, we’ll be able to delete
hqModules.js altogether and switch all of the hqDefine calls to
define.

These docs walk through the process of migrating a single page to
RequireJS.

Basic Migration Process

Prerequisites: Before a page can be migrated, all of its
dependencies must already be in external JavaScript files and must be
using hqDefine. This is already true for the vast majority of code
in HQ. Pages that are not descendants of
hqwebapp/base.html [https://github.com/dimagi/commcare-hq/tree/master/corehq/apps/hqwebapp/templates/hqwebapp/base.html],
which are rare, cannot yet be migrated.

Once these conditions are met, migrating to RequireJS is essentially the
process of explicitly adding each module’s dependencies to the module’s
definition, and also updating each HTML page to reference a single
“main” module rather than including a bunch of <script> tags: 1. Add
requirejs_main tag and remove <script> tags 1. Add dependencies
1. Test

Sample PRs: - RequireJS migration:
dashboard [https://github.com/dimagi/commcare-hq/pull/19182/] is an
example of an easy migration, where all dependencies are already
migrated - RequireJS proof of
concept [https://github.com/dimagi/commcare-hq/pull/18116] migrates a
few pages (lookup tables, data dictionary) and many of our commonly-used
modules (analytics, hq.helpers.js, etc.). This also contains the
changes to hqModules.js that make hqDefine support both migrated
and unmigrated pages.

Add requirejs_main tag and remove <script> tags

The requirejs_main tag is what indicates that a page should use
RequireJS. The page should have one “main” module. Most of our pages are
already set up like this: they might include a bunch of scripts, but
there’s one in particular that handles the event handlers, bindings,
etc. that are specific to that page.

Considerations when choosing or creating a main module

	Most often, there’s already a single script that’s only included on the page you’re
migrating, which you can use as the main module.

	It’s fine for multiple pages to use the same main module
- this may make sense for closely related pages.

	Sometimes a page will have some dependencies
but no page-specific logic, so you can make a main module with an empty body, as in
invoice_main.js [https://github.com/dimagi/commcare-hq/commit/d14ba14f13d7d44e3a96940d2c72d2a1b918534d#diff-b81a32d5fee6a9c8af07b189c6a5693e].

	Sometimes you can add a dependency or two to an existing module and
then use it as your main module. This can work fine, but be cautious of
adding bloat or creating dependencies between django apps. There’s a
loose hierarchy:

	Major third-party libraries: jQuery, knockout, underscore

	hqwebapp

	analytics

	app-specific reusable modules like accounting/js/widgets [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/accounting/static/accounting/js/widgets.js], which are also sometimes used as main modules

	page-specific modules like accounting/js/subscriptions_main [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/accounting/static/accounting/js/subscriptions_main.js]

	There’s a growing convention of using the suffix _main for main modules - more specifically, for any module that runs logic in a document ready handler.

	HTML files that are only used as the base for other templates don’t need to have a main module or a requirejs_main tag.

Add {% requirejs_main 'myApp/js/myModule' %} near the top of the
template: it can go after load and extends but should appear
before content blocks. Note that it’s a module name, not a file name, so
it doesn’t include .js.

Remove other <script> tags from the file. You’ll be adding these as
dependencies to the main module.

Add dependencies

In your main module, add any dependent modules. Pre-RequireJS, a module
definition looks like this:

hqDefine("app/js/utils", function() {
 var $this = $("#thing");
 hqImport("otherApp/js/utils").doSomething($thing);
 ...
});

The migrated module will have its dependencies passed as an array to
hqDefine, and those dependencies will become parameters to the
module’s encompassing function:

hqDefine("app/js/utils", [
 "jquery",
 "otherApp/js/utils"
], function(
 $,
 otherUtils
) {
 var $this = $("#thing");
 otherUtils.doSomething($thing);
 ...
});

To declare dependencies:

	Check if the module uses jQuery, underscore, or knockout, and if so add them (their module names are all lowercase: ‘jquery’, ‘knockout’, ‘underscore’).

	Search the module for hqImport calls. Add any imported modules do the dependency list and
parameter list, and replace calls to hqImport(...) with the new parameter name.

	If you removed any <script> tags from the template
and haven’t yet added them to the dependency list, do that.

	
	Check the template’s parent template
	
	
	If the parent has a requirejs_main module, the template you’re migrating should include a dependency on that module.
	
	If the parent still has <script> tags, the template
you’re migrating should include those as dependencies. It’s usually
convenient to migrate the parent and any “sibling” templates at the same
time so you can remove the <script> tags altogether. If that isn’t
possible, make the parent check before including script tags:
{% if requirejs_main %}<script ...></script>{% endif %}

	Also check the parent’s parent template, etc. Stop once you get to
hqwebapp/base.html, hqwebapp/bootstrap3/two_column.html, or
hqwebapp/bootstrap3/base_section.html, which already support requirejs.

	Check the view for any hqwebapp
decorators [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/hqwebapp/decorators.py]
like use_jquery_ui which are used to include many common yet not
global third-party libraries. Note that you typically should not
remove the decorator, because these decorators often control both css
and js, but you do need to add any js scripts controlled by the
decorator to your js module.

	If the module uses any globals from third parties, add the script as
a dependency and also add the global to thirdPartyGlobals in
hqModules.js [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/hqwebapp/static/hqwebapp/js/hqModules.js]
which prevents errors on pages that use your module but are not yet
migrated to requirejs.

Dependencies that aren’t directly referenced as modules don’t need
to be added as function parameters, but they do need to be in the
dependency list, so just put them at the end of the list. This tends to
happen for custom knockout bindings, which are referenced only in the
HTML, or jQuery plugins, which are referenced via the jQuery object
rather than by the module’s name.

Test

It’s often prohibitively time-consuming to test every JavaScript
interaction on a page. However, it’s always important to at least load
the page to check for major errors. Beyond that, test for weak spots
based on the changes you made:

	If you replaced any hqImport calls
that were inside of event handlers or other callbacks, verify that those
areas still work correctly. When a migrated module is used on an
unmigrated page, its dependencies need to be available at the time the
module is defined. This is a change from previous behavior, where the
dependencies didn’t need to be defined until hqImport first called
them. We do not currently have a construct to require dependencies after
a module is defined.

	The most likely missing dependencies are the
invisible ones: knockout bindings and jquery plugins like select2. These
often don’t error but will look substantially different on the page if
they haven’t been initialized.

	If your page depends on any third-party
modules that might not yet be used on any RequireJS pages, test them.
Third-party modules sometimes need to be upgraded to be compatible with RequireJS.

	If your page touched any javascript modules that are used
by pages that haven’t yet been migrated, test at least one of those
non-migrated pages.

	Check if your base template has any descendants that should also be migrated.

Troubleshooting

Troubleshooting migration issues

When debugging RequireJS issues, the first question is whether or not
the page you’re on has been migrated. You can find out by checking the
value of window.USE_REQUIREJS in the browser console.

Common issues on RequireJS pages:

	JS error like
$(...).something is not a function: this indicates there’s a missing
dependency. Typically “something” is either select2 or a jQuery UI
widget like datepicker. To fix, add the missing dependency to the
module that’s erroring.

	Missing functionality, but no error: this
usually indicates a missing knockout binding. To fix, add the file
containing the binding to the module that applies that binding, which
usually means adding hqwebapp/js/knockout_bindings.ko to the page’s main module.

	JS error like something is not defined where
something is one of the parameters in the module’s main function:
this can indicate a circular dependency. This is rare in HQ. Track down
the circular dependency and see if it makes sense to eliminate it by
reorganizing code. If it doesn’t, you can use
hqRequire [https://github.com/dimagi/commcare-hq/commit/15b436f77875f57d1e3d8d6db9b990720fa5dd6f#diff-73c73327e873d0e5f5f4e17c3251a1ceR100]
to require the necessary module at the point where it’s used rather than
at the top of the module using it.

	JS error like x is not defined
where x is a third-party module, which is the dependency of another
third party module y and both of them are non RequireJs modules. You
may get this intermittent error when you want to use y in the
migrated module and x and y does not support
AMD [https://requirejs.org/docs/whyamd.html]. You can fix this using
shim [https://www.devbridge.com/articles/understanding-amd-requirejs#To-shim-or-not-to-shim]
or
hqRequire [https://github.com/dimagi/commcare-hq/commit/15b436f77875f57d1e3d8d6db9b990720fa5dd6f#diff-73c73327e873d0e5f5f4e17c3251a1ceR100].
Example [https://github.com/dimagi/commcare-hq/pull/21604/files#diff-cf0be09b7db821551ac73dc3a9829e5eR24]
of this could be d3 and nvd3

Common issues on non-RequireJS pages:

	JS error like
something is not defined where something is a third-party
module: this can happen if a non-RequireJS page uses a RequireJS module
which uses a third party module based on a global variable. There’s some
code that mimicks RequireJS in this situation, but it needs to know
about all of the third party libraries. To fix, add the third party
module’s global to thirdPartyMap in
hqModules.js [https://github.com/dimagi/commcare-hq/commit/85286460a8b08812f82d6709c161b259e77165c4#diff-73c73327e873d0e5f5f4e17c3251a1ceR57].

	JS error like something is not defined where something is an
HQ module: this can happen when script tags are ordered so that a module
appears before one of its dependencies. This can happen to migrated
modules because one of the effects of the migration is to typically
import all of a module’s dependencies at the time the module is defined,
which in a non-RequireJS context means all of the dependencies’ script
tags must appear before the script tags that depend on them. Previously,
dependencies were not imported until hqImport was called, which
could be later on, possibly in an event handler or some other code that
would never execute until the entire page was loaded. To fix, try
reordering the script tags. If you find there’s a circular dependency,
use hqRequire as described above.

Troubleshooting the RequireJS build process

Tactics that can help track down problems with the RequireJS build
process, which usually manifest as errors that happen on staging but not
locally:

	To turn off minification, you can run build_requirejs with the
--no_optimize option. This also makes the script run much faster.

	To stop using the CDN, comment out resource_versions.js in
hqwebapp/base.html [https://github.com/dimagi/commcare-hq/pull/18116/files#diff-1ecb20ffccb745a5c0fc279837215a25R433].
Note that this will still fetch a few files, such as hqModules.js
and {bootstrap_version}/requirejs_config.js, from the CDN. To turn off the CDN
entirely, comment out all of the code that manipulates
resource_versions in
build_requirejs [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/hqwebapp/management/commands/build_requirejs.py].

	To mimic the entire build process locally:

	Collect static files: manage.py collectstatic --noinput This
is necessary if you’ve made any changes to {bootstrap_version}/requirejs.yml or
{bootstrap_version}/requirejs_config.js, since the build script pulls these files
from staticfiles, not corehq.

	Compile translation files: manage.py compilejsi18n

	Run the build script: manage.py build_requirejs --local

	This will overwrite your local versions of
{bootstrap_version}/requirejs_config.js and resource_versions.js, so be
cautious running it if you have uncommitted changes.

	This will also copy the generated bundle files from
staticfiles back into corehq.

	If you don’t need to test locally but just want to see the
results of dependency tracing, leave off the --local. A
list of each bundle’s contents will be written to
staticfiles/build.txt, but no files will be added to or
overwritten in corehq.

 Third-Party Libraries

Third-Party Libraries

This page discusses when to use the major, UI-framework-level, libraries
we depend on, along with a few common code conventions for these
libraries.

jQuery

jQuery [https://jquery.com/] is available throughout HQ. We use
jQuery 3.

Prefix jQuery variables with a $:

var $rows = $("#myTable tr"),
 firstRow = $rows[0];

Underscore

Underscore [http://underscorejs.org/] is available throughout HQ for
utilities.

Knockout

Knockout [http://knockoutjs.com/] is also available throughout HQ
and should be used for new code. We use Knockout 3.0.

Prefix knockout observables with an o:

var myModel = function (options) {
 var self = this;
 self.type = options.type;
 self.oTotal = ko.observable(0);
};

…so that in HTML it’s apparent what you’re dealing with:

<input data-bind="visible: type === 'large' && oTotal() > 10, value: oTotal" />

Current total: </div>

Backbone and Marionette

Backbone [http://backbonejs.org/] is used in Web Apps. It should
not be used outside of Web Apps. Within Web Apps, we use
Marionette [http://marionettejs.com/] for most UI management.

Yarn

We use yarn [https://classic.yarnpkg.com/en/] for package
management, so new libraries should be added to
package.json [https://github.com/dimagi/commcare-hq/blob/master/package.json].

 External Packages

External Packages

This page discusses how to add new dependencies with yarn. Be cautious
of adding new dependencies, which introduce an indefinite maintenance
burden.

Yarn

Yarn can manage components that contain HTML, CSS, JavaScript, fonts or
even image files. Yarn doesn’t concatenate or minify code or do anything
else - it just installs the right versions of the packages you need and
their dependencies.

Yarn packages

Yarn packages can be installed from a variety of sources, including a
registered yarn package (a repo that has a package.json file
defined), a Github shorthand (<user or org>/<repo_name>), a Github
URL, or just a plain URL that points to a javascript file.

When you install a package, it will be installed in a directory called
node_modules. For example if you were to run yarn add jquery,
you would find a directory node_modules/jquery.

Specifying packages in package.json

To ensure a package gets installed for a project, you must specify it in
the package.json file. This is equivalent to the
requirements.txt file for pip. Similar to pip install for
python, for yarn, use yarn upgrade When specifying a yarn package
you can use many techniques. Here are a few examples:

// Installs the jquery package at version 1.11.1 to `node_modules/jquery`
"jquery": "1.11.1"

// Because `jquery-other` does not refer to a yarn package we must specify it in the
// versioning. Yarn will install this package to `node_modules/jquery-other`.
"jquery-other": "npm:jquery#1.2.0"

// This will install jquery from a github hash
"jquery-github": "jquery/jquery#44cb97e0cfc8d3e62bef7c621bfeba6fe4f65d7c"

To generalize, an install declaration looks like this:

<name>:<package>#<version>

Where <package> is optional if <name> == <package>. A package
can be any of these things:

	Type

	Example

	Registered package name

	jquery

	Git endpoint

	https://github.com/user/package.git

	Git shorthand

	user/repo

	URL

	http://example.com/script.js

There are more, but those are the important ones. Find the others
here [https://classic.yarnpkg.com/en/docs/package-json]

A version can be any of these things:

	Type

	Example

	semver

	#1.2.3

	version range

	#~1.2.3

	Git tag

	#<git tag>

	Git commit

	#<commit sha>

	Git branch

	#<branch>

Using Yarn packages in HQ

To use these packages in HQ you need to find where the js file you are
looking for. In the case of jquery, it stores the minified jquery
version in jquery/dist/jquery.min.js:

<script src="{% static 'jquery/dist/jquery.min.js' %}"></script>

Note: The node_modules bit is intentionally left off the path.
Django already knows to look in that folder.

 Integration Patterns

Integration Patterns

Sometimes you want to have at your fingertips in client-side code things
that live primarily live on the server. This interface between
JavaScript code and the data and systems we take for granted on the
server can get messy and ugly.

This section lays out some conventions for getting the data you need to
your JavaScript code and points you to some frameworks we’ve set up for
making particularly common things really easy.

JavaScript in Django Templates

The initial_page_data template tag and initial_page_data.js
library are for passing generic data from python to JavaScript.

In a Django template, use initial_page_data to register a variable.
The data can be a template variable or a constant.

{% initial_page_data 'renderReportTables' True %}
{% initial_page_data 'defaultRows' report_table.default_rows|default:10 %}
{% initial_page_data 'tableOptions' table_options %}

Your JavaScript can then include
<script src="{% static 'hqwebapp/js/initial_page_data.js' %}"></script>
and access this data using the same names as in the Django template:

var get = hqImport('hqwebapp/js/initial_page_data').get,
 renderReportTables = get('renderReportTables'),
 defaultRows = get('defaultRows'),
 tableOptions = get('tableOptions');

When your JavaScript data is a complex object, it’s generally cleaner to
build it in your view than to pass a lot of variables through the Django
template and then build it in JavaScript. So instead of a template with

{% initial_page_data 'width' 50 %}
{% initial_page_data 'height' 100 %}
{% initial_page_data 'thingType' type %}
{% if type == 'a' %}
 {% initial_page_data 'aProperty' 'yes' %}
{% else %}
 {% initial_page_data 'bProperty' 'yes' %}
{% endif %}

that then builds an object in JavaScript, when building your view
context

options = {
 'width': 50,
 'height': 100,
 'thingType': type,
})
if type == 'a':
 options.update({'aProperty': 'yes'})
else:
 options.update({'bProperty': 'yes'})
context.update({'options': options})

and then use a single {% initial_page_data 'thingOptions' %} in your
Django template.

Note that the initial_page_data approach uses a global namespace (as
does the inline JavaScript approach). That is a problem for another day.
An error will be thrown if you accidentally register two variables with
the same name with initial_page_data.

Initial Page Data in Tests

Since initial page data contains server-provided data, JavaScript tests
relying on it may need to fake it. The register method allows
setting initial page data in JavaScript instead of in a Django template:

hqDefine("my_app/js/spec/my_test", ["hqwebapp/js/initial_page_data"], function (initialPageData) {
 initialPageData.register("apps", [{
 "_id": "my-app_id",
 }])
 ...
});

Partials

The initial page data pattern can get messy when working with partials:
the initial_page_data tag generally needs to go into a base template
(a descendant of
hqwebapp/base.html [https://github.com/dimagi/commcare-hq/tree/master/corehq/apps/hqwebapp/templates/hqwebapp/base.html]),
not the partial template, so you can end up with tags in a template - or
multiple templates - not obviously related to the partial.

An alternative approach to passing server data to partials is to encode
is as data- attributes. This can get out of hand if there’s a lot of
complex data to pass, but it often works well for partials that define a
widget that just needs a couple of server-provided options. Report
filters typically use this approach.

I18n

Just like Django lets you use ugettext('...') in python and
{% trans '...' %}, you can also use gettext('...') in any
JavaScript.

For any page extending our main template, there’s nothing further you
need to do to get this to work. If you’re interested in how it works,
any page with <script src="{% statici18n LANGUAGE_CODE %}"></script>
in the template will have access to the global django module and its
methods.

If djangojs.js is missing, you can run ./manage.py compilejsi18n
to regenerate it.

For more on Django JS I18n, check out
https://docs.djangoproject.com/en/1.7/topics/i18n/translation/.

Django URLs

Just like you might use {% url ... %} to resolve a URL in a template

Widget Info

(or reverse(...) to resolve a URL in python), you can use
{% registerurl %} to make a URL available in javascript, through the
initial_page_data.reverse utility (modeled after Django’s python
reverse function).

in template

{% registerurl 'all_widget_info' domain %}

in js

var initial_page_data = hqImport('hqwebapp/js/initial_page_data');

$.get(initial_page_data.reverse('all_widget_info')).done(function () {...});

As in this example, prefer inlining the call to
initial_page_data.reverse over assigning its return value to a
variable if there’s no specific motivation for doing so.

In addition, you may keep positional arguments of the url unfilled by
passing the special string '---' to {% registerurl %} and
passing the argument value to initial_page_data.reverse instead.

in template

{% registerurl 'more_widget_info' domain '---' %}

in js

var initial_page_data = hqImport('hqwebapp/js/initial_page_data');
var widgetId = 'xxxx';
$.get(initial_page_data.reverse('more_widget_info', widgetId)).done(function () {...});

registerurl is essentially a special case of initial page data, and
it gets messy when used in partials in the same way as initial page
data. Encoding a url in a DOM element, in an attribute like
data-url, is sometimes cleaner than using the registerurl
template tag. See
partials [https://github.com/dimagi/commcare-hq/blob/master/docs/js-guide/integration-patterns.rst#partials]
above for more detail.

Like initial page data, registerurl can be used in JavaScript tests
directly:

hqDefine("my_app/js/spec/my_test", ["hqwebapp/js/initial_page_data"], function (initialPageData) {
 initialPageData.registerUrl("apps", [{
 "build_schema": "/a/---/data/export/build_full_schema/",
 }])
 ...
});

Toggles and Feature Previews

In python you generally have the ability to check at any point whether a
toggle or feature preview is enabled for a particular user on a
particular domain.

In JavaScript it’s even easier, because the user and domain are preset
for you. To check, for example, whether the IS_DEVELOPER toggle is
enabled, use

COMMCAREHQ.toggleEnabled('IS_DEVELOPER')

and to check whether the 'ENUM_IMAGE' feature preview is enabled,
use

COMMCAREHQ.previewEnabled('ENUM_IMAGE')

and that’s pretty much it.

On a page that doesn’t inherit from our main templates, you’ll also have
to include

<script src="{% static 'hqwebapp/js/hqModules.js' %}"></script>
<script src="{% static 'hqwebapp/js/toggles.js' %}"></script>
<script src="{% static 'style/js/bootstrap3/main.js' %}"></script>

Domain Privileges

In python you generally have the ability to check at any point whether a
domain has a particular privilege.

In JavaScript, all privileges for the current domain are available and
easy to check. For example, you can check whether the domain has the export_ownership
privilege by including the privileges JS module

hqDefine('your/js/module', [
 ...
 'hqwebapp/js/privileges'
], function (
 ...
 privileges
) {...};

and then checking for the privilege using

var hasPrivilege = privileges.hasPrivilege('export_ownership')

On a page that doesn’t inherit from our main templates, you’ll also have
to include

<script src="{% static 'hqwebapp/js/privileges.js' %}"></script>

Remote Method Invocation

We use our own dimagi/jquery.rmi library to post ajax calls to
methods in Django Views that have been tagged to allow remote method
invocation. Each RMI request creates a Promise for handling the server
response.

dimagi/jquery.rmi was modeled after Djangular’s
RMI [http://django-angular.readthedocs.org/en/latest/remote-method-invocation.html]).
Since that project is now dead we have internalized the relevant parts
of it as corehq.util.jqueryrmi.

The README for
dimagi/jquery.rmi [http://github.com/dimagi/jquery.rmi] has excellent
instructions for usage.

The notifications app is a good example resource to study how to use
this library:

	NotificationsServiceRMIView is an example of the type of view
that can accept RMI posts.

	NotificationsService.ko.js is an example of the client-side
invocation and handling.

	style/bootstrap3/base.html has a good example for usage of
NotificationsService.

<script type="text/javascript" src="{% static '/notifications/js/NotificationsService.ko.js' %}"></script>
<script type="text/javascript">
 $(function () {
 $('#js-settingsmenu-notifications').startNotificationsService('{% url 'notifications_service' %}');
 });
</script>

NOTE: It is not always the case that the RMI view is a separate view
from the one hosting the client-side requests and responses. More often
it’s the same view, but the current examples are using Angular.js as of
this writing.

 Security

Security

JavaScript and HTML code is subject to XSS
attacks [https://owasp.org/www-community/attacks/xss/] if user input
is not correctly sanitized.

Python

Read the Django docs on
XSS [https://docs.djangoproject.com/en/4.0/topics/security/#cross-site-scripting-xss-protection]

We occasionally use the safe filter within templates and the
mark_safe function in views.

Read the docs on Django’s
html [https://docs.djangoproject.com/en/4.0/ref/utils/#module-django.utils.html]
and
safestring [https://docs.djangoproject.com/en/4.0/ref/utils/#module-django.utils.safestring]
utils.

JavaScript templates

HQ uses Underscore templates [http://underscorejs.org/#template]
templates in some areas. Default to using <%- ... %> syntax to
interpolate values, which properly escapes.

Any value interpolated with <%= ... %> must be previously escaped.

JavaScript code

In Knockout, be sure to escape any value passed to an html
binding [https://knockoutjs.com/documentation/html-binding.html].

The DOMPurify [https://github.com/cure53/DOMPurify] library is
available to sanitize user input. DOMPurify works by stripping
potentially malicious markup. It does not escape input.

 Static Files

Static Files

Static files include any css, js, and image files that are not
dynamically generated during runtime. css is typically compiled from
less and minified prior to server runtime. js files are
collected, combined, and minified prior to server runtime. As of this
writing we don’t compile our JavaScript from a higher level scripting
language. Image files generally stay as-is. The only ‘dynamic’ images
come from file attachments in our database.

Due to their static natures, the primary objective for static files is
to make as few requests to them during page load, meaning that our goal
is to combine static files into one larger, minified file when possible.
An additional goal is to ensure that the browser caches the static files
it is served to make subsequent page loads faster.

Collectstatic

Collectstatic is a Django management command that combs through each
app’s static directory and pulls all the static files together under
one location, typically a folder at the root of the project.

During deploy, manage.py collectstatic --noinput -v 0 is executed
during the __do_collecstatic phase. The exact static files directory
is defined by settings.STATIC_ROOT, and the default is named
staticfiles.

Since Django Compressor is run after collectstatic, this movement of
less files poses an issue for files that reference relative imports
outside of the app’s static directory. For instance, style’s
variables.less references bootstrap/variables.less, which is in
the node_modules directory.

In order to fix the moved references, it is required that
manage.py fix_less_imports_collectstatic is run after
collectstatic.

Once you run this, it’s a good idea to regenerate static file
translations with manage.py compilejsi18n.

In short, before testing anything that intends to mimic production
static files. First run:

manage.py collectstatic
manage.py fix_less_imports_collectstatic
manage.py compilejsi18n

Compression

Django
Compressor [https://django-compressor.readthedocs.org/en/latest/] is
the library we use to handle compilation of less files and the
minification of js and compiled css files.

Compressor blocks are defined inside the
{% compress css %}{% endcompress %} or
{% compress js %}{% endcompress %} blocks in Django templates. Each
block will be processed as one unit during the different steps of
compression.

Best practice is to wrap all script tags and stylesheet links in
compress blocks, in order to reduce file size and number of server
requests made per page.

There are three ways of utilizing Django Compressor’s features:

1. Dev Setup: Server-side on the fly less compilation

This does not combine any files in compress blocks, and as no effect on
js blocks. This is the default dev configuration.

How is this enabled?

Make sure your localsettings.py file has the following set:

COMPRESS_ENABLED = False
COMPRESS_OFFLINE = False

2. Production-like Setup: Compress Offline

Pros:

	Closest mirror to production’s setup.

	Easy to flip between Option 2 and Option 3

Cons:

	If you’re doing a lot of front end changes, you have to re-run
collectstatic, fix_less_imports_collectstatic, and compress
management commands and restart the server AFTER each change. This will
be a pain!

NOTE: If you are debugging OfflineCompressionErrors from
production or staging, you should be compressing offline locally to
figure out the issue.

How to enable?

Do everything from Option 2 for LESS compilers setup.

Have the following set in localsettings.py:

COMPRESS_ENABLED = True
COMPRESS_OFFLINE = True

Notice that COMPRESS_MINT_DELAY, COMPRESS_MTIME_DELAY, and
COMPRESS_REBUILD_TIMEOUT are not set.

Map Files

#todo

CDN

A content delivery network or content distribution network (CDN) is a
globally distributed network of proxy servers deployed in multiple data
centers. The goal of a CDN is to serve content to end-users with high
availability and high performance. CDNs serve a large fraction of the
Internet content today, including web objects (text, graphics and
scripts), downloadable objects (media files, software, documents),
applications (e-commerce, portals).

CDN for HQ

CommCare HQ uses a CloudFront as CDN to deliver its staticfiles.
CloudFront is configured in the Amazon
Console [https://us-west-2.console.aws.amazon.com/console/home]. You
can find credentials in the dimagi shared keypass under AWS Dev Account.
CloudFront provides us with two URLs. A CDN URL for staging and one for
production. On compilation of the static files, we prefix the static
file with the CloudFront URL. For example:

Path to static file
<script src="/static/js/awesome.js"/>
This gets converted to
<script src="<some hash>.cloudfront.net/static/js/awesome.js"/>

When a request gets made to the cloudfront URL, amazon serves the page
from the nearest edge node if it has the file cached. If it doesn’t have
the file, it will go to our server and fetch the file. By default the
file will live on the server for 24 hours.

Cache Busting

In order to ensure that the CDN has the most up to date version, we
append a version number to the end of the javascript file that is a sha
of the file. This infrastructure was already in place for cache busting.
This means that awesome.js will actually be rendered as
awesome.js?version=123. The CDN recognizes this as a different static file
and then goes to our nginx server to fetch the file.

This cache busting is primarily handled by the resource_static
management command, which runs during deploy. This command hashes the
contents of every static file in HQ and stores the resulting hash codes
in a YAML file, resource_versions.yml. This file is also updated by
the build_requirejs command during deploy, adding versions for
RequireJS bundle files - these files are auto-generated by
build_requirejs, so they don’t exist yet when resource_static
runs. The static template tag in hq_shared_tags then handles
appending the version number to the script tag’s src.

Note that this cache busting is irrelevant to files that are contained
within a compress block. Each compressed block generated a file that
contains a hash in the filename, so there’s no need for the URL
parameter.

 Inheritance

Inheritance

We use a functional approach to inheritance, in this style:

var animal = function(options) {
 var self = {},
 location = 0,
 speed = 5;
 self.name = options.name;

 self.run = function(time) {
 location += time * speed;
 };

 self.getLocation = function() {
 return location;
 }

 return self;
};

var bear = animal({ name: 'Oso' });
bear.run(1);
// bear.name => "Oso"
// bear.getLocation() => 5
// bear.location => undefined

var bird = function(options) {
 var self = animal(options);

 self.fly = function(time) {
 // Flying is fast
 self.run(time);
 self.run(time);
 };

 return self;
};

var duck = bird({ name: 'Pato' });
duck.run(1);
duck.fly(1);
// duck.name => "Pato"
// duck.getLocation => 15

Note that: - A class-like object is defined as a function that returns
an instance. - The instance is initialized to an empty object, or to an
instance of the parent class if there is one. - Create a private member
by adding a local variable. - Create a public member by attaching a
variable to the instance that will be returned. - Class name are
lowerFirstCamelCase, distinct from UpperFirstCamelCase which is
used for built-in objects like Date that require the new
operator.

Avoid prototypical inheritance, which does not support information
hiding as well.

Avoid classical-style inheritance (the new operator) because it also
isn’t great for information hiding and because forgetting to use new
when creating an object can lead to nasty bugs.

Our approach to inheritance is heavily influenced by Crockford’s
Javascript: The Good Parts, which is good background reading.

Moving from classical inheritance to functional

Most of our code uses functional inheritance, while some of it uses
classical inheritance. We don’t have an active plan to replace all
classical inheritance with functional, but if you have a reason to chang
a particular classical class, it can often be converted to a functional
style fairly mechanically:

	In the class definition, make sure the instance is initialized to an
empty object instead of this. There’s usually a
var self = this; line that should be switched to
var self = {};

	Throughout the class definition, make sure the code is consistently
using self instead of this

	Make sure the class definition returns self at the end (typically
it won’t return anything)

	Update class name from UpperCamelCase to lowerCamelCase

	Remove new operator from anywhere the class is instantiated

Sample pull
request [https://github.com/dimagi/commcare-hq/pull/19938]

Code that actually manipulates the prototype needs more thought.

 Code Review

Code Review

All of the general standards of code review apply equally to JavaScript.
See Code Contributions and Review [https://github.com/dimagi/open-source/blob/master/docs/code_review.md]
for general guidance on code review. This document summarizes points to keep
in mind specifically when reviewing JavaScript in CommCare HQ.

Language

Make any user-facing language as clear as possible.

	Proofread it.

	Limit jargon and overly technical language (using pre-existing HQ terms is okay)

	Don’t let internal names bleed into user-facing content

	“Lookup tables” not “fixtures”

	“Web apps” not “cloudcare”

	“Mobile worker” not “mobile user” or “CommCare User”

	etc.

Translations

	All user-facing text should be translated with gettext, which is globally available in HQ JavaScript.

	Strings that contain variables should use _.template as described in the
translations docs [https://commcare-hq.readthedocs.io/translations.html#tagging-strings-in-javascript].

Time Zones

	All user-facing dates and times should be displayed in a time zone that will make sense for the user. Look at
usage of UserTime and more generally at corehq.util.timezones.

Security

	Use <%- ... %> in Underscore templates to HTML escape values.

	Use DomPurify to HTML escape user input that will be displayed, but not in a template.

Delays and Errors

	Any potentially long-running requests, including all AJAX requests, should use a spinner or similar indicator.

	jQuery: Use disableButton to disable & add a spinner, then enableButton when the request succeeds or fails.

	Knockout: These usally need custom-but-usually-short disable/spinner code, probably using a boolean observable
and a disable binding in the HTML.

	There may not be spinner/disable code if there’s an HTML form and it uses the disable-on-submit class.

	Any AJAX requests should have an error callback.

	This usually doesn’t need to be fancy, just to display a generic “Try again”-type error near the action that
was taken. Most requests aren’t error-prone, this is typically just to defend against generic platform
errors like the user getting logged out.

Coding Standards

Again, standards in JavaScript are largely the same as in Python. However, there are a few issues that are either
specific to JavaScript or more frequently arise in it:

	Naming. JavaScript is often messy because it sometimes uses server naming conventions, which are different, for server
data. Push the author to leave the code better than they found it. Don’t allow the same identifier to be used
with different capitalizations, e.g., firstName and first_name in the same file. Find a synonym for one
of them.

	JavaScript should be enclosed in modules and those modules should explicitly declare dependencies, as in the
first code block here [https://commcare-hq.readthedocs.io/js-guide/dependencies.html#how-do-i-know-whether-or-not-im-working-with-requirejs]. Exceptions are app manager, reports, and web apps.

	Avoid long lists of params. Prefer kwargs-style objects and use assert_properties to verify they contain the
expected options.

	Make sure any js access of initial page data [https://commcare-hq.readthedocs.io/js-guide/integration-patterns.html#javascript-in-django-templates] is guaranteed not to happen until the page is fully loaded.
Not doing so risks a
race condition that will break the page. Keep an eye out that any new initial page data accessed in js is made
available in HTML (usually not an issue unless the author didn’t test at all).

	Prefer knockout to jQuery. Avoid mixing knockout and jQuery. Recall that you don’t have to solve the author’s
problems. It’s enough to say, “This is a lot of jQuery, have you considered making a knockout model?”

 Testing

Testing

Best Practices

Writing good tests in javascript is similar to writing good tests in any
other language. There are a few best practices that are more pertinent
to javascript testing.

Mocking

When mocks are needed, use the sinon.js framework.

Setup

In order to run the javascript tests you’ll need to install the required
npm packages:

$ yarn install --frozen-lockfile

It’s recommended to install grunt globally in order to use grunt from
the command line:

$ npm install -g grunt
$ npm install -g grunt-cli

In order for the tests to run the development server needs to be
running on port 8000.

Test Organization

HQ’s JavaScript tests are organized around django apps. Test files are
stored in the django app they test. Tests infrastructure is stored in
its own django app, mocha.

Most django apps with JavaScript tests have a single set of tests. These
will have an HTML template in
corehq/apps/<app_name>/templates/<app_name>/spec/mocha.html, which
inherits from the mocha app’s base
template [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/mocha/templates/mocha/base.html].
Test cases are stored in
corehq/apps/<app_name>/static/<app_name>/js/spec/<test_suite_name>_spec.js

A few django apps have multiple test “configs” that correspond to
different templates. Each config template will be in
corehq/apps/<app>/templates/<app>/spec/<config>/mocha.html and its
tests will be in
corehq/apps/<app_name>/static/<app_name>/<config>/spec/. These are
defined in Gruntfile.js as <app_name>/<config_name>, e.g.,
cloudcare/form_entry.

Dependency Management

Tests are one of the few areas of HQ’s JavaScript that do not use
RequireJS. Instead, dependencies are included in the relevant HTML
template as script tags.

Running tests from the command line

To run the javascript tests for a particular app run:

$ grunt test:<app_name> // (e.g. grunt test:app_manager)

To list all the apps available to run:

$ grunt list

Running tests from the browser

To run a django app’s tests from the browser, visit this url:

http://localhost:8000/mocha/<app_name>

To run a specific config:

http://localhost:8000/mocha/<app_name>/<config> // (e.g. http://localhost:8000/mocha/cloudcare/form_entry)

Adding a new app or config

There are three steps to adding a new app:

	Add the django app name to the Gruntfile.js file.

	Create a mocha template in
corehq/apps/<app>/templates/<app>/spec/mocha.html to run tests.
See an example on
here [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/app_manager/templates/app_manager/spec/mocha.html].

	Create tests that are included in the template in
corehq/apps/<app>/static/<app>/spec/

To add an additional config to an existing app, specify the app in the
Gruntfile.js like this:

<app_name>/<config> // (e.g. cloudcare/form_entry)

The template and tests then also being in config-specific directories,
as described above.

 Linting

Linting

Our recommended linter is ESLint [http://eslint.org/]. This is what
our Stickler
configuration [https://github.com/dimagi/commcare-hq/blob/679d3ca7cf81d7808b6792a72046cedd891ed62f/.stickler.yml#L10]
uses.

Running ESLint locally

The best time to find out about a code error (or stylistic faux pas) is
when you type it out. For this reason, you should run a linter locally.

Install it through npm:
$ npm install -g eslint

Try it out locally if you like
$ eslint path/to/file.js

PyCharm

PyCharm has different ways of setting this up depending on the version.

	Instructions for
2016.1 [https://www.jetbrains.com/help/pycharm/2016.1/using-javascript-code-quality-tools.html?origin=old_help#ESLint]

	Instructions for
2017.3 [https://www.jetbrains.com/help/pycharm/2017.3/eslint.html]

If you get errors you may need to downgrade ESLint to version
5 [https://intellij-support.jetbrains.com/hc/en-us/community/posts/360004195120-TypeError-this-cliEngine-is-not-a-constructor].
This appears to be an issue on all versions of PyCharm prior to
2019.1.3.

Vim

NeoMake

Install NeoMake [https://github.com/benekastah/neomake] if you
haven’t already.

let g:neomake_javascript_enabled_makers = ['eslint']

Syntastic

Install syntastic [https://github.com/scrooloose/syntastic] if you
haven’t already.

let g:syntastic_javascript_checkers = ['eslint']

Configuring our lint rules

The
.eslintrc.js [https://github.com/dimagi/commcare-hq/blob/master/.eslintrc.js]
file in the root of the commcare-hq repository defines the rules to
check.

While this configuration is fairly stable, see the
docs [https://eslint.org/docs/user-guide/configuring#configuring-rules]
for help should you need to update it.

Looking up rules

Let’s say you ran eslint on this code

var obj = {
 foo: 3,
 foo: 5
};

You’d probably get an error like: > Duplicate key ‘foo’. (no-dupe-keys)

The rule then is no-dupe-keys. You can look it up on the rules
page [http://eslint.org/docs/rules/] for a description.

Adding an exception

A foolish consistency is the hobgoblin of simple minds. Sometimes it IS
okay to use console.log. Here are a couple ways to say “yes, this IS
okay”.

console.log('foo'); // eslint-disable-line no-console

// eslint-disable-next-line no-console
console.log('foo');

See the
docs [https://eslint.org/docs/user-guide/configuring#disabling-rules-with-inline-comments]
for more options to disable rules for on a case by case basis.

 Testing infrastructure

Testing infrastructure

Tests are run with nose [https://nose.readthedocs.io/en/latest/man.html].
Unlike many projects that use nose, tests cannot normally be invoked with the
nosetests command because it does not perform necessary Django setup.
Instead, tests are invoked using the standard Django convention:
./manage.py test.

Nose plugins

Nose plugins are used for various purposes, some of which are optional and can
be enabled with command line parameters or environment variables. Others are
required by the test environment and are always enabled. Custom plugins are
registered with django-nose [https://github.com/dimagi/django-nose] via the
NOSE_PLUGINS setting in
testsettings [https://github.com/dimagi/commcare-hq/blob/master/testsettings.py].

One very important always-enabled plugin applies
patches [https://github.com/dimagi/commcare-hq/blob/master/corehq/tests/noseplugins/patches.py]
before tests are run. The patches remain in effect for the duration of the test
run unless utilities are provided to temporarily disable them. For example,
sync_users_to_es [https://github.com/dimagi/commcare-hq/blob/master/corehq/util/es/testing.py]
is a decorator/context manager that enables syncing of users to ElasticSearch
when a user is saved. Since this syncing involves custom test setup not done by
most tests it is disabled by default, but it can be temporarily enabled using
sync_users_to_es in tests that need it.

Testing best practices

Test set up

Doing a lot of work in the setUp call of a test class means that it will be run on every test. This
quickly adds a lot of run time to the tests. Some things that can be easily moved to setUpClass are domain
creation, user creation, or any other static models needed for the test.

Sometimes classes share the same base class and inherit the setUpClass function. Below is an example:

BAD EXAMPLE

class MyBaseTestClass(TestCase):

 @classmethod
 def setUpClass(cls):
 ...

class MyTestClass(MyBaseTestClass):

 def test1(self):
 ...

class MyTestClassTwo(MyBaseTestClass):

 def test2(self):
 ...

In the above example the setUpClass is run twice, once for MyTestClass and once for MyTestClassTwo. If setUpClass has expensive operations, then it’s best for all the tests to be combined under one test class.

GOOD EXAMPLE

class MyBigTestClass(TestCase):

 @classmethod
 def setUpClass(cls):
 ...

 def test1(self):
 ...

 def test2(self):
 ...

However this can lead to giant Test classes. If you find that all the tests in a package or module are sharing
the same set up, you can write a setup method for the entire package or module. More information on that can be found here [http://pythontesting.net/framework/nose/nose-fixture-reference/#package].

Test tear down

It is important to ensure that all objects you have created in the test database are deleted when the test
class finishes running. This often happens in the tearDown method or the tearDownClass method.
However, unneccessary cleanup “just to be safe” can add a large amount of time onto your tests.

Using SimpleTestCase

The SimpleTestCase runs tests without a database. Many times this can be achieved through the use of the mock
library [http://www.voidspace.org.uk/python/mock/]. A good rule of thumb is to have 80% of your tests be unit
tests that utilize SimpleTestCase, and then 20% of your tests be integration tests that utilize the
database and TestCase.

CommCare HQ also has some custom in mocking tools.

	Fake Couch [https://github.com/dimagi/fakecouch] - Fake implementation of CouchDBKit api for testing purposes.

	ESQueryFake [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/es/fake/es_query_fake.py] - For faking ES queries.

Squashing Migrations

There is overhead to running many migrations at once. Django allows you to squash migrations which will help
speed up the migrations when running tests.

 Analyzing Test Coverage

Analyzing Test Coverage

Test coverage is computed on travis using coverage.py and sent to codecov for
aggregation and analysis.

This page goes over some basic ways to analyze code coverage locally.

Using coverage.py

First thing is to install the coverage.py library:

$ pip install coverage

Now you can run your tests through the coverage.py program:

$ coverage run manage.py test commtrack

This will create a binary commcare-hq/.coverage file (that is already
ignored by our .gitignore) which contains all the magic bits about
what happened during the test run.

You can be as specific or generic as you’d like with what selection of tests
you run through this. This tool will track which lines of code in the app
have been hit during execution of the tests you run. If you’re only looking
to analyze (and hopefully increase) coverage in a specific model or utils
file, it might be helpful to cut down on how many tests you’re running.

Make an HTML view of the data

The simplest (and probably fastest) way to view this data is to build
an HTML view of the code base with the coverage data:

$ coverage html

This will build a commcare-hq/coverage-report/ directory with a ton of
HTML files in it. The important one is commcare-hq/coverage-report/index.html.

View the result in Vim

Install coveragepy.vim (https://github.com/alfredodeza/coveragepy.vim) however
you personally like to install plugins. This plugin is old and out of date
(but seems to be the only reasonable option) so because of this I personally
think the HTML version is better.

Then run :Coveragepy report in Vim to build the report (this is kind of slow).

You can then use :Coveragepy hide and :Coveragepy show to add/remove
the view from your current buffer.

 Mocha Tests

Mocha Tests

Adding a new app to test

There are three steps to adding a new app to test:

	Add the app name to the Gruntfile.js file. Note: the app has to correspond to an actual Django app.

	Create a mocha template in corehq/apps/<app>/templates/<app>/spec/mocha.html to run tests. See an example on here [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/app_manager/templates/app_manager/spec/mocha.html].

	Create tests that are included in the template in corehq/apps/<app>/static/<app>/spec/

Creating an alternative configuration for an app

Occasionally there’s a need to use a different mocha template to run tests for the same app. In order to create multiple configurations, specify the app in the Gruntfile.js like this: <app>#<config>

Now mocha will look for that template in corehq/apps/<app>/templates/<app>/spec/<config>/mocha.html

The url to visit that test suite is http://localhost:8000/mocha/<app>/<config>

 Writing tests by using ES fakes

Writing tests by using ES fakes

In order to be able to use these ES fakes. All calls to ES in the code you want to test

must go through one of the ESQuery subclasses, such as UserES or GroupES.

In testing, a fake is a component that provides an actual implementation of an API,

but which is incomplete or otherwise unsuitable for production.

(See http://stackoverflow.com/a/346440/240553 for the difference between fakes, mocks, and stubs.)

ESQueryFake and its subclasses (UserESFake, etc.) do just this for the ESQuery

classes. Whereas the real classes hand off the work to an Elasticsearch cluster,

the fakes do the filtering, sorting, and slicing in python memory, which is lightweight

and adequate for tests. Beware that this method is, of course,

inadequate for assuring that the ESQuery classes themselves are producing

the correct Elasticsearch queries, and also introduces the potential for bugs to go

unnoticed because of bugs in ESQueryFake classes themselves. But assuming correct

implementations of the fakes, it does an good job of testing the calling code,

which is usually the primary subject of a test.

The anatomy of a fake is something like this:

	For each real ESQuery subclass (I’ll use UserES as the example),
there is a corresponding fake (UserESFake).
In cases where such a fake does not exist when you need it,
follow the instructions below for getting started on a new fake.

	For each filter method or public method used on the ESQuery base class
a method should exist on ESQueryFake that has the same behavior

	For each filter method on UserES, a method should exist on UserESFake
that has the same behavior.

New fakes and methods are implemented only as actually needed by tests

(otherwise it’s very difficult to be confident the implementations are correct),

so until some mythical future day in which all code that relies on ES goes through

an ESQuery subclass and is thoroughly tested, the fake implementations are

intentionally incomplete. As such, an important part of their design is that they alert

their caller (the person using them to write a test) if the code being tested calls a

method on the fake that is not yet implemented. Since more often than not a number of

methods will need to be added for the same test, the fakes currently are designed to have

each call to an unimplemented filter result in a no-op, and will output a logging statement

telling the caller how to add the missing method. This lets the caller run the test once

to see a print out of every missing function, which they can then add in one go and re-run

the tests. (The danger is that they will miss the logging output; however in cases where

a filter method is missing, it is pretty likely that the test will fail which will prod

them to look further and find the logging statement.)

How to set up your test to use ES fakes

Patch your test to use UserESFake (assuming you want to patch UserES),

making sure to patch UserES in the files in which it is used, not the file in which

it is declared

@mock.patch('corehq.apps.users.analytics.UserES', UserESFake)

@mock.patch('corehq.apps.userreports.reports.filters.choice_providers.UserES', UserESFake)

 class MyTest(SimpleTestCase):

 def setUp(self):

...

 UserESFake.save*doc(user.*doc)

...

 def tearDown(self):

 UserESFake.reset_docs()

How to set up a new ES fake

Adding a new fake is very easy. See corehq.apps.es.fake.users_fake for a simple example.

 Profiling

Profiling

Practical guide to profiling a slow view or function

This will walkthrough one way to profile slow code using the @profile decorator [https://github.com/dimagi/dimagi-utils/blob/master/dimagi/utils/decorators/profile.py].

At a high level this is the process:

	Find the function that is slow

	Add a decorator to save a raw profile file that will collect information about function calls and timing

	Use libraries to analyze the raw profile file and spit out more useful information

	Inspect the output of that information and look for anomalies

	Make a change, observe the updated load times and repeat the process as necessary

Finding the slow function

This is usually pretty straightforward.
The easiest thing to do is typically use the top-level entry point for a view call.
In this example we are investigating the performance of commtrack location download, so the relevant function would be commtrack.views.location_export.

@login_and_domain_required
def location_export(request, domain):
 response = HttpResponse(mimetype=Format.from_format('xlsx').mimetype)
 response['Content-Disposition'] = 'attachment; filename="locations.xlsx"'
 dump_locations(response, domain)
 return response

Getting profile output on stderr

Use the profile decorator to get profile output printed to stderr.

from dimagi.utils import profile
@login_and_domain_required
@profile
def location_export(request, domain):
 ...

profile may also be used as a context manager. See the docstring for more
details.

Getting a profile dump

To get a profile dump, simply add the following decoration to the function.

from dimagi.utils.decorators.profile import profile_dump
@login_and_domain_required
@profile_dump('locations_download.prof')
def location_export(request, domain):
 response = HttpResponse(mimetype=Format.from_format('xlsx').mimetype)
 response['Content-Disposition'] = 'attachment; filename="locations.xlsx"'
 dump_locations(response, domain)
 return response

Now each time you load the page a raw dump file will be created with a timestamp of when it was run.
These are created in /tmp/ by default, however you can change it by adding a value to your settings.py like so:

PROFILE_LOG_BASE = "/home/czue/profiling/"

Note that the files created are huge; this code should only be run locally.

Profiling in production

The same method can be used to profile functions in production. Obviously we want to be able to
turn this on and off and possibly only profile a limited number of function calls.

This can be accomplished by using an environment variable to set the probability of profiling a function.
Here’s an example:

@profile_dump('locations_download.prof', probability=float(os.getenv('PROFILE_LOCATIONS_EXPORT', 0))
def location_export(request, domain):

By default this wil not do any profiling but if the PROFILE_LOCATIONS_EXPORT environment variable
is set to a value between 0 and 1 and the Django process is restarted then the function will
get profiled. The number of profiles that are done will depend on the value of the environment
variable. Values closer to 1 will get more profiling.

You can also limit the total number of profiles to be recorded using the limit keyword argument.
You could also expose this via an environment variable or some other method to make it configurable:

@profile_dump('locations_download.prof', 1, limit=10)
def location_export(request, domain):

Warning

In a production environment the limit may not apply absolutely since there are likely
multiple processes running in which case the limit will get applied to each one. Also, the limit will be reset
if the processes are restarted.

Any profiling in production should be closely monitored to ensure that
it does not adversely affect performance or fill up available disk space.

Creating a more useful output from the dump file

The raw profile files are not human readable, and you need to use something
like cProfile [https://docs.python.org/2/library/profile.html#module-cProfile] to make them
useful.

SnakeViz [https://jiffyclub.github.io/snakeviz/] is a great option for viewing .prof files:

$ pip install snakeviz
$ snakeviz /path/to/profile_dump.prof

Alternately you can use a script that will output a readable version of the profile data to the console.
You can find such a script in the commcarehq-scripts [https://github.com/dimagi/commcarehq-scripts/blob/master/reusable/convert_profile.py] repository.
You can read the source of that script to generate your own analysis, or just
use it directly as follows:

$./reusable/convert_profile.py /path/to/profile_dump.prof

Reading the output of the analysis file

The analysis file is broken into two sections.
The first section is an ordered breakdown of calls by the cumulative time spent in those functions.
It also shows the number of calls and average time per call.

The second section is harder to read, and shows the callers to each function.

This analysis will focus on the first section.
The second section is useful when you determine a huge amount of time is being spent in a function but it’s not clear where that function is getting called.

Here is a sample start to that file:

loading profile stats for locations_download/commtrack-location-20140822T205905.prof
 361742 function calls (355960 primitive calls) in 8.838 seconds

 Ordered by: cumulative time, call count
 List reduced from 840 to 200 due to restriction <200>

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 8.838 8.838 /home/czue/src/commcare-hq/corehq/apps/locations/views.py:336(location_export)
 1 0.011 0.011 8.838 8.838 /home/czue/src/commcare-hq/corehq/apps/locations/util.py:248(dump_locations)
 194 0.001 0.000 8.128 0.042 /home/czue/src/commcare-hq/corehq/apps/locations/models.py:136(parent)
 190 0.002 0.000 8.121 0.043 /home/czue/src/commcare-hq/corehq/apps/cachehq/mixins.py:35(get)
 190 0.003 0.000 8.021 0.042 submodules/dimagi-utils-src/dimagi/utils/couch/cache/cache_core/api.py:65(cached_open_doc)
 190 0.013 0.000 7.882 0.041 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/couchdbkit/client.py:362(open_doc)
 396 0.003 0.000 7.762 0.020 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/http_parser/_socketio.py:56(readinto)
 396 7.757 0.020 7.757 0.020 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/http_parser/_socketio.py:24(<lambda>)
 196 0.001 0.000 7.414 0.038 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/couchdbkit/resource.py:40(json_body)
 196 0.011 0.000 7.402 0.038 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/restkit/wrappers.py:270(body_string)
 590 0.019 0.000 7.356 0.012 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/http_parser/reader.py:19(readinto)
 198 0.002 0.000 0.618 0.003 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/couchdbkit/resource.py:69(request)
 196 0.001 0.000 0.616 0.003 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/restkit/resource.py:105(get)
 198 0.004 0.000 0.615 0.003 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/restkit/resource.py:164(request)
 198 0.002 0.000 0.605 0.003 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/restkit/client.py:415(request)
 198 0.003 0.000 0.596 0.003 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/restkit/client.py:293(perform)
 198 0.005 0.000 0.537 0.003 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/restkit/client.py:456(get_response)
 396 0.001 0.000 0.492 0.001 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/http_parser/http.py:135(headers)
 790 0.002 0.000 0.452 0.001 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/http_parser/http.py:50(_check_headers_complete)
 198 0.015 0.000 0.450 0.002 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/http_parser/http.py:191(__next__)
1159/1117 0.043 0.000 0.396 0.000 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/jsonobject/base.py:559(__init__)
 13691 0.041 0.000 0.227 0.000 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/jsonobject/base.py:660(__setitem__)
 103 0.005 0.000 0.219 0.002 /home/czue/src/commcare-hq/corehq/apps/locations/util.py:65(location_custom_properties)
 103 0.000 0.000 0.201 0.002 /home/czue/src/commcare-hq/corehq/apps/locations/models.py:70(<genexpr>)
 333/303 0.001 0.000 0.190 0.001 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/jsonobject/base.py:615(wrap)
 289 0.002 0.000 0.185 0.001 /home/czue/src/commcare-hq/corehq/apps/locations/models.py:31(__init__)
 6 0.000 0.000 0.176 0.029 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/couchdbkit/client.py:1024(_fetch_if_needed)

See also

Description of columns [https://docs.python.org/2/library/profile.html#instant-user-s-manual]

The most important thing to look at is the cumtime (cumulative time) column.
In this example we can see that the vast majority of the time (over 8 of the 8.9 total seconds) is spent in the cached_open_doc function (and likely the library calls below are called by that function).
This would be the first place to start when looking at improving profile performance.
The first few questions that would be useful to ask include:

	Can we optimize the function?

	Can we reduce calls to that function?

	In the case where that function is hitting a database or a disk, can the code be rewritten to load things in bulk?

In this practical example, the function is clearly meant to already be caching (based on the name alone) so it’s possible that the results would be different if caching was enabled and the cache was hot.
It would be good to make sure we test with those two parameters true as well.
This can be done by changing your localsettings file and setting the following two variables:

COUCH_CACHE_DOCS = True
COUCH_CACHE_VIEWS = True

Reloading the page twice (the first time to prime the cache and the second time to profile with a hot cache) will then produce a vastly different output:

loading profile stats for locations_download/commtrack-location-20140822T211654.prof
 303361 function calls (297602 primitive calls) in 0.484 seconds

 Ordered by: cumulative time, call count
 List reduced from 741 to 200 due to restriction <200>

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 0.484 0.484 /home/czue/src/commcare-hq/corehq/apps/locations/views.py:336(location_export)
 1 0.004 0.004 0.484 0.484 /home/czue/src/commcare-hq/corehq/apps/locations/util.py:248(dump_locations)
1159/1117 0.017 0.000 0.160 0.000 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/jsonobject/base.py:559(__init__)
 4 0.000 0.000 0.128 0.032 /home/czue/src/commcare-hq/corehq/apps/locations/models.py:62(filter_by_type)
 4 0.000 0.000 0.128 0.032 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/couchdbkit/client.py:986(all)
 103 0.000 0.000 0.128 0.001 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/couchdbkit/client.py:946(iterator)
 4 0.000 0.000 0.128 0.032 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/couchdbkit/client.py:1024(_fetch_if_needed)
 4 0.000 0.000 0.128 0.032 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/couchdbkit/client.py:995(fetch)
 9 0.000 0.000 0.124 0.014 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/http_parser/_socketio.py:56(readinto)
 9 0.124 0.014 0.124 0.014 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/http_parser/_socketio.py:24(<lambda>)
 4 0.000 0.000 0.114 0.029 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/couchdbkit/resource.py:40(json_body)
 4 0.000 0.000 0.114 0.029 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/restkit/wrappers.py:270(body_string)
 13 0.000 0.000 0.114 0.009 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/http_parser/reader.py:19(readinto)
 103 0.000 0.000 0.112 0.001 /home/czue/src/commcare-hq/corehq/apps/locations/models.py:70(<genexpr>)
 13691 0.018 0.000 0.094 0.000 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/jsonobject/base.py:660(__setitem__)
 103 0.002 0.000 0.091 0.001 /home/czue/src/commcare-hq/corehq/apps/locations/util.py:65(location_custom_properties)
 194 0.000 0.000 0.078 0.000 /home/czue/src/commcare-hq/corehq/apps/locations/models.py:136(parent)
 190 0.000 0.000 0.076 0.000 /home/czue/src/commcare-hq/corehq/apps/cachehq/mixins.py:35(get)
 103 0.000 0.000 0.075 0.001 submodules/dimagi-utils-src/dimagi/utils/couch/database.py:50(iter_docs)
 4 0.000 0.000 0.075 0.019 submodules/dimagi-utils-src/dimagi/utils/couch/bulk.py:81(get_docs)
 4 0.000 0.000 0.073 0.018 /home/czue/.virtualenvs/commcare-hq/local/lib/python2.7/site-packages/requests/api.py:80(post)

Yikes! It looks like this is already quite fast with a hot cache!
And there don’t appear to be any obvious candidates for further optimization.
If it is still a problem it may be an indication that we need to prime the cache better, or increase the amount of data we are testing with locally to see more interesting results.

Aggregating data from multiple runs

In some cases it is useful to run a function a number of times and aggregate the profile data.
To do this follow the steps above to create a set of ‘.prof’ files (one for each run of the function) then use the
gather_profile_stats.py [https://github.com/dimagi/commcarehq-scripts/blob/master/reusable/gather_profile_stats.py] script to aggregate the data.

This will produce a file which can be analysed with the convert_profile.py [https://github.com/dimagi/commcarehq-scripts/blob/master/reusable/convert_profile.py] script.

Additional references

	http://django-extensions.readthedocs.org/en/latest/runprofileserver.html

Memory profiling

Refer to these resources which provide good information on memory profiling:

	Diagnosing memory leaks [http://chase-seibert.github.io/blog/2013/08/03/diagnosing-memory-leaks-python.html]

	Using heapy [http://smira.ru/wp-content/uploads/2011/08/heapy.html]

	Diving into python memory [https://github.com/CyrilPeponnet/cyrilpeponnet.github.com/blob/master/_posts/2014-09-18-diving-into-python-memory.md]

	
	Memory usage graphs with ps [http://brunogirin.blogspot.com.au/2010/09/memory-usage-graphs-with-ps-and-gnuplot.html]
	
	while true; do ps -C python -o etimes=,pid=,%mem=,vsz= >> mem.txt; sleep 1; done

	You can also use the “resident_set_size” decorator and context manager to print the amount of memory allocated to python before and after the method you think is causing memory leaks:

from dimagi.utils.decorators.profile import resident_set_size

@resident_set_size()
def function_that_uses_a_lot_of_memory:
 [u'{}'.format(x) for x in range(1,100000)]

def somewhere_else():
 with resident_set_size(enter_debugger=True):
 # the enter_debugger param will enter a pdb session after your method has run so you can do more exploration
 # do memory intensive things

 Caching and Memoization

Caching and Memoization

There are two primary ways of caching in CommCare HQ - using the decorators
@quickcache and @memoized. At their core, these both do the same sort of
thing - they store the results of function, like this simplified version:

cache = {}

def get_object(obj_id):
 if obj_id not in cache:
 obj = expensive_query_for_obj(obj_id)
 cache[obj_id] = obj
 return cache[obj_id]

In either case, it is important to remember that the body of the function being
cached is not evaluated at all when the cache is hit. This results in two
primary concerns - what to cache and how to identify it. You should cache only
functions which are referentially transparent, that is, “pure” functions which
return the same result when called multiple times with the same set of
parameters.

This document describes the use of these two utilities.

Memoized

Memoized is an in-memory cache. At its simplest, it’s a replacement for the two
common patterns used in this example class:

class MyClass(object):

 def __init__(self):
 self._all_objects = None
 self._objects_by_key = {}

 @property
 def all_objects(self):
 if self._all_objects is None:
 result = do_a_bunch_of_stuff()
 self._all_objects = result
 return self._all_objects

 def get_object_by_key(self, key):
 if key not in self._objects_by_key:
 result = do_a_bunch_of_stuff(key)
 self._objects_by_key[key] = result
 return self._objects_by_key[key]

With the memoized decorator, this becomes:

from memoized import memoized

class MyClass(object):

 @property
 @memoized
 def all_objects(self):
 return do_a_bunch_of_stuff()

 @memoized
 def get_object_by_key(self, key):
 return do_a_bunch_of_stuff(key)

When decorating a class method, @memoized stores the results of calls to
those methods on the class instance. It stores a result for every unique set of
arguments passed to the decorated function. This persists as long as the class
does (or until you manually invalidate), and will be garbage collected along
with the instance.

You can decorate any callable with @memoized and the cache will persist for
the life of the callable. That is, if it isn’t an instance method, the cache
will probably be stored in memory for the life of the process. This should be
used sparingly, as it can lead to memory leaks. However, this can be useful for
lazily initializing singleton objects. Rather than computing at module load
time:

def get_classes_by_doc_type():
 # Look up all subclasses of Document
 return result

classes_by_doc_type = get_classes_by_doc_type()

You can memoize it, and only compute if and when it’s needed. Subsequent calls
will hit the cache.

@memoized
def get_classes_by_doc_type():
 # Look up all subclasses of Document
 return result

Quickcache

@quickcache behaves much more like a normal cache. It stores results in a
caching backend (Redis, in CCHQ) for a specified timeout (5 minutes, by
default). This also means they can be shared across worker machines. Quickcache
also caches objects in local memory (10 seconds, by default). This is faster to
access than Redis, but its not shared across machines.

Quickcache requires you to specify which arguments to “vary on”, that is, which
arguments uniquely identify a cache

For examples of how it’s used, check out the repo [https://github.com/dimagi/quickcache]. For background,
check out Why we made quickcache [https://www.dimagi.com/blog/why-we-made-quickcache/]

The Differences

Memoized returns the same actual python object that was originally returned by
the function. That is, id(obj1) == id(obj2) and obj1 is obj2.
Quickcache, on the other hand, saves a copy (however, if you’re within the
memoized_timeout, you’ll get the original object, but don’t write code which
depends on it.).

Memoized is a python-only library with no other dependencies; quickcache is
configured on a per-project basis to use whatever cache backend is being used,
in our case django-cache backends.

Incidentally, quickcache also uses some inspection magic that makes it not work
in a REPL context (i.e. from running python interactively or ./manage.py
shell)

Lifecycle

	Memoized on instance method:
	The cache lives on the instance itself, so it gets garbage collected along
with the instance

	Memoized on any other function/callable:
	The cache lives on the callable, so if it’s globally scoped and never gets
garbage collected, neither does the cache

	Quickcache:
	Garbage collection happens based on the timeouts specified: memoize_timeout
for the local cache and timeout for redis

Scope

In-memory caching (memoized or quickcache) is scoped to a single process on a
single machine. Different machines or different processes on the same machine do
not share these caches between them.

For this reason, memoized is usually used when you want to cache things only for
duration of a request, or for globally scoped objects that need to be always
available for very fast retrieval from memory.

Redis caching (quickcache only) is globally shared between processes on all
machines in an environment. This is used to share a cache across multiple
requests and webworkers (although quickcache also provides a short-duration,
lightning quick, in-memory cache like @memoized, so you should never need to use
both).

Decorating various things

Memoized is more flexible here - it can be used to decorate any callable,
including a class. In practice, it’s much more common and practical to limit
ourselves to normal functions, class methods, and instance methods. Technically,
if you do use it on a class, it has the effect of caching the result of calling
the class to create an instance, so instead of creating a new instance, if you
call the class twice with the same arguments, you’ll get the same (obj1 is
obj2) python object back.

Quickcache must go on a function—whether standalone or within a class—and does
not work on other callables like a class or other custom callable. In practice
this is not much of a limitation.

Identifying cached values

Cached functions usually have a set of parameters passed in, and will return
different results for different sets of parameters.

Best practice here is to use as small a set of parameters as possible, and to
use simple objects as parameters when possible (strings, booleans, integers,
that sort of thing).

@quickcache(['domain_obj.name', 'user._id'], timeout=10)
def count_users_forms_by_device(domain_obj, user):
 return {
 XFormInstance.objects.count_forms_by_device(domain_obj.name, device.device_id)
 for device in user.devices
 }

The first argument to @quickcache is an argument called vary_on which is
a list of the parameters used to identify each result stored in the cache. Taken
together, the variables specified in vary_on should constitute all inputs that
would change the value of the output. You may be thinking “Well, isn’t that just
all of the arguments?” Often, yes. However, also very frequently, a function
depends not on the exact object being passed in, but merely on one or a few
properties of that object. In the example above, we want the function to return
the same result when called with the same domain name and user ID, not
necessarily the same exact objects. Quickcache handles this by allowing you to
pass in strings like parameter.attribute. Additionally, instead of a list of
parameters, you may pass in a function, which will be called with the arguments
of the cached function to return a cache key.

Memoized does not provide these capabilities, and instead always uses all of the
arguments passed in. For this reason, you should only memoize functions with
simple arguments. At a minimum, all arguments to memoized must be hashable.
You’ll notice that the above function doesn’t actually use anything on the
domain_obj other than name, so you could just refactor it to accept
domain instead (this also means code calling this function won’t need to
fetch the domain object to pass to this function, only to discard everything
except the name anyways).

You don’t need to let this consideration muck up your function’s interface. A
common practice is to make a helper function with simple arguments, and decorate
that. You can then still use the top-level function as you see fit. For example,
let’s pretend the above function is an instance method and you want to use
memoize rather than quickcache. You could split it apart like this:

@memoized
def _count_users_forms_by_device(self, domain, device_id):
 return XFormInstance.objects.count_forms_by_device(domain, device_id)

def count_users_forms_by_device(self, domain_obj, user):
 return {
 self._count_users_forms_by_device(domain_obj.name, device.device_id)
 for device in user.devices
 }

What can be cached

	Memoized:
	All arguments must be hashable; notably, lists and dicts are not hashable,
but tuples are.

Return values can be anything.

	Quickcache:
	All vary_on values must be “basic” types (all the way down, if they are
collections): string types, bool, number, list/tuple (treated as interchangeable),
dict, set, None. Arbitrary objects are not allowed, nor are
lists/tuples/dicts/sets containing objects, etc.

Return values can be anything that’s pickleable. More generally, quickcache
dictates what values you can vary_on, but leaves what values you can return
up to your caching backend; since we use django cache, which uses pickle,
our return values have to be pickleable.

Invalidation

“There are only two hard problems in computer science - cache invalidation
and naming things” (and off-by-one errors)

Memoized doesn’t allow invalidation except by blowing away the whole cache for
all parameters. Use <function>.reset_cache()

If you are trying to clear the cache of a memoized @property, you will need to
invalidate the cache manually with self._<function_name>_cache.clear()

One of quickcache’s killer features is the ability to invalidate the cache for a
specific function call. To invalidate the cache for <function>(*args,
**kwargs), use <function>.clear(*args, **kwargs). Appropriately selecting
your args makes this easier.

To sneakily prime the cache of a particular call with a preset value, you can
use <function>.set_cached_value(*args, **kwargs).to(value). This is useful
when you are already holding the answer to an expensive computation in your
hands and want to do the next caller the favor of not making them do it. It’s
also useful for when you’re dealing with a backend that has delayed refresh as
is the case with Elasticsearch (when configured a certain way).

Other ways of caching

Redis is sometimes accessed manually or through other wrappers for special
purposes like locking. Some of those are:

	RedisLockableMixIn
	Provides get_locked_obj, useful for making sure only one instance of an
object is accessible at a time.

	CriticalSection
	Similar to the above, but used in a with construct - makes sure a block
of code is never run in parallel with the same identifier.

	QuickCachedDocumentMixin
	Intended for couch models - quickcaches the get method and provides
automatic invalidation on save or delete.

	CachedCouchDocumentMixin
	Subclass of QuickCachedDocumentMixin which also caches some couch views

 Plugins

Plugins

There are a number of plugins which sit on top of the core CommCare functionality that enable a specific set of functionality. For safety these plugins aren’t available to end-users when the platform is hosted for external signups in a multi-tenant configuration, rather these plugins are enabled by system administrators.

When hosting the CommCare HQ, be aware that plugins aren’t fully supported by the core committers and generally have a higher support burden. They may require directly reading the code to provide support or understand in full. A smaller percentage of CommCare’s open source developer community typically has knowledge on any given plugin. If you are enabling plugins in your local environment, please make sure you have sufficient engineering expertise to be able to read direct code-level documentation. Plugins can be managed through the admin UI, available at https://<hq.server.url>/hq/flags/.

The CommCare Community of Practice urges all plugin maintainers to follow our best practices for documentation. Each commit should include a description of the functionality and links to relevant tickets.

Plugins allow limiting access to a set of functionality.

They are implemented as a couchdb-backed django app, designed to be simple and fast (automatically cached).

Most plugins are configured by manually adding individual users or domains in the plugins admin UI. These are defined by adding a new StaticToggle in this file. See PredictablyRandomToggle and DynamicallyPredictablyRandomToggle if you need a plugin to be defined for a random subset of users.

Namespaces define the type of access granted. NAMESPACE_DOMAIN allows the plugin to be enabled for individual project spaces. NAMESPACE_USER allows the plugin to be enabled for individual users, with the functionality visible to only that user but on any project space they visit.

NAMESPACE_DOMAIN is preferred for most flags, because it can be confusing for different users to experience different behavior. Domain-based flags are like a lightweight privilege that’s independent of a software plan. User-based flags are more like a lightweight permission that’s independent of user roles (and therefore also independent of domain).

Tags document the feature’s expected audience, particularly services projects versus SaaS projects.

See descriptions below. Tags have no technical effect. When in doubt, use TAG_CUSTOM to limit your plugin’s support burden.

When adding a new plugin, define it near related plugins - this file is frequently edited, so appending it to the end of the file invites merge conflicts.

To access your plugin:

	In python, StaticToggle has enabled_for_request, which takes care of detecting which namespace(s) to check,
and enabled, which requires the caller to specify the namespace.

	For python views, the required_decorator is useful.

	For python tests, the flag_enabled decorator is useful.

	In HTML, there’s a toggle_enabled template tag.

	In JavaScript, the hqwebapp/js/toggles modules provides as toggleEnabled method.

(Note: Plugins were historically called Feature Flags and Toggles)

 CommTrack

CommTrack

What happens during a CommTrack submission?

This is the life-cycle of an incoming stock report via sms.

	SMS is received and relevant info therein is parsed out

	The parsed sms is converted to an HQ-compatible xform submission. This includes:

	stock info (i.e., just the data provided in the sms)

	location to which this message applies (provided in message or associated with sending user)

	standard HQ submission meta-data (submit time, user, etc.)

Notably missing: anything that updates cases

	The submission is not submitted yet, but rather processed further on the server. This includes:

	looking up the product sub-cases that actually store stock/consumption values.
(step (2) looked up the location ID; each supply point is a case associated with that location, and actual stock data is stored in a sub-case – one for each product – of the supply point case)

	applying the stock actions for each product in the correct order
(a stock report can include multiple actions; these must be applied in a consistent order or else unpredictable stock levels may result)

	computing updated stock levels and consumption (using somewhat complex business and reconciliation logic)

	dumping the result in case blocks (added to the submission) that will update the new values in HQ’s database

	
	post-processing also makes some changes elsewhere in the instance, namely:
	
	also added are ‘inferred’ transactions (if my stock was 20, is now 10, and i had receipts of 15, my inferred consumption was 25). This is needed to compute consumption rate later. Conversely, if a deployment tracks consumption instead of receipts, receipts are inferred this way.

	transactions are annotated with the order in which they were processed

Note that normally CommCare generates its own case blocks in the forms it submits.

	The updated submission is submitted to HQ like a normal form

Submitting a stock report via CommCare

CommTrack-enabled CommCare submits xforms, but those xforms do not go through the post-processing step in (3) above.
Therefore these forms must generate their own case blocks and mimic the end result that commtrack expects.
This is severely lacking as we have not replicated the full logic from the server in these xforms (unsure if that’s even possible, nor do we like the prospect of maintaining the same logic in two places), nor can these forms generate the inferred transactions.
As such, the capabilities of the mobile app are greatly restricted and cannot support features like computing consumption.

This must be fixed and it’s really not worth even discussing much else about using a mobile app until it is.

 Elasticsearch

Elasticsearch

Overview

Indexes

	We have indexes for each of the following doc types:
	
	Applications - hqapps

	Cases - hqcases

	Domains - hqdomains

	Forms - xforms

	Groups - hqgroups

	Users - hqusers

	SMS logs - smslogs

	Case Search - case_search

Each index has a corresponding mapping file in corehq/pillows/mappings/.
Each mapping has a hash that reflects the current state of the mapping. This
can just be a random alphanumeric string.
The hash is appended to the index name so the index is called something like
xforms_1cce1f049a1b4d864c9c25dc42648a45. Each type of index has an alias
with the short name, so you should normally be querying just xforms, not
the fully specified index+hash. All of HQ code except the index maintenance
code uses aliases to read and write data to indices.

Whenever the mapping is changed, this hash should be updated. That will
trigger the creation of a new index on deploy (by the $./manage.py
ptop_preindex command). Once the new index is finished, the alias is
flipped ($./manage.py ptop_es_manage --flip_all_aliases) to point
to the new index, allowing for a relatively seamless transition.

Keeping indexes up-to-date

Pillowtop looks at the changes feed from couch and listens for any relevant
new/changed docs. In order to have your changes appear in elasticsearch,
pillowtop must be running:

$./manage.py run_ptop --all

You can also run a once-off reindex for a specific index:

$./manage.py ptop_reindexer_v2 user

Changing a mapping or adding data

If you’re adding additional data to elasticsearch, you’ll need modify that
index’s mapping file in order to be able to query on that new data.

Adding data to an index

Each pillow has a function or class that takes in the raw document dictionary
and transforms it into the document that get’s sent to ES. If for example,
you wanted to store username in addition to user_id on cases in elastic,
you’d add username to corehq.pillows.mappings.case_mapping, then
modify transform_case_for_elasticsearch function to do the
appropriate lookup. It accepts a doc_dict for the case doc and is
expected to return a doc_dict, so just add the username to that.

Building the new index

Once you’ve made the change, you’ll need to build a new index which uses
that new mapping. Updating index name in the mapping file triggers HQ to
create the new index with new mapping and reindex all data, so you’ll
have to update the index hash and alias at the top of the mapping file.
The hash suffix to the index can just be a random alphanumeric string and
is usually the date of the edit by convention. The alias should also be updated
to a new one of format xforms_<date-modified> (the date is just by convention), so that
production operations continue to use the old alias pointing to existing index.
This will trigger a preindex as outlined in the Indexes section. In subsequent commits
alias can be flipped back to what it was, for example xforms. Changing the alias
name doesn’t trigger a reindex.

Updating indexes in a production environment

Updates in a production environment should be done in two steps, so to not show incomplete data.

	Setup a release of your branch using cchq <env> setup_limited_release:keep_days=n_days

	In your release directory, kick off a index using ./mange.py ptop_preindex

	Verify that the reindex has completed successfully
- This is a weak point in our current migration process
- This can be done by using ES head or the ES APIs to compare document counts to the previous index.
- You should also actively look for errors in the ptop_preindex command that was ran

	Merge your PR and deploy your latest master branch.

How to un-bork your broken indexes

Sometimes things get in a weird state and (locally!) it’s easiest to just
blow away the index and start over.

	Delete the affected index. The easiest way to do this is with elasticsearch-head [https://github.com/mobz/elasticsearch-head].
You can delete multiple affected indices with
curl -X DELETE http://localhost:9200/*. * can be replaced with any regex to
delete matched indices, similar to bash regex.

	Run $./manage.py ptop_preindex && ./manage.py ptop_es_manage --flip_all_aliases.

	Try again

Querying Elasticsearch - Best Practices

Here are the most basic things to know if you want to write readable
and reasonably performant code for accessing Elasticsearch.

Use ESQuery when possible

Check out Querying Elasticsearch

	Prefer the cleaner .count(), .values(), .values_list(), etc. execution methods
to the more low level .run().hits, .run().total, etc.
With the latter easier to make mistakes and fall into anti-patterns and it’s harder to read.

	Prefer adding filter methods to using set_query()
unless you really know what you’re doing and are willing to make your code more error prone
and difficult to read.

Prefer “get” to “search”

Don’t use search to fetch a doc or doc fields by doc id; use “get” instead.
Searching by id can be easily an order of magnitude (10x) slower. If done in a loop,
this can effectively grind the ES cluster to a halt.

Bad::

POST /hqcases_2016-03-04/case/_search
{
 "query": {
 "filtered": {
 "filter": {
 "and": [{"terms": {"_id": [case_id]}}, {"match_all": {}}]
 },
 "query": {"match_all":{}}
 }
 },
 "_source": ["name"],
 "size":1000000
}

Good::

GET /hqcases_2016-03-04/case/<case_id>?_source_include=name

Prefer scroll queries

Use a scroll query when fetching lots of records.

Prefer filter to query

Don’t use query when you could use filter if you don’t need rank.

Use size(0) with aggregations

Use size(0) when you’re only doing aggregations thing—otherwise you’ll
get back doc bodies as well! Sometimes that’s just abstractly wasteful, but often
it can be a serious performance hit for the operation as well as the cluster.

The best way to do this is by using helpers like ESQuery’s .count()
that know to do this for you—your code will look better and you won’t have to remember
to check for that every time. (If you ever find helpers not doing this correctly,
then it’s definitely worth fixing.)

Elasticsearch App

Elasticsearch Index Management

CommCare HQ data in Elasticsearch is integral to core application functionality.
The level that the application relies on Elasticsearch data varies from index to
index. Currently, Elasticsearch contains both authoritative data (for example
@indexed_on case property and UnknownUser user records) and data used
for real-time application logic (the users index, for example).

In order to guarantee stability (or “manageability”, if you will) of this core
data, it is important that Elasticsearch indexes are maintained in a consistent
state across all environments as a concrete design feature of CommCare HQ. This
design constraint is accomplished by managing Elasticsearch index modifications
(for example: creating indexes, updating index mappings, etc) exclusively
through Django’s migration framework. This ensures that all Elasticsearch index
modifications will be part of standard CommCare HQ code deployment procedures,
thereby preventing Elasticsearch index state drift between maintained CommCare
HQ deployments.

One or more migrations are required any time the following Elasticsearch state
configurations are changed in code:

	index names

	index aliases

	analyzers

	mappings

	tuning parameters

Elasticsearch allows changing an index’s number_of_replicas tuning parameter
on a live index. In the future, the configuration settings (i.e. “live state”)
of that value should be removed from the CommCare HQ codebase entirely in order
to decouple it from application logic.

Creating Elasticsearch Index Migrations

Like Django Model migrations, Elasticsearch index migrations can be quite
verbose. To aid in creating these migrations, there is a Django manage command
that can generate migration files for Elasticsearch index operations. Since
the Elasticsearch index state is not a Django model, Django’s model migration
framework cannot automatically determine what operations need to be included in
a migration, or even when a new migration is required. This is why creating
these migrations is a separate command and not integrated into the default
makemigrations command.

To create a new Elasticsearch index migration, use the
make_elastic_migration management command and provide details for the
required migration operations via any combination of the -c/--create,
-u/--update and/or -d/--delete command line options.

Similar to Django model migrations, this management command uses the index
metadata (mappings, analysis, etc) from the existing Elasticsearch code, so it
is important that this command is executed after making changes to index
metadata. To provide an example, consider a hypothetical scenario where the
following index changes are needed:

	create a new users index

	update the mapping on the existing groups index to add a new property
named pending_users

	delete the existing index named groups-sandbox

After the new property has been added to the groups index mapping in code,
the following management command would create a migration file (e.g.
corehq/apps/es/migrations/0003_groups_pending_users.py) for the necessary
operations:

./manage.py make_elastic_migration --name groups_pending_users -c users -u groups:pending_users -d groups-sandbox

Updating Elastic Index Mappings

Prior to the UpdateIndexMapping migration operation implementation, Elastic
mappings were always applied “in full” any time a mapping change was needed.
That is: the entire mapping (from code) was applied to the existing index via
the Put Mapping [https://www.elastic.co/guide/en/elasticsearch/reference/2.4/indices-put-mapping.html] API. This technique had some pros and cons:

	Pro: the mapping update logic in code was simple because it did not have
to worry about which existing mapping properties are persistent (persist on
the index even if omitted in a PUT request payload) and which ones are
volatile (effectively “unset” if omitted in a PUT request payload).

	Con: it requires that all mapping properties are explicitly set on every
mapping update, making mapping updates impossible if the existing index
mapping in Elasticsearch has diverged from the mapping in code.

Because CommCare HQ Elastic mappings have been able to drift between
environments, it is no longer possible to update some index mappings using the
historical technique. On some indexes, the live index mappings have sufficiently
diverged that there is no common, “full mapping definition” that can be applied
on all environments. This means that in order to push mapping changes to all
environments, new mapping update logic is needed which is capable of updating
individual properties on an Elastic index mapping while leaving other (existing)
properties unchanged.

The UpdateIndexMapping migration operation adds this capability. Due to the
complex behavior of the Elasticsearch “Put Mapping” API, this implementation is
limited to only support changing the mapping _meta and properties items.
Changing other mapping properties (e.g. date_detection, dynamic, etc) is
not yet implemented. However, the current implementation does ensure that the
existing values are retained (unchanged). Historically, these values are rarely
changed, so this limitation does not hinder any kind of routine maintenance
operations. Implementing the ability to change the other properties will be a
simple task when there is a clear definition of how that functionality needs to
work, for example: when a future feature/change requires changing these
properties for a specific reason.

Comparing Mappings In Code Against Live Indexes

When modifying mappings for an existing index, it can be useful to compare the
new mapping (as defined in code) to the live index mappings in Elasticsearch on
a CommCare HQ deployment. This is possible by dumping the mappings of interest
into local files and comparing them with a diff utility. The
print_elastic_mappings Django manage command makes this process relatively
easy. Minimally, this can be accomplished in as few as three steps:

	Export the local code mapping into a new file.

	Export the mappings from a deployed environment into a local file.

	Compare the two files.

In practice, this might look like the following example:

./manage.py print_elastic_mappings sms --no-names > ./sms-in-code.py
cchq <env> django-manage print_elastic_mappings smslogs_2020-01-28:sms --no-names > ./sms-live.py
diff -u ./sms-live.py ./sms-in-code.py

Elastic Index Tuning Configurations

CommCare HQ provides a mechanism for individual deployments (environments) to
tune the performance characteristics of their Elasticsearch indexes via Django
settings. This mechanism can be used by defining an ES_SETTINGS dictionary
in localsettings.py (or by configuring the requisite Elasticsearch
parameters in a CommCare Cloud environment [https://commcare-cloud.readthedocs.io/en/latest/reference/1-commcare-cloud/2-configuration.html]). Tuning parameters can be
specified in one of two ways:

	“default”: configures the tuning settings for all indexes in the
environment.

	index identifier: configures the tuning settings for a specific index
in the environment – these settings take precedence over “default” settings.

For example, if an environment wishes to explicitly configure the “case_search”
index with six shards, and all others with only three, the configuration could
be specified in localsettings.py as:

ES_SETTINGS = {
 "default": {"number_of_shards": 3},
 "case_search": {"number_of_shards": 6},
}

Configuring a tuning setting with the special value None will result in that
configuration item being reset to the Elasticsearch cluster default (unless
superseded by another setting with higher precedence). Refer to
corehq/app/es/index/settings.py [https://github.com/dimagi/commcare-hq/blob/master/corehq/app/es/index/settings.py] file for the full details regarding what
items (index and tunning settings values) are configurable, as well as what
default tuning settings will be used when not customized by the environment.

Important note: These Elasticsearch index tuning settings are not “live”.
That is: changing their values on a deployed environment will not have any
immediate affect on live indexes in Elasticsearch. Instead, these values are
only ever used when an index is created (for example, during a fresh CommCare HQ
installation or when an existing index is reindexed into a new one). This means
that making new values become “live” involves an index migration and reindex,
which requires changes in the CommCare HQ codebase.

Adapter Design

The HQ Elastic adapter design came about due to the need for reindexing
Elasticsearch indexes in a way that is transparent to parts of HQ that write to
Elasticsearch (e.g. pillowtop). Reindexing is necessary for making changes to
index mappings, is a prerequisite to upgrading an Elasticsearch cluster, and is
also needed for changing low-level index configurations (e.g. sharding).

There is an existing procedure draft that documents the steps that were used on
one occasion to reindex the case_search index. This procedure leveraged a
custom pillow to “backfill” the cloned index (i.e. initially populated using
Elasticsearch Reindex API). That procedure only works for a subset of HQ
Elasticsearch indexes, and is too risky to be considered as an ongoing Elastic
maintenance strategy. There are several key constraints that an HQ reindexing
procedure should meet which the existing procedure does not:

	simple and robust

	performed with standard maintenance practices

	provides the ability to test and verify the integrity of a new index before it
is too late to be rejected

	allows HQ Elasticsearch index state to remain decoupled from the
commcare-cloud codebase

	is not disruptive – does not prohibit any other kind of standard maintenance
that might come up while the operation is underway

	is “fire and forget” – does not require active polling of intermediate state
in order to progress the overall operation

	is practical for third party HQ hosters to use

One way to accomplish these constraints is to implement an “index multiplexing”
feature in HQ, where Elasticsearch write operations are duplicated across two
indexes. This design facilitates maintaining two up-to-date versions of any
index (a primary read/write index and a secondary write-only index),
allowing HQ to run in a “normal” state (i.e. not a custom “maintenance” state)
while providing the ability to switch back and forth (swapping primary and
secondary) before fully committing to abandoning one of them. Creating a copy of
an index is the unavoidable nature of a reindex operation, and multiplexing
allows safe switching from one to the other without causing disruptions or
outages while keeping both up-to-date.

The least disruptive way to accomplish a multiplexing design is with an adapter
layer that operates between the low-level third party Elasticsearch Python
client library and high-level HQ components which need to read/write data in an
Elasticsearch index. HQ already has the initial framework for this layer (the
ElasticsearchInterface class), so the adapter layer is not a new concept.
The reason that the ElasticsearchInterface implementation cannot be modified
in-place to accommodate multiplexing is because it is the wrong level of
abstraction. The ElasticsearchInterface abstraction layer was designed as an
Elasticsearch version abstraction. It provides a common set of functions and
methods so that the high-level HQ “consumer” that uses it can interact with
Elasticsearch documents without knowing which Elasticsearch version is on the
backend. It is below “index-level” logic, and does not implement index-specific
functionality needed in order for some indexes to be handled differently than
others (e.g. some indexes are indexed individually while others are
multiplexed). The document adapter implementation is a document abstraction
layer. It provides a common set of functions and methods to allow high-level HQ
code to perform Elasticsearch operations at the document level, allowing unique
adapters to handle their document operations differently from index to index.

With a multiplexing adapter layer, reindexing an Elasticsearch index can be
as few as four concise steps, none of which are time-critical in respect to each
other:

	Merge and deploy a PR that configures multiplexing on an index.

	Execute an idempotent management command that updates the secondary index
from its primary counterpart.

	Merge and deploy a PR that disables multiplexing for the index, (now using
only the new index).

	Execute a management command to delete the old index.

Note: the above steps are not limited to a single index at a time. That is,
the implementation does not prohibit configuring multiplexing and reindexing
multiple indexes at once.

This reindex procedure is inherently safe because:

	At any point in the process, the rollback procedure is a simple code change
(i.e. revert PR, deploy).

	The operation responsible for populating the secondary index is idempotent
and decoupled from the index configuration, allowing it to undergo change
iterations without aborting the entire process (thereby losing reindex
progress).

	Instructions for third party hosters can follow the same process that Dimagi
uses, which guarantees that any possible problems encountered by a third party
hoster are not outside the Dimagi main track.

Design Details

Reindex Procedure Details

	Configure multiplexing on an index by passing in secondary index name to
create_document_adapter.

	Ensure that there is a migration in place for creating the index (see
Creating Elasticsearch Index Migrations
above).

	(Optional) If the reindex involves other meta-index changes (shards,
mappings, etc), also update those configurations at this time.

Note Currently the Adapter will not support reindexing on specific
environments but it would be compatible to accommodate it in future. This
support will be added once we get to V5 of ES.

	Configure create_document_adapter to return an instance of
ElasticMultiplexAdapter by passing in secondary index name.

case_adapter = create_document_adapter(
 ElasticCase,
 "hqcases_2016-03-04",
 "case",
 secondary="hqcase_2022-10-20"
)

	Add a migration which performs all cluster-level operations required for
the new (secondary) index. For example:

	creates the new index

	configures shards, replicas, etc for the index

	sets the index mapping

	Review, merge and deploy this change. At Django startup, the new
(secondary) index will automatically and immediately begin receiving
document writes. Document reads will always come from the primary index.

	Execute a management command to sync and verify the secondary index from the
primary.

Note: This command is not yet implemented.

This management command is idempotent and performs four operations in serial.
If any of the operations complete with unexpected results, the command will
abort with an error.

	Executes a Elastic reindex request with parameters to populate the
secondary index from the primary, configured to not overwrite existing
documents in the target (secondary) index.

	Polls the reindex task progress, blocking until complete.

Note: the reindex API also supports a “blocking” mode which may be
advantageous due to limitations in Elasticsearch 2.4’s Task API. As such,
this step 2. might be removed in favor of a blocking reindex during
the 2.4 –> 5.x upgrade.

	Performs a cleanup operation on the secondary index to remove tombstone
documents.

	Performs a verification pass to check integrity of the secondary index.

Note: An exact verification algorithm has not been designed, and
complex verification operations may be left out of the first
implementation. The reason it is outlined in this design is to identify
that verification is supported and would happen at this point in the
process. The initial implementation will at least implement
feature-equivalency with the previous process (i.e. ensure document counts
are equal between the two indexes), and tentatively an “equivalency check”
of document _id’s (tentative because checking equality while the
multiplexer is running is a race condition).

Example command (not yet implemented):

./manage.py elastic_sync_multiplexed ElasticBook

	Perform a primary/secondary “swap” operation one or more times as desired to
run a “live test” on the new (secondary) index while keeping the old
(primary) index up-to-date.

	Reconfigure the adapter by swapping the “primary” and “secondary” index
names.

	Add a migration that cleans up tombstone documents on the “new primary”
index prior to startup.

Note: In theory, this step can be optional (e.g. if the sync procedure
becomes sufficiently trusted in the future, or for “goldilox” indexes where
rebuilding from source is feasible but advantageous to avoid, etc).

	Disable multiplexing for the index.

	Reconfigure the document adapter for the index by changing the “primary
index name” to the value of the “secondary index name” and remove the
secondary configuration (thus reverting the adapter back to a single-index
adapter).

	Add a migration that cleans up tombstone documents on the index.

	Review, merge and deploy this change.

	Execute a management command to delete the old index. Example:

./manage.py prune_elastic_index ElasticBook

Elastic Client Adapters

The corehq.apps.es.client module encapsulates the CommCare HQ Elasticsearch
client adapters. It implements a high-level Elasticsearch client protocol
necessary to accomplish all interactions with the backend Elasticsearch cluster.
Client adapters are split into two usage patterns, the “Management Adapter” and
“Document Adapters”. Client adapters are instantiated at import time in order
to perform index verification when Django starts. Downstream code needing an
adapter import and use the adapter instance.

Management Adapter

There is only one management adapter, corehq.apps.es.client.manager. This
adapter is used for performing all cluster management tasks such as creating and
updating indices and their mappings, changing index settings, changing cluster
settings, etc. This functionality is split into a separate class for a few
reasons:

	The management adapter is responsible for low-level Elastic operations which
document adapters should never be performing because the scope of a document
adapter does not extend beyond a single index.

	Elasticsearch 5+ implements security features which limit the kinds of
operations a connection can be used for. The separation in these client
adapter classes is designed to fit into that model.

from corehq.apps.es.client import manager

manager.index_create("books")
mapping = {"properties": {
 "author": {"type": "text"},
 "title": {"type": "text"},
 "published": {"type": "date"},
}}
manager.index_put_mapping("books", "book", mapping)
manager.index_refresh("books")
manager.index_delete("books")

Document Adapters

Document adapter classes are defined on a per-index basis and include specific
properties and functionality necessary for maintaining a single type of “model”
document in a single index. Each index in Elasticsearch needs to have a
cooresponding ElasticDocumentAdapter subclass which defines how the Python
model is applied to that specific index. At the very least, a document adapter
subclass must define the following:

	A mapping which defines the structure and properties for documents managed
by the adapter.

	A from_python() classmethod which can convert a Python model object into
the JSON-serializable format for writing into the adapter’s index.

The combination of (index_name, type) constrains the document adapter to
a specific HQ document mapping. Comparing an Elastic cluster to a Postgres
database (for the sake of analogy), the Elastic index is analogous to a
Postgres schema object (e.g. public), and the _type property is
analogous to a Postgres table object. The combination of both index name
and _type fully constrains the properties that make up a specific Elastic
document.

Document adapters are instantiated once at runtime, via the
create_document_adapter() function. The purpose of this function is to act
as a shim, returning an ElasticDocumentAdapter instance or an
ElasticMultiplexAdapter instance (see
Multiplexing Document Adapters below);
depending on whether or not a secondary index is defined by the secondary
keyword argument.

A simple example of a document model and its corresponding adapter:

class Book:

 def __init__(self, isbn, author, title, published):
 self.isbn = isbn
 self.author = author
 self.title = title
 self.published = published

class ElasticBook(ElasticDocumentAdapter):

 mapping = {"properties": {
 "author": {"type": "text"},
 "title": {"type": "text"},
 "published": {"type": "date"},
 }}

 @classmethod
 def from_python(cls, book):
 source = {
 "author": book.author,
 "title": book.title,
 "published": book.published,
 }
 return book.isbn, source

books_adapter = create_document_adapter(
 ElasticBook,
 index_name="books",
 type_="book",
)

Using this adapter in practice might look as follows:

index new
new_book = Book(
 "978-1491946008",
 "Luciano Ramalho",
 "Fluent Python: Clear, Concise, and Effective Programming",
 datetime.date(2015, 2, 10),
)
books_adapter.index(new_book)
fetch existing
classic_book = books_adapter.get("978-0345391803")

Multiplexing Document Adapters

The ElasticMultiplexAdapter is a wrapper around two
ElasticDocumentAdapter instances: a primary and a secondary. The
multiplexing adapter provides the same public methods as a standard document
adapter, but it performs Elasticsearch write operations against both indexes in
order to keep them in step with document changes. The multiplexing adapter
provides the following functionality:

	All read operations (exists(), get(), search(), etc) are always
performed against the primary adapter only. Read requests are never
performed against the secondary adapter.

	The update() write method always results in two sequential requests
against the underlying indexes:

	An update request against the primary adapter that simultaneously fetches
the full, post-update document body.

	An upsert update request against the secondary adapter with the document
returned in the primary update response.

	All other write operations (index(), delete(), bulk(), etc)
leverage the Elasticsearch Bulk API [https://www.elastic.co/guide/en/elasticsearch/reference/2.4/docs-bulk.html] to perform the required operations
against both indexes simultaneously in as few requests against the backend as
possible (a single request in some cases).

	The index() method always achieves the index into both indexes with a
single request.

	The delete() method attempts to perform the delete against both
indexes in a single request, and will only perform a second request in order
to index a tombstone on the secondary (if the primary delete succeeded and
the secondary delete failed with a 404 status).

	The bulk() method (the underlying method for all bulk operations)
performs actions against both indexes simultaneously by chunking the actions
prior to calling elasticsearch.helpers.bulk() (as opposed to relying on
that function to perform the chunking). This allows all bulk actions to be
applied against both the primary and secondary indexes in parallel, thereby
keeping both indexes synchronized throughout the duration of potentially
large (multi-request) bulk operations.

Tombstone

The concept of Tombstone in the ES mulitplexer is there to be placeholder for
the docs that get deleted on the primary index prior to that document being
indexed on the secondary index. It means that whenever an adapter is multiplexed
and a document is deleted, then the secondary index will receive a tombstone
entry for that document if and only if the primary index delete succeeds and
the secondary index delete fails due to a not found condition (404). The python
class defined to represent these tombstones is
corehq.apps.es.client.Tombstone.

Scenario without tombstones: If a multiplexing adapter deletes a document in the
secondary index (which turns out to be a no-op because the document does not
exist there yet), and then that same document is copied to the secondary index
by the reindexer, then it will exist indefinitely in the secondary even though
it has been deleted in the primary.

Put another way:

	Reindexer: gets batch of objects from primary index to copy to secondary.

	Multiplexer: deletes a document in that batch (in both primary and secondary
indexes).

	Reindexer: writes deleted (now stale) document into secondary index.

	Result: secondary index contains a document that has been deleted.

With tombstones: this will not happen because the reindexer uses a “ignore
existing documents” copy mode, so it will never overwrite a tombstone with a
stale (deleted) document.

Tombstones will only exist in the secondary index and will be deleted as a final
step following a successful sync (reindex) operation. Since tombstones can only
be created while the primary and secondary indexes are out of sync (secondary
index does not yet contain all primary documents), then once the sync is
complete, the multiplexer will no longer create new tombstones.

A sample tombstone document would look like

{
 "__is_tombstone__" : True
}

Code Documentation

HQ Elasticsearch client logic (adapters).

	
class corehq.apps.es.client.BaseAdapter

	Base adapter that includes methods common to all adapters.

	
__init__()

	

	
info()

	Return the Elasticsearch server info.

	
ping()

	Ping the Elasticsearch service.

	
class corehq.apps.es.client.BulkActionItem(op_type, doc=None, doc_id=None)

	A wrapper for documents to be processed via Elasticsearch’s Bulk API.
Collections of these objects can be passed to an ElasticDocumentAdapter’s
.bulk() method for processing.

Instances of this class are meant to be acquired via one of the factory
methods rather than instantiating directly (via __init__()).

	
class OpType(value)

	An enumeration.

	
__init__(op_type, doc=None, doc_id=None)

	

	
classmethod delete(doc)

	Factory method for a document delete action

	
classmethod delete_id(doc_id)

	Factory method for a document delete action providing only the ID

	
classmethod index(doc)

	Factory method for a document index action

	
property is_delete

	True if this is a delete action, otherwise False.

	
property is_index

	True if this is an index action, otherwise False.

	
class corehq.apps.es.client.ElasticDocumentAdapter(index_name, type_)

	Base for subclassing document-specific adapters.

Subclasses must define the following:

	mapping: attribute (dict)

	from_python(...): classmethod for converting models into Elastic format

	
__init__(index_name, type_)

	A document adapter for a single index.

	Parameters:

	
	index_name – the name of the index that this adapter interacts with

	type – the index _type for the mapping

	
bulk(actions, refresh=False, raise_errors=True)

	Use the Elasticsearch library’s bulk() helper function to process
documents en masse.

Equivalent to the legacy ElasticsearchInterface.bulk_ops(...)
method.

	Parameters:

	
	actions – iterable of BulkActionItem instances

	refresh – bool refresh the effected shards to make this
operation visible to search

	raise_errors – whether or not exceptions should be raised if bulk
actions fail. The default (True) matches that of the
elasticsearch-py library’s bulk() helper function (i.e. raise).

	
bulk_delete(doc_ids, **bulk_kw)

	Convenience method for bulk deleting many documents by ID without the
BulkActionItem boilerplate.

	Parameters:

	
	doc_ids – iterable of document IDs to be deleted

	bulk_kw – extra parameters passed verbatim to the
ElasticDocumentAdapter.bulk() method.

	
bulk_index(docs, **bulk_kw)

	Convenience method for bulk indexing many documents without the
BulkActionItem boilerplate.

	Parameters:

	
	docs – iterable of (Python model) documents to be indexed

	bulk_kw – extra parameters passed verbatim to the
ElasticDocumentAdapter.bulk() method.

	
count(query)

	Return the number of documents matched by the query

	Parameters:

	query – dict query body

	Returns:

	int

	
delete(doc_id, refresh=False)

	Delete an existing document from Elasticsearch

Equivalent to the legacy ElasticsearchInterface.delete_doc(...)
method.

	Parameters:

	
	doc_id – str ID of the document to delete

	refresh – bool refresh the effected shards to make this
operation visible to search

	
delete_tombstones()

	Deletes all tombstones documents present in the index

TODO: This should be replaced by delete_by_query
https://www.elastic.co/guide/en/elasticsearch/reference/5.1/docs-delete-by-query.html
when on ES version >= 5

	
exists(doc_id)

	Check if a document exists for the provided doc_id

Equivalent to the legacy ElasticsearchInterface.doc_exists(...)
method.

	Parameters:

	doc_id – str ID of the document to be checked

	Returns:

	bool

	
export_adapter()

	Get an instance of this document adapter configured for “export”
queries (i.e. the low-level Elasticsearch client object is configured
with longer request timeouts, etc).

	
from_python(doc)

	Transform a Python model object or model dict into the json-serializable (dict)
format suitable for indexing in Elasticsearch.

	Parameters:

	doc – document (instance of a Python model) or a dict representation of that model

	Returns:

	tuple of (doc_id, source_dict) suitable for being
indexed/updated/deleted in Elasticsearch

	
get(doc_id, source_includes=None)

	Return the document for the provided doc_id

Equivalent to the legacy ElasticsearchInterface.get_doc(...) method.

	Parameters:

	
	doc_id – str ID of the document to be fetched

	source_includes – a list of fields to extract and return. If
None (the default), the entire document is
returned.

	Returns:

	dict

	
get_docs(doc_ids)

	Return multiple docs for the provided doc_ids

Equivalent to the legacy ElasticsearchInterface.get_bulk_docs(...)
method.

	Parameters:

	doc_ids – iterable of document IDs (str’s)

	Returns:

	dict

	
index(doc, refresh=False)

	Index (send) a new document in (to) Elasticsearch

Equivalent to the legacy
ElasticsearchInterface.index_doc(...) method.

	Parameters:

	
	doc – the (Python model) document to index

	refresh – bool refresh the effected shards to make this
operation visible to search

	
iter_docs(doc_ids, chunk_size=100)

	Return a generator which fetches documents in chunks.

	Parameters:

	
	doc_ids – iterable of document IDs (str s)

	chunk_size – int number of documents to fetch per query

	Yields:

	dict documents

	
scroll(query, scroll='5m', size=None)

	Perfrom a scrolling search, yielding each doc until the entire context
is exhausted.

	Parameters:

	
	query – dict raw search query.

	scroll – str time value specifying how long the Elastic
cluster should keep the search context alive.

	size – int scroll size (number of documents per “scroll” page)
When set to None (the default), the default scroll size
is used.

	Yields:

	dict documents

	
search(query, **kw)

	Perform a query (search) and return the result.

	Parameters:

	
	query – dict search query to execute

	kw – extra parameters passed directly to the
underlying elasticsearch.Elasticsearch.search() method.

	Returns:

	dict

	
to_json(doc)

	Convenience method that returns the full “from python” document
(including the _id key, if present) as it would be returned by an
adapter search result.

This method is not used by the adapter itself, and is only present for
other code which wishes to work with documents in a couch-like format.

	Parameters:

	doc – document (instance of a Python model)

	
update(doc_id, fields, return_doc=False, refresh=False, _upsert=False, retry_on_conflict=None)

	Update an existing document in Elasticsearch

Equivalent to the legacy
ElasticsearchInterface.update_doc_fields(...) method.

	Parameters:

	
	doc_id – str ID of the document to update

	fields – dict of name/values to update on the existing Elastic
doc

	return_doc – bool return the full updated doc. When False
(the default), None is returned.

	refresh – bool refresh the effected shards to make this
operation visible to search

	_upsert – bool. Only needed for multiplexing, use the
index() method instead. Create a new document if one
doesn’t already exist. When False (the default),
performing an update request for a missing document will
raise an exception.

	retry_on_conflict – int number of times to retry the update if
there is a conflict. Ignored if None (the
default). Otherwise, the value it is passed
directly to the low-level update() method.

	Returns:

	dict or None

	
class corehq.apps.es.client.ElasticManageAdapter

	
	
cancel_task(task_id)

	Cancells a running task in ES

	Parameters:

	task_id – str ID of the task

	Returns:

	dict of task details

	Raises:

	TaskError or TaskMissing (subclass of TaskError)

	
cluster_health(index=None)

	Return the Elasticsearch cluster health.

	
cluster_routing(*, enabled)

	Enable or disable cluster routing.

	Parameters:

	enabled – bool whether to enable or disable routing

	
get_aliases()

	Return the cluster aliases information.

	Returns:

	dict with format {<alias>: [<index>, ...], ...}

	
get_indices(full_info=False)

	Return the cluster index information of active indices.

	Parameters:

	full_info – bool whether to return the full index info
(default False)

	Returns:

	dict

	
get_node_info(node_id, metric)

	Return a specific metric from the node info for an Elasticsearch node.

	Parameters:

	
	node_id – str ID of the node

	metric – str name of the metric to fetch

	Returns:

	deserialized JSON (dict, list, str, etc)

	
get_task(task_id)

	Return the details for an active task

	Parameters:

	task_id – str ID of the task

	Returns:

	dict of task details

	Raises:

	TaskError or TaskMissing (subclass of TaskError)

	
index_close(index)

	Close an index.

	Parameters:

	index – str index name

	
index_configure_for_reindex(index)

	Update an index with settings optimized for reindexing.

	Parameters:

	index – str index for which to change the settings

	
index_configure_for_standard_ops(index)

	Update an index with settings optimized standard HQ performance.

	Parameters:

	index – str index for which to change the settings

	
index_create(index, metadata=None)

	Create a new index.

	Parameters:

	
	index – str index name

	metadata – dict full index metadata (mappings, settings, etc)

	
index_delete(index)

	Delete an existing index.

	Parameters:

	index – str index name

	
index_exists(index)

	Check if index refers to a valid index identifier (index name or
alias).

	Parameters:

	index – str index name or alias

	Returns:

	bool

	
index_flush(index)

	Flush an index.

	Parameters:

	index – str index name

	
index_get_mapping(index, type_)

	Returns the current mapping for a doc type on an index.

	Parameters:

	
	index – str index to fetch the mapping from

	type – str doc type to fetch the mapping for

	Returns:

	mapping dict or None if index does not have a mapping

	
index_get_settings(index, values=None)

	Returns the current settings for an index.

	Parameters:

	
	index – str index to fetch settings for

	values – Optional collection of explicit settings to provide in
the return value. If None (the default) all settings are
returned.

	Returns:

	dict

	Raises:

	KeyError (only if invalid values are provided)

	
index_put_alias(index, name)

	Assign an alias to an existing index. This uses the
Elasticsearch.update_aliases() method to perform both ‘remove’ and
‘add’ actions simultaneously, which is atomic on the server-side. This
ensures that the alias is only assigned to one index at a time, and
that (if present) an existing alias does not vanish momentarily.

See: https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-aliases.html

	Parameters:

	
	index – str name of the index to be aliased

	name – str name of the alias to assign to index

	
index_put_mapping(index, type_, mapping)

	Update the mapping for a doc type on an index.

	Parameters:

	
	index – str index where the mapping should be updated

	type – str doc type to update on the index

	mapping – dict mapping for the provided doc type

	
index_refresh(index)

	Convenience method for refreshing a single index.

	
index_set_replicas(index, replicas)

	Set the number of replicas for an index.

	Parameters:

	
	index – str index for which to change the replicas

	replicas – int number of replicas

	
index_validate_query(index, query, params={})

	Returns True if passed query is valid else will return false

	
indices_info()

	Retrieve meta information about all the indices in the cluster. This will also return closed indices
:returns: dict A dict with index name in keys and index meta information.

	
indices_refresh(indices)

	Refresh a list of indices.

	Parameters:

	indices – iterable of index names or aliases

	
reindex(source, dest, wait_for_completion=False, refresh=False, batch_size=1000, purge_ids=False, requests_per_second=None)

	Starts the reindex process in elastic search cluster

	Parameters:

	
	source – str name of the source index

	dest – str name of the destination index

	wait_for_completion – bool would block the request until reindex is complete

	refresh – bool refreshes index

	requests_per_second – int throttles rate at which reindex issues batches of
index operations by padding each batch with a wait time.

	batch_size – int The size of the scroll batch used by the reindex process. larger
batches may process more quickly but risk errors if the documents are too
large. 1000 is the recommended maximum and elasticsearch default,
and can be reduced if you encounter scroll timeouts.

	purge_ids – bool adds an inline script to remove the _id field from documents source.
these cause errors on reindexing the doc, but the script slows down the reindex
substantially, so it is only recommended to enable this if you have run into
the specific error it is designed to resolve.

	Returns:

	None if wait_for_completion is True else would return task_id of reindex task

	
class corehq.apps.es.client.ElasticMultiplexAdapter(primary_adapter, secondary_adapter)

	
	
__init__(primary_adapter, secondary_adapter)

	

	
bulk(actions, refresh=False, raise_errors=True)

	Apply bulk actions on the primary and secondary.

Bulk actions are applied against the primary and secondary in chunks of
500 actions at a time (replicates the behavior of the the bulk()
helper function). Chunks are applied against the primary and secondary
simultaneously by chunking the original actions in blocks of (up to)
250 and performing a single block of (up to) 500 actions against both
indexes in parallel. Tombstone documents are indexed on the secondary
for any delete actions which succeed on the primary but fail on the
secondary.

	
delete(doc_id, refresh=False)

	Delete from both primary and secondary via the bulk() method in
order to perform both actions in a single HTTP request (two, if a
tombstone is required).

	
index(doc, refresh=False)

	Index into both primary and secondary via the bulk() method in
order to perform both actions in a single HTTP request.

	
update(doc_id, fields, return_doc=False, refresh=False, _upsert=False, **kw)

	Update on the primary adapter, fetching the full doc; then upsert the
secondary adapter.

	
class corehq.apps.es.client.Tombstone(doc_id)

	Used to create Tombstone documents in the secondary index when the document from primary index is deleted.

This is required to avoid a potential race condition
that might ocuur when we run reindex process along with the multiplexer

	
__init__(doc_id)

	

	
corehq.apps.es.client.create_document_adapter(cls, index_name, type_, *, secondary=None)

	Creates and returns a document adapter instance for the parameters
provided.

One thing to note here is that the behaviour of the function can be altered with django settings.

The function would return multiplexed adapter only if
- ES_<app name>_INDEX_MULTIPLEXED is True
- Secondary index is provided.

The indexes would be swapped only if
- ES_<app_name>_INDEX_SWAPPED is set to True
- secondary index is provided

If both ES_<app name>_INDEX_MULTIPLEXED and ES_<app_name>_INDEX_SWAPPED are set to True
then primary index will act as secondary index and vice versa.

	Parameters:

	
	cls – an ElasticDocumentAdapter subclass

	index_name – the name of the index that the adapter interacts with

	type – the index _type for the adapter’s mapping.

	secondary – the name of the secondary index in a multiplexing
configuration.
If an index name is provided and ES_<app name>_INDEX_MULTIPLEXED is set to True,
then returned adapter will be an instance of ElasticMultiplexAdapter.
If None (the default), the returned adapter will be an instance of cls.
ES_<app name>_INDEX_MULTIPLEXED will be ignored if secondary is None.

	Returns:

	a document adapter instance.

	
corehq.apps.es.client.get_client(for_export=False)

	Get an elasticsearch client instance.

	Parameters:

	for_export – (optional bool) specifies whether the returned
client should be optimized for slow export queries.

	Returns:

	elasticsearch.Elasticsearch instance.

Querying Elasticsearch

ESQuery

ESQuery is a library for building elasticsearch queries in a friendly,
more readable manner.

Basic usage

There should be a file and subclass of ESQuery for each index we have.

Each method returns a new object, so you can chain calls together like
SQLAlchemy. Here’s an example usage:

q = (FormsES()
 .domain(self.domain)
 .xmlns(self.xmlns)
 .submitted(gte=self.datespan.startdate_param,
 lt=self.datespan.enddateparam)
 .source(['xmlns', 'domain', 'app_id'])
 .sort('received_on', desc=False)
 .size(self.pagination.count)
 .start(self.pagination.start)
 .terms_aggregation('babies.count', 'babies_saved'))
result = q.run()
total_docs = result.total
hits = result.hits

Generally useful filters and queries should be abstracted away for re-use,
but you can always add your own like so:

q.filter({"some_arbitrary_filter": {...}})
q.set_query({"fancy_query": {...}})

For debugging or more helpful error messages, you can use query.dumps()
and query.pprint(), both of which use json.dumps() and are suitable for
pasting in to ES Head or Marvel or whatever

Filtering

Filters are implemented as standalone functions, so they can be composed and
nested q.OR(web_users(), mobile_users()).
Filters can be passed to the query.filter method: q.filter(web_users())

There is some syntactic sugar that lets you skip this boilerplate and just
call the filter as if it were a method on the query class: q.web_users()
In order to be available for this shorthand, filters are added to the
builtin_filters property of the main query class.
I know that’s a bit confusing, but it seemed like the best way to make filters
available in both contexts.

Generic filters applicable to all indices are available in
corehq.apps.es.filters. (But most/all can also be accessed as a query
method, if appropriate)

Filtering Specific Indices

There is a file for each elasticsearch index (if not, feel free to add one).
This file provides filters specific to that index, as well as an
appropriately-directed ESQuery subclass with references to these filters.

These index-specific query classes also have default filters to exclude things
like inactive users or deleted docs.
These things should nearly always be excluded, but if necessary, you can remove
these with remove_default_filters.

Language

	es_query - the entire query, filters, query, pagination

	filters - a list of the individual filters

	query - the query, used for searching, not filtering

	field - a field on the document. User docs have a ‘domain’ field.

	lt/gt - less/greater than

	lte/gte - less/greater than or equal to

	
class corehq.apps.es.es_query.ESQuery(index=None, for_export=False)

	This query builder only outputs the following query structure:

{
 "query": {
 "bool": {
 "filter": {
 "and": [
 <filters>
]
 },
 "query": <query>
 }
 },
 <size, sort, other params>
}

	
__init__(index=None, for_export=False)

	

	
add_query(new_query, clause)

	Add a query to the current list of queries

	
aggregation(aggregation)

	Add the passed-in aggregation to the query

	
property builtin_filters

	A list of callables that return filters. These will all be available as
instance methods, so you can do self.term(field, value) instead of
self.filter(filters.term(field, value))

	
dumps(pretty=False)

	Returns the JSON query that will be sent to elasticsearch.

	
exclude_source()

	Turn off _source retrieval. Mostly useful if you just want the doc_ids

	
fields(fields)

	Restrict the fields returned from elasticsearch

Deprecated. Use source instead.

	
filter(filter)

	Add the passed-in filter to the query. All filtering goes through
this class.

	
property filters

	Return a list of the filters used in this query, suitable if you
want to reproduce a query with additional filtering.

	
get_ids()

	Performs a minimal query to get the ids of the matching documents

For very large sets of IDs, use scroll_ids instead

	
nested_sort(path, field_name, nested_filter, desc=False, reset_sort=True, sort_missing=None)

	Order results by the value of a nested field

	
pprint()

	pretty prints the JSON query that will be sent to elasticsearch.

	
remove_default_filter(default)

	Remove a specific default filter by passing in its name.

	
remove_default_filters()

	Sensible defaults are provided. Use this if you don’t want ‘em

	
run()

	Actually run the query. Returns an ESQuerySet object.

	
scroll()

	Run the query against the scroll api. Returns an iterator yielding each
document that matches the query.

	
scroll_ids()

	Returns a generator of all matching ids

	
scroll_ids_to_disk_and_iter_docs()

	Returns a ScanResult for all matched documents.

Used for iterating docs for a very large query where consuming the docs
via self.scroll() may exceed the amount of time that the scroll
context can remain open. This is achieved by:

	Fetching the IDs for all matched documents (via scroll_ids()) and
caching them in a temporary file on disk, then

	fetching the documents by (chunked blocks of) IDs streamed from the
temporary file.

Original design PR: https://github.com/dimagi/commcare-hq/pull/20282

Caveats:
- There is no guarantee that the returned ScanResult’s count
property will match the number of yielded docs.
- Documents that are present when scroll_ids() is called, but are
deleted prior to being fetched in full will be missing from the
results, and this scenario will not raise an exception.
- If Elastic document ID values are ever reused (i.e. new documents
are created with the same ID of a previously-deleted document) then
this method would become unsafe because it could yield documents that
were not matched by the query.

	
search_string_query(search_string, default_fields)

	Accepts a user-defined search string

	
set_query(query)

	Set the query. Most stuff we want is better done with filters, but
if you actually want Levenshtein distance or prefix querying…

	
set_sorting_block(sorting_block)

	To be used with get_sorting_block, which interprets datatables sorting

	
size(size)

	Restrict number of results returned. Analagous to SQL limit, except
when performing a scroll, in which case this value becomes the number of
results to fetch per scroll request.

	
sort(field, desc=False, reset_sort=True)

	Order the results by field.

	
source(include, exclude=None)

	Restrict the output of _source in the queryset. This can be used to return an object in a queryset

	
start(start)

	Pagination. Analagous to SQL offset.

	
values(*fields)

	modeled after django’s QuerySet.values

	
class corehq.apps.es.es_query.ESQuerySet(raw, query)

	
	The object returned from ESQuery.run
	
	ESQuerySet.raw is the raw response from elasticsearch

	ESQuerySet.query is the ESQuery object

	
__init__(raw, query)

	

	
property doc_ids

	Return just the docs ids from the response.

	
property hits

	Return the docs from the response.

	
static normalize_result(query, result)

	Return the doc from an item in the query response.

	
property total

	Return the total number of docs matching the query.

	
class corehq.apps.es.es_query.HQESQuery(index=None, for_export=False)

	Query logic specific to CommCareHQ

	
property builtin_filters

	A list of callables that return filters. These will all be available as
instance methods, so you can do self.term(field, value) instead of
self.filter(filters.term(field, value))

	
exception corehq.apps.es.es_query.InvalidQueryError

	Query parameters cannot be assembled into a valid search.

Available Filters

The following filters are available on any ESQuery instance - you can chain
any of these on your query.

Note also that the term filter accepts either a list or a single element.
Simple filters which match against a field are based on this filter, so those
will also accept lists.
That means you can do form_query.xmlns(XMLNS1) or
form_query.xmlns([XMLNS1, XMLNS2, ...]).

Contributing:
Additions to this file should be added to the builtin_filters method on
either ESQuery or HQESQuery, as appropriate (is it an HQ thing?).

	
corehq.apps.es.filters.AND(*filters)

	Filter docs to match all of the filters passed in

	
corehq.apps.es.filters.NOT(filter_)

	Exclude docs matching the filter passed in

	
corehq.apps.es.filters.OR(*filters)

	Filter docs to match any of the filters passed in

	
corehq.apps.es.filters.date_range(field, gt=None, gte=None, lt=None, lte=None)

	Range filter that accepts date and datetime objects as arguments

	
corehq.apps.es.filters.doc_id(doc_id)

	Filter by doc_id. Also accepts a list of doc ids

	
corehq.apps.es.filters.doc_type(doc_type)

	Filter by doc_type. Also accepts a list

	
corehq.apps.es.filters.domain(domain_name)

	Filter by domain.

	
corehq.apps.es.filters.empty(field)

	Only return docs with a missing or null value for field

	
corehq.apps.es.filters.exists(field)

	Only return docs which have a value for field

	
corehq.apps.es.filters.geo_bounding_box(field, top_left, bottom_right)

	Only return geopoints stored in field that are located within
the bounding box defined by top_left and bottom_right.

top_left and bottom_right accept a range of data types and
formats.

More info: Geo Bounding Box Query [https://www.elastic.co/guide/en/elasticsearch/reference/5.6/query-dsl-geo-bounding-box-query.html]

	
corehq.apps.es.filters.geo_grid(field, geohash)

	Filters cases by the geohash grid cell in which they are located.

	
corehq.apps.es.filters.geo_polygon(field, points)

	Filters geo_point values in field that fall within the
polygon described by the list of points.

More info: Geo Polygon Query [https://www.elastic.co/guide/en/elasticsearch/reference/5.6/query-dsl-geo-polygon-query.html]

	Parameters:

	
	field – A field with Elasticsearch data type geo_point.

	points – A list of points that describe a polygon.
Elasticsearch supports a range of formats for list items.

	Returns:

	A filter dict.

	
corehq.apps.es.filters.geo_shape(field, shape, relation='intersects')

	Filters cases by case properties indexed using the geo_point
type.

More info: The Geoshape query reference [https://www.elastic.co/guide/en/elasticsearch/reference/8.10/query-dsl-geo-shape-query.html]

	Parameters:

	
	field – The field where geopoints are stored

	shape – A shape definition given in GeoJSON geometry format.
More info: The GeoJSON specification (RFC 7946) [https://datatracker.ietf.org/doc/html/rfc7946]

	relation – The relation between the shape and the case
property values.

	Returns:

	A filter definition

	
corehq.apps.es.filters.missing(field)

	Only return docs missing a value for field

	
corehq.apps.es.filters.nested(path, filter_)

	Query nested documents which normally can’t be queried directly

	
corehq.apps.es.filters.non_null(field)

	Only return docs with a real, non-null value for field

	
corehq.apps.es.filters.range_filter(field, gt=None, gte=None, lt=None, lte=None)

	Filter field by a range. Pass in some sensible combination of gt
(greater than), gte (greater than or equal to), lt, and lte.

	
corehq.apps.es.filters.term(field, value)

	Filter docs by a field
‘value’ can be a singleton or a list.

Available Queries

Queries are used for actual searching - things like relevancy scores,
Levenstein distance, and partial matches.

View the elasticsearch documentation to see what other options
are available, and put ‘em here if you end up using any of ‘em.

	
corehq.apps.es.queries.filtered(query, filter_)

	Filtered query for performing both filtering and querying at once

	
corehq.apps.es.queries.geo_distance(field, geopoint, **kwargs)

	Filters cases to those within a certain distance of the provided geopoint

eg: geo_distance(‘gps_location’, GeoPoint(-33.1, 151.8), kilometers=100)

	
corehq.apps.es.queries.match_all()

	No-op query used because a default must be specified

	
corehq.apps.es.queries.nested(path, query, *args, **kwargs)

	Creates a nested query for use with nested documents

Keyword arguments such as score_mode and others can be added.

	
corehq.apps.es.queries.nested_filter(path, filter_, *args, **kwargs)

	Creates a nested query for use with nested documents

Keyword arguments such as score_mode and others can be added.

	
corehq.apps.es.queries.search_string_query(search_string, default_fields)

	All input defaults to doing an infix search for each term.
(This may later change to some kind of fuzzy matching).

This is also available via the main ESQuery class.

Aggregate Queries

Aggregations are a replacement for Facets

Here is an example used to calculate how many new pregnancy cases each user has
opened in a certain date range.

res = (CaseES()
 .domain(self.domain)
 .case_type('pregnancy')
 .date_range('opened_on', gte=startdate, lte=enddate))
 .aggregation(TermsAggregation('by_user', 'opened_by')
 .size(0)

buckets = res.aggregations.by_user.buckets
buckets.user1.doc_count

There’s a bit of magic happening here - you can access the raw json data from
this aggregation via res.aggregation('by_user') if you’d prefer to skip it.

The res object has a aggregations property, which returns a namedtuple
pointing to the wrapped aggregation results. The name provided at instantiation is
used here (by_user in this example).

The wrapped aggregation_result object has a result property containing the
aggregation data, as well as utilties for parsing that data into something more
useful. For example, the TermsAggregation result also has a counts_by_bucket
method that returns a {bucket: count} dictionary, which is normally what you
want.

As of this writing, there’s not much else developed, but it’s pretty easy to
add support for other aggregation types and more results processing

	
class corehq.apps.es.aggregations.AggregationRange(start=None, end=None, key=None)

	Note that a range includes the “start” value and excludes the “end” value.
i.e. start <= X < end

	Parameters:

	
	start – range start

	end – range end

	key – optional key name for the range

	
class corehq.apps.es.aggregations.AggregationTerm(name, field)

	
	
field

	Alias for field number 1

	
name

	Alias for field number 0

	
class corehq.apps.es.aggregations.AvgAggregation(name, field)

	

	
class corehq.apps.es.aggregations.CardinalityAggregation(name, field)

	

	
class corehq.apps.es.aggregations.DateHistogram(name, datefield, interval, timezone=None)

	Aggregate by date range. This can answer questions like “how many forms
were created each day?”.

	Parameters:

	
	name – what do you want to call this aggregation

	datefield – the document’s date field to look at

	interval – the date interval to use - from DateHistogram.Interval

	timezone – do bucketing using this time zone instead of UTC

	
__init__(name, datefield, interval, timezone=None)

	

	
class corehq.apps.es.aggregations.ExtendedStatsAggregation(name, field, script=None)

	Extended stats aggregation that computes an extended stats aggregation by field

	
class corehq.apps.es.aggregations.FilterAggregation(name, filter)

	Bucket aggregation that creates a single bucket for the specified filter

	Parameters:

	
	name – aggregation name

	filter – filter body

	
__init__(name, filter)

	

	
class corehq.apps.es.aggregations.FiltersAggregation(name, filters=None)

	Bucket aggregation that creates a bucket for each filter specified using
the filter name.

	Parameters:

	name – aggregation name

	
__init__(name, filters=None)

	

	
add_filter(name, filter)

	
	Parameters:

	
	name – filter name

	filter – filter body

	
class corehq.apps.es.aggregations.GeoBoundsAggregation(name, field)

	A metric aggregation that computes the bounding box containing all
geo_point values for a field.

More info: Geo Bounds Aggregation [https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search-aggregations-metrics-geobounds-aggregation.html]

	
__init__(name, field)

	

	
class corehq.apps.es.aggregations.GeohashGridAggregation(name, field, precision)

	A multi-bucket aggregation that groups geo_point and
geo_shape values into buckets that represent a grid.

More info: Geohash grid aggregation [https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search-aggregations-bucket-geohashgrid-aggregation.html]

	
__init__(name, field, precision)

	Initialize a GeohashGridAggregation

	Parameters:

	
	name – The name of this aggregation

	field – The case property that stores a geopoint

	precision – A value between 1 and 12

High precision geohashes have a long string length and represent
cells that cover only a small area (similar to long-format ZIP
codes like “02139-4075”).

Low precision geohashes have a short string length and represent
cells that each cover a large area (similar to short-format ZIP
codes like “02139”).

	
class corehq.apps.es.aggregations.MaxAggregation(name, field)

	

	
class corehq.apps.es.aggregations.MinAggregation(name, field)

	Bucket aggregation that returns the minumum value of a field

	Parameters:

	
	name – aggregation name

	field – name of the field to min

	
class corehq.apps.es.aggregations.MissingAggregation(name, field)

	A field data based single bucket aggregation, that creates a bucket of all
documents in the current document set context that are missing a field value
(effectively, missing a field or having the configured NULL value set).

	Parameters:

	
	name – aggregation name

	field – name of the field to bucket on

	
__init__(name, field)

	

	
class corehq.apps.es.aggregations.NestedAggregation(name, path)

	A special single bucket aggregation that enables aggregating nested documents.

	Parameters:

	path – Path to nested document

	
__init__(name, path)

	

	
class corehq.apps.es.aggregations.NestedTermAggregationsHelper(base_query, terms)

	Helper to run nested term-based queries (equivalent to SQL group-by clauses).
This is not at all related to the ES ‘nested aggregation’. The final aggregation
is a count of documents.

Example usage:

counting all forms submitted in a domain grouped by app id and user id

NestedTermAggregationsHelper(
 base_query=FormES().domain(domain_name),
 terms=[
 AggregationTerm('app_id', 'app_id'),
 AggregationTerm('user_id', 'form.meta.userID'),
]
).get_data()

This works by bucketing docs first by one terms aggregation, then within
that bucket, bucketing further by the next term, and so on. This is then
flattened out to appear like a group-by-multiple.

	
__init__(base_query, terms)

	

	
class corehq.apps.es.aggregations.RangeAggregation(name, field, ranges=None, keyed=True)

	Bucket aggregation that creates one bucket for each range
:param name: the aggregation name
:param field: the field to perform the range aggregations on
:param ranges: list of AggregationRange objects
:param keyed: set to True to have the results returned by key instead of as
a list (see RangeResult.normalized_buckets)

	
__init__(name, field, ranges=None, keyed=True)

	

	
class corehq.apps.es.aggregations.StatsAggregation(name, field, script=None)

	Stats aggregation that computes a stats aggregation by field

	Parameters:

	
	name – aggregation name

	field – name of the field to collect stats on

	script – an optional field to allow you to script the computed field

	
__init__(name, field, script=None)

	

	
class corehq.apps.es.aggregations.SumAggregation(name, field)

	Bucket aggregation that sums a field

	Parameters:

	
	name – aggregation name

	field – name of the field to sum

	
__init__(name, field)

	

	
class corehq.apps.es.aggregations.TermsAggregation(name, field, size=None, missing=None)

	Bucket aggregation that aggregates by field

	Parameters:

	
	name – aggregation name

	field – name of the field to bucket on

	size –

	missing – define how documents that are missing a value should be treated.
By default, they will be ignored. If a value is supplied here it will be used where
the value is missing.

	
__init__(name, field, size=None, missing=None)

	

	
class corehq.apps.es.aggregations.TopHitsAggregation(name, field=None, is_ascending=True, size=1, include=None)

	A top_hits metric aggregator keeps track of the most relevant document being aggregated
This aggregator is intended to be used as a sub aggregator, so that the top matching
documents can be aggregated per bucket.

	Parameters:

	
	name – Aggregation name

	field – This is the field to sort the top hits by. If None, defaults to sorting
by score.

	is_ascending – Whether to sort the hits in ascending or descending order.

	size – The number of hits to include. Defaults to 1.

	include – An array of fields to include in the hit. Defaults to returning the whole document.

	
__init__(name, field=None, is_ascending=True, size=1, include=None)

	

	
class corehq.apps.es.aggregations.ValueCountAggregation(name, field)

	

AppES

	
class corehq.apps.es.apps.AppES(index=None, for_export=False)

	
	
property builtin_filters

	A list of callables that return filters. These will all be available as
instance methods, so you can do self.term(field, value) instead of
self.filter(filters.term(field, value))

	
index = 'apps'

	

	
class corehq.apps.es.apps.ElasticApp(index_name, type_)

	
	
canonical_name = 'apps'

	

	
property mapping

	

	
property model_cls

	

	
settings_key = 'hqapps'

	

	
corehq.apps.es.apps.app_id(app_id)

	

	
corehq.apps.es.apps.build_comment(comment)

	

	
corehq.apps.es.apps.cloudcare_enabled(cloudcare_enabled)

	

	
corehq.apps.es.apps.created_from_template(from_template=True)

	

	
corehq.apps.es.apps.is_build(build=True)

	

	
corehq.apps.es.apps.is_released(released=True)

	

	
corehq.apps.es.apps.uses_case_sharing(case_sharing=True)

	

	
corehq.apps.es.apps.version(version)

	

UserES

Here’s an example adapted from the case list report - it gets a list of the ids
of all unknown users, web users, and demo users on a domain.

from corehq.apps.es import users as user_es

user_filters = [
 user_es.unknown_users(),
 user_es.web_users(),
 user_es.demo_users(),
]

query = (user_es.UserES()
 .domain(self.domain)
 .OR(*user_filters)
 .show_inactive())

owner_ids = query.get_ids()

	
class corehq.apps.es.users.ElasticUser(index_name, type_)

	
	
canonical_name = 'users'

	

	
property mapping

	

	
property model_cls

	

	
settings_key = 'hqusers'

	

	
class corehq.apps.es.users.UserES(index=None, for_export=False)

	
	
property builtin_filters

	A list of callables that return filters. These will all be available as
instance methods, so you can do self.term(field, value) instead of
self.filter(filters.term(field, value))

	
default_filters = {'active': {'term': {'is_active': True}}, 'not_deleted': {'term': {'base_doc': 'couchuser'}}}

	

	
index = 'users'

	

	
show_inactive()

	Include inactive users, which would normally be filtered out.

	
show_only_inactive()

	

	
corehq.apps.es.users.admin_users()

	Return only AdminUsers. Admin users are mock users created from xform
submissions with unknown user ids whose username is “admin”.

	
corehq.apps.es.users.analytics_enabled(enabled=True)

	

	
corehq.apps.es.users.created(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.users.demo_users()

	Matches users whose username is demo_user

	
corehq.apps.es.users.domain(domain, allow_enterprise=False)

	

	
corehq.apps.es.users.domains(domains)

	

	
corehq.apps.es.users.is_active(active=True)

	

	
corehq.apps.es.users.is_practice_user(practice_mode=True)

	

	
corehq.apps.es.users.last_logged_in(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.users.location(location_id)

	

	
corehq.apps.es.users.missing_or_empty_user_data_property(property_name)

	A user_data property doesn’t exist, or does exist but has an empty string value.

	
corehq.apps.es.users.mobile_users()

	

	
corehq.apps.es.users.role_id(role_id)

	

	
corehq.apps.es.users.unknown_users()

	Return only UnknownUsers. Unknown users are mock users created from xform
submissions with unknown user ids.

	
corehq.apps.es.users.user_data(key, value)

	

	
corehq.apps.es.users.user_ids(user_ids)

	

	
corehq.apps.es.users.username(username)

	

	
corehq.apps.es.users.web_users()

	

CaseES

Here’s an example getting pregnancy cases that are either still open or were
closed after May 1st.

from corehq.apps.es import cases as case_es

q = (case_es.CaseES()
 .domain('testproject')
 .case_type('pregnancy')
 .OR(case_es.is_closed(False),
 case_es.closed_range(gte=datetime.date(2015, 05, 01))))

	
class corehq.apps.es.cases.CaseES(index=None, for_export=False)

	
	
property builtin_filters

	A list of callables that return filters. These will all be available as
instance methods, so you can do self.term(field, value) instead of
self.filter(filters.term(field, value))

	
index = 'cases'

	

	
class corehq.apps.es.cases.ElasticCase(index_name, type_)

	
	
canonical_name = 'cases'

	

	
property mapping

	

	
property model_cls

	

	
settings_key = 'hqcases'

	

	
corehq.apps.es.cases.active_in_range(gt=None, gte=None, lt=None, lte=None)

	Restricts cases returned to those with actions during the range

	
corehq.apps.es.cases.case_ids(case_ids)

	

	
corehq.apps.es.cases.case_name(name)

	

	
corehq.apps.es.cases.case_type(type_)

	

	
corehq.apps.es.cases.closed_range(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.cases.is_closed(closed=True)

	

	
corehq.apps.es.cases.modified_range(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.cases.open_case_aggregation(name='open_case', gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.cases.opened_by(user_id)

	

	
corehq.apps.es.cases.opened_range(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.cases.owner(owner_id)

	

	
corehq.apps.es.cases.owner_type(owner_type)

	

	
corehq.apps.es.cases.server_modified_range(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.cases.touched_total_aggregation(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.cases.user(user_id)

	

	
corehq.apps.es.cases.user_ids_handle_unknown(user_ids)

	

FormES

	
class corehq.apps.es.forms.ElasticForm(index_name, type_)

	
	
canonical_name = 'forms'

	

	
property mapping

	

	
property model_cls

	

	
settings_key = 'xforms'

	

	
class corehq.apps.es.forms.FormES(index=None, for_export=False)

	
	
property builtin_filters

	A list of callables that return filters. These will all be available as
instance methods, so you can do self.term(field, value) instead of
self.filter(filters.term(field, value))

	
default_filters = {'has_domain': {'exists': {'field': 'domain'}}, 'has_user': {'exists': {'field': 'form.meta.userID'}}, 'has_xmlns': {'exists': {'field': 'xmlns'}}, 'is_xform_instance': {'term': {'doc_type': 'xforminstance'}}}

	

	
domain_aggregation()

	

	
index = 'forms'

	

	
only_archived()

	Include only archived forms, which are normally excluded

	
user_aggregation()

	

	
corehq.apps.es.forms.app(app_ids)

	

	
corehq.apps.es.forms.completed(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.forms.form_ids(form_ids)

	

	
corehq.apps.es.forms.submitted(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.forms.updating_cases(case_ids)

	return only those forms that have case blocks that touch the cases listed in case_ids

	
corehq.apps.es.forms.user_id(user_ids)

	

	
corehq.apps.es.forms.user_ids_handle_unknown(user_ids)

	

	
corehq.apps.es.forms.user_type(user_types)

	

	
corehq.apps.es.forms.xmlns(xmlnss)

	

DomainES

from corehq.apps.es import DomainES

query = (DomainES()
 .in_domains(domains)
 .created(gte=datespan.startdate, lte=datespan.enddate)
 .size(0))

	
class corehq.apps.es.domains.DomainES(index=None, for_export=False)

	
	
property builtin_filters

	A list of callables that return filters. These will all be available as
instance methods, so you can do self.term(field, value) instead of
self.filter(filters.term(field, value))

	
default_filters = {'not_snapshot': {'bool': {'must_not': {'term': {'is_snapshot': True}}}}}

	

	
index = 'domains'

	

	
only_snapshots()

	Normally snapshots are excluded, instead, return only snapshots

	
class corehq.apps.es.domains.ElasticDomain(index_name, type_)

	
	
analysis = {'analyzer': {'comma': {'pattern': '\\s*,\\s*', 'type': 'pattern'}, 'default': {'filter': ['lowercase'], 'tokenizer': 'whitespace', 'type': 'custom'}}}

	

	
canonical_name = 'domains'

	

	
property mapping

	

	
property model_cls

	

	
settings_key = 'hqdomains'

	

	
corehq.apps.es.domains.created(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.domains.created_by_user(creating_user)

	

	
corehq.apps.es.domains.in_domains(domains)

	

	
corehq.apps.es.domains.incomplete_domains()

	

	
corehq.apps.es.domains.is_active(is_active=True)

	

	
corehq.apps.es.domains.is_active_project(is_active=True)

	

	
corehq.apps.es.domains.last_modified(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.domains.non_test_domains()

	

	
corehq.apps.es.domains.real_domains()

	

	
corehq.apps.es.domains.self_started()

	

SMSES

	
class corehq.apps.es.sms.ElasticSMS(index_name, type_)

	
	
canonical_name = 'sms'

	

	
property mapping

	

	
property model_cls

	

	
settings_key = 'smslogs'

	

	
class corehq.apps.es.sms.SMSES(index=None, for_export=False)

	
	
property builtin_filters

	A list of callables that return filters. These will all be available as
instance methods, so you can do self.term(field, value) instead of
self.filter(filters.term(field, value))

	
index = 'sms'

	

	
user_aggregation()

	

	
corehq.apps.es.sms.direction(direction_)

	

	
corehq.apps.es.sms.incoming_messages()

	

	
corehq.apps.es.sms.outgoing_messages()

	

	
corehq.apps.es.sms.processed(processed=True)

	

	
corehq.apps.es.sms.processed_or_incoming_messages()

	

	
corehq.apps.es.sms.received(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.sms.to_commcare_case()

	

	
corehq.apps.es.sms.to_commcare_user()

	

	
corehq.apps.es.sms.to_commcare_user_or_case()

	

	
corehq.apps.es.sms.to_couch_user()

	

	
corehq.apps.es.sms.to_web_user()

	

 Middleware

Middleware

What is middleware?

HQ uses a number of types of middleware, defined in settings.py.
For background on middleware, see the Django docs [https://docs.djangoproject.com/en/3.0/topics/http/middleware/]

TimeoutMiddleware

TimeoutMiddleware controls a session-based inactivity timeout, where the user is logged out after a period of inactivity.

The default timeout, defined in settings.py as INACTIVITY_TIMEOUT, is two weeks, long enough that regular
users will not encounter it.

Most of TimeoutMiddleware deals with domains that enforce a shorter timeout for security purposes.

The shorter timeout is enabled using the “Shorten Inactivity Timeout” checkbox in Project Settings > Privacy, and
stored as the Domain attribute secure_sessions. This document wil refer to domains using this feature as “secure” domains.
By default, secure domains time their users out after 30 minutes of inactivity. This duration is controlled by
SECURE_TIMEOUT in settings.py.

“Activity” refers to web requests to HQ. This includes formplayer requests, as formplayer issues a request to HQ
for session details that extends the user’s session; see SessionDetailsView. In secure domains,
there is also javascript-based logic in hqwebapp/js/inactivity that periodically pings HQ for the purpose of
extending the session, provided that the user has recently pressed a key or clicked their mouse.

When a user’s session times out, they are logged out, so their next request will redirect them to the login page.
This works acceptably for most of HQ but is a bad experience when in an area that relies heavily on ajax requests, which
will all start to fail without indicating to the user why. To avoid this there is a logout UI, also
controlled by hqwebapp/js/inactivity, which tracks when the user’s session is scheduled to expire. This UI pops
up a warning dialog when the session is close to expiring. When the session does expire, the UI pops up a dialog
that allows the user to re-login without leaving the page. This UI is enabled whenever the user is on a
domain-specific page and has a secure session. Note that the user’s session may be secure even if the domain they
are viewing is not secure; more on this below.

A user’s session is marked secure is any of the following are true:

	The user is viewing a secure domain.

	The user is a member of any domain that uses secure sessions.

	The session has already been marked secure by a previous request.

This behavior makes secure sessions “sticky”, following the user around after they visit a secure domain. Note that
the session is cleared when the user logs out or is forced out due to inactivity.

The feature flag SECURE_SESSION_TIMEOUT allows domains to customize the length of their timeout. When this is
on, the domain can specify a number of minutes, which will be used in place of the default 30-minute
SECURE_TIMEOUT. When a user is affected by multiple domains, with different timeout durations, the minimum
duration is used. As with the secure session flag itself, the relevant durations are the current domain, and other
domains where the user is a member, and the duration value currently stored in the session. So a user who belongs
to two secure domains, one with the standard 30-minute timeout and one with a 15-minute timeout, will always
experience a 15-minute timeout. A user who belongs to no secure domains but who visits a domain with a 45-minute
timeout will then experience a 45-minute timeout until the next time they log out and back in.

 Using the shared NFS drive

Using the shared NFS drive

On our production servers (and staging) we have an NFS drive set up that we can use for a number of things:

	store files that are generated asynchronously for retrieval in a later request
* previously we needed to save these files to Redis so that they would be available to all the Django workers
on the next request
* doing this has the added benefit of allowing apache / nginx to handle the file transfer instead of Django

	store files uploaded by the user that require asynchronous processing

Using apache / nginx to handle downloads

import os
import tempfile
from wsgiref.util import FileWrapper
from django.conf import settings
from django.http import StreamingHttpResponse
from django_transfer import TransferHttpResponse

transfer_enabled = settings.SHARED_DRIVE_CONF.transfer_enabled
if transfer_enabled:
 path = os.path.join(settings.SHARED_DRIVE_CONF.transfer_dir, uuid.uuid4().hex)
else:
 fd, path = tempfile.mkstemp()
 os.close(fd)

make_file(path)

if transfer_enabled:
 response = TransferHttpResponse(path, content_type=self.zip_mimetype)
else:
 response = StreamingHttpResponse(FileWrapper(open(path)), content_type=self.zip_mimetype)

response['Content-Length'] = os.path.getsize(fpath)
response["Content-Disposition"] = 'attachment; filename="%s"' % filename
return response

This also works for files that are generated asynchronously:

@task
def generate_download(download_id):
 use_transfer = settings.SHARED_DRIVE_CONF.transfer_enabled
 if use_transfer:
 path = os.path.join(settings.SHARED_DRIVE_CONF.transfer_dir, uuid.uuid4().hex)
 else:
 fd, path = tempfile.mkstemp()
 os.close(fd)

 generate_file(path)

 common_kwargs = dict(
 mimetype='application/zip',
 content_disposition='attachment; filename="{fname}"'.format(fname=filename),
 download_id=download_id,
)
 if use_transfer:
 expose_file_download(
 path,
 use_transfer=use_transfer,
 **common_kwargs
)
 else:
 expose_cached_download(
 FileWrapper(open(path)),
 expiry=(1 * 60 * 60),
 **common_kwargs
)

Saving uploads to the NFS drive

For files that are uploaded and require asynchronous processing e.g. imports, you can also use the NFS drive:

from soil.util import expose_file_download, expose_cached_download

uploaded_file = request.FILES.get('Filedata')
if hasattr(uploaded_file, 'temporary_file_path') and settings.SHARED_DRIVE_CONF.temp_dir:
 path = settings.SHARED_DRIVE_CONF.get_temp_file()
 shutil.move(uploaded_file.temporary_file_path(), path)
 saved_file = expose_file_download(path, expiry=60 * 60)
else:
 uploaded_file.file.seek(0)
 saved_file = expose_cached_download(uploaded_file.file.read(), expiry=(60 * 60))

process_uploaded_file.delay(saved_file.download_id)

 How to use and reference forms and cases programatically

How to use and reference forms and cases programatically

With the introduction of the new architecture for form and case data it is now necessary to use
generic functions and accessors to access and operate on the models.

This document provides a basic guide for how to do that.

	Models

	CommCareCase

	CaseTransaction

	CaseAttachment

	CommCareCaseIndex

	XFormInstance

	XFormOperation

Form Instance API

	Property / method

	Description

	form.form_id

	The instance ID of the form

	form.is_normal

form.is_deleted

form.is_archived

form.is_error

form.is_deprecated

form.is_duplicate

form.is_submission_error_log

	Replacement for checking the doc_type of a form

	form.attachments

	The form attachment objects

	form.get_attachment

	Get an attachment by name

	form.archive

	Archive a form

	form.unarchive

	Unarchive a form

	form.to_json

	Get the JSON representation of a form

	form.form_data

	Get the XML form data

Case API

	Property / method

	Description

	case.case_id

	ID of the case

	case.is_deleted

	Replacement for doc_type check

	case.case_name

	Name of the case

	case.get_attachment

	Get attachment by name

	case.dynamic_case_properties

	Dictionary of dynamic case properties

	case.get_subcases

	Get subcase objects

	case.get_index_map

	Get dictionary of case indices

Model acessors

To access models from the database there are classes that abstract the actual DB operations.
These classes are generally names <type>Accessors and must be instantiated with a domain
name in order to know which DB needs to be queried.

Forms

	XFormInstance.objects.get_form(form_id, domain)

	XFormInstance.objects.get_forms(form_ids, domain)

	XFormInstance.objects.iter_forms(form_ids, domain)

	XFormInstance.objects.save_new_form(form)

	only for new forms

	XFormInstance.objects.get_with_attachments(form, domain)

	Preload attachments to avoid having to the the DB again

Cases

	CommCareCase.objects.get_case(case_id, domain)

	CommCareCase.objects.get_cases(case_ids, domain)

	CommCareCase.objects.iter_cases(case_ids, domain)

	CommCareCase.objects.get_case_ids_in_domain(domain, type=’dog’)

Ledgers

	LedgerAccessors(domain).get_ledger_values_for_case(case_id)

For more details see:

	corehq.form_processor.interfaces.dbaccessors.LedgerAccessors

Unit Tests

To create a form in unit tests use the following pattern:

from corehq.form_processor.utils import get_simple_wrapped_form, TestFormMetadata

def test_my_form_function(self):
 # This TestFormMetadata specifies properties about the form to be created
 metadata = TestFormMetadata(
 domain=self.user.domain,
 user_id=self.user._id,
)
 form = get_simple_wrapped_form(
 form_id,
 metadata=metadata
)

Creating cases can be done with the CaseFactory:

from casexml.apps.case.mock import CaseFactory

def test_my_case_function(self):
 factory = CaseFactory(domain='foo')
 case = factory.create_case(
 case_type='my_case_type',
 owner_id='owner1',
 case_name='bar',
 update={'prop1': 'abc'}
)

Cleaning up

Cleaning up in tests can be done using the FormProcessorTestUtils1 class:

from corehq.form_processor.tests.utils import FormProcessorTestUtils

def tearDown(self):
 FormProcessorTestUtils.delete_all_cases()
 # OR
 FormProcessorTestUtils.delete_all_cases(domain=domain)

 FormProcessorTestUtils.delete_all_xforms()
 # OR
 FormProcessorTestUtils.delete_all_xforms(domain=domain)

 Playing nice with Cloudant/CouchDB

Playing nice with Cloudant/CouchDB

We have a lot of views:

$ find . -path *_design*/map.js | wc -l
 159

Things to know about views:

	Every time you create or update a doc, each map function is run on it
and the btree [http://guide.couchdb.org/draft/btree.html] for the view is updated based on the change
in what the maps emit for that doc.
Deleting a doc causes the btree to be updated as well.

	Every time you update a view, all views in the design doc need to be run, from scratch,
in their entirety, on every single doc in the database, regardless of doc_type.

Things to know about our Cloudant cluster:

	It’s slow. You have to wait in line just to say “hi”.
Want to fetch a single doc? So does everyone else.
Get in line, I’ll be with you in just 1000ms.

	That’s pretty much it.

Takeaways:

	Don’t save docs! If nothing changed in the doc, just don’t save it.
Couchdb isn’t smart enough to realize that nothing changed,
so saving it incurs most of the overhead of saving a doc that actually changed.

	Don’t make http requests! If you need a bunch of docs by id,
get them all in one request or a few large requests
using dimagi.utils.couch.database.iter_docs.

	Don’t make http requests! If you want to save a bunch of docs,
save them all at once
(after excluding the ones that haven’t changed and don’t need to be saved!)
using MyClass.get_db().bulk_save(docs).
Note that this isn’t good for saving thousands of documents,
because it doesn’t do any chunking.

	Don’t save too many docs in too short a time!
To give the views time to catch up, rate-limit your saves if going through
hundreds of thousands of docs. One way to do this is to save N docs
and then make a tiny request to the view you think will be slowest to update,
and then repeat.

	Use different databases!
All forms and cases save to the main database, but there is a _meta database we have just added for new doc or migrated doc types.
When you use a different database you create two advantages:
a) Documents you save don’t contribute to the view indexing load of all of the views in the main database.
b) Views you add don’t have to run on all forms and cases.

	Split views!
When a single view changes, the entire design doc has to reindex.
If you make a new view, it’s much better to make a new design doc for it than to put it in with some other big, possibly expensive views.
We use the couchapps folder/app for this.

 Celery

Celery

Official Celery documentation: http://docs.celeryproject.org/en/latest/
What is it ==========

Celery is a library we use to perform tasks outside the bounds of an HTTP request.

How to use celery

All celery tasks should go into a tasks.py file or tasks module in a django app.
This ensures that autodiscover_tasks can find the task and register it with the celery workers.

These tasks should be decorated with one of the following:

	@task defines a task that is called manually (with task_function_name.delay in code)

	@periodic_task defines a task that is called at some interval (specified by crontab in the decorator)

	@serial_task defines a task that should only ever have one job running at one time

Best practices

Do not pass objects to celery.
Instead, IDs can be passed and the celery task can retrieve the object from the database using the ID.
This keeps message lengths short and reduces burden on RabbitMQ as well as preventing tasks from operating on stale data.

Do not specify serializer='pickle' for new tasks.
This is a deprecated message serializer and by default, we now use JSON.

Queues

Queues

	Queue

	I/O Bound?

	Target max time-to-start

	Target max time-to-start comments

	Description of usage

	How long does the typical task take to complete?

	Best practices / Notes

	send_report_throttled

	
	hours

	30 minutes: reports should be sent as close to schedule as possible.
EDIT: this queue only affects mvp-* and ews-ghana

	This is used specifically for domains who are abusing Scheduled Reports and overwhelming the background queue. See settings.THROTTLE_SCHED_REPORTS_PATTERNS

	
	

	submission_reprocessing_queue

	no?

	hours

	1 hour: not critical if this gets behind as long as it can keep up within a few hours

	Reprocess form submissions that errored in ways that can be handled by HQ. Triggered by ‘submission_reprocessing_queue’ process.

	seconds

	

	sumologic_logs_queue

	yes

	hours

	1 hour: OK for this to get behind

	Forward device logs to sumologic. Triggered by device log submission from mobile.

	seconds

	Non-essential queue

	analytics_queue

	yes

	minutes

	
	Used to run tasks related to external analytics tools like HubSpot. Triggered by user actions on the site.

	instantaneous (seconds)

	

	reminder_case_update_queue

	
	minutes

	
	Run reminder tasks related to case changes. Triggered by case change signal.

	seconds

	

	reminder_queue

	yes

	minutes

	15 minutes: since these are scheduled it can be important for them to get triggered on time

	Runs the reminder rule tasks for reminders that are due. Triggered by the ‘queue_scheduled_instances’ process.

	seconds

	

	reminder_rule_queue

	
	minutes

	
	Run messaging rules after changes to rules. Triggered by changes to rules.

	minutes / hours

	

	repeat_record_queue

	
	minutes

	ideally minutes but might be ok if it gets behind during peak

	Run tasks for repeaters. Triggered by repeater queue process.

	seconds

	

	sms_queue

	yes

	minutes

	5 minutes?: depends largely on the messaging. Some messages are more time sensitive than others. We don’t have a way to tell so ideally they should all go out ASAP.

	Used to send SMSs that have been queued. Triggered by ‘run_sms_queue’ process.

	seconds

	

	async_restore_queue

	no

	seconds

	
	Generate restore response for mobile phones. Gets triggered for sync requests that have async restore flag.

	
	

	case_import_queue

	
	seconds

	
	Run case imports

	minutes / hours

	

	email_queue

	yes

	seconds

	generally seconds, since people often blocked on receiving the email (registration workflows for example)

	Send emails.

	seconds

	

	export_download_queue

	
	seconds

	seconds / minutes

	Used for manually-triggered exports

	minutes

	

	icds_dashboard_reports_queue

	
	seconds

	fast

	
	
	

	background_queue

	
	
	
	
	varies wildly

	

	beat

	N/A

	
	
	
	
	

	case_rule_queue

	
	
	
	Run case update rules. Triggered by schedule

	minutes / hours

	

	celery

	
	
	
	
	
	

	celery_periodic

	
	
	
	
	Invoice generation: ~2 hours on production. Runs as a single task, once per month.

	I think this is one of the trickiest ones (and most heterogenous) because we run lots of scheduled tasks, that we expect to happen at a certain time, some of which we want at exactly that time and some we are ok with delay in start.

	flower

	N/A

	
	
	
	
	

	icds_aggregation_queue

	yes

	
	initial task is immediate. follow up tasks are constrained by performance of previous tasks. recommend not tracking

	Run aggregation tasks for ICDS. Triggered by schedule.

	
	

	logistics_background_queue

	
	
	
	Custom queue

	
	

	logistics_reminder_queue

	
	
	
	Custom queue

	
	

	saved_exports_queue

	
	
	
	Used only for regularly scheduled exports. Triggered by schedule.

	minutes

	This queue is used only for regularly scheduled exports, which are not user-triggered. The time taken to process a saved export depends on the export itself. We now save the time taken to run the saved export as last_build_duration which can be used to monitor or move the task to a different queue that handles big tasks. Since all exports are triggered at the same time (midnight UTC) the queue gets big. Could be useful to spread these out so that the exports are generated at midnight in the TZ of the domain (see callcenter tasks for where this is already done)

	ucr_indicator_queue

	no

	
	
	Used for ICDS very expensive UCRs to aggregate

	
	

	ucr_queue

	no

	
	
	Used to rebuild UCRs

	minutes to hours

	This is where UCR data source rebuilds occur. Those have an extremely large variation. May be best to split those tasks like “Process 1000 forms/cases, then requeue” so as to not block

Soil

Soil is a Dimagi utility to provide downloads that are backed by celery.

To use soil:

from soil import DownloadBase
from soil.progress import update_task_state
from soil.util import expose_cached_download

@task
def my_cool_task():
 DownloadBase.set_progress(my_cool_task, 0, 100)

 # do some stuff

 DownloadBase.set_progress(my_cool_task, 50, 100)

 # do some more stuff

 DownloadBase.set_progress(my_cool_task, 100, 100)

 expose_cached_download(payload, expiry, file_extension)

For error handling update the task state to failure and provide errors, HQ currently supports two options:

Option 1

This option raises a celery exception which tells celery to ignore future state updates.
The resulting task result will not be marked as “successful” so task.successful() will return False
If calling with CELERY_TASKS_ALWAYS_EAGER = True (i.e. a dev environment), and with .delay(),
the exception will be caught by celery and task.result will return the exception.

from celery.exceptions import Ignore
from soil import DownloadBase
from soil.progress import update_task_state
from soil.util import expose_cached_download

@task
def my_cool_task():
 try:
 # do some stuff
 except SomeError as err:
 errors = [err]
 update_task_state(my_cool_task, states.FAILURE, {'errors': errors})
 raise Ignore()

Option 2

This option raises an exception which celery does not catch.
Soil will catch this and set the error to the error message in the exception.
The resulting task will be marked as a failure meaning task.failed() will return True
If calling with CELERY_TASKS_ALWAYS_EAGER = True (i.e. a dev environment), the exception will “bubble up” to the calling code.

from soil import DownloadBase
from soil.progress import update_task_state
from soil.util import expose_cached_download

@task
def my_cool_task():
 # do some stuff
 raise SomeError("my uncool error")

Testing

As noted in the [celery docs](http://docs.celeryproject.org/en/v4.2.1/userguide/testing.html) testing tasks in celery is not the same as in production.
In order to test effectively, mocking is required.

An example of mocking with Option 1 from the soil documentation:

@patch('my_cool_test.update_state')
def my_cool_test(update_state):
 res = my_cool_task.delay()
 self.assertIsInstance(res.result, Ignore)
 update_state.assert_called_with(
 state=states.FAILURE,
 meta={'errors': ['my uncool errors']}
)

Other references

https://docs.google.com/presentation/d/1iiiVZDiOGXoLeTvEIgM_rGgw6Me5_wM_Cyc64bl7zns/edit#slide=id.g1d621cb6fc_0_372

https://docs.google.com/spreadsheets/d/10uv0YBVTGi88d6mz6xzwXRLY5OZLW1FJ0iarHI6Orck/edit?ouid=112475836275787837666&usp=sheets_home&ths=true

 Configuring SQL Databases in CommCare

Configuring SQL Databases in CommCare

CommCare makes use of a number of logically different SQL databases. These databases
can be all be a single physical database or configured as individual databases.

By default CommCare will use the default Django database for all SQL data.

[image: _images/django_db_monolith.png]

Auditcare Data

Auditcare data may be stored in a separate database by specifying a mapping in
the LOCAL_CUSTOM_DB_ROUTING setting. A database with the specified alias must
also exist in the Django DATABASES setting. Example configuration:

LOCAL_CUSTOM_DB_ROUTING = {"auditcare": "auditcare"}

It is recommended to use a separate database in high-traffic environments when
auditcare is enabled. Auditcare is enabled for a subset of URLs by default.

Synclog Data

Synclog data may be stored in a separate database specified by the
SYNCLOGS_SQL_DB_ALIAS setting. The value of this setting must be a DB
alias in the Django DATABASES setting.

UCR Data

Data created by the UCR framework can be stored in multiple separate databases.
Each UCR defines an engine_id parameter which tells it which configured
database engine to use. These engines are defined in the REPORTING_DATABASES
Django setting which maps the engine_id to a Django database alias defined
in the DATABASES setting.

REPORTING_DATABASES = {
 'default': 'default',
 'ucr': 'ucr'
}

Sharded Form and Case data

It is recommended to have a separate set of databases to store data for Forms
and Cases (as well as a few other models).

CommCare uses a combination of plproxy [https://plproxy.github.io/] custom Python code to split the Form and Case
data into multiple databases.

[image: _images/django_db_sharded.png]
The general rule is that if a query needs to be run on all (or most) shard databases
it should go through plproxy since plproxy is more efficient at running multiple
queries and compiling the results.

The configuration for these databases must be added to the DATABASES setting
as follows:

USE_PARTITIONED_DATABASE = True

DATABASES = {
 'proxy': {
 ...
 'PLPROXY': {
 'PROXY': True
 }
 },
 'p1': {
 ...
 'PLPROXY': {
 'SHARDS': [0, 511]
 }
 },
 'p2': {
 ...
 'PLPROXY': {
 'SHARDS': [512, 1023]
 }
 }
}

Rules for shards

	There can only DB with PROXY=True

	The total number of shards must be a power of 2 i.e. 2, 4, 8, 16, 32 etc

	The number of shards cannot be changed once you have data in them so
it is wise to start with a large enough number e.g. 1024

	The shard ranges must start at 0

	The shard ranges are inclusive

	[0, 3] -> [0, 1, 2, 3]

	The shard ranges must be continuous (no gaps)

Sending read queries to standby databases

By including details for standby databases in the Django DATABASES setting we can configure
CommCare to route certain READ queries to them.

Standby databases are configured in the same way as normal databases but may have an additional
property group, STANDBY. This property group has the following sup-properties:

	MASTER
	The DB alias of the master database for this standby. This must refer to a database in the DATABASES
setting.

	ACCEPTABLE_REPLICATION_DELAY
	The value of this must be an integer and configures the acceptable replication delay in seconds
between the standby and the master. If the replication delay goes above this value then queries
will not be routed to this database.

The default value for ACCEPTABLE_REPLICATION_DELAY is 3 seconds.

DATABASES = {
 'default': {...}
 'standby1': {
 ...
 'STANDBY': {
 'MASTER': 'default',
 'ACCEPTABLE_REPLICATION_DELAY': 30,
 }
 }
}

Once the standby databases are configured in the DATABASES settings there are two additional settings
that control which queries get routed to them.

REPORTING_DATABASES

The REPORTING_DATABASES setting can be updated as follows:

REPORTING_DATABASES = {
 'default': 'default',
 'ucr': {
 'WRITE': 'ucr',
 'READ': [
 ('ucr', 1),
 ('ucr_standby1', 2),
 ('ucr_standby2', 2),
]
 }
}

The tuples listed under the ‘READ’ key specify a database alias (must be in DATABASES) and
weighting. In the configuration above 20% of reads will be sent to ucr and 40% each
to ucr_standby1 and ucr_standby2 (assuming both of them are available and have replication
delay within range).

LOAD_BALANCED_APPS

This setting is used to route read queries from Django models.

LOAD_BALANCED_APPS = {
 'users': {
 'WRITE': 'default',
 'READ': [
 ('default', 1),
 ('standby1', 4),
]
 }
}

In the configuration above all write queries from models in the users app will go to the
default database as well as 20% or read queries. The remaining 80% of read queries will
be sent to the standby1 database.

For both the settings above, the following rules apply to the databases listed
under READ:

	There can only be one master database (not a standby database)

	All standby databases must point to the same master database

	If a master database is in this list, all standbys must point to this master

Using standbys with the plproxy cluster

The plproxy cluster needs some special attention since the queries are routed by plproxy and not by
Django. In order to do this routing there are a number of additional pieces that are needed:

1. Separate plproxy cluster configuration which points the shards to the appropriate standby node instead
of the primary node.
2. Duplicate SQL functions that make use of this new plproxy cluster.

In order to maintain the SQL function naming the new plproxy cluster must be in a separate database.

[image: _images/django_db_sharded_standbys.png]
Example usage

this will connect to the shard standby node directly
case = CommCareCase.objects.partitioned_get(case_id)

this will call the `get_cases_by_id` function on the 'standby' proxy which in turn
will query the shard standby nodes
cases = CommCareCase.objects.get_cases(case_ids, domain)

These examples assume the standby routing is active as described in the Routing queries to standbys
section below.

Steps to setup

	Add all the standby shard databases to the Django DATABASES setting as described above.

2. Create a new database for the standby plproxy cluster configuration and SQL accessor functions
and add it to DATABASES as shown below:

DATABASES = {
 'proxy_standby': {
 ...
 'PLPROXY': {
 'PROXY_FOR_STANDBYS': True
 }
 }
}

	Run the configure_pl_proxy_cluster management command to create the config on the ‘standby’ database.

	Run the Django migrations to create the tables and SQL functions in the new standby proxy database.

Routing queries to standbys

The configuration above makes it possible to use the standby databases however in order to actually
route queries to them the DB router must be told to do so. This can be done it one of two ways:

	Via an environment variable

export READ_FROM_PLPROXY_STANDBYS=1

This will route ALL read queries to the shard standbys. This is mostly useful when running a process like
pillowtop that does is asynchronous.

	Via a Django decorator / context manager

context manager
with read_from_plproxy_standbys():
 case = CommCareCase.objects.partitioned_get(case_id)

decorator
@read_from_plproxy_standbys()
def get_case_from_standby(case_id)
 return CommCareCase.objects.partitioned_get(case_id)

 Metrics

Metrics

CommCare Infrastructure Metrics

CommCare uses Datadog [https://dimagi.github.io/commcare-cloud/monitoring/setup_datadog.html] and
Prometheus [https://prometeus.io/] for monitoring various system, application and custom metrics. Datadog
supports a variety of applications and is easily extendable.

Below are a few tables tabulating various metrics of the system and service infrastructure used to run CommCare.
The list is not absolute nor exhaustive, but it will provide you with a basis for monitoring the following
aspects of your system:

	Performance

	Throughput

	Utilization

	Availability

	Errors

	Saturation

Each table has the following format:

	Metric

	Metric type

	Why care

	User impact

	How to measure

	Name of metric

	Category or aspect of system the metric speaks to

	Brief description of why metric is important

	Explains the impact on user if undesired reading is recorded

	A note on how the metric might be obtained. Please note that it is assumed that Datadog will be used as a monitoring solution unless specified otherwise.

General Host

The Datadog Agent [https://docs.datadoghq.com/agent/] ships with an integration which can be used to collect metrics from your base system.
See the System Integration [https://docs.datadoghq.com/integrations/system/] for more information.

	Metric

	Metric type

	Why care

	User impact

	How to measure

	CPU usage (%)

	Utilization

	Monitoring server CPU usage helps you understand how much your CPU is being used, as a very high load might result in overall performance degradation.

	Lagging experience

	
system.cpu.idle

system.cpu.system

system.cpu.iowait

system.cpu.user

	Load averages 1-5-15

	Utilization

	Load average (CPU demand) over 1 min, 5 min and 15 min which includes the sum of running and waiting threads. What is load average [https://www.site24x7.com/blog/load-average-what-is-it-and-whats-the-best-load-average-for-your-linux-servers]

	User might experience trouble connecting to the server

	
system.load.1

system.load.5

system.load.15

	Memory

	Utilization

	It shows the amount of memory used over time. Running out of memory may result in killed processes or more swap memory used, which will slow down your system. Consider optimizing processes or increasing resources.

	Slow performance

	
system.mem.usable

system.mem.total

	Swap memory

	Utilization

	This metric shows the amount of swap memory used. Swap memory is slow, so if your system depends too much on swap, you should investigate why RAM usage is so high. Note that it is normal for systems to use a little swap memory even if RAM is available.

	Server unresponsiveness

	
system.swap.free

system.swap.used

	Disk usage

	Utilization

	Disk usage is important to prevent data loss in the event that the disk runs out of available space.

	Data loss

	system.disk.in_use

	Disk latency

	Throughput

	The average time for I/O requests issued to the device to be served. This includes the time spent by the requests in queue and the time spent servicing them. High disk latency will result in slow response times for things like reports, app installs and other services that read from disk.

	Slow performance

	system.io.await

	Network traffic

	Throughput

	This indicates the amount of incoming and outgoing traffic on the network. This metric is a good gauge on the average network activity on the system. Low or consistently plateauing network throughput will result in poor performance experienced by end users, as sending and receiving data from them will be throttled.

	Slow performance

	
system.net.bytes_rcvd

system.net.bytes_sent

Gunicorn

The Datadog Agent [https://docs.datadoghq.com/agent/] ships with an integration which can be used to collect metrics.
See the Gunicorn Integration [https://docs.datadoghq.com/integrations/gunicorn/] for more information.

	Metric

	Metric type

	Why care

	User impact

	How to measure

	Requests per second

	Throughput

	This metric shows the rate of requests received. This can be used to give an indication of how busy the application is. If you’re constantly getting a high request rate, keep an eye out for bottlenecks on your system.

	Slow user experience or trouble accessing the site.

	gunicorn.requests

	Request duration

	Throughput

	Long request duration times can point to problems in your system / application.

	Slow experience and timeouts

	gunicorn.request.duration.*

	Http status codes

	Performance

	A high rate of error codes can either mean your application has faulty code or some part of your application infrastructure is down.

	User might get errors on pages

	gunicorn.request.status.*

	Busy vs idle Gunicorn workers

	Utilization

	This metric can be used to give an indication of how busy the gunicorn workers are over time. If most of the workers are busy most of the time, it might be necessary to start thinking of increasing the number of workers before users start having trouble accessing your site.

	Slow user experience or trouble accessing the site.

	gunicorn.workers

Nginx

The Datadog Agent [https://docs.datadoghq.com/agent/] ships with an integration which can be used to collect metrics.
See the Nginx Integration [https://docs.datadoghq.com/integrations/nginx/?tab=host] for more information.

	Metric

	Metric type

	Why care

	User impact

	How to measure

	Total requests

	Throughput

	This metric indicates the number of client requests your server handles. High rates means bigger load on the system.

	Slow experience

	nginx.requests.total

	Requests per second

	Throughput

	This metric shows the rate of requests received. This can be used to give an indication of how busy the application is. If you’re constantly getting a high request rate, keep an eye out for services that might need additional resources to perform optimally.

	Slow user experience or trouble accessing the site.

	nginx.net.request_per_s

	Dropped connections

	Errors

	If NGINX starts to incrementally drop connections it usually indicates a resource constraint, such as NGINX’s worker_connections limit has been reached. An investigation might be in order.

	Users will not be able to access the site.

	nginx.connections.dropped

	Server error rate

	Error

	Your server error rate is equal to the number of 5xx errors divided by the total number of status codes. If your error rate starts to climb over time, investigation may be in order. If it spikes suddenly, urgent action may be required, as clients are likely to report errors to the end user.

	User might get errors on pages

	
nginx.server_zone.responses.5xx

nginx.server_zone.responses.total_count

	Request time

	Performance

	This is the time in seconds used to process the request. Long response times can point to problems in your system / application.

	Slow experience
and timeouts

	Need to include in NGINX configuration file [https://docs.datadoghq.com/integrations/nginx/?tab=host#log-collection]

PostgreSQL

PostgreSQL has a statistics collector [https://www.postgresql.org/docs/12/monitoring-stats.html] subsystem that collects and reports on information about the server activity.

The Datadog Agent [https://docs.datadoghq.com/agent/] ships with an integration which can be used to collect metrics.
See the PostgreSQL Integration [https://docs.datadoghq.com/integrations/postgres/?tab=host] for more information.

	Metric

	Metric type

	Why care

	User impact

	How to measure

	Sequential scans on table vs. Index scans on table

	Other

	This metric speaks directly to the speed of query execution. If the DB is making more sequential scans than indexed scans you can improve the DB’s performance by creating an index.

	Tasks that require data to be fetched from the DB will take a long time to execute.

	
	PostgreSQL:
	
pg_stat_user_tables

	Datadog integration:
	
postgresql.seq_scans

postgresql.index_scans

	Rows fetched vs. returned by queries to DB

	Throughput

	This metric shows how effectively the DB is scanning through its data. If many more rows are constantly fetched vs returned, it means there’s room for optimization.

	Slow experience for tasks that access large parts of the database.

	
	PostgreSQL:
	
pg_stat_database

	Datadog integration:
	
postgresql.rows_fetched

postgresql.rows_returned

	Amount of data written temporarily to disk to execute queries

	Saturation

	If the DB’s temporary storage is constantly used up, you might need to increase it in order to optimize performance.

	Slow experience for tasks that read data from the database.

	
	PostgreSQL:
	
pg_stat_database

	Datadog integration:
	
postgresql.temp_bytes

	Rows inserted, updated, deleted (by database)

	Throughput

	This metric gives an indication of what type of write queries your DB serves most. If a high rate of updated or deleted queries persist, you may want to keep an eye out for increasing dead rows as this will degrade DB performance.

	No direct impact

	
	PostgreSQL:
	
pg_stat_database

	Datadog integration:
	
postgresql.rows_inserted

postgresql.rows_updated

postgresql.rows_deleted

	Locks

	Other

	A high lock rate in the DB is an indication that queries could be long-running and that future queries might start to time out.

	Slow experience for tasks that read data from the database.

	
	PostgreSQL:
	
pg_locks

	Datadog integration:
	
postgresql.locks

	Deadlocks

	Other

	The aim is to have no deadlocks as it’s resource intensive for the DB to check for them. Having many deadlocks calls for reevaluating execution logic. Read more [https://www.cybertec-postgresql.com/en/postgresql-understanding-deadlocks/]

	Slow experience for tasks that read data from the database. Some tasks may even hang and the user will get errors on pages.

	
	PostgreSQL:
	
pg_stat_database

	Datadog integration:
	
postgresql.deadlocks

	Dead rows

	Other

	A constantly increasing number of dead rows show that the DB’s VACUUM process is not working properly. This will affect DB performance negatively.

	Slow experience for tasks that read data from the database.

	
	PostgreSQL:
	
pg_stat_user_tables

	Datadog integration:
	
postgresql.dead_rows

	Replication delay

	Other

	A higher delay means data is less consistent across replication servers.

	In the worst case, some data may appear missing.

	
	PostgreSQL:
	
pg_xlog

	Datadog integration:
	
postgresql.replication_delay

	Number of checkpoints requested vs scheduled

	Other

	Having more requested checkpoints than scheduled checkpoints means decreased writing performance for the DB.`Read more <https://www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/?gclid=CjwKCAjw7fuJBhBdEiwA2lLMYbUeLBrWYvSMjishfoa-RAEbkTNIL315MGdx6nrHnDK0A4UpjkbZIRoCTwYQAvD_BwE>`__

	Slow experience for tasks that read data from the database.

	
	PostgreSQL:
	
pg_stat_bgwriter

	Datadog integration:
	
postgresql.bgwriter.checkpoints_timed

postgresql.bgwriter.checkpoints_requested

	Active connections

	Utilization

	Having the number of active connections consistently approaching the number of maximum connections, this can indicate that applications are issuing long-running queries and constantly creating new connections to send other requests, instead of reusing existing connections. Using a connection pool can help ensure that connections are consistently reused as they go idle, instead of placing load on the primary server to frequently have to open and close connections. Typically, opening a DB connection is an expensive operation.

	Users might get errors on pages which need to access the database but cannot due to too many currently active connections.

	
	PostgreSQL:
	
pg_stat_database

	Datadog integration:
	
postgresql.connections

postgresql.max_connections

Elasticsearch

The Datadog Agent [https://docs.datadoghq.com/agent/] ships with an integration which can be used to collect metrics.
See the Elasticsearch Integration [https://docs.datadoghq.com/integrations/elastic/?tab=host] for more information.

	Metric

	Metric type

	Why care

	User impact

	How to measure

	Query load

	Utilization

	Monitoring the number of queries currently in progress can give you a rough idea of how many requests your cluster is dealing with at any particular moment in time.

	A high load might slow down any tasks that involve searching users, groups, forms, cases, apps etc.

	elasticsearch.primaries.search.query.current

	Average query latency

	Throughput

	If this metric shows the query latency is increasing it means your queries are becoming slower, meaning either bottlenecks or inefficient queries.

	Slow user experience when generating or reports, filtering groups or users, etc.

	
elasticsearch.primaries.search.query.total

elasticsearch.primaries.search.query.time

	Average fetch latency

	Throughput

	This should typically take less time than the query phase. If this metric is constantly increasing it could indicate problems with slow disks or requesting of too many results.

	Slow user experience when generating or reports, filtering groups or users, etc.

	
elasticsearch.primaries.search.fetch.total

elasticsearch.primaries.search.fetch.time

	Average index latency

	Throughput

	If you notice an increasing latency it means you may be trying to index too many documents simultaneously.Increasing latency may slow down user experience.

	Slow user experience when generating or reports, filtering groups or users, etc.

	
elasticsearch.indexing.index.total

elasticsearch.indexing.index.time

	Average flush latency

	Throughput

	Data is only persisted on disk after a flush. If this metric increases with time it may indicate a problem with a slow disk. If this problem escalates it may prevent you from being able to add new information to your index.

	Slow user experience when generating or reports, filtering groups or users, etc. In the worst case there may be some data loss.

	
elasticsearch.primaries.flush.total

elasticsearch.primaries.flush.total.time

	Percent of JVM heap currently in use

	Utilization

	Garbage collections should initiate around 75% of heap use. When this value is consistently going above 75% it indicates that the rate of garbage collection is not keeping up with the rate of garbage creation which might result in memory errors down the line.

	Users might experience errors on some pages

	jvm.mem.heap_in_use

	Total time spent on garbage collection

	Other

	The garbage collection process halts the node, during which the node cannot complete tasks. If this halting duration exceeds the routine status check (around 30 seconds) the node might mistakenly be marked as offline.

	Users can have a slow experience and in the worst case might even get errors on some pages.

	
jvm.gc.collectors.young.collection_time

jvm.gc.collectors.old.collection_time

	Total HTTP connections opened over time

	Other

	If this number is constantly increasing it means that HTTP clients are not properly establishing persistent connections. Reestablishing adds additional overhead and might result in requests taking unnecessarily long to complete.

	Slow user experience when generating or reports, filtering groups or users, etc.

	elasticsearch.http.total_opened

	Cluster status

	Other

	The status will indicate when at least one replica shard is unallocated or missing. If more shards disappear you may lose data.

	Missing data (not data loss, as Elasticsearch is a secondary database)

	elasticsearch.cluster_health

	Number of unassigned shards

	Availability

	When you first create an index, or when a node is rebooted, its shards will briefly be in an “initializing” state before transitioning to a status of “started” or “unassigned”, as the primary node attempts to assign shards to nodes in the cluster. If you see shards remain in an initializing or unassigned state too long, it could be a warning sign that your cluster is unstable.

	Slow user experience when generating or reports, filtering groups or users, etc.

	elasticsearch.unassigned_shards

	Thread pool queues

	
	Large queues are not ideal because they use up resources and also increase the risk of losing requests if a node goes down.

	Slow user experience when generating or reports, filtering groups or users, etc. In the worst case

	elasticsearch.thread_pool.bulk.queue

	Pending tasks

	Saturation

	The number of pending tasks is a good indication of how smoothly your cluster is operating. If your primary node is very busy and the number of pending tasks doesn’t subside, it can lead to an unstable cluster.

	Slow user experience when generating or reports, filtering groups or users, etc.

	elasticsearch.pending_tasks_total

	Unsuccessful GET requests

	Error

	An unsuccessful get request means that the document ID was not found. You shouldn’t usually have a problem with this type of request, but it may be a good idea to keep an eye out for unsuccessful GET requests when they happen.

	User might get errors on some pages

	elasticsearch.get.missing.total

CouchDB

The Datadog Agent [https://docs.datadoghq.com/agent/] ships with an integration which can be used to collect metrics.
See the CouchDB Integration [https://docs.datadoghq.com/integrations/couch/?tab=host#pagetitle] for more information.

	Metric

	Metric type

	Why care

	User impact

	How to measure

	Open databases

	Availability

	If the number of open databases are too low you might have database requests starting to pile up.

	Slow user experience if the requests start to pile up high.

	couchdb.couchdb.open_databases

	File descriptors

	Utilization

	If this number reaches the max number of available file descriptors, no new connections can be opened until older ones have closed.

	The user might get errors on some pages.

	couchdb.couchdb.open_os_files over

	Data size

	Utilization

	This indicates the relative size of your data. Keep an eye on this as it grows to make sure your system has enough disk space to support it.

	Data loss

	couchdb.by_db.file_size

	HTTP Request Rate

	Throughput

	Gives an indication of how many requests are being served.

	Slow performance

	couchdb.couchdb.httpd.requests

	Request with status code of 2xx

	Performance

	Statuses in the 2xx range are generally indications of successful operation.

	No negative impact

	couchdb.couchdb.httpd_status_codes

	Request with status code of 4xx and 5xx

	Performance

	Statuses in the 4xx and 5xx ranges generally tell you something is wrong, so you want this number as low as possible, preferably zero. However, if you constantly see requests yielding these statuses, it might be worth looking into the matter.

	Users might get errors on some pages.

	couchdb.couchdb.httpd_status_codes

	Workload - Reads & Writes

	Performance

	These numbers will depend on the application, but having this metric gives an indication of how busy the database generally is. In the case of a high workload, consider ramping up the resources.

	Slow performance

	couchdb.couchdb.database_reads

	Average request latency

	Throughput

	If the average request latency is rising it means somewhere exists a bottleneck that needs to be addressed.

	Slow performance

	couchdb.couchdb.request_time.arithmetic_mean

	Cache hits

	Other

	CouchDB stores a fair amount of user credentials in memory to speed up the authentication process. Monitoring usage of the authentication cache can alert you for possible attempts to gain unauthorized access.

	A low number of hits might mean slower performance

	couchdb.couchdb.auth_cache_hits

	Cache misses

	Error

	If CouchDB reports a high number of cache misses, then either the cache is undersized to service the volume of legitimate user requests, or a brute force password/username attack is taking place.

	Slow performance

	couchdb.couchdb.auth_cache_misses

Kafka

The Datadog Agent [https://docs.datadoghq.com/agent/] ships with a Kafka Integration [https://docs.datadoghq.com/integrations/kafka/?tab=host] to collect various Kafka metrics.
Also see Integrating Datadog, Kafka and Zookeper [https://www.datadoghq.com/blog/monitor-kafka-with-datadog/#integrating-datadog-kafka-and-zookeeper].

Broker Metrics

	Metric

	Metric type

	Why care

	User impact

	How to measure

	UnderReplicatedPartitions

	Availability

	If a broker becomes unavailable, the value of UnderReplicatedPartitions will increase sharply. Since Kafka’s high-availability guarantees cannot be met without replication, investigation is certainly warranted should this metric value exceed zero for extended time periods.

	Fewer in-sync replicas means the reports might take longer to show the latest values.

	
kafka.replication.under_replicated_partitions

	IsrShrinksPerSec

	Availability

	The rate at which the in-sync replicas shrinks for a particular partition. This value should remain fairly static. You should investigate any flapping in the values of these metrics, and any increase in IsrShrinksPerSec without a corresponding increase in IsrExpandsPerSec shortly thereafter.

	As the in-sync replicas become fewer, the reports might take longer to show the latest values.

	
kafka.replication.isr_shrinks.rate

	IsrExpandsPerSec

	Availability

	The rate at which the in-sync replicas expands.

	As the in-sync replicas become fewer, the reports might take longer to show the latest values.

	
kafka.replication.isr_expands.rate

	TotalTimeMs

	Performance

	This metrics reports on the total time taken to service a request.

	Longer servicing times mean data-updates take longer to propagate to the reports.

	
kafka.request.produce.time.avg

kafka.request.consumer.time.avg

kafka.request.fetch_follower.time.avg

	ActiveControllerCount

	Error

	The first node to boot in a Kafka cluster automatically becomes the controller, and there can be only one. You should alert on any other value that lasts for longer than one second. In the case that no controller is found, Kafka might become unstable and new data might not be updated.

	Reports might not show new updated data, or even break.

	
kafka.replication.active_controller_count

	Broker network throughput

	Throughput

	This metric indicates the broker throughput.

	If the throughput becomes less, the user might find that reports take longer to reflect updated data.

	
kafka.net.bytes_in.rate

kafka.net.bytes_out.rate

	Clean vs unclean leaders elections

	Error

	When a partition leader dies, an election for a new leader is triggered. New leaders should only come from replicas that are in-sync with the previous leader, however, this is a configuration setting that can allow for unclean elections.

	Data might be missing in reports. (the data will not be lost, as the data is already stored in PostgreSQL or CouchDB, but the reports will not reflect the latest changes)

	
kafka.replication.leader_elections.rate

kafka.replication.unclean_leader_elections.rate

	Fetch/request purgatory

	Other

	An unclean leader is a leader that is not completely in-sync with the previous leader, so when an unclean leader is elected, you will lose any data that was produced to Kafka before the full sync happened. You should alert on any unclean leaders elected.

	Reports might take longer to reflect the latest data.

	
kafka.request.producer_request_purgatory.size

kafka.request.fetch_request_purgatory.size

Producer Metrics

	Metric

	Metric type

	Why care

	User impact

	How to measure

	Request rate

	Throughput

	The request rate is the rate at which producers send data to brokers. Keeping an eye on peaks and drops is essential to ensure continuous service availability.

	Reports might take longer to reflect the latest data.

	kafka.producer.request_rate

	Response rate

	Throughput

	Average number of responses received per second from the brokers after the producers sent the data to the brokers.

	Reports might take longer to reflect the latest data.

	kafka.producer.response_rate

	Request latency average

	Throughput

	Average request latency (in ms). Read more [https://www.datadoghq.com/blog/monitoring-kafka-performance-metrics/#metric-to-watch-request-latency-average]

	Reports might take longer to reflect the latest data.

	kafka.producer.request_latency_avg

	Outgoing byte rate

	Throughput

	Monitoring producer network traffic will help to inform decisions on infrastructure changes, as well as to provide a window into the production rate of producers and identify sources of excessive traffic.

	High network throughput might cause reports to take a longer time to reflect the latest data, as Kafka is under heavier load.

	kafka.net.bytes_out.rate

	Batch size average

	Throughput

	To use network resources more efficiently, Kafka producers attempt to group messages into batches before sending them. The producer will wait to accumulate an amount of data defined by the batch size. Read more [https://www.datadoghq.com/blog/monitoring-kafka-performance-metrics/#metric-to-watch-batch-size]

	If the batch size average is too low, reports might take a longer time to reflect the latest data.

	kafka.producer.batch_size_avg

Consumer Metrics

	Metric

	Metric type

	Why care

	User impact

	How to measure

	Records lag

	Performance

	Number of messages consumers are behind producers on this partition. The significance of these metrics’ values depends completely upon what your consumers are doing. If you have consumers that back up old messages to long-term storage, you would expect records lag to be significant. However, if your consumers are processing real-time data, consistently high lag values could be a sign of overloaded consumers, in which case both provisioning more consumers and splitting topics across more partitions could help increase throughput and reduce lag.

	Reports might take longer to reflect the latest data.

	kafka.consumer_lag

	Records consumed rate

	Throughput

	Average number of records consumed per second for a specific topic or across all topics.

	Reports might take longer to reflect the latest data.

	kafka.consumer.records_consumed

	Fetch rate

	Throughput

	Number of fetch requests per second from the consumer.

	requests per second from the consumer.

	kafka.request.fetch_rate

Zookeeper

The Datadog Agent [https://docs.datadoghq.com/agent/] ships with an integration which can be used to collect metrics.
See the Zookeeper Integration [https://docs.datadoghq.com/integrations/zk/?tab=host] for more information.

	Metric

	Metric type

	Why care

	User impact

	How to measure

	Outstanding requests

	Saturation

	This shows the number of requests still to be processed. Tracking both outstanding requests and latency can give you a clearer picture of the causes behind degraded performance.

	Reports might take longer to reflect the latest data.

	zookeeper.outstanding_requests

	Average latency

	Throughput

	This metric records the amount of time it takes to respond to a client request (in ms).

	Reports might take longer to reflect the latest data.

	zookeeper.latency.avg

	Open file descriptors

	Utilization

	Linux has a limited number of file descriptors available, so it’s important to keep an eye on this metric to ensure ZooKeeper can continue to function as expected.

	Reports might not reflect new data, as ZooKeeper will be getting errors.

	zookeeper.open_file_descriptor_count

Celery

The Datadog Agent [https://docs.datadoghq.com/agent/] ships with a HTTP Check integration [https://docs.datadoghq.com/integrations/http_check/#metrics] to collect various network metrics. In addition, CommCare HQ reports on many custom metrics for Celery. It might be worth having a look at Datadog’s Custom Metrics page.
Celery also uses Celery Flower [https://flower.readthedocs.io/en/latest/] as a tool to monitor some tasks and workers.

	Metric

	Metric type

	Why care

	User impact

	How to measure

	Celery uptime

	Availability

	The uptime rating is a measure of service availability.

	Background tasks will not execute (sending of emails, periodic reporting to external partners, report downloads, etc)

	network.http.can_connect

	Celery uptime by queue

	Availability

	The uptime rating as per queue.

	Certain background or asynchronous tasks will not get executed. The user might not notice this immediately.

	CommCare HQ custom metric

	Time to start

	Other

	This metric shows the time (seconds) it takes a task in a specific queue to start executing. If a certain task consistently takes a long time to start, it might be worth looking into.

	For the most part this might go unnoticed for the user, but there will be a delay in the execution of background tasks, like sending emails, SMS’s, alerts, etc.

	CommCare HQ custom metric

	Blockage duration by queue

	Throughput

	This metric indicates the estimated time (seconds) a certain queue was blocked. It might be worth it to alert if this blockage lasts longer than a specified time.

	For the most part this might go unnoticed for the user, but there will be a delay in the execution of background tasks, like sending emails, SMS’s, alerts, etc.

	CommCare HQ custom metric

	Task execution rate

	Throughput

	This metric gives a rough estimation of the amount of tasks being executed within a certain time bracket. This can be an important metric as it will indicate when more and more tasks take longer to execute, in which case an investigation might be appropriate.

	For the most part this might go unnoticed for the user, but there will be a delay in the execution of background tasks, like sending emails, SMS’s, alerts, etc.

	CommCare HQ custom metric

	Celery tasks by host

	Throughput

	Indicates the running time (seconds) for celery tasks by host.

	For the most part this might go unnoticed for the user, but there will be a delay in the execution of background tasks, like sending emails, SMS’s, alerts, etc.

	CommCare HQ custom metric

	Celery tasks by queue

	Throughput

	Indicates the running time (seconds) for celery tasks by queue. This way you can identify slower queues.

	For the most part this might go unnoticed for the user, but there will be a delay in the execution of background tasks, like sending emails, SMS’s, alerts, etc.

	CommCare HQ custom metric

	Celery tasks by task

	Throughput

	Indicates the running time (seconds) for celery tasks by each respective task. Slower tasks can be identified.

	For the most part this might go unnoticed for the user, but there will be a delay in the execution of background tasks, like sending emails, SMS’s, alerts, etc.

	CommCare HQ custom metric

	Tasks queued by queue

	Saturation

	Indicates the number of tasks queued by each respective queue. If this becomes increasingly large, keep an eye out for blockages.

	For the most part this might go unnoticed for the user, but there will be a delay in the execution of background tasks, like sending emails, SMS’s, alerts, etc.

	Celery Flower [https://flower.readthedocs.io/en/latest/]

	Tasks failing by worker

	Error

	Indicates tasks that failed to execute. Increasing numbers indicates some problems with the respective worker(s).

	If certain background or asynchronous tasks fail, certain features become unusable, for example sending emails, SMS’s, periodic reporting etc.

	Celery Flower [https://flower.readthedocs.io/en/latest/]

	Tasks by state

	Other

	This metric shows the number of tasks by their celery state. If the number of failed tasks increases for instance, it might be worth looking into.

	If certain background or asynchronous tasks fail, certain features become unusable, for example sending emails, SMS’s, periodic reporting etc.

	Celery Flower [https://flower.readthedocs.io/en/latest/]

RabbitMQ

The Datadog Agent [https://docs.datadoghq.com/agent/] ships with an integration which can be used to collect metrics.
See the RabbitMQ Integration [https://docs.datadoghq.com/integrations/rabbitmq/?tab=host] for more information.

	Metric

	Metric type

	Why care

	User impact

	How to measure

	Queue depth

	Saturation

	Using queue depth, messages ready and messages unacknowledged [https://www.datadoghq.com/blog/rabbitmq-monitoring/#metrics-to-watch-queue-depth-messages-unacknowledged-and-messages-ready]

	For the most part this might go unnoticed for the user, but there will be a delay in the execution of background tasks, like sending emails, SMS’s, alerts, etc.

	rabbitmq.queue.messages

	Messages ready

	Other

	Using queue depth, messages ready and messages unacknowledged [https://www.datadoghq.com/blog/rabbitmq-monitoring/#metrics-to-watch-queue-depth-messages-unacknowledged-and-messages-ready]

	For the most part this might go unnoticed for the user, but there will be a delay in the execution of background tasks, like sending emails, SMS’s, alerts, etc.

	rabbitmq.queue.messages_ready

	Messages unacknowledged

	Error

	Using queue depth, messages ready and messages unacknowledged [https://www.datadoghq.com/blog/rabbitmq-monitoring/#metrics-to-watch-queue-depth-messages-unacknowledged-and-messages-ready]

	Certain background tasks will fail to execute, like sending emails, SMS’s, alerts, etc.

	rabbitmq.queue.messages_unacknowledged

	Queue memory

	Utilization

	RabbitMQ keeps messages in memory for faster access, but if queues handle a lot of messages you could consider using lazy queues in order to preserve memory. Read more [https://www.rabbitmq.com/lazy-queues.html]

	For the most part this might go unnoticed for the user, but there will be a delay in the execution of background tasks, like sending emails, SMS’s, alerts, etc.

	rabbitmq.queue.memory

	Queue consumers

	Other

	The number of consumers is configurable, so a lower-than-expected number of consumers could indicate failures in your application.

	Certain background tasks might fail to execute, like sending emails, SMS’s, alerts, etc.

	rabbitmq.queue.consumers

	Node sockets

	Utilization

	As you increase the number of connections to your RabbitMQ server, RabbitMQ uses a greater number of file descriptors and network sockets. Since RabbitMQ will block new connections for nodes that have reached their file descriptor limit, monitoring the available number of file descriptors helps you keep your system running.

	Background tasks might take longer to execute as, or in the worst case, might not execute at all.

	rabbitmq.node.sockets_used

	Node file descriptors

	Utilization

	As you increase the number of connections to your RabbitMQ server, RabbitMQ uses a greater number of file descriptors and network sockets. Since RabbitMQ will block new connections for nodes that have reached their file descriptor limit, monitoring the available number of file descriptors helps you keep your system running.

	Background tasks might take longer to execute as, or in the worst case, might not execute at all.

	rabbitmq.node.fd_used

 CommCare Extensions

CommCare Extensions

This document describes the mechanisms that can be used to extend CommCare’s functionality. There are a number
of legacy mechanisms that are used which are not described in this document. This document will focus on
the use of pre-defined extension points to add functionality to CommCare.

Where to put custom code

The custom code for extending CommCare may be part of the main commcare-hq repository or it may have its own
repository. In the case where it is in a separate repository the code may be ‘added’ to CommCare by cloning the
custom repository into the extensions folder in the root of the CommCare source:

/commcare-hq
 /corehq
 /custom
 ...
 /extensions
 /custom_repo
 /custom_app1/models.py
 /custom_app2/models.py

Extensions Points

The corehq/extensions package provides the utilities to register extension points and their implementations
and to retrieve the results from all the registered implementations.

Create an extension point

from corehq import extensions

@extensions.extension_point
def get_things(arg1: int, domain: str, keyword: bool = False) -> List[str]:
 '''Docs for the extension point'''
 pass

@extensions.extension_point
def get_other_things():
 '''Default implementation of ``get_other_things``. May be overridden by an extension'''
 return ["default1", "default2"]

	The extension point function is called if there are no registered extensions or none that match
	the call args.

Registering an extension point implementation

Registering an extension point implementation is as simple as creating a function with the
same signature as the extension point and adding a decorator to the function.

To guarantee that the extension point implementation is registered during startup you should
also add the module path to the COMMCARE_EXTENSIONS list in settings.

The convention is to name your module commcare_extensions and place it in the root package
of your Django app.

in path/to/myapp/commcare_extensions.py

from xyz import get_things

@get_things.extend()
def some_things(arg1, domain, keyword=False):
 return ["thing2", "thing1"]

in localsettings.py
COMMCARE_EXTENSIONS = ["custom.myapp.commcare_extensions"]

Extensions may also be limited to specific domains by passing the list
of domains as a keyword argument (it must be a keyword argument). This is only supported
if the extension point defines a domain argument.

from xyz import get_things

@get_things.extend(domains=["cat", "hat"])
def custom_domain_things(arg1, domain, keyword=False):
 return ["thing3", "thing4"]

Calling an extension point

An extension point is called as a normal function. Results are
returned as a list with any None values removed.

from xyz import get_things

results = get_things(10, "seuss", True)

Formatting results

By default the results from calling an extension point are returned as a list
where each element is the result from each implementation:

> get_things(10, "seuss", True)
[["thing2", "thing1"], ["thing3", "thing4"]]

Results can also be converted to a flattened list or a single value by passing
a ResultFormat enum when defining the extension point.

Flatten Results

@extensions.extension_point(result_format=ResultFormat.FLATTEN)
def get_things(...):
 pass

> get_things(...)
["thing2", "thing1", "thing3", "thing4"]

First Result

This will return the first result that is not None. This will only call the extension
point implementations until a value is found.

@extensions.extension_point(result_format=ResultFormat.FIRST)
def get_things(...):
 pass

> get_things(...)
["thing2", "thing1"]

List Extension Points

You can list existing extension points and their implementations by running the following management command:

python manage.py list_extension_points

 Custom Modules

Custom Modules

CommCare HQ includes some code written for specific projects.

Most of this consists of custom reports or customized messaging logic.

COVID: Available Actions

The following actions can be used in messaging in projects using the covid custom module.

	
custom.covid.rules.custom_actions.close_cases_assigned_to_checkin(checkin_case, rule)

	For any associated checkin case that matches the rule criteria, the following occurs:

	For all cases of a given type, find all assigned cases. An assigned case is a case for which all of the following are true:

	Case type patient or contact

	Exists in the same domain as the user case

	The case property assigned_to_primary_checkin_case_id equals an associated checkin case’s case_id

	For every assigned case, the following case properties are blanked out (set to “”):

	assigned_to_primary_checkin_case_id

	is_assigned_primary

	assigned_to_primary_name

	assigned_to_primary_username

	
custom.covid.rules.custom_actions.set_all_activity_complete_date_to_today(case, rule)

	For any case matching the criteria, set the all_activity_complete_date property
to today’s date, in YYYY-MM-DD format, based on the domain’s default time zone.

COVID: Available Criteria

The following criteria can be used in messaging in projects using the covid custom module.

	
custom.covid.rules.custom_criteria.associated_usercase_closed(case, now)

	Is this an open checkin case where the associated usercase has been closed?

 Migrations in Practice

Migrations in Practice

Background

Definitions

Schema migration - Modifies the database schema, say by adding a new column
or changing properties of an existing column. Usually pretty fast but can get
complicated if not backwards-compatible.

Data migration - Modifies data already in the database. This has the
potential to be quite slow

Django migration - A migration (either kind) that is run automatically on
deploy by ./manage.py migrate. These are in files like
corehq/apps/<app>/migrations/0001_my_migration.py

Management command - Some data migrations are written as management
commands. These are then run either manually via a commcare-cloud command or
automatically from inside a django migration using call_command. These are
in files like corehq/apps/<app>/management/commands/my_command.py

Private release - If you need to run code from a branch that’s not currently
deployed, use a private release [https://github.com/dimagi/commcare-cloud/blob/master/src/commcare_cloud/fab/README.md#private-releases].

General Principles

Don’t block deploys - If you write a migration that will take more than 15
minutes to run on any server (typically production will have the most data and
therefore be the slowest), take care to run it outside of a deploy, otherwise
that deploy will hang. How do you know if your migration will take too long? Run
it on staging and compare the amount of data on staging to the amount of data on
prod to estimate. If in any kind of doubt, err on the side of caution. In
practice, any migration that touches common models - users, apps, domains - will
need to be run outside of a deploy, while migrations to tiny tables (thousands
of rows) or flagged features with few users may be able to run in a deploy.

Deploys are not instantaneous - Deploys will push new code, run the
migrations in that new code, and then switch the servers to the new code. The
site will be active this whole time. Users or tasks can add or modify data after
the start of the migration and before the code switch and you need to account
for that.

All migration states should be valid - Similar to the above, you must
consider the states before, during, and after the migration. Will the active
code handle all three states correctly?

Master should always be deployable - If you have a PR with a migration that
requires manual handling, don’t merge it until you are prepared to handle it.

Remember third parties - We’ll often manage migrations manually for at least
prod and india, but third parties run environments that we can’t manage
directly. Be sure that whatever changes are necessary will be applied
automatically on these environments, though it will likely require running data
migrations during deploy. If the change may be disruptive or requires manual
handling, we’ll need to communicate it out in advance [https://confluence.dimagi.com/display/saas/Announcing+changes+affecting+third+parties].

Practical Considerations

Handling new data - There’s likely a code change that writes to the database
in the new way going forward. It cannot be deployed until any requisite schema
changes have been implemented.

Migrating old data - This will be handled via a django migration, a
management command, or both. Typically, small/simple migrations are handled by a
django migration and large/complex ones use a django migration that runs a
management command. It cannot run until any schema changes are deployed.

Dealing with the gap - We generally can’t pause the servers, put everything
to rights, then restart. Rather, we must ensure that we’re saving new data
properly before migrating old data, or otherwise ensure that all data from
before, during, and after the migration is handled correctly.

Backwards-incompatible changes - These are best avoided. A common workaround
is to treat it as two migrations - one to store the data (in duplicate, with any
necessary syncing code) the new way, then a later migration to remove the old
way from the schema. With couchdb, this is a little easier, since you don’t need
to remove the old schema once all the data is migrated.

Idempotence and resumability - If at all possible, you should design your
management command to be run multiple times without changing the result,
breaking, or redoing work. This means it should expect that some data in the db
might already be migrated, and only operate on unmigrated data. This should
happen performantly. This will help with some of the below migration strategies
and make dealing with unexpected failures much smoother.

Shim code for the transition - Another useful pattern in some circumstances
is to write short-lived code that can deal with both versions of the data in the
db. This can make the transition much easier. One example of this is overriding
the wrap method on a couch Document. Be sure to make a clean-up PR that
drops support for the old version to be merged later once it’s no longer needed.

Migration-dependent code - This is the reason the migration is being
performed. You need to make sure all data is migrated before code depending on
it is released.

Testing - Complex migrations can justify unit tests. These tests are often
short-lived, but they can protect against highly disruptive and lengthy data
cleanup caused by a bug. With migrations, plan for the worst. Example tests [https://github.com/dimagi/commcare-hq/blob/45b9c9040e72ebfc0058f209e2d3f99b8dfd6d16/custom/covid/tests/test_management_commands.py#L42-L107]
for a management command [https://github.com/dimagi/commcare-hq/blob/master/custom/covid/management/commands/add_hq_user_id_to_case.py].

Staging - Prod data is usually much more complex than what you have locally
or what you might write for test cases. Before running your migration on prod,
run it on staging. However, this can cause issues if you need to change your
migration later, or if another migration in the same app conflicts with yours.
Be sure to leave staging in a good state.

Example Migration: User Logging

Let’s speak about this a bit more concretely with a specific example migration
in mind. This is based on a real example [https://github.com/dimagi/commcare-hq/pull/30769], but I’ve idealized it
somewhat here for illustration. Here’s a brief description of a migration which
will be referred back to throughout this document.

We log all changes to users, keeping track of who changed what. We currently
store the ID of the affected user, but now we want to store the username too.
This means we’ll need to make the following four changes:

	Schema migration: Add a new user_repr field to the log model to hold
the username

	Data migration: Populate that field for all existing log rows

	If this will be run multiple times (more on that below), it should be
idempotent and resumable.

	Resumability: Rather than update all user changelogs, it should
filter out those that already have user_repr set, so subsequent
runs can be much much faster.

	Idempotence: Running the command multiple times should behave the same
as if it were run only once. For example, the command shouldn’t error
if it encounters an already migrated log. It also shouldn’t apply a
modification where unnecessary, like if the migration appended the
user_repr to a string, then running it twice might result in
something like "user@example.comuser@example.com"

	Handle new data: Modify the logging code to populate the user_repr field
going forward.

	Migration-dependent code: Update the UI to display the user_repr and make
it filterable. We can’t turn this on until all existing logs have user_repr
set, or at least they’ll need to anticipate that some rows will be missing
that field.

Because this example exclusively adds new data, there’s no cleanup step. Some
migrations will need to remove an “old” way of doing things, which is frequently
done in an additional PR. For low-risk, simple, single-PR migrations, cleanup
might be included in the single PR.

Common types of migrations

Simple

If you’re adding a new model or field in postgres that doesn’t need to be
back-populated, you can just put the schema migration in the same PR as the
associated code changes, and the deploy will apply that migration before the new
code goes live. In couch, this type of change doesn’t require a migration at
all.

User Logging Example

A “simple” migration would not be suitable for the example user logging
migration described above. If you tried to make all those changes in a single PR
and let it get deployed as-is, you risk missing data. During deploy, the data
migration will be run before the code handling new data properly goes live. Any
users modified in this period would not have the user_repr populated.
Additionally, the migration might take quite a while to run, which would block
the deploy.

Multiple deploys

This is the most robust approach, and is advocated for in the couch-to-sql [https://commcare-hq.readthedocs.io/couch_to_sql_models.html] pattern. You
make two PRs:

	PR 1: Schema migration; handle new data correctly; data migration
management command

	PR 2: Django migration calling the management command; actual code relying
on the migration

After the first PR is deployed, you can run the migration in a management
command on whatever schedule is appropriate. The Django migration in the second
PR calls the command again so we can be sure it’s been run at least once on
every environment. On production, where the command has been run manually
already, this second run should see that there are no remaining unmigrated
rows/documents in the db and be nearly a noop.

Although using two deploys eliminates the risk of an indeterminate state on
environments that you control, this risk is still present for third party
environments. If the third party doesn’t deploy often and ends up deploying the
two PRs together, there’s still a risk of changes happening in the gap between
the migration and the new code going live. The magnitude of this risk depends on
the functionality being migrated - how much data it touches and how frequently
it is used. If necessary, you can mitigate this risk by spacing the deploys so
that third parties are likely to deploy them separately. See guidelines for
third parties running CommCare [https://github.com/dimagi/commcare-cloud/blob/master/docs/system/maintenance-expectations.md#expectations-for-ongoing-maintenance].

User Logging Example

Splitting the example user logging migration across two deploys would be a good
way to ensure everything is handled correctly. You’d split the changes into two
PRs as described above and deploy them separately. The steps would be:

	First PR deployed: Now we have the schema change live, and all new
changes to users have the user_repr field populated. Additionally, the
management command is available for use.

	Run the management command: This can be done in a private release any
time before the second deploy. This should almost certainly be done on prod.
Whether or not it needs to be done on the other Dimagi-managed environments
(india, swiss) depends on how much data those environments have.

	Second PR deployed: This will run the management command again,
but since all logs have already been migrated, it won’t actually make any
changes and should run fast - see the migrations best practices section
below. This will also make sure third party environments have the change
applied. This second PR also finally contains user-facing references to the
user_repr field, since by the time the code switch happens, everything
will have been migrated.

Single Deploy

While this single-deploy option is tempting compared to waiting weeks to get out
a multi-deploy migration, it’s really only suitable for specific situations like
custom work and unreleased features, where we can be confident the drawbacks are
insignificant.

The main drawbacks are:

	This method requires manually running the Django migrations which are normally
only run during deploy. Running migrations manually on a production environment
is generally a bad idea.

	It is possible that there will be a gap in data between the final run of the
data migration command and the new going live (due to the sequence of events
during a deploy).

If you decide to go down this route you should split your changes into two PRs:

	PR 1: Schema migration; data migration management command

	PR 2: Handle new data correctly; Django migration calling the management
command; actual code relying on the migration

Once the PRs have both been approved, merge PR 1, then set up a private release
containing that change. Merging the PR first will prevent migration conflicts with
anyone else working in the area, and it’s a good idea that anything run on a
production environment is on the master branch.

Run your schema migration and management command directly:

cchq <ENV> django-manage --release=<NAME> migrate <APP_NAME>
cchq <ENV> django-manage --release=<NAME> my_data_migration_command

Then merge PR 2. The subsequent deploy will run your management command again,
though it should be very quick this time around, since nearly all data has been
migrated, and finally the code changes will go live.

The big limitation here is that there’s a gap between the final run of the
management command and go-live (especially with the variation). Any changes in
the interim won’t be accounted for. This is sometimes acceptable if you’re
confident no such changes will have happened (eg, the migration pertains only to
a custom feature, and we know that project won’t have relevant activity during
that period).

User Logging Example

Consider attempting to apply our example user logging migration with a single
deploy. Make two PRs as described, so they can be merged independently. Then
while coordinating with the team, merge the first PR, deploy a private release,
and run the schema migration, then the management command.

The second PR can be merged and go live with the next deploy. This django
migration will re-run the management command, picking up any new changes since
it was previously run. In our case, this should be a small enough data set that
it won’t hinder the deploy. However, any changes in the window between that
run and go-live will not be migrated. To pick up those changes, you can run the
management command a third time after the deploy, which will ensure all user
logs have been migrated.

This is still not ideal, since for the period between go-live and this third
run, there will be missing data in the DB and that data will be in-use in the
UI. Remember also that third party environments will have the management command
run only once, on the second deploy (unless we announce this as a required
maintenance operation), which would mean their data would have a gap in it.

Best practices for data migrations in Python

Consider codifying boundaries for your migration - This is especially useful
for large migrations that might require manual intervention or special handling
on third party environments. See detailed instructions in the
Auto-Managed Migration Pattern doc.

Don’t fetch all data at once - Instead, use an iterator that streams data in
chunks (note that django queryset’s .iter() method does not do this). Some
models have their own performant getters, for others, consider
queryset_to_iterator for SQL models, iter_update or IterDB for couch
models. The chunked function is also helpful for this.

Don’t write all data at once - Instead, write data in chunks (ideally) or
individually (if needed, or if performance isn’t a concern). For couch, use
IterDB, iter_update, or db.bulk_save. For SQL, use
django_bulk_update. Remember though that these bulk options won’t call the
save() method of your model, so be sure to check for any relevant side
effects or signals that happen there and either trigger them manually or use
individual saves in this instance.

Don’t hold all data in memory - Since you’re submitting in chunks anyways,
consider writing your changes in chunks as you iterate through them, rather than
saving them all up and submitting at the end.

Don’t write from elasticsearch - It’s sometimes necessary to use ES to find
the data that needs to be modified, but you should only return the ids of the
objects you need, then pull the full objects from their primary database before
modifying and writing.

Check your assumptions - Consider what could go wrong and encode your
assumptions about the state of the world. Eg: if you expect a field to be blank,
check that it is before overwriting. Consider what would happen if your
migration were killed in the middle - would that leave data in a bad state?
Would the migration need to redo work when run again? Couch data in particular,
since it’s less structured than SQL, can contain surprising data, especially in
old documents.

Only run migrations when needed - All historical migrations are run whenever
a new environment is set up. This means your migrations will be run in every
future test run and in every future new production or development environment.
If your migration is only relevant to environments that already have data in the
old format, decorate it with @skip_on_fresh_install so that it is a noop for
new environments.

 Auto-Managed Migration Pattern

Auto-Managed Migration Pattern

A re-entrant data migration management command can be a useful way to perform
large-scale data migrations in environments where the migration takes a long
time to complete due to the volume of data being migrated. A management command
is better than a simple Django migration because it can be designed to be
stopped and started as many times as necessary until all data has been migrated.
Obviously the migration must be performed prior to the deployment of any code
depending on the finished migration, so it must be applied to all environments
before that can happen.

However, it would be tedious and error prone to require everyone running smaller
CommCare HQ environments, including developers who are working on other parts of
the project, to learn about and follow the painstaking manual process used to
migrate large environments. This document outlines a pattern that can be used to
ensure a smooth rollout to everyone running any size environment with minimal
overhead for those running small environments.

Pattern Components

	A management command that performs the data migration.

	Unless downtime will be scheduled, the command should be written in a way
that allows legacy code to continue working while the migration is in
progress. Techniques for achieving this are out of scope here.

	May accept a --dbname=xxxx parameter to limit operation to the
given database.

	Change log entry in CommCare Cloud describing the steps to perform the
migration manually by running the management command.

	A Django migration that will

	Check if there are any items that need to be migrated

	Run the management command if necessary

	Verify management command success/failure

	Display an error and stop on failure

	Continue with next migration on success

Django Migration Code Example

Edit as necessary to fit your use case. The constants at the top and the
migration dependencies are the most important things to review/change.

This example does a migration that only affects SQL data, but that is not
required. It is also possible to apply this pattern to migrations on non-SQL
databases as long as the necessary checks (does the migration need to be run?
did it run successfully?) can be performed in the context of a Django migration.

import sys
import traceback

from django.core.management import call_command, get_commands
from django.db import migrations

from corehq.util.django_migrations import skip_on_fresh_install

COUNT_ITEMS_TO_BE_MIGRATED = "SELECT COUNT(*) FROM ..."
GIT_COMMIT_WITH_MANAGEMENT_COMMAND = "TODO change this"
AUTO_MIGRATE_ITEMS_LIMIT = 10000
AUTO_MIGRATE_COMMAND_NAME = "the_migration_management_command"
AUTO_MIGRATE_FAILED_MESSAGE = """
This migration cannot be performed automatically and must instead be run manually
before this environment can be upgraded to the latest version of CommCare HQ.
Instructions for running the migration can be found at this link:

https://commcare-cloud.readthedocs.io/en/latest/changelog/0000-example-entry.html
"""
AUTO_MIGRATE_COMMAND_MISSING_MESSAGE = """
You will need to checkout an older version of CommCare HQ before you can perform this migration
because the management command has been removed.

git checkout {commit}
""".format(commit=GIT_COMMIT_WITH_MANAGEMENT_COMMAND)

@skip_on_fresh_install
def _assert_migrated(apps, schema_editor):
 """Check if migrated. Raises SystemExit if not migrated"""
 num_items = count_items_to_be_migrated(schema_editor.connection)

 migrated = num_items == 0
 if migrated:
 return

 if AUTO_MIGRATE_COMMAND_NAME not in get_commands():
 print("")
 print(AUTO_MIGRATE_FAILED_MESSAGE)
 print(AUTO_MIGRATE_COMMAND_MISSING_MESSAGE)
 sys.exit(1)

 if num_items < AUTO_MIGRATE_ITEMS_LIMIT:
 try:
 # add args and kwargs here as needed
 call_command(AUTO_MIGRATE_COMMAND_NAME)
 migrated = count_items_to_be_migrated(schema_editor.connection) == 0
 if not migrated:
 print("Automatic migration failed")
 except Exception:
 traceback.print_exc()
 else:
 print("Found %s items that need to be migrated." % num_items)
 print("Too many to migrate automatically.")

 if not migrated:
 print("")
 print(AUTO_MIGRATE_FAILED_MESSAGE)
 sys.exit(1)

def count_items_to_be_migrated(connection):
 """Return the number of items that need to be migrated"""
 with connection.cursor() as cursor:
 cursor.execute(COUNT_ITEMS_TO_BE_MIGRATED)
 return cursor.fetchone()[0]

class Migration(migrations.Migration):

 dependencies = [
 ...
]

 operations = [
 migrations.RunPython(_assert_migrated, migrations.RunPython.noop)
]

Real-life example

XForm attachments to blob metadata migration [https://github.com/dimagi/commcare-hq/blob/73f08b5da1b4eaa4cf1f804830c780d96742c9ff/corehq/form_processor/migrations/0078_blobmeta_migrated_check.py].

 Migrating Database Definitions

Migrating Database Definitions

There are currently three persistent data stores in CommCare that can be migrated.
Each of these have slightly different steps that should be followed.

General

For all ElasticSearch and CouchDB changes, add a “reindex/migration” flag to your PR.
These migrations generally have some gotchas and require more planning for deploy than a postgres migration.

Adding Data

Postgres

Add the column as a nullable column. Creating NOT NULL constraints can lock the table
and take a very long time to complete. If you wish to have the column be NOT NULL, you
should add the column as nullable and migrate data to have a value before adding a
NOT NULL constraint.

ElasticSearch

You only need to add ElasticSearch mappings if you want to search by the field you are adding.
There are two ways to do this:

	Change the mapping’s name, add the field, and using ptop_preindex.

	Add the field, reset the mapping, and using ptop_preindex with an in-place flag.

If you change the mapping’s name, you should add reindex/migration flag to your PR and coordinate
your PR to run ptop_preindex in a private release directory. Depending on the index and size,
this can take somewhere between minutes and days.

CouchDB

You can add fields as needed to couch documents, but take care to handle the previous documents
not having this field defined.

Removing Data

General

Removing columns, fields, SQL functions, or views should always be done in multiple steps.

	Remove any references to the field/function/view in application code

	Wait until this code has been deployed to all relevant environments.

	Remove the column/field/function/view from the database.

Step #2 isn’t reasonable to expect of external parties locally hosting HQ. For more on making
migrations manageable for all users of HQ, see the “Auto-Managed Migration Pattern” link below.

It’s generally not enough to remove these at the same time because any old processes could
still reference the to be deleted entity.

Couch

When removing a view, procedure depends on whether or not you’re removing an entire design doc
(an entire _design directory). If the removed view is the last one in the design doc, run
prune_couch_views to remove it. If other views are left in the design doc, a reindex is required.

ElasticSearch

If you’re removing an index, you can use prune_es_indices to remove all indices that are
no longer referenced in code.

Querying Data

Postgres

Creating an index can lock the table and cause it to not respond to queries. If the table is
large, an index is going to take a long time. In that case:

	Create the migration normally using django.

	On all large environments, create the index concurrently. One way to do this
is to use ./manage.py run_sql … [https://github.com/dimagi/commcare-hq/blob/master/corehq/form_processor/management/commands/run_sql.py]
to apply the SQL to the database.

	Once finished, fake the migration. Avoid this by using
CREATE INDEX IF NOT EXISTS … in the migration if possible.

	Merge your PR.

Couch

Changing views can block our deploys due to the way we sync our couch views. If you’re changing
a view, please sync with someone else who understands this process and coordinate with the team
to ensure we can rebuild the view without issue.

Migration Patterns and Best Practices

	Migrations in Practice

	Auto-Managed Migration Pattern

	Migrating models from couch to postgres

 Migrating models from couch to postgres

Migrating models from couch to postgres

This is a step by step guide to migrating a single model from couch to postgres.

Conceptual Steps

This is a multi-deploy process that keeps two copies of the data - one in couch, one in sql - in sync until the final piece of code is deployed and the entire migration is complete.
It has three phases:

	Add SQL models and sync code

	Define the new SQL models, based on the existing couch classes and using the SyncSQLToCouchMixin [https://github.com/dimagi/commcare-hq/blob/c2b93b627c830f3db7365172e9be2de0019c6421/corehq/ex-submodules/dimagi/utils/couch/migration.py#L115] to keep sql changes in sync with couch.

	Add the SyncCouchToSQLMixin [https://github.com/dimagi/commcare-hq/blob/c2b93b627c830f3db7365172e9be2de0019c6421/corehq/ex-submodules/dimagi/utils/couch/migration.py#L4] to the couch class so that changes to couch documents get reflected in sql.

	Write a management command that subclasses PopulateSQLCommand [https://github.com/dimagi/commcare-hq/blob/500040985e0aaffa9a220c65e81318a1afa4761b/corehq/apps/cleanup/management/commands/populate_sql_model_from_couch_model.py#L15], which will create/update a corresponding SQL object for every couch document. This command will later be run by a django migration to migrate the data. For large servers, this command will also need to be run manually, outside of a deploy, to do the bulk of the migration.

	Switch app code to read/write in SQL

	Update all code references to the couch classes to instead refer to the SQL classes.

	Write a django migration that integrates with PopulateSQLCommand to ensure that all couch and sql data is synced.

	Remove couch

	Delete the couch classes, and remove the SyncSQLToCouchMixin from the SQL classes.

Practical Steps

Even a simple model takes several pull requests to migrate, to avoid data loss while deploys and migrations are in progress. Best practice is a minimum of three pull requests, described below, each deployed to all large environments before merging the next one.

Some notes on source control:

	It’s best to create all pull requests at once so that reviewers have full context on the migration.

	It can be easier to do the work in a single branch and then make the branches for individual PRs later on.

	If you don’t typically run a linter before PRing, let the linter run on each PR and fix errors before opening the next one.

	Avoid having more than one migration happening in the same django app at the same time, to avoid migration conflicts.

PR 1: Add SQL model and migration management command, write to SQL

This should contain:

	A new model and a management command that fetches all couch docs and creates or updates the corresponding SQL model(s).

	Start by running the management command evaluate_couch_model_for_sql django_app_name MyDocType on a production environment. This will produce code to add to your models file, a new management command and also a test which will ensure that the couch model and sql model have the same attributes.

	The reason to run on production is that it will examine existing documents to help determine things like max_length. This also means it can take a while. If you have reasonable data locally, running it locally is fine - but since the sql class will often have stricter data validation than couch, it’s good to run it on prod at some point.

	If the script encounters any list or dict properties, it’ll ask you if they’re submodels. If you say no, it’ll create them as json columns. If you say yes, it’ll skip them, because it doesn’t currently handle submodels. For the same reason, it’ll skip SchemaProperty and SchemaListProperty attributes. More on this subject below.

	Properties found on documents in Couch that are not members of the Couch model class will be added to the SQL model. In most cases they can be dropped (and not migrated to SQL).

	Properties that are present in the Couch model, but always null or not found in Couch will be added to the SQL model as unknown_type(null=True). These fields may be able to be dropped (and not migrated to SQL).

	Add the generated models code to your models file. Edit as needed. Note the TODOs marked in the code:

	The new class’s name will start with “SQL” but specify table name db_table that does not include “sql.” This is so that the class can later be renamed back to the original couch class’s name by just removing the db_table. This avoids renaming the table in a django migration, which can be a headache when submodels are involved.

	The new class will include a column for couch document id.

	The generated code uses SyncCouchToSQLMixin [https://github.com/dimagi/commcare-hq/blob/c2b93b627c830f3db7365172e9be2de0019c6421/corehq/ex-submodules/dimagi/utils/couch/migration.py#L4] and SyncSQLToCouchMixin [https://github.com/dimagi/commcare-hq/blob/c2b93b627c830f3db7365172e9be2de0019c6421/corehq/ex-submodules/dimagi/utils/couch/migration.py#L115]. If your model uses submodels, you will need to add overrides for _migration_sync_to_sql and _migration_sync_to_couch. If you add overrides, definitely add tests for them. Sync bugs are one of the easiest ways for this to go terribly wrong.

	For an example of overriding the sync code for submodels, see the CommtrackConfig migration [https://github.com/dimagi/commcare-hq/pull/27597/], or the CustomDataFields migration [https://github.com/dimagi/commcare-hq/pull/27276/] which is simpler but includes a P1-level bug fixed here [https://github.com/dimagi/commcare-hq/pull/28001/].

	Beware that the sync mixins capture exceptions thrown while syncing in favor of calling notify_exception. If you’re overwriting the sync code, this makes bugs easy to miss. The branch jls/sync-mixins-hard-fail is included on staging to instead make syncing fail hard; you might consider doing the same while testing locally.

	Consider if your new model could use any additional db_index flags or a unique_together.

	Some docs have attributes that are couch ids of other docs. These are weak spots easy to forget when the referenced doc type is migrated. Add a comment so these show up in a grep for the referenced doc type.

	Run makemigrations

	Add the test that was generated to it’s respective place.
- The test file uses a ModelAttrEquality util which has methods for running the equality tests.
- The test class that is generated will have two attributes couch_only_attrs, sql_only_attrs and one method test_have_same_attrs.
- Generally during a migration some attributes and methods are renamed or removed as per need. To accomodate the changes you can update couch_only_attrs and sql_only_attrs.
- couch_only_attrs should be a set of attributes and methods which are either removed, renamed or not used anymore in SQL.
- sql_only_attrs should be a set of attributes and methods that are new in the SQL model.
- test_have_same_attrs will test the equality of the attributes. The default implementation should work if you have populated couch_only_attrs and sql_only_attrs but you can modify it’s implementation as needed.

	Add the generated migration command. Notes on this code:

	The generated migration does not handle submodels. Support for submodels with non-legacy bulk migrations might just work, but has not been tested. Legacy migrations that implement update_or_create_sql_object should handle submodels in that method.

	Legacy mode: each document is saved individually rather than in bulk when update_or_create_sql_object is implemented. update_or_create_sql_object populates the sql models based on json alone, not the wrapped document (to avoid introducing another dependency on the couch model). You may need to convert data types that the default wrap implementation would handle. The generated migration will use force_to_datetime to cast datetimes but will not perform any other wrapping. Similarly, if the couch class has a wrap method, the migration needs to manage that logic. As an example, CommtrackActionConfig.wrap was defined here [https://github.com/dimagi/commcare-hq/commit/03f1d18fac311e71a19747a035155f9121b7a869] and handled in this migration [https://github.com/dimagi/commcare-hq/pull/27597/files#diff-10eba0437b0d32b2a455e5836dc4bd93f4297c9c9d89078334f31d9eacda2258R113]. WARNING: migrations that use update_or_create_sql_object have a race condition.

	A normal HQ operation loads a Couch document.

	A PopulateSQLCommand migration loads the same document in a batch of 100.

	The HQ operation modifies and saves the Couch document, which also syncs changes to SQL (the migration’s copy of the document is now stale).

	The migration calls update_or_create_sql_object which overwrites above changes, reverting SQL to the state of its stale Couch document.

	The command will include a commit_adding_migration method to let third parties know which commit to deploy if they need to run the migration manually. This needs to be updated after this PR is merged, to add the hash of the commit that merged this PR into master.

	Most models belong to a domain. For these:

	Add the new model to DOMAIN_DELETE_OPERATIONS [https://github.com/dimagi/commcare-hq/blob/522294560cee0f3ac1ddeae0501d653b1ea0f215/corehq/apps/domain/deletion.py#L179] so it gets deleted when the domain is deleted.

	Update tests in test_delete_domain.py. Sample PR that handles several app manager models [https://github.com/dimagi/commcare-hq/pull/26310/files].

	Add the new model to sql/dump.py [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/dump_reload/sql/dump.py] so that it gets included when a domain is exported.

To test this step locally:

	With master checked out, make sure you have at least one couch document that will get migrated.

	Check out your branch and run the populate command. Verify it creates as many objects as expected.

	Test editing the pre-existing object. In a shell, verify your changes appear in both couch and sql.

	Test creating a new object. In a shell, verify your changes appear in both couch and sql.

Automated tests are also a good idea. Automated tests are definitely necessary if you overrode any parts of the
sync mixins. Example of tests for sync and migration code [https://github.com/dimagi/commcare-hq/pull/28042/files#diff-a1ef9cf2695fb1e0498e49c9f2643c3a].

The migration command has a --verify option that will find any differences in the couch data vs the sql data.

The --fixup-diffs=/path/to/migration-log.txt option can be used to resolve differences between Couch and SQL state. Most differences reported by the migration command should be transient; that is, they will eventually be resolved by normal HQ operations, usually within a few milliseconds. The ``–fixup-diffs`` option should only be used to fix persistent differences caused by a bug in the Couch to SQL sync logic after the bug has been fixed. If a bug is discovered and most rows have diffs and (important!) PR 2 has not yet been merged, it may be more efficient to fix the bug, delete all SQL rows (since Couch is still the source of truth), and redo the migration.

Once this PR is deployed - later, after the whole shebang has been QAed - you’ll run the migration command in any environments where it’s likely to take more than a trivial amount of time.
If the model is tied to domains you should initially migrate a few selected domains using --domains X Y Z and manually
verify that the migration worked as expected before running it for all the data.

PR 2: Verify migration and read from SQL

This should contain:

	A django migration that verifies all couch docs have been migrated and cleans up any stragglers, using the auto-managed migration pattern [https://commcare-hq.readthedocs.io/migration_command_pattern.html#auto-managed-migration-pattern].

	This should be trivial, since all the work is done in the populate command from the previous PR.

	The migration does an automatic completeness check by comparing the number of documents in Couch to the number of rows in SQL. If the counts do not match then the migration is considered incomplete, and the migration will calculate the difference and either migrate the remaining documents automatically or prompt for manual action. NOTE: if the automatic migration route is chosen (in the case of a small difference) the migration may still take a long time if the total number of documents in Couch is large since the migration must check every document in Couch (of the relevant doc type) to see if it has been migrated to SQL. A count mismatch is more likely when documents are written (created and/or deleted) frequently. One way to work around this is to use the --override-is-migration-completed option of PopulateSQLCommand to force the migration into a completed state. WARNING: careless use of that option may result in an incomplete migration. It is recommended to only force a completed state just before the migration is applied (e.g., just before deploying), and after checking the counts with --override-is-migration-completed=check.

	Sample migration for RegistrationRequest [https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/registration/migrations/0003_populate_sqlregistrationrequest.py].

	Replacements of all code that reads from the couch document to instead read from SQL. This is the hard part: finding all usages of the couch model and updating them as needed to work with the sql model. Some patterns are:

	Replacing couch queries with SQL queries [https://github.com/dimagi/commcare-hq/pull/26399/commits/e270e5c1fb932c850b6a356208f1ff6ae0e06299#diff-d87e129c5e1224e4b046b4872e35bf2c041788a14c74cf1cedfe0fa7ba920bc6].

	Unpacking code that takes advantage of couch docs being json [https://github.com/dimagi/commcare-hq/pull/26399/commits/f04afe870f92293074fb1f6127c716330dabdc36].

	Replacing get_id with id - including in HTML templates, which don’t typically need changes - and MyModel.get(ID) with SQLMyModel.objects.get(id=ID).

For models with many references, it may make sense to do this work incrementally, with a first PR that includes the verification migration and then subsequent PRs that each update a subset of reads. Throughout this phase, all data should continue to be saved to both couch and sql.

After testing locally, this PR is a good time to ask the QA team to test on staging. Template for QA request notes:

This is a couch to sql migration, with the usual approach:
- Set up <workflow to create items in couch>.
- Ping me on the ticket and I'll deploy the code to staging and run the migration
- Test that you can <workflows to edit the items created earlier> and also <workflow to create new items>.

PR 3: Cleanup

This is the cleanup PR. Wait a few weeks after the previous PR to merge this one; there’s no rush. Clean up:

	If your sql model uses a couch_id, remove it. Sample commit for HqDeploy [https://github.com/dimagi/commcare-hq/pull/26442/commits/79a1c49013fb09fb47690ebcd0a51bc85fb1d560]

	Remove the old couch model, which at this point should have no references. This includes removing any syncing code.

	Now that the couch model is gone, rename the sql model from SQLMyModel to MyModel. Assuming you set up db_table in the initial PR, this is just removing that and running makemigrations.

	Add the couch class to DELETABLE_COUCH_DOC_TYPES. Blame deletable_doc_types.py [https://github.com/dimagi/commcare-hq/blame/74bc31910f692126f03c46a350ab8ae5700f87dd/corehq/apps/cleanup/deletable_doc_types.py] for examples.

	Remove any couch views that are no longer used. Remember this may require a reindex; see the main db migration docs [https://commcare-hq.readthedocs.io/migrations.html].

Current State of Migration

The current state of the migration is available internally here [https://docs.google.com/spreadsheets/d/1iayf898ktfSRXdjBVutj_AgH4WN9DrheMS6vgteqfFM/edit#gid=677779031],
which outlines approximate LOE, risk level, and notes on the remaining models.

For a definitive account of remaining couch-based models, you can identify all classes that descend from Document:

from dimagi.ext.couchdbkit import Document

def all_subclasses(cls):
 return set(cls.__subclasses__()).union([s for c in cls.__subclasses__() for s in all_subclasses(c)])

sorted([str(s) for s in all_subclasses(Document)])

To find how many documents of a given type exist in a given environment:

from corehq.dbaccessors.couchapps.all_docs import get_doc_ids_by_class, get_deleted_doc_ids_by_class

len(list(get_doc_ids_by_class(MyDocumentClass) + get_deleted_doc_ids_by_class(MyDocumentClass)))

There’s a little extra value to migrating models that have dedicated views:

grep -r MyDocumentClass . | grep _design.*map.js

There’s a lot of extra value in migrating areas where you’re familiar with the code context.

Ultimately, all progress is good.

 1. Record architecture decisions

1. Record architecture decisions

Date: 2018-07-04

Status

Accepted

Context

We need to record the architectural decisions made on this project.

Decision

We will use Architecture Decision Records, as described by Michael Nygard [http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-decisions].

Consequences

See Michael Nygard’s article, linked above. For a lightweight ADR toolset, see Nat Pryce’s adr-tools [https://github.com/npryce/adr-tools].

 2. Keep static UCR configurations in memory

2. Keep static UCR configurations in memory

Date: 2018-07-04

Status

Accepted

Context

As part of the UCR framework configurations for data sources and reports
may be stored in the database or as static files shipped with the code.

These static files can apply to many different domains and even different
server environments.

When a data source or report configuraiton is requested the static configuration
is read from disk and converted into the appropriate JsonObject class.

During some performance testing on ICDS it was noted that the process or
readying the static configuration files from disk and converting them
to the JsonObject classes was taking up significant time (14% of restore
time for ICDS).

Decision

To improve the performance (primarily of restores) it was decided to maintain
the list of configurations in memeory rather than re-read them from disk
for each request.

In order to keep the memory footprint to a minimum only the static configurations
are kept in memory and not the generated classes. This also serves to ensure
that any modifications that may get made to the classes do not persist.

There are still some places that re-read the configurations from disk
each time but these not called in places that require high performance. An
example of this is the UCR pillow bootstrapping.

Consequences

Although this may raise the memory usage of the processes (after the
configurations have been loaded) it should be noted that even in the current
setup all the configurations are loaded on first request in order to generate
the list of available data sources / reports. It may be that memory get’s
released at some point after the initial load.

In terms of actual memory footprint the figures are as follows:

Base memory: 285Mb
Data sources: 60Mb
Report configs: 35Mb

 3. Remove warehouse database

3. Remove warehouse database

Date: 2019-10-16

Status

Accepted

Context

The data warehouse was intended to house data for all CommCare HQ reports.
The warehouse would replace Elasticsearch in almost all contexts that it is currently used.
The migration began in 2017 with the Application Status report and the effort
to move the report to the warehouse and ensure it is stable, performs well and
provides the same features as the ES-backed reports was much higher than
anticipated.

Decision

To reduce our infrastructure dependencies and focus our efforts on existing databases,
we have decided to remove the warehouse and stop any efforts to iterate on it.

This decision is not because we believe that the warehouse is a worse implementation than Elasticsearch.
This decision is because we believe that with our current priorities, we will
not be able to spend the appropriate amount of time to make the warehouse a
robust solution for generic reports in the near future.
Because no current reports are backed by the warehouse, it is an important time
to reconsider our approach and decide on what will be appropriate long term.

When there are more dedicated resources for generic reports, we believe that
a warehouse-style approach should be considered when implementing.

Consequences

The warehouse was intended to reduce our usage of Elasticsearch and assist in
an effort to remove many dependencies on our cluster.
No matter the short term status of the warehouse, we need to improve our
management of ES soon.
This will include upgrading to more recent versions, re-indexing indexes to
contain more shards, and supporting aliases that consist of multiple indexes.

The Application Status report also uniquely adds a lot of load on our CouchDB cluster.
This load comes from the pillows for the report updating the user doc to contain the latest metadata.
There will be a separate change that batches these updates to CouchDB into chunks.

 Documenting

Documenting

Documentation is awesome. You should write it. Here’s how.

All the CommCare HQ docs are stored in a docs/ folder in the root of the repo.
To add a new doc, make an appropriately-named rst file in the docs/ directory.
For the doc to appear in the table of contents, add it to the toctree list in index.rst.

Sooner or later we’ll probably want to organize the docs into sub-directories,
that’s fine, you can link to specific locations like so: Installation
<intro/install>.

For a nice example set of documentation, check out Django’s docs directory [https://github.com/django/django/tree/master/docs]. This is used to build docs.djangoproject.com [https://docs.djangoproject.com].

Index

	Sphinx is used to build the documentation.

	Read the Docs is used for hosting.

	Writing Documentation - Some general tips for writing documentation

	reStructuredText is used for markup.

	Editors with RestructuredText support

Sphinx

Sphinx builds the documentation and extends the functionality of rst a bit
for stuff like pointing to other files and modules.

To build a local copy of the docs (useful for testing changes), navigate to the
docs/ directory and run make html. Open
<path_to_commcare-hq>/docs/_build/html/index.html in your browser and you
should have access to the docs for your current version (I bookmarked it on my
machine).

	Sphinx Docs [http://sphinx-doc.org/]

	Full index [http://sphinx-doc.org/genindex.html]

Read the Docs

Dimagi maintains the hosted version of the documentation at readthedocs.io. For
Dimagi employees, the credentials are maintained in our internal password manager under the “readthedocs” entry.

The configuration for Read the Docs lives in .readthedocs.yml, which calls the
docs/conf.py script.

Due to problematic dependencies that need to be mocked, we cannot properly setup django apps until after
docs/conf.py has been applied. We then must be aware that we are performing a docs build, at which point we can run
django.setup() in corehq/__init__.py. We use an environment variable (DOCS_BUILD) to convey this information,
which is set in the Admin UI of our readthedocs.io account.

Troubleshooting

The docs are built with every new merge to master. This build can fail
completely, or “succeed” with errors. If you made a change that’s not appearing,
or if autodoc doesn’t seem to be working properly, you should check the build.

On Read the Docs, in the bottom left, you should see “v: latest”. Click to expand,
then click “Builds”. There you should see a build history (you don’t need to log
in for this). Click on the latest build. I find the “view raw” display to be
more useful. That should show logs and any tracebacks.

Running autodoc or automodule requires that sphinx be able to load the
code to import docstrings. This means that ~all of the source code’s
requirements to be installed, and the code cannot do complex stuff like database
queries on module load. Build failures are likely caused by issues there.

Replicating the build environment

Read the Docs builds in an environment that doesn’t have any support services,
so turn those off. Next, make a new virtual environment with just the docs
requirements. Finally, build the docs, which should surface any errors that’d
appear on the build server.

$ cd commcare-hq/
$ mkvirtualenv --python=python3.9 hq-docs
$ pip install -r requirements/docs-requirements.txt
$ cd docs/
$ make html

Writing Documentation

For some great references, check out Jacob Kaplan-Moss’s series Writing Great Documentation [http://jacobian.org/writing/great-documentation/] and this
blog post [http://stevelosh.com/blog/2013/09/teach-dont-tell/] by Steve Losh. Here are some takeaways:

	Use short sentences and paragraphs

	Break your documentation into sections to avoid text walls

	Avoid making assumptions about your reader’s background knowledge

	Consider three types of documentation [http://jacobian.org/writing/what-to-write/]:

	Tutorials - quick introduction to the basics

	Topical Guides - comprehensive overview of the project; everything but the dirty details

	Reference Material - complete reference for the API

One aspect that Kaplan-Moss doesn’t mention explicitly (other than advising us to “Omit fluff” in his
Technical style [http://jacobian.org/writing/technical-style/] piece) but is clear from both his documentation series and the Django documentation,
is what not to write.
It’s an important aspect of the readability of any written work, but has other implications when it comes to
technical writing.

Antoine de Saint Exupéry wrote, “… perfection is attained not when there is nothing more to add, but when there
is nothing more to remove.”

Keep things short and take stuff out where possible.
It can help to get your point across, but, maybe more importantly with documentation, means there is less that
needs to change when the codebase changes.

Think of it as an extension of the DRY principle.

reStructuredText

reStructuredText is a markup language that is commonly used for Python documentation. You can view the source of this document or any other to get an idea of how to do stuff (this document has hidden comments). Here are some useful links for more detail:

	rst quickreference [http://docutils.sourceforge.net/docs/user/rst/quickref.html]

	Sphinx guide to rst [http://sphinx-doc.org/rest.html]

	reStructuredText full docs [http://docutils.sourceforge.net/rst.html]

	Referencing arbitrary locations and other documents [http://sphinx-doc.org/markup/inline.html#ref-role]

Editors

While you can use any text editor for editing RestructuredText
documents, I find two particularly useful:

	PyCharm (or other JetBrains IDE, like IntelliJ), which has great
syntax highlighting and linting.

	Sublime Text, which has a useful plugin for hard-wrapping lines called
Sublime Wrap Plus [https://github.com/ehuss/Sublime-Wrap-Plus]. Hard-wrapped lines make documentation easy to
read in a console, or editor that doesn’t soft-wrap lines (i.e. most
code editors).

	Vim has a command gq to reflow a block of text (:help gq). It
uses the value of textwidth to wrap (:setl tw=75). Also check
out :help autoformat. Syntastic has a rst linter. To make a line a
header, just yypVr= (or whatever symbol you want).

Examples

Some basic examples adapted from 2 Scoops of Django:

Section Header

Sections are explained well here [http://docutils.sourceforge.net/docs/user/rst/quickstart.html#sections]

emphasis (bold/strong)

italics

Simple link: http://commcarehq.org

Inline link: CommCare HQ [https://commcarehq.org]

Fancier Link: CommCare HQ [https://commcarehq.org]

	An enumerated list item

	Second item

	First bullet

	
	Second bullet
	
	Indented Bullet

	Note carriage return and indents

Literal code block:

def like():
 print("I like Ice Cream")

for i in range(10):
 like()

Python colored code block (requires pygments):

You need to "pip install pygments" to make this work.

for i in range(10):
 like()

JavaScript colored code block:

console.log("Don't use alert()");

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 corehq	

 	
 	
 corehq.apps.app_manager.suite_xml.post_process.endpoints	

 	
 	
 corehq.apps.app_manager.suite_xml.post_process.instances	

 	
 	
 corehq.apps.app_manager.suite_xml.post_process.menu	

 	
 	
 corehq.apps.app_manager.suite_xml.post_process.remote_requests	

 	
 	
 corehq.apps.app_manager.suite_xml.post_process.resources	

 	
 	
 corehq.apps.app_manager.suite_xml.post_process.workflow	

 	
 	
 corehq.apps.app_manager.suite_xml.sections.details	

 	
 	
 corehq.apps.app_manager.suite_xml.sections.entries	

 	
 	
 corehq.apps.app_manager.suite_xml.sections.fixtures	

 	
 	
 corehq.apps.app_manager.suite_xml.sections.menus	

 	
 	
 corehq.apps.app_manager.suite_xml.sections.resources	

 	
 	
 corehq.apps.es.client	

 	
 	
 corehq.apps.locations.permissions	

 	
 	
 corehq.extensions	

 	
 	
 corehq.motech.value_source	

 	[image: -]
 	
 custom	

 	
 	
 custom.covid.rules.custom_actions	

 	
 	
 custom.covid.rules.custom_criteria	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__init__() (corehq.apps.es.client.BaseAdapter method)

 	(corehq.apps.es.client.BulkActionItem method)

 	(corehq.apps.es.client.ElasticDocumentAdapter method)

 	(corehq.apps.es.client.ElasticMultiplexAdapter method)

 	(corehq.apps.es.client.Tombstone method)

 	(corehq.motech.value_source.CaseOwnerAncestorLocationField method)

 	(corehq.motech.value_source.CaseProperty method)

 	(corehq.motech.value_source.CasePropertyConstantValue method)

 	(corehq.motech.value_source.ConstantValue method)

 	(corehq.motech.value_source.FormQuestion method)

 	(corehq.motech.value_source.FormUserAncestorLocationField method)

 	(corehq.motech.value_source.SubcaseValueSource method)

 	(corehq.motech.value_source.SupercaseValueSource method)

 	(corehq.motech.value_source.ValueSource method)

 	
 	_get_cache_invalidation_pillow() (in module corehq.pillows.cacheinvalidate)

A

 	
 	AddDaysExpressionSpec (class in corehq.apps.userreports.expressions.date_specs)

 	AddHoursExpressionSpec (class in corehq.apps.userreports.expressions.date_specs)

 	AddMonthsExpressionSpec (class in corehq.apps.userreports.expressions.date_specs)

 	
 	AncestorLocationExpression (class in corehq.apps.locations.ucr_expressions)

 	ArrayIndexExpressionSpec (class in corehq.apps.userreports.expressions.specs)

 	associated_usercase_closed() (in module custom.covid.rules.custom_criteria)

B

 	
 	BaseAdapter (class in corehq.apps.es.client)

 	bulk() (corehq.apps.es.client.ElasticDocumentAdapter method)

 	(corehq.apps.es.client.ElasticMultiplexAdapter method)

 	bulk_delete() (corehq.apps.es.client.ElasticDocumentAdapter method)

 	
 	bulk_index() (corehq.apps.es.client.ElasticDocumentAdapter method)

 	BulkActionItem (class in corehq.apps.es.client)

 	BulkActionItem.OpType (class in corehq.apps.es.client)

 	BulkElasticProcessor (class in pillowtop.processors.elastic)

C

 	
 	CacheInvalidateProcessor (class in corehq.pillows.cacheinvalidate)

 	cancel_task() (corehq.apps.es.client.ElasticManageAdapter method)

 	CaseMessagingSyncProcessor (class in corehq.messaging.pillow)

 	CaseOwnerAncestorLocationField (class in corehq.motech.value_source)

 	CaseProperty (class in corehq.motech.value_source)

 	CasePropertyConstantValue (class in corehq.motech.value_source)

 	CaseSharingGroupsExpressionSpec (class in corehq.apps.userreports.expressions.specs)

 	close_cases_assigned_to_checkin() (in module custom.covid.rules.custom_actions)

 	cluster_health() (corehq.apps.es.client.ElasticManageAdapter method)

 	cluster_routing() (corehq.apps.es.client.ElasticManageAdapter method)

 	CoalesceExpressionSpec (class in corehq.apps.userreports.expressions.specs)

 	columns (corehq.apps.reports.sqlreport.SqlData property)

 	ConditionalExpressionSpec (class in corehq.apps.userreports.expressions.specs)

 	ConfigurableReportPillowProcessor (class in corehq.apps.userreports.pillow)

 	ConstantGetterSpec (class in corehq.apps.userreports.expressions.specs)

 	ConstantValue (class in corehq.motech.value_source)

 	
 corehq.apps.app_manager.suite_xml.post_process.endpoints

 	module

 	
 corehq.apps.app_manager.suite_xml.post_process.instances

 	module

 	
 corehq.apps.app_manager.suite_xml.post_process.menu

 	module

 	
 corehq.apps.app_manager.suite_xml.post_process.remote_requests

 	module

 	
 corehq.apps.app_manager.suite_xml.post_process.resources

 	module

 	
 	
 corehq.apps.app_manager.suite_xml.post_process.workflow

 	module

 	
 corehq.apps.app_manager.suite_xml.sections.details

 	module

 	
 corehq.apps.app_manager.suite_xml.sections.entries

 	module

 	
 corehq.apps.app_manager.suite_xml.sections.fixtures

 	module

 	
 corehq.apps.app_manager.suite_xml.sections.menus

 	module

 	
 corehq.apps.app_manager.suite_xml.sections.resources

 	module

 	
 corehq.apps.es.client

 	module

 	
 corehq.apps.locations.permissions

 	module

 	
 corehq.extensions

 	module

 	
 corehq.motech.value_source

 	module

 	count() (corehq.apps.es.client.ElasticDocumentAdapter method)

 	create_document_adapter() (in module corehq.apps.es.client)

 	
 custom.covid.rules.custom_actions

 	module

 	
 custom.covid.rules.custom_criteria

 	module

D

 	
 	delete() (corehq.apps.es.client.BulkActionItem class method)

 	(corehq.apps.es.client.ElasticDocumentAdapter method)

 	(corehq.apps.es.client.ElasticMultiplexAdapter method)

 	delete_id() (corehq.apps.es.client.BulkActionItem class method)

 	delete_tombstones() (corehq.apps.es.client.ElasticDocumentAdapter method)

 	
 	deserialize() (corehq.motech.value_source.ConstantValue method)

 	(corehq.motech.value_source.ValueSource method)

 	(in module corehq.motech.value_source)

 	DictExpressionSpec (class in corehq.apps.userreports.expressions.specs)

 	DiffDaysExpressionSpec (class in corehq.apps.userreports.expressions.date_specs)

 	distinct_on (corehq.apps.reports.sqlreport.SqlData property)

E

 	
 	ElasticDocumentAdapter (class in corehq.apps.es.client)

 	ElasticManageAdapter (class in corehq.apps.es.client)

 	ElasticMultiplexAdapter (class in corehq.apps.es.client)

 	ElasticProcessor (class in pillowtop.processors.elastic)

 	EvalExpressionSpec (class in corehq.apps.userreports.expressions.specs)

 	EvalExpressionSpec.context() (in module corehq.apps.userreports.expressions.specs)

 	EvalExpressionSpec.date() (in module corehq.apps.userreports.expressions.specs)

 	EvalExpressionSpec.float() (in module corehq.apps.userreports.expressions.specs)

 	EvalExpressionSpec.int() (in module corehq.apps.userreports.expressions.specs)

 	EvalExpressionSpec.jsonpath() (in module corehq.apps.userreports.expressions.specs)

 	
 	EvalExpressionSpec.named() (in module corehq.apps.userreports.expressions.specs)

 	EvalExpressionSpec.rand() (in module corehq.apps.userreports.expressions.specs)

 	EvalExpressionSpec.randint() (in module corehq.apps.userreports.expressions.specs)

 	EvalExpressionSpec.range() (in module corehq.apps.userreports.expressions.specs)

 	EvalExpressionSpec.root_context() (in module corehq.apps.userreports.expressions.specs)

 	EvalExpressionSpec.round() (in module corehq.apps.userreports.expressions.specs)

 	EvalExpressionSpec.str() (in module corehq.apps.userreports.expressions.specs)

 	EvalExpressionSpec.timedelta_to_seconds() (in module corehq.apps.userreports.expressions.specs)

 	EvalExpressionSpec.today() (in module corehq.apps.userreports.expressions.specs)

 	exists() (corehq.apps.es.client.ElasticDocumentAdapter method)

 	export_adapter() (corehq.apps.es.client.ElasticDocumentAdapter method)

F

 	
 	filter_values (corehq.apps.reports.sqlreport.SqlData property)

 	FilterItemsExpressionSpec (class in corehq.apps.userreports.expressions.list_specs)

 	filters (corehq.apps.reports.sqlreport.SqlData property)

 	FlattenExpressionSpec (class in corehq.apps.userreports.expressions.list_specs)

 	
 	FormQuestion (class in corehq.motech.value_source)

 	FormSubmissionMetadataTrackerProcessor (class in pillowtop.processors.form)

 	FormUserAncestorLocationField (class in corehq.motech.value_source)

 	from_python() (corehq.apps.es.client.ElasticDocumentAdapter method)

G

 	
 	get() (corehq.apps.es.client.ElasticDocumentAdapter method)

 	get_aliases() (corehq.apps.es.client.ElasticManageAdapter method)

 	get_app_to_elasticsearch_pillow() (in module corehq.pillows.application)

 	get_case_location() (in module corehq.motech.value_source)

 	get_case_messaging_sync_pillow() (in module corehq.messaging.pillow)

 	get_case_pillow() (in module corehq.pillows.case)

 	get_case_search_processor() (in module corehq.pillows.case_search)

 	get_case_search_to_elasticsearch_pillow() (in module corehq.pillows.case_search)

 	get_case_to_elasticsearch_pillow() (in module corehq.pillows.case)

 	get_change_feed_pillow_for_db() (in module corehq.apps.change_feed.pillow)

 	get_client() (in module corehq.apps.es.client)

 	get_data() (corehq.apps.reports.api.ReportDataSource method)

 	get_docs() (corehq.apps.es.client.ElasticDocumentAdapter method)

 	get_domain_kafka_to_elasticsearch_pillow() (in module corehq.pillows.domain)

 	get_form_question_values() (in module corehq.motech.value_source)

 	get_form_submission_metadata_tracker_pillow() (in module corehq.pillows.app_submission_tracker)

 	get_group_pillow() (in module corehq.pillows.groups_to_user)

 	get_group_pillow_old() (in module corehq.pillows.group)

 	get_group_to_elasticsearch_processor() (in module corehq.pillows.group)

 	
 	get_group_to_user_pillow() (in module corehq.pillows.groups_to_user)

 	get_import_value() (in module corehq.motech.value_source)

 	get_indices() (corehq.apps.es.client.ElasticManageAdapter method)

 	get_kafka_ucr_pillow() (in module corehq.apps.userreports.pillow)

 	get_kafka_ucr_static_pillow() (in module corehq.apps.userreports.pillow)

 	get_ledger_to_elasticsearch_pillow() (in module corehq.pillows.ledger)

 	get_location_pillow() (in module corehq.apps.userreports.pillow)

 	get_node_info() (corehq.apps.es.client.ElasticManageAdapter method)

 	get_sql_sms_pillow() (in module corehq.pillows.sms)

 	get_task() (corehq.apps.es.client.ElasticManageAdapter method)

 	get_unknown_users_pillow() (in module corehq.pillows.user)

 	get_user_pillow() (in module corehq.pillows.user)

 	get_user_pillow_old() (in module corehq.pillows.user)

 	get_user_sync_history_pillow() (in module corehq.pillows.synclog)

 	get_value() (corehq.motech.value_source.ValueSource method)

 	(in module corehq.motech.value_source)

 	get_xform_pillow() (in module corehq.pillows.xform)

 	get_xform_to_elasticsearch_pillow() (in module corehq.pillows.xform)

 	group_by (corehq.apps.reports.sqlreport.SqlData property)

 	GroupsToUsersProcessor (class in corehq.pillows.groups_to_user)

I

 	
 	index() (corehq.apps.es.client.BulkActionItem class method)

 	(corehq.apps.es.client.ElasticDocumentAdapter method)

 	(corehq.apps.es.client.ElasticMultiplexAdapter method)

 	index_close() (corehq.apps.es.client.ElasticManageAdapter method)

 	index_configure_for_reindex() (corehq.apps.es.client.ElasticManageAdapter method)

 	index_configure_for_standard_ops() (corehq.apps.es.client.ElasticManageAdapter method)

 	index_create() (corehq.apps.es.client.ElasticManageAdapter method)

 	index_delete() (corehq.apps.es.client.ElasticManageAdapter method)

 	index_exists() (corehq.apps.es.client.ElasticManageAdapter method)

 	index_flush() (corehq.apps.es.client.ElasticManageAdapter method)

 	index_get_mapping() (corehq.apps.es.client.ElasticManageAdapter method)

 	index_get_settings() (corehq.apps.es.client.ElasticManageAdapter method)

 	
 	index_put_alias() (corehq.apps.es.client.ElasticManageAdapter method)

 	index_put_mapping() (corehq.apps.es.client.ElasticManageAdapter method)

 	index_refresh() (corehq.apps.es.client.ElasticManageAdapter method)

 	index_set_replicas() (corehq.apps.es.client.ElasticManageAdapter method)

 	index_validate_query() (corehq.apps.es.client.ElasticManageAdapter method)

 	indices_info() (corehq.apps.es.client.ElasticManageAdapter method)

 	indices_refresh() (corehq.apps.es.client.ElasticManageAdapter method)

 	info() (corehq.apps.es.client.BaseAdapter method)

 	is_delete (corehq.apps.es.client.BulkActionItem property)

 	is_index (corehq.apps.es.client.BulkActionItem property)

 	iter_docs() (corehq.apps.es.client.ElasticDocumentAdapter method)

 	IterationNumberExpressionSpec (class in corehq.apps.userreports.expressions.specs)

 	IteratorExpressionSpec (class in corehq.apps.userreports.expressions.specs)

J

 	
 	JsonpathExpressionSpec (class in corehq.apps.userreports.expressions.specs)

K

 	
 	KafkaProcessor (class in corehq.apps.change_feed.pillow)

 	
 	keys (corehq.apps.reports.sqlreport.SqlData property)

L

 	
 	LedgerProcessor (class in corehq.pillows.ledger)

M

 	
 	MapItemsExpressionSpec (class in corehq.apps.userreports.expressions.list_specs)

 	
 module

 	corehq.apps.app_manager.suite_xml.post_process.endpoints

 	corehq.apps.app_manager.suite_xml.post_process.instances

 	corehq.apps.app_manager.suite_xml.post_process.menu

 	corehq.apps.app_manager.suite_xml.post_process.remote_requests

 	corehq.apps.app_manager.suite_xml.post_process.resources

 	corehq.apps.app_manager.suite_xml.post_process.workflow

 	corehq.apps.app_manager.suite_xml.sections.details

 	corehq.apps.app_manager.suite_xml.sections.entries

 	corehq.apps.app_manager.suite_xml.sections.fixtures

 	corehq.apps.app_manager.suite_xml.sections.menus

 	corehq.apps.app_manager.suite_xml.sections.resources

 	corehq.apps.es.client

 	corehq.apps.locations.permissions

 	corehq.extensions

 	corehq.motech.value_source

 	custom.covid.rules.custom_actions

 	custom.covid.rules.custom_criteria

 	
 	MonthStartDateExpressionSpec (class in corehq.apps.userreports.expressions.date_specs)

N

 	
 	NamedExpressionSpec (class in corehq.apps.userreports.expressions.specs)

 	
 	NestedExpressionSpec (class in corehq.apps.userreports.expressions.specs)

O

 	
 	OpenmrsConfig (class in corehq.motech.openmrs.openmrs_config)

 	
 	OpenmrsRepeater (class in corehq.motech.openmrs.repeaters)

P

 	
 	PatientFinder (class in corehq.motech.openmrs.finders)

 	ping() (corehq.apps.es.client.BaseAdapter method)

 	
 	PropertyNameGetterSpec (class in corehq.apps.userreports.expressions.specs)

 	PropertyPathGetterSpec (class in corehq.apps.userreports.expressions.specs)

R

 	
 	ReduceItemsExpressionSpec (class in corehq.apps.userreports.expressions.list_specs)

 	reindex() (corehq.apps.es.client.ElasticManageAdapter method)

 	
 	RelatedDocExpressionSpec (class in corehq.apps.userreports.expressions.specs)

 	ReportDataSource (class in corehq.apps.reports.api)

 	ReportingGroupsExpressionSpec (class in corehq.apps.userreports.expressions.specs)

S

 	
 	scroll() (corehq.apps.es.client.ElasticDocumentAdapter method)

 	search() (corehq.apps.es.client.ElasticDocumentAdapter method)

 	serialize() (corehq.motech.value_source.ValueSource method)

 	set_all_activity_complete_date_to_today() (in module custom.covid.rules.custom_actions)

 	set_external_value() (corehq.motech.value_source.SubcaseValueSource method)

 	(corehq.motech.value_source.SupercaseValueSource method)

 	(corehq.motech.value_source.ValueSource method)

 	
 	slugs() (corehq.apps.reports.api.ReportDataSource method)

 	SortItemsExpressionSpec (class in corehq.apps.userreports.expressions.list_specs)

 	SplitStringExpressionSpec (class in corehq.apps.userreports.expressions.specs)

 	SqlData (class in corehq.apps.reports.sqlreport)

 	SubcaseValueSource (class in corehq.motech.value_source)

 	SupercaseValueSource (class in corehq.motech.value_source)

 	SwitchExpressionSpec (class in corehq.apps.userreports.expressions.specs)

T

 	
 	table_name (corehq.apps.reports.sqlreport.SqlData attribute)

 	
 	to_json() (corehq.apps.es.client.ElasticDocumentAdapter method)

 	Tombstone (class in corehq.apps.es.client)

U

 	
 	UnknownUsersProcessor (class in corehq.pillows.user)

 	update() (corehq.apps.es.client.ElasticDocumentAdapter method)

 	(corehq.apps.es.client.ElasticMultiplexAdapter method)

 	
 	UserSyncHistoryProcessor (class in corehq.pillows.synclog)

V

 	
 	ValueSource (class in corehq.motech.value_source)

W

 	
 	WeightedPropertyPatientFinder (class in corehq.motech.openmrs.finders)

 	wrap() (corehq.motech.value_source.CaseOwnerAncestorLocationField class method)

 	(corehq.motech.value_source.FormUserAncestorLocationField class method)

 	(corehq.motech.value_source.ValueSource class method)

 Querying Elasticsearch

Querying Elasticsearch

ESQuery

ESQuery is a library for building elasticsearch queries in a friendly,
more readable manner.

Basic usage

There should be a file and subclass of ESQuery for each index we have.

Each method returns a new object, so you can chain calls together like
SQLAlchemy. Here’s an example usage:

q = (FormsES()
 .domain(self.domain)
 .xmlns(self.xmlns)
 .submitted(gte=self.datespan.startdate_param,
 lt=self.datespan.enddateparam)
 .source(['xmlns', 'domain', 'app_id'])
 .sort('received_on', desc=False)
 .size(self.pagination.count)
 .start(self.pagination.start)
 .terms_aggregation('babies.count', 'babies_saved'))
result = q.run()
total_docs = result.total
hits = result.hits

Generally useful filters and queries should be abstracted away for re-use,
but you can always add your own like so:

q.filter({"some_arbitrary_filter": {...}})
q.set_query({"fancy_query": {...}})

For debugging or more helpful error messages, you can use query.dumps()
and query.pprint(), both of which use json.dumps() and are suitable for
pasting in to ES Head or Marvel or whatever

Filtering

Filters are implemented as standalone functions, so they can be composed and
nested q.OR(web_users(), mobile_users()).
Filters can be passed to the query.filter method: q.filter(web_users())

There is some syntactic sugar that lets you skip this boilerplate and just
call the filter as if it were a method on the query class: q.web_users()
In order to be available for this shorthand, filters are added to the
builtin_filters property of the main query class.
I know that’s a bit confusing, but it seemed like the best way to make filters
available in both contexts.

Generic filters applicable to all indices are available in
corehq.apps.es.filters. (But most/all can also be accessed as a query
method, if appropriate)

Filtering Specific Indices

There is a file for each elasticsearch index (if not, feel free to add one).
This file provides filters specific to that index, as well as an
appropriately-directed ESQuery subclass with references to these filters.

These index-specific query classes also have default filters to exclude things
like inactive users or deleted docs.
These things should nearly always be excluded, but if necessary, you can remove
these with remove_default_filters.

Language

	es_query - the entire query, filters, query, pagination

	filters - a list of the individual filters

	query - the query, used for searching, not filtering

	field - a field on the document. User docs have a ‘domain’ field.

	lt/gt - less/greater than

	lte/gte - less/greater than or equal to

	
class corehq.apps.es.es_query.ESQuery(index=None, for_export=False)

	This query builder only outputs the following query structure:

{
 "query": {
 "bool": {
 "filter": {
 "and": [
 <filters>
]
 },
 "query": <query>
 }
 },
 <size, sort, other params>
}

	
__init__(index=None, for_export=False)

	

	
add_query(new_query, clause)

	Add a query to the current list of queries

	
aggregation(aggregation)

	Add the passed-in aggregation to the query

	
property builtin_filters

	A list of callables that return filters. These will all be available as
instance methods, so you can do self.term(field, value) instead of
self.filter(filters.term(field, value))

	
dumps(pretty=False)

	Returns the JSON query that will be sent to elasticsearch.

	
exclude_source()

	Turn off _source retrieval. Mostly useful if you just want the doc_ids

	
fields(fields)

	Restrict the fields returned from elasticsearch

Deprecated. Use source instead.

	
filter(filter)

	Add the passed-in filter to the query. All filtering goes through
this class.

	
property filters

	Return a list of the filters used in this query, suitable if you
want to reproduce a query with additional filtering.

	
get_ids()

	Performs a minimal query to get the ids of the matching documents

For very large sets of IDs, use scroll_ids instead

	
nested_sort(path, field_name, nested_filter, desc=False, reset_sort=True, sort_missing=None)

	Order results by the value of a nested field

	
pprint()

	pretty prints the JSON query that will be sent to elasticsearch.

	
remove_default_filter(default)

	Remove a specific default filter by passing in its name.

	
remove_default_filters()

	Sensible defaults are provided. Use this if you don’t want ‘em

	
run()

	Actually run the query. Returns an ESQuerySet object.

	
scroll()

	Run the query against the scroll api. Returns an iterator yielding each
document that matches the query.

	
scroll_ids()

	Returns a generator of all matching ids

	
scroll_ids_to_disk_and_iter_docs()

	Returns a ScanResult for all matched documents.

Used for iterating docs for a very large query where consuming the docs
via self.scroll() may exceed the amount of time that the scroll
context can remain open. This is achieved by:

	Fetching the IDs for all matched documents (via scroll_ids()) and
caching them in a temporary file on disk, then

	fetching the documents by (chunked blocks of) IDs streamed from the
temporary file.

Original design PR: https://github.com/dimagi/commcare-hq/pull/20282

Caveats:
- There is no guarantee that the returned ScanResult’s count
property will match the number of yielded docs.
- Documents that are present when scroll_ids() is called, but are
deleted prior to being fetched in full will be missing from the
results, and this scenario will not raise an exception.
- If Elastic document ID values are ever reused (i.e. new documents
are created with the same ID of a previously-deleted document) then
this method would become unsafe because it could yield documents that
were not matched by the query.

	
search_string_query(search_string, default_fields)

	Accepts a user-defined search string

	
set_query(query)

	Set the query. Most stuff we want is better done with filters, but
if you actually want Levenshtein distance or prefix querying…

	
set_sorting_block(sorting_block)

	To be used with get_sorting_block, which interprets datatables sorting

	
size(size)

	Restrict number of results returned. Analagous to SQL limit, except
when performing a scroll, in which case this value becomes the number of
results to fetch per scroll request.

	
sort(field, desc=False, reset_sort=True)

	Order the results by field.

	
source(include, exclude=None)

	Restrict the output of _source in the queryset. This can be used to return an object in a queryset

	
start(start)

	Pagination. Analagous to SQL offset.

	
values(*fields)

	modeled after django’s QuerySet.values

	
class corehq.apps.es.es_query.ESQuerySet(raw, query)

	
	The object returned from ESQuery.run
	
	ESQuerySet.raw is the raw response from elasticsearch

	ESQuerySet.query is the ESQuery object

	
__init__(raw, query)

	

	
property doc_ids

	Return just the docs ids from the response.

	
property hits

	Return the docs from the response.

	
static normalize_result(query, result)

	Return the doc from an item in the query response.

	
property total

	Return the total number of docs matching the query.

	
class corehq.apps.es.es_query.HQESQuery(index=None, for_export=False)

	Query logic specific to CommCareHQ

	
property builtin_filters

	A list of callables that return filters. These will all be available as
instance methods, so you can do self.term(field, value) instead of
self.filter(filters.term(field, value))

	
exception corehq.apps.es.es_query.InvalidQueryError

	Query parameters cannot be assembled into a valid search.

Available Filters

The following filters are available on any ESQuery instance - you can chain
any of these on your query.

Note also that the term filter accepts either a list or a single element.
Simple filters which match against a field are based on this filter, so those
will also accept lists.
That means you can do form_query.xmlns(XMLNS1) or
form_query.xmlns([XMLNS1, XMLNS2, ...]).

Contributing:
Additions to this file should be added to the builtin_filters method on
either ESQuery or HQESQuery, as appropriate (is it an HQ thing?).

	
corehq.apps.es.filters.AND(*filters)

	Filter docs to match all of the filters passed in

	
corehq.apps.es.filters.NOT(filter_)

	Exclude docs matching the filter passed in

	
corehq.apps.es.filters.OR(*filters)

	Filter docs to match any of the filters passed in

	
corehq.apps.es.filters.date_range(field, gt=None, gte=None, lt=None, lte=None)

	Range filter that accepts date and datetime objects as arguments

	
corehq.apps.es.filters.doc_id(doc_id)

	Filter by doc_id. Also accepts a list of doc ids

	
corehq.apps.es.filters.doc_type(doc_type)

	Filter by doc_type. Also accepts a list

	
corehq.apps.es.filters.domain(domain_name)

	Filter by domain.

	
corehq.apps.es.filters.empty(field)

	Only return docs with a missing or null value for field

	
corehq.apps.es.filters.exists(field)

	Only return docs which have a value for field

	
corehq.apps.es.filters.geo_bounding_box(field, top_left, bottom_right)

	Only return geopoints stored in field that are located within
the bounding box defined by top_left and bottom_right.

top_left and bottom_right accept a range of data types and
formats.

More info: Geo Bounding Box Query [https://www.elastic.co/guide/en/elasticsearch/reference/5.6/query-dsl-geo-bounding-box-query.html]

	
corehq.apps.es.filters.geo_grid(field, geohash)

	Filters cases by the geohash grid cell in which they are located.

	
corehq.apps.es.filters.geo_polygon(field, points)

	Filters geo_point values in field that fall within the
polygon described by the list of points.

More info: Geo Polygon Query [https://www.elastic.co/guide/en/elasticsearch/reference/5.6/query-dsl-geo-polygon-query.html]

	Parameters:

	
	field – A field with Elasticsearch data type geo_point.

	points – A list of points that describe a polygon.
Elasticsearch supports a range of formats for list items.

	Returns:

	A filter dict.

	
corehq.apps.es.filters.geo_shape(field, shape, relation='intersects')

	Filters cases by case properties indexed using the geo_point
type.

More info: The Geoshape query reference [https://www.elastic.co/guide/en/elasticsearch/reference/8.10/query-dsl-geo-shape-query.html]

	Parameters:

	
	field – The field where geopoints are stored

	shape – A shape definition given in GeoJSON geometry format.
More info: The GeoJSON specification (RFC 7946) [https://datatracker.ietf.org/doc/html/rfc7946]

	relation – The relation between the shape and the case
property values.

	Returns:

	A filter definition

	
corehq.apps.es.filters.missing(field)

	Only return docs missing a value for field

	
corehq.apps.es.filters.nested(path, filter_)

	Query nested documents which normally can’t be queried directly

	
corehq.apps.es.filters.non_null(field)

	Only return docs with a real, non-null value for field

	
corehq.apps.es.filters.range_filter(field, gt=None, gte=None, lt=None, lte=None)

	Filter field by a range. Pass in some sensible combination of gt
(greater than), gte (greater than or equal to), lt, and lte.

	
corehq.apps.es.filters.term(field, value)

	Filter docs by a field
‘value’ can be a singleton or a list.

Available Queries

Queries are used for actual searching - things like relevancy scores,
Levenstein distance, and partial matches.

View the elasticsearch documentation to see what other options
are available, and put ‘em here if you end up using any of ‘em.

	
corehq.apps.es.queries.filtered(query, filter_)

	Filtered query for performing both filtering and querying at once

	
corehq.apps.es.queries.geo_distance(field, geopoint, **kwargs)

	Filters cases to those within a certain distance of the provided geopoint

eg: geo_distance(‘gps_location’, GeoPoint(-33.1, 151.8), kilometers=100)

	
corehq.apps.es.queries.match_all()

	No-op query used because a default must be specified

	
corehq.apps.es.queries.nested(path, query, *args, **kwargs)

	Creates a nested query for use with nested documents

Keyword arguments such as score_mode and others can be added.

	
corehq.apps.es.queries.nested_filter(path, filter_, *args, **kwargs)

	Creates a nested query for use with nested documents

Keyword arguments such as score_mode and others can be added.

	
corehq.apps.es.queries.search_string_query(search_string, default_fields)

	All input defaults to doing an infix search for each term.
(This may later change to some kind of fuzzy matching).

This is also available via the main ESQuery class.

Aggregate Queries

Aggregations are a replacement for Facets

Here is an example used to calculate how many new pregnancy cases each user has
opened in a certain date range.

res = (CaseES()
 .domain(self.domain)
 .case_type('pregnancy')
 .date_range('opened_on', gte=startdate, lte=enddate))
 .aggregation(TermsAggregation('by_user', 'opened_by')
 .size(0)

buckets = res.aggregations.by_user.buckets
buckets.user1.doc_count

There’s a bit of magic happening here - you can access the raw json data from
this aggregation via res.aggregation('by_user') if you’d prefer to skip it.

The res object has a aggregations property, which returns a namedtuple
pointing to the wrapped aggregation results. The name provided at instantiation is
used here (by_user in this example).

The wrapped aggregation_result object has a result property containing the
aggregation data, as well as utilties for parsing that data into something more
useful. For example, the TermsAggregation result also has a counts_by_bucket
method that returns a {bucket: count} dictionary, which is normally what you
want.

As of this writing, there’s not much else developed, but it’s pretty easy to
add support for other aggregation types and more results processing

	
class corehq.apps.es.aggregations.AggregationRange(start=None, end=None, key=None)

	Note that a range includes the “start” value and excludes the “end” value.
i.e. start <= X < end

	Parameters:

	
	start – range start

	end – range end

	key – optional key name for the range

	
class corehq.apps.es.aggregations.AggregationTerm(name, field)

	
	
field

	Alias for field number 1

	
name

	Alias for field number 0

	
class corehq.apps.es.aggregations.AvgAggregation(name, field)

	

	
class corehq.apps.es.aggregations.CardinalityAggregation(name, field)

	

	
class corehq.apps.es.aggregations.DateHistogram(name, datefield, interval, timezone=None)

	Aggregate by date range. This can answer questions like “how many forms
were created each day?”.

	Parameters:

	
	name – what do you want to call this aggregation

	datefield – the document’s date field to look at

	interval – the date interval to use - from DateHistogram.Interval

	timezone – do bucketing using this time zone instead of UTC

	
__init__(name, datefield, interval, timezone=None)

	

	
class corehq.apps.es.aggregations.ExtendedStatsAggregation(name, field, script=None)

	Extended stats aggregation that computes an extended stats aggregation by field

	
class corehq.apps.es.aggregations.FilterAggregation(name, filter)

	Bucket aggregation that creates a single bucket for the specified filter

	Parameters:

	
	name – aggregation name

	filter – filter body

	
__init__(name, filter)

	

	
class corehq.apps.es.aggregations.FiltersAggregation(name, filters=None)

	Bucket aggregation that creates a bucket for each filter specified using
the filter name.

	Parameters:

	name – aggregation name

	
__init__(name, filters=None)

	

	
add_filter(name, filter)

	
	Parameters:

	
	name – filter name

	filter – filter body

	
class corehq.apps.es.aggregations.GeoBoundsAggregation(name, field)

	A metric aggregation that computes the bounding box containing all
geo_point values for a field.

More info: Geo Bounds Aggregation [https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search-aggregations-metrics-geobounds-aggregation.html]

	
__init__(name, field)

	

	
class corehq.apps.es.aggregations.GeohashGridAggregation(name, field, precision)

	A multi-bucket aggregation that groups geo_point and
geo_shape values into buckets that represent a grid.

More info: Geohash grid aggregation [https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search-aggregations-bucket-geohashgrid-aggregation.html]

	
__init__(name, field, precision)

	Initialize a GeohashGridAggregation

	Parameters:

	
	name – The name of this aggregation

	field – The case property that stores a geopoint

	precision – A value between 1 and 12

High precision geohashes have a long string length and represent
cells that cover only a small area (similar to long-format ZIP
codes like “02139-4075”).

Low precision geohashes have a short string length and represent
cells that each cover a large area (similar to short-format ZIP
codes like “02139”).

	
class corehq.apps.es.aggregations.MaxAggregation(name, field)

	

	
class corehq.apps.es.aggregations.MinAggregation(name, field)

	Bucket aggregation that returns the minumum value of a field

	Parameters:

	
	name – aggregation name

	field – name of the field to min

	
class corehq.apps.es.aggregations.MissingAggregation(name, field)

	A field data based single bucket aggregation, that creates a bucket of all
documents in the current document set context that are missing a field value
(effectively, missing a field or having the configured NULL value set).

	Parameters:

	
	name – aggregation name

	field – name of the field to bucket on

	
__init__(name, field)

	

	
class corehq.apps.es.aggregations.NestedAggregation(name, path)

	A special single bucket aggregation that enables aggregating nested documents.

	Parameters:

	path – Path to nested document

	
__init__(name, path)

	

	
class corehq.apps.es.aggregations.NestedTermAggregationsHelper(base_query, terms)

	Helper to run nested term-based queries (equivalent to SQL group-by clauses).
This is not at all related to the ES ‘nested aggregation’. The final aggregation
is a count of documents.

Example usage:

counting all forms submitted in a domain grouped by app id and user id

NestedTermAggregationsHelper(
 base_query=FormES().domain(domain_name),
 terms=[
 AggregationTerm('app_id', 'app_id'),
 AggregationTerm('user_id', 'form.meta.userID'),
]
).get_data()

This works by bucketing docs first by one terms aggregation, then within
that bucket, bucketing further by the next term, and so on. This is then
flattened out to appear like a group-by-multiple.

	
__init__(base_query, terms)

	

	
class corehq.apps.es.aggregations.RangeAggregation(name, field, ranges=None, keyed=True)

	Bucket aggregation that creates one bucket for each range
:param name: the aggregation name
:param field: the field to perform the range aggregations on
:param ranges: list of AggregationRange objects
:param keyed: set to True to have the results returned by key instead of as
a list (see RangeResult.normalized_buckets)

	
__init__(name, field, ranges=None, keyed=True)

	

	
class corehq.apps.es.aggregations.StatsAggregation(name, field, script=None)

	Stats aggregation that computes a stats aggregation by field

	Parameters:

	
	name – aggregation name

	field – name of the field to collect stats on

	script – an optional field to allow you to script the computed field

	
__init__(name, field, script=None)

	

	
class corehq.apps.es.aggregations.SumAggregation(name, field)

	Bucket aggregation that sums a field

	Parameters:

	
	name – aggregation name

	field – name of the field to sum

	
__init__(name, field)

	

	
class corehq.apps.es.aggregations.TermsAggregation(name, field, size=None, missing=None)

	Bucket aggregation that aggregates by field

	Parameters:

	
	name – aggregation name

	field – name of the field to bucket on

	size –

	missing – define how documents that are missing a value should be treated.
By default, they will be ignored. If a value is supplied here it will be used where
the value is missing.

	
__init__(name, field, size=None, missing=None)

	

	
class corehq.apps.es.aggregations.TopHitsAggregation(name, field=None, is_ascending=True, size=1, include=None)

	A top_hits metric aggregator keeps track of the most relevant document being aggregated
This aggregator is intended to be used as a sub aggregator, so that the top matching
documents can be aggregated per bucket.

	Parameters:

	
	name – Aggregation name

	field – This is the field to sort the top hits by. If None, defaults to sorting
by score.

	is_ascending – Whether to sort the hits in ascending or descending order.

	size – The number of hits to include. Defaults to 1.

	include – An array of fields to include in the hit. Defaults to returning the whole document.

	
__init__(name, field=None, is_ascending=True, size=1, include=None)

	

	
class corehq.apps.es.aggregations.ValueCountAggregation(name, field)

	

AppES

	
class corehq.apps.es.apps.AppES(index=None, for_export=False)

	
	
property builtin_filters

	A list of callables that return filters. These will all be available as
instance methods, so you can do self.term(field, value) instead of
self.filter(filters.term(field, value))

	
index = 'apps'

	

	
class corehq.apps.es.apps.ElasticApp(index_name, type_)

	
	
canonical_name = 'apps'

	

	
property mapping

	

	
property model_cls

	

	
settings_key = 'hqapps'

	

	
corehq.apps.es.apps.app_id(app_id)

	

	
corehq.apps.es.apps.build_comment(comment)

	

	
corehq.apps.es.apps.cloudcare_enabled(cloudcare_enabled)

	

	
corehq.apps.es.apps.created_from_template(from_template=True)

	

	
corehq.apps.es.apps.is_build(build=True)

	

	
corehq.apps.es.apps.is_released(released=True)

	

	
corehq.apps.es.apps.uses_case_sharing(case_sharing=True)

	

	
corehq.apps.es.apps.version(version)

	

UserES

Here’s an example adapted from the case list report - it gets a list of the ids
of all unknown users, web users, and demo users on a domain.

from corehq.apps.es import users as user_es

user_filters = [
 user_es.unknown_users(),
 user_es.web_users(),
 user_es.demo_users(),
]

query = (user_es.UserES()
 .domain(self.domain)
 .OR(*user_filters)
 .show_inactive())

owner_ids = query.get_ids()

	
class corehq.apps.es.users.ElasticUser(index_name, type_)

	
	
canonical_name = 'users'

	

	
property mapping

	

	
property model_cls

	

	
settings_key = 'hqusers'

	

	
class corehq.apps.es.users.UserES(index=None, for_export=False)

	
	
property builtin_filters

	A list of callables that return filters. These will all be available as
instance methods, so you can do self.term(field, value) instead of
self.filter(filters.term(field, value))

	
default_filters = {'active': {'term': {'is_active': True}}, 'not_deleted': {'term': {'base_doc': 'couchuser'}}}

	

	
index = 'users'

	

	
show_inactive()

	Include inactive users, which would normally be filtered out.

	
show_only_inactive()

	

	
corehq.apps.es.users.admin_users()

	Return only AdminUsers. Admin users are mock users created from xform
submissions with unknown user ids whose username is “admin”.

	
corehq.apps.es.users.analytics_enabled(enabled=True)

	

	
corehq.apps.es.users.created(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.users.demo_users()

	Matches users whose username is demo_user

	
corehq.apps.es.users.domain(domain, allow_enterprise=False)

	

	
corehq.apps.es.users.domains(domains)

	

	
corehq.apps.es.users.is_active(active=True)

	

	
corehq.apps.es.users.is_practice_user(practice_mode=True)

	

	
corehq.apps.es.users.last_logged_in(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.users.location(location_id)

	

	
corehq.apps.es.users.missing_or_empty_user_data_property(property_name)

	A user_data property doesn’t exist, or does exist but has an empty string value.

	
corehq.apps.es.users.mobile_users()

	

	
corehq.apps.es.users.role_id(role_id)

	

	
corehq.apps.es.users.unknown_users()

	Return only UnknownUsers. Unknown users are mock users created from xform
submissions with unknown user ids.

	
corehq.apps.es.users.user_data(key, value)

	

	
corehq.apps.es.users.user_ids(user_ids)

	

	
corehq.apps.es.users.username(username)

	

	
corehq.apps.es.users.web_users()

	

CaseES

Here’s an example getting pregnancy cases that are either still open or were
closed after May 1st.

from corehq.apps.es import cases as case_es

q = (case_es.CaseES()
 .domain('testproject')
 .case_type('pregnancy')
 .OR(case_es.is_closed(False),
 case_es.closed_range(gte=datetime.date(2015, 05, 01))))

	
class corehq.apps.es.cases.CaseES(index=None, for_export=False)

	
	
property builtin_filters

	A list of callables that return filters. These will all be available as
instance methods, so you can do self.term(field, value) instead of
self.filter(filters.term(field, value))

	
index = 'cases'

	

	
class corehq.apps.es.cases.ElasticCase(index_name, type_)

	
	
canonical_name = 'cases'

	

	
property mapping

	

	
property model_cls

	

	
settings_key = 'hqcases'

	

	
corehq.apps.es.cases.active_in_range(gt=None, gte=None, lt=None, lte=None)

	Restricts cases returned to those with actions during the range

	
corehq.apps.es.cases.case_ids(case_ids)

	

	
corehq.apps.es.cases.case_name(name)

	

	
corehq.apps.es.cases.case_type(type_)

	

	
corehq.apps.es.cases.closed_range(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.cases.is_closed(closed=True)

	

	
corehq.apps.es.cases.modified_range(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.cases.open_case_aggregation(name='open_case', gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.cases.opened_by(user_id)

	

	
corehq.apps.es.cases.opened_range(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.cases.owner(owner_id)

	

	
corehq.apps.es.cases.owner_type(owner_type)

	

	
corehq.apps.es.cases.server_modified_range(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.cases.touched_total_aggregation(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.cases.user(user_id)

	

	
corehq.apps.es.cases.user_ids_handle_unknown(user_ids)

	

FormES

	
class corehq.apps.es.forms.ElasticForm(index_name, type_)

	
	
canonical_name = 'forms'

	

	
property mapping

	

	
property model_cls

	

	
settings_key = 'xforms'

	

	
class corehq.apps.es.forms.FormES(index=None, for_export=False)

	
	
property builtin_filters

	A list of callables that return filters. These will all be available as
instance methods, so you can do self.term(field, value) instead of
self.filter(filters.term(field, value))

	
default_filters = {'has_domain': {'exists': {'field': 'domain'}}, 'has_user': {'exists': {'field': 'form.meta.userID'}}, 'has_xmlns': {'exists': {'field': 'xmlns'}}, 'is_xform_instance': {'term': {'doc_type': 'xforminstance'}}}

	

	
domain_aggregation()

	

	
index = 'forms'

	

	
only_archived()

	Include only archived forms, which are normally excluded

	
user_aggregation()

	

	
corehq.apps.es.forms.app(app_ids)

	

	
corehq.apps.es.forms.completed(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.forms.form_ids(form_ids)

	

	
corehq.apps.es.forms.submitted(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.forms.updating_cases(case_ids)

	return only those forms that have case blocks that touch the cases listed in case_ids

	
corehq.apps.es.forms.user_id(user_ids)

	

	
corehq.apps.es.forms.user_ids_handle_unknown(user_ids)

	

	
corehq.apps.es.forms.user_type(user_types)

	

	
corehq.apps.es.forms.xmlns(xmlnss)

	

DomainES

from corehq.apps.es import DomainES

query = (DomainES()
 .in_domains(domains)
 .created(gte=datespan.startdate, lte=datespan.enddate)
 .size(0))

	
class corehq.apps.es.domains.DomainES(index=None, for_export=False)

	
	
property builtin_filters

	A list of callables that return filters. These will all be available as
instance methods, so you can do self.term(field, value) instead of
self.filter(filters.term(field, value))

	
default_filters = {'not_snapshot': {'bool': {'must_not': {'term': {'is_snapshot': True}}}}}

	

	
index = 'domains'

	

	
only_snapshots()

	Normally snapshots are excluded, instead, return only snapshots

	
class corehq.apps.es.domains.ElasticDomain(index_name, type_)

	
	
analysis = {'analyzer': {'comma': {'pattern': '\\s*,\\s*', 'type': 'pattern'}, 'default': {'filter': ['lowercase'], 'tokenizer': 'whitespace', 'type': 'custom'}}}

	

	
canonical_name = 'domains'

	

	
property mapping

	

	
property model_cls

	

	
settings_key = 'hqdomains'

	

	
corehq.apps.es.domains.created(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.domains.created_by_user(creating_user)

	

	
corehq.apps.es.domains.in_domains(domains)

	

	
corehq.apps.es.domains.incomplete_domains()

	

	
corehq.apps.es.domains.is_active(is_active=True)

	

	
corehq.apps.es.domains.is_active_project(is_active=True)

	

	
corehq.apps.es.domains.last_modified(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.domains.non_test_domains()

	

	
corehq.apps.es.domains.real_domains()

	

	
corehq.apps.es.domains.self_started()

	

SMSES

	
class corehq.apps.es.sms.ElasticSMS(index_name, type_)

	
	
canonical_name = 'sms'

	

	
property mapping

	

	
property model_cls

	

	
settings_key = 'smslogs'

	

	
class corehq.apps.es.sms.SMSES(index=None, for_export=False)

	
	
property builtin_filters

	A list of callables that return filters. These will all be available as
instance methods, so you can do self.term(field, value) instead of
self.filter(filters.term(field, value))

	
index = 'sms'

	

	
user_aggregation()

	

	
corehq.apps.es.sms.direction(direction_)

	

	
corehq.apps.es.sms.incoming_messages()

	

	
corehq.apps.es.sms.outgoing_messages()

	

	
corehq.apps.es.sms.processed(processed=True)

	

	
corehq.apps.es.sms.processed_or_incoming_messages()

	

	
corehq.apps.es.sms.received(gt=None, gte=None, lt=None, lte=None)

	

	
corehq.apps.es.sms.to_commcare_case()

	

	
corehq.apps.es.sms.to_commcare_user()

	

	
corehq.apps.es.sms.to_commcare_user_or_case()

	

	
corehq.apps.es.sms.to_couch_user()

	

	
corehq.apps.es.sms.to_web_user()

	

nav.xhtml

 Table of Contents

 		
 Welcome to CommCare HQ’s documentation!

 		
 CommCare HQ Platform Overview

 		
 Application Content Layer

 		
 Application Building and Deployment Management

 		
 Android Mobile App Runner and Web App Engine

 		
 Application Data Layer

 		
 Data Management

 		
 Transaction Processing

 		
 Synchronization

 		
 Tenant Management Layer

 		
 Project Spaces

 		
 User Management

 		
 Device and Worker Monitoring

 		
 Analytics and Usage

 		
 User Defined Reports

 		
 Mobile Reports

 		
 Messaging Layer

 		
 Conditional Scheduled Messages

 		
 Broadcast Messages

 		
 Gateway Connectivity and Configuration, Logging, and Audit Tracking

 		
 Messaging Dashboards

 		
 Integration

 		
 APIs

 		
 MOTECH Repeaters

 		
 CommCare Architecture Overview

 		
 CommCare Backend Services

 		
 Data flow for forms and cases

 		
 Synchronous processing

 		
 Asynchronous data pipeline

 		
 Change Processors (Pillows)

 		
 Task Queue

 		
 Data Storage Layer

 		
 PostgreSQL

 		
 CouchDB

 		
 Elasticsearch

 		
 Devops Automation

 		
 Fabric / Ansible

 		
 Other services

 		
 Nginx (proxy)

 		
 Redis

 		
 Apache Kafka

 		
 RabbitMQ

 		
 Gunicorn

 		
 CommCare Enhancement Proposal Process

 		
 Application terminology

 		
 Applications (and builds)

 		
 Modules

 		
 Forms

 		
 Exceptions

 		
 Features

 		
 Template apps

 		
 Onboarding apps

 		
 COVID app library

 		
 Bulk Application Translations

 		
 Multimedia

 		
 General multimedia handling

 		
 Multimedia in applications

 		
 The app’s multimedia_map

 		
 media_suite.xml

 		
 Adding a new CommCare Setting

 		
 CommCare Settings Config Spec

 		
 Required properties

 		
 Optional

 		
 Example

 		
 App Navigation Features

 		
 Display Only Forms

 		
 Select Parent First

 		
 End of Form Navigation and Form Linking

 		
 Child Modules

 		
 Menu structure

 		
 Session Variables

 		
 Shadow Modules

 		
 Scope

 		
 Limitations

 		
 Entries

 		
 Menu structure

 		
 Legacy Child Shadow Behaviour

 		
 The Suite

 		
 Overview

 		
 Sections

 		
 DetailContributor

 		
 EntriesContributor

 		
 FixtureContributor

 		
 MenuContributor

 		
 Resource Contributors

 		
 Post Processors

 		
 EndpointsHelper

 		
 InstancesHelper

 		
 How instances work

 		
 Instances in CommCare HQ

 		
 Custom instances

 		
 RemoteRequestsHelper

 		
 ResourceOverrideHelper

 		
 WorkflowHelper

 		
 Syncing local HQ instance with an Android Phone

 		
 No syncing or submitting, easy method

 		
 Make sure your local django application is accessible over the network

 		
 Make CommCare use this IP address

 		
 Try it out

 		
 Submitting and syncing from your local HQ instance (harder method)

 		
 Install nginx

 		
 Install the configuration file

 		
 Start nginx

 		
 Make sure your local django application is accessible over the network

 		
 Make Commcare use your local IP address

 		
 Rebuild and redeploy your application

 		
 Directly Modifying App Builds (CCZ files)

 		
 Adding CommCare Builds to CommCare HQ

 		
 Using a management command

 		
 In the web UI

 		
 Web Apps JavaScript

 		
 System Architecture

 		
 Is Web Apps Part of HQ? Yes and No.

 		
 Anatomy of a Web Apps Feature

 		
 Example: Registration from Case List

 		
 JavaScript Overview

 		
 JavaScript Vocabulary

 		
 Apps

 		
 Users

 		
 Menus

 		
 Sessions

 		
 JavaScript Directory Structure

 		
 form_entry

 		
 formplayer

 		
 Miscellany

 		
 JavaScript Architectural Concepts

 		
 Persistence

 		
 Application

 		
 Regions

 		
 Backbone.Radio and Events

 		
 Routing, URLs, and Middleware

 		
 Tests

 		
 Marionette Views

 		
 template and getTemplate

 		
 tagName, className, and attributes

 		
 initialize, templateContext, and onRender

 		
 ui, events, and modelEvents

 		
 childView, childViewContainer, and childViewOptions

 		
 Formplayer in HQ

 		
 What Is Formplayer?

 		
 Repository Overview

 		
 Relevant Architectural Decisions

 		
 Sandboxes

 		
 Request routing

 		
 Navigation

 		
 The CommCare Session

 		
 Screens

 		
 Selections

 		
 Case Search and Claim

 		
 Device Restore Optimization

 		
 Dealing with shards

 		
 Data Structure

 		
 Case Study: UATBC case structure

 		
 Algorithm to minimize queries while sharding on case ID

 		
 One query to rule them all.

 		
 Q & A

 		
 Locations

 		
 Location Permissions

 		
 Normal Access

 		
 Restricted Access and Whitelist

 		
 How data is associated with locations

 		
 Whitelist Implementation

 		
 Reporting

 		
 Recommended approaches for building reports

 		
 Example Custom Report Scaffolding

 		
 Hooking up reports to CommCare HQ

 		
 Reporting on data stored in SQL

 		
 Extending the SqlData class

 		
 Report API

 		
 ReportDataSource

 		
 Reporting: Maps in HQ

 		
 What is the “Maps Report”?

 		
 Orientation

 		
 Styling

 		
 Data Sources

 		
 report

 		
 legacyreport

 		
 case

 		
 csv and geojson

 		
 Display Configuration

 		
 Raw vs. Formatted Data

 		
 Exports

 		
 Change Feeds

 		
 What they are

 		
 Architecture

 		
 Topics

 		
 Document Stores

 		
 Publishing changes

 		
 From Couch

 		
 From SQL

 		
 From anywhere else

 		
 Subscribing to changes

 		
 Porting a new pillow

 		
 Mapping the above to CommCare-specific details

 		
 Topics

 		
 Contents of the feed

 		
 Pillows

 		
 Overview

 		
 What are pillows

 		
 Why do we need pillows

 		
 How do pillows receive changes

 		
 Why the name

 		
 Deconstructing a Pillow

 		
 Change Feed

 		
 Checkpoint

 		
 Processors

 		
 Change Event Handler

 		
 Error Handling

 		
 Errors

 		
 Retries

 		
 Monitoring

 		
 Troubleshooting

 		
 A pillow is falling behind

 		
 Problem with checkpoint for pillow name: First available topic offset for topic is num1 but needed num2

 		
 Pillows

 		
 get_case_pillow()

 		
 get_xform_pillow()

 		
 get_case_to_elasticsearch_pillow()

 		
 get_xform_to_elasticsearch_pillow()

 		
 get_user_pillow()

 		
 get_user_pillow_old()

 		
 get_location_pillow()

 		
 get_group_pillow()

 		
 get_group_pillow_old()

 		
 get_group_to_user_pillow()

 		
 get_ledger_to_elasticsearch_pillow()

 		
 get_domain_kafka_to_elasticsearch_pillow()

 		
 get_sql_sms_pillow()

 		
 get_kafka_ucr_pillow()

 		
 get_kafka_ucr_static_pillow()

 		
 get_user_sync_history_pillow()

 		
 get_app_to_elasticsearch_pillow()

 		
 get_form_submission_metadata_tracker_pillow()

 		
 get_unknown_users_pillow()

 		
 get_case_messaging_sync_pillow()

 		
 get_case_search_to_elasticsearch_pillow()

 		
 _get_cache_invalidation_pillow()

 		
 get_change_feed_pillow_for_db()

 		
 Processors

 		
 UnknownUsersProcessor

 		
 KafkaProcessor

 		
 GroupsToUsersProcessor

 		
 get_group_to_elasticsearch_processor()

 		
 LedgerProcessor

 		
 CacheInvalidateProcessor

 		
 UserSyncHistoryProcessor

 		
 FormSubmissionMetadataTrackerProcessor

 		
 ConfigurableReportPillowProcessor

 		
 ElasticProcessor

 		
 BulkElasticProcessor

 		
 get_case_search_processor()

 		
 CaseMessagingSyncProcessor

 		
 Monitoring Email Events with Amazon SES

 		
 User Configurable Reporting

 		
 Data Flow

 		
 Data Sources

 		
 Data Source Filtering

 		
 Indicators

 		
 Saving Multiple Rows per Case/Form

 		
 Data Cleaning and Validation

 		
 Report Configurations

 		
 Samples

 		
 Report Filters

 		
 Report Columns

 		
 Aggregation

 		
 Transforms

 		
 Charts

 		
 Sort Expression

 		
 Distinct On

 		
 Mobile UCR

 		
 Filters

 		
 Export

 		
 Export example

 		
 Practical Notes

 		
 Getting Started

 		
 Static data sources

 		
 Static configurable reports

 		
 Custom configurable reports

 		
 Extending User Configurable Reports

 		
 Scaling UCR

 		
 Inspecting database tables

 		
 UCR Examples

 		
 Data source filters

 		
 Filters on forms

 		
 Filter by a specific form type using the XMLNS

 		
 Filter by a set of form types using the XMLNS

 		
 Filters on cases

 		
 Filter by a specific case type

 		
 Filter by multiple case types

 		
 Filter by only open cases

 		
 Data source indicators

 		
 Count every contributing row (form or case)

 		
 Save a form property directly to a table

 		
 Submission date (received on)

 		
 User ID

 		
 A text or choice property

 		
 Related doc lookups

 		
 Get an owner name - whether it’s a user, group or location

 		
 Get a case property from a form that modifies the case

 		
 Get a custom user data property from a form submission

 		
 Getting the parent case ID from a case

 		
 Getting the location type from a location doc id

 		
 Getting a location’s parent ID

 		
 Base Item Expressions

 		
 Emit multiple rows (one per non-empty case property)

 		
 Emit multiple rows of complex data

 		
 Evaluator Examples

 		
 Age in years to age in months

 		
 weight_gain example

 		
 diff_seconds example

 		
 Date format

 		
 Getting forms submitted for a case

 		
 Getting forms submitted from specific forms for a case

 		
 Getting the related case from a case

 		
 Filter, Map, Reduce, Flatten and Sort expressions

 		
 Getting number of forms of a particular type

 		
 Getting latest form property

 		
 Report examples

 		
 Report filters

 		
 Date filter for submission date

 		
 Report columns

 		
 Creating a date column for months

 		
 Expanded columns

 		
 Charts

 		
 Impact 123 grouped by date

 		
 UCR FAQ

 		
 What is UCR?

 		
 Report Errors

 		
 Messaging in CommCare HQ

 		
 Messaging Definitions

 		
 General Messaging Terms

 		
 Messaging Terms Commonly Used in CommCare HQ

 		
 Contacts

 		
 Users

 		
 Cases

 		
 Future State

 		
 Outbound SMS

 		
 Inbound SMS

 		
 SMS Backends

 		
 Outbound

 		
 Inbound

 		
 Rate Limiting

 		
 Load Balancing

 		
 Backend Selection

 		
 Scheduled Messages

 		
 Definitions

 		
 Conditional Alerts / Case Update Rules

 		
 Lifecycle of a Rule

 		
 Queueing

 		
 Event Handlers

 		
 Keywords

 		
 API

 		
 Bulk User Resource

 		
 Supported Parameters:

 		
 CommCare FHIR Integration

 		
 Forwarding Cases to a FHIR API

 		
 Overview

 		
 Data design

 		
 App building

 		
 Mapping using the Data Dictionary

 		
 Mapping using the Admin interface

 		
 Testing

 		
 Importing cases from a remote FHIR service

 		
 Overview

 		
 Configuring a FHIRImportConfig

 		
 Mapping imported FHIR resource properties

 		
 Configuring related resources

 		
 Testing FHIRImportConfig configuration

 		
 The FHIR API

 		
 Using the FHIR API

 		
 Mapping case properties using the Data Dictionary

 		
 Advanced mapping using the Admin interface

 		
 The MOTECH OpenMRS & Bahmni Module

 		
 OpenmrsRepeater

 		
 OpenmrsRepeater

 		
 OpenMRS Repeater Location

 		
 OpenmrsConfig

 		
 OpenmrsConfig

 		
 An OpenMRS Patient

 		
 OpenmrsCaseConfig

 		
 PatientFinder

 		
 PatientFinder

 		
 Creating Missing Patients

 		
 WeightedPropertyPatientFinder

 		
 OpenmrsFormConfig

 		
 Provider

 		
 Atom Feed Integration

 		
 Adding cases for OpenMRS patients

 		
 Importing OpenMRS Encounters

 		
 How to Inspect an Observation or a Diagnosis

 		
 How Data Mapping Works

 		
 Different Sources of Values

 		
 Data Types

 		
 Import-Only and Export-Only Values

 		
 Getting Values From JSON Documents

 		
 The value_source Module

 		
 CaseOwnerAncestorLocationField

 		
 CaseProperty

 		
 CasePropertyConstantValue

 		
 ConstantValue

 		
 FormQuestion

 		
 FormUserAncestorLocationField

 		
 SubcaseValueSource

 		
 SupercaseValueSource

 		
 ValueSource

 		
 deserialize()

 		
 get_case_location()

 		
 get_form_question_values()

 		
 get_import_value()

 		
 get_value()

 		
 General Overview

 		
 What is SSO?

 		
 Types of Protocols

 		
 How Does SSO Work?

 		
 Architecture

 		
 IdentityProvider

 		
 AuthenticatedEmailDomain

 		
 UserExemptFromSingleSignOn

 		
 TrustedIdentityProvider

 		
 Local Setup

 		
 Pre-Requisites

 		
 Create a Project

 		
 Create an Enterprise Software Plan

 		
 Update the Billing Account for Initial Project

 		
 Add more projects to this subscription

 		
 Configure an Identity Provider

 		
 Adding a New Identity Provider Type

 		
 Before Beginning

 		
 What Protocol will be used?

 		
 Steps for Adding the IdP Type

 		
 1. Make model changes and add migrations

 		
 2. Test out the new provider type locally or on staging

 		
 3. Log in as an SSO user

 		
 4. Walk through workflows with our technical writer

 		
 5. Initiate QA

 		
 6. Determine whether a penetration test is required

 		
 7. Pilot test with the Enterprise Partner on Production

 		
 Internationalization

 		
 How translations work

 		
 Concrete Examples

 		
 Tagging strings in views

 		
 Using gettext_lazy

 		
 Tagging strings in template files

 		
 Tagging strings in JavaScript

 		
 Keeping translations up to date

 		
 UI Helpers

 		
 Paginated CRUD View

 		
 The Basic Paginated View

 		
 Allowing Creation in your Paginated View

 		
 Allowing Updating in your Paginated View

 		
 Allowing Deleting in your Paginated View

 		
 Refreshing The Whole List Base on Update

 		
 Using Class-Based Views in CommCare HQ

 		
 The Base Classes

 		
 A Basic (Centered) Page

 		
 A Section (Two-Column) Page

 		
 Adding to Urlpatterns

 		
 Hierarchy

 		
 Permissions

 		
 GETs and POSTs (and other http methods)

 		
 Limiting HTTP Methods

 		
 Forms in HQ

 		
 Making forms CSRF safe

 		
 Dimagi JavaScript Guide

 		
 Table of contents

 		
 Static Files Organization

 		
 Managing Dependencies

 		
 Historical Background on Module Patterns

 		
 RequireJS Migration Guide

 		
 Third-Party Libraries

 		
 External Packages

 		
 Integration Patterns

 		
 Security

 		
 Static Files

 		
 Inheritance

 		
 Code Review

 		
 Testing

 		
 Linting

 		
 Testing infrastructure

 		
 Nose plugins

 		
 Testing best practices

 		
 Test set up

 		
 Test tear down

 		
 Using SimpleTestCase

 		
 Squashing Migrations

 		
 Analyzing Test Coverage

 		
 Using coverage.py

 		
 Make an HTML view of the data

 		
 View the result in Vim

 		
 Mocha Tests

 		
 Adding a new app to test

 		
 Creating an alternative configuration for an app

 		
 Writing tests by using ES fakes

 		
 How to set up your test to use ES fakes

 		
 How to set up a new ES fake

 		
 Profiling

 		
 Practical guide to profiling a slow view or function

 		
 Finding the slow function

 		
 Getting profile output on stderr

 		
 Getting a profile dump

 		
 Profiling in production

 		
 Creating a more useful output from the dump file

 		
 Reading the output of the analysis file

 		
 Aggregating data from multiple runs

 		
 Additional references

 		
 Memory profiling

 		
 Caching and Memoization

 		
 Memoized

 		
 Quickcache

 		
 The Differences

 		
 Lifecycle

 		
 Scope

 		
 Decorating various things

 		
 Identifying cached values

 		
 What can be cached

 		
 Invalidation

 		
 Other ways of caching

 		
 Plugins

 		
 CommTrack

 		
 What happens during a CommTrack submission?

 		
 Submitting a stock report via CommCare

 		
 Elasticsearch

 		
 Overview

 		
 Indexes

 		
 Keeping indexes up-to-date

 		
 Changing a mapping or adding data

 		
 How to un-bork your broken indexes

 		
 Querying Elasticsearch - Best Practices

 		
 Elasticsearch App

 		
 Elasticsearch Index Management

 		
 Adapter Design

 		
 Elastic Client Adapters

 		
 Tombstone

 		
 Code Documentation

 		
 Querying Elasticsearch

 		
 ESQuery

 		
 Available Filters

 		
 Available Queries

 		
 Aggregate Queries

 		
 AppES

 		
 UserES

 		
 CaseES

 		
 FormES

 		
 DomainES

 		
 SMSES

 		
 Middleware

 		
 What is middleware?

 		
 TimeoutMiddleware

 		
 Using the shared NFS drive

 		
 Using apache / nginx to handle downloads

 		
 Saving uploads to the NFS drive

 		
 How to use and reference forms and cases programatically

 		
 Model acessors

 		
 Unit Tests

 		
 Cleaning up

 		
 Playing nice with Cloudant/CouchDB

 		
 Celery

 		
 How to use celery

 		
 Best practices

 		
 Queues

 		
 Soil

 		
 Option 1

 		
 Option 2

 		
 Testing

 		
 Other references

 		
 Configuring SQL Databases in CommCare

 		
 Auditcare Data

 		
 Synclog Data

 		
 UCR Data

 		
 Sharded Form and Case data

 		
 Rules for shards

 		
 Sending read queries to standby databases

 		
 Using standbys with the plproxy cluster

 		
 Metrics

 		
 CommCare Infrastructure Metrics

 		
 General Host

 		
 Gunicorn

 		
 Nginx

 		
 PostgreSQL

 		
 Elasticsearch

 		
 CouchDB

 		
 Kafka

 		
 Zookeeper

 		
 Celery

 		
 RabbitMQ

 		
 CommCare Extensions

 		
 Where to put custom code

 		
 Extensions Points

 		
 Create an extension point

 		
 Registering an extension point implementation

 		
 Calling an extension point

 		
 List Extension Points

 		
 Custom Modules

 		
 COVID: Available Actions

 		
 close_cases_assigned_to_checkin()

 		
 set_all_activity_complete_date_to_today()

 		
 COVID: Available Criteria

 		
 associated_usercase_closed()

 		
 Migrations in Practice

 		
 Background

 		
 Definitions

 		
 General Principles

 		
 Practical Considerations

 		
 Example Migration: User Logging

 		
 Common types of migrations

 		
 Simple

 		
 Multiple deploys

 		
 Single Deploy

 		
 Best practices for data migrations in Python

 		
 Auto-Managed Migration Pattern

 		
 Pattern Components

 		
 Django Migration Code Example

 		
 Real-life example

 		
 Migrating Database Definitions

 		
 General

 		
 Adding Data

 		
 Postgres

 		
 ElasticSearch

 		
 CouchDB

 		
 Removing Data

 		
 General

 		
 Couch

 		
 ElasticSearch

 		
 Querying Data

 		
 Postgres

 		
 Couch

 		
 Migration Patterns and Best Practices

 		
 Migrating models from couch to postgres

 		
 Conceptual Steps

 		
 Practical Steps

 		
 PR 1: Add SQL model and migration management command, write to SQL

 		
 PR 2: Verify migration and read from SQL

 		
 PR 3: Cleanup

 		
 Current State of Migration

 		
 1. Record architecture decisions

 		
 Status

 		
 Context

 		
 Decision

 		
 Consequences

 		
 2. Keep static UCR configurations in memory

 		
 Status

 		
 Context

 		
 Decision

 		
 Consequences

 		
 3. Remove warehouse database

 		
 Status

 		
 Context

 		
 Decision

 		
 Consequences

 		
 Documenting

 		
 Index

 		
 Sphinx

 		
 Read the Docs

 		
 Troubleshooting

 		
 Writing Documentation

 		
 reStructuredText

 		
 Editors

 		
 Examples

_images/data_dictionary.png
client

FHIR Resource Type

Case Property
8 NoGroup
1 address
1 area_urban_rural

Patient 1
@ import from Excel

Data Type

Case Property Group.

setctcatatyoe |

Description

FHIR Resource Property Path

$.address{0] text

$.address{o] district

Show Deprecated Properties.

Deprecate Property.

Deprecate Property.

_images/data_pipeline_sync.png
Form submission data flow

Mobile Device

O—) Login

User interacts with
lapplication to capture
data (forms) and
create / update
records (cases)

Mark form as.

land optionaly|

processed
temove from

device

Submitforms o server

] Authenicateand authorze
= Receive forms and

a

b

e

_images/data_forwarding.png
Forwarding Settings

Connection Settings*

FHIR version*

Enable patient registration

Enable patient search

local hapi thir

Ada/Edit Connections Settings

Ra

Register new patients on the remote FHIR service?

Search the remote FHIR service for matching patients?

_images/data_pipeline_async.png
£
g

Asynchronous data pipeli

©

O

i Postgres Object Elasic | | Posiares
g Poses | |coenon| || soge s | |rmt
8 4T
H H H ‘Save data to secondary databases
E | (Erwner
T + vy]
2
Read change Fechdaa hianstom and
f [s S e e &
H
2
]

©

_images/django_db_sharded_standbys.png
READ | WRITE READ

Postgres
standby
Pipraxy Plproxy
A ‘standby”
(query routing) (query routing)
Postgres

standby

_images/formplayer_repo_overview.png

_images/django_db_monolith.png
Postgres
primary

i replication

Postgres
standby

_images/django_db_sharded.png
Plproxy
i (query
Dlenge . routing) I

_images/uatbc-case-structure.png
extension +——

test 1| lab_referral child +------

occurrence episode
referral adherence
trail drtb-hiv-referral

auto_closing_stub

commcare-case-claim

_images/web_apps_case_search_false.png
1. search request

web apps
(browser)

webworker
(django)

2. search results

_images/functional_architecture.png
