

 Navigation

 	
 index

 	collections stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/collections/checkouts/stable/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/collections/checkouts/stable/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	collections stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		collections stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment.png

querying_trees.html

 Navigation

 		
 index

 		collections stable documentation »

Querying Trees

Sometimes, in addition to flat collections, we need to query trees. Trees pose a challenge because we need to flatten them into collections in order to apply filter() and map() operations on them. In this section we’ll define a concatAll() function that we can combine with map() and filter() to query trees.

$data = [
 [
 "name" => "New Releases",
 "videos" => [
 [
 "id" => 70111470,
 "title" => "Die Hard",
 "boxart" => "http://cdn-0.nflximg.com/images/2891/DieHard.jpg",
 "uri" => "http://api.netflix.com/catalog/titles/movies/70111470",
 "rating" => 4.0,
 "bookmark" => []
],
 [
 "id" => 654356453,
 "title" => "Bad Boys",
 "boxart" => "http://cdn-0.nflximg.com/images/2891/BadBoys.jpg",
 "uri" => "http://api.netflix.com/catalog/titles/movies/70111470",
 "rating" => 5.0,
 "bookmark" => [[id:432534, time:65876586]]
]
]
],
 [
 "name" => "Dramas",
 "videos" => [
 [
 "id" => 65432445,
 "title" => "The Chamber",
 "boxart" => "http://cdn-0.nflximg.com/images/2891/TheChamber.jpg",
 "uri" => "http://api.netflix.com/catalog/titles/movies/70111470",
 "rating" => 4.0,
 "bookmark" => []
],
 [
 "id" => 675465,
 "title" => "Fracture",
 "boxart" => "http://cdn-0.nflximg.com/images/2891/Fracture.jpg",
 "uri" => "http://api.netflix.com/catalog/titles/movies/70111470",
 "rating" => 5.0,
 "bookmark" => [["id" => 432534, "time" => 65876586]]
]
]
]
];
$movieLists = new Map($data);

$flattenVideos = $movieLists->map(function($movieList) {
 return $movieList["videos"]->map(function($video) {
 return $video["id"];
 });
})->concatAll();

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/plus.png

iterables.html

 Navigation

 		
 index

 		collections stable documentation »

Iterating

Throughout the examples we’re going to use this dataset

use Collection\Map;

$data = [
 [
 "id" => 70111470,
 "title" => "Die Hard",
 "boxart" => "http://cdn-0.nflximg.com/images/2891/DieHard.jpg",
 "uri" => "http://api.netflix.com/catalog/titles/movies/70111470",
 "rating" => [4.0],
 "bookmark" => []
],
 [
 "id" => 654356453,
 "title" => "Bad Boys",
 "boxart" => "http://cdn-0.nflximg.com/images/2891/BadBoys.jpg",
 "uri" => "http://api.netflix.com/catalog/titles/movies/70111470",
 "rating" => [5.0],
 "bookmark" => [{ "id" => 432534, "time" => 65876586 }]
],
 [
 "id" => 65432445,
 "title" => "The Chamber",
 "boxart" => "http://cdn-0.nflximg.com/images/2891/TheChamber.jpg",
 "uri" => "http://api.netflix.com/catalog/titles/movies/70111470",
 "rating" => [4.0],
 "bookmark" => []
]
];
$videos = new Map($data);

Projecting Collections

Applying a function to a value and creating a new value is called a projection. To project one iterable into another, we apply a projection function to each item in the collection and collect the results in a new collection.

Each

$videoAndTitlePairs = new Map();

$videos->each(function ($video) {
 $videoAndTitlePairs->addAll(["id" => $video["id"], "title" => $video["title"]]);
});

Map

To make projections easier, lets add a map() function to the game. Map accepts the projection function to be applied to each item in the source collection, and returns the projected collection.

Lets use map to project a collection of videos into a collection of [id, title]:

$new = $videos->map(function ($video) {
 return [
 "id" => $video["id"],
 "title" => $video["title"]
];
});

The map() method will create a new iterator which lazily creates the resulting items when iterated.

Filter

Like projection, filtering a collection is also a common operation. To filter a collection we apply a test to each item in the iterable and collect the items that pass into a new iterable.

Lets filter and map to collect the ids of videos that have a rating of 5.0

use Collection\Map;

$topRatedVideos = $videos->filter(function ($video) {
 return $video["rating"] === 5.0;
})->map(function ($video) {
 return $video["rating"] ;
});

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

quickstart.html

 Navigation

 		
 index

 		collections stable documentation »

Quickstart

This page provides a quick introduction to Collections and introductory examples.

If you have not already installed, Collections, head over to the installation page.

Vector

The Vector represents the List in .NET language or non-associative arrays in php:

use Collections\Vector;

$person1 = new \stdClass();
$person1->name = 'John';
$person1->age = 25;

$person2 = new \stdClass();
$person2->name = 'Maria';
$person2->age = 30;

$person3 = new \stdClass();
$person3->name = 'Anderson';
$person3->age = 15;

$collection = new Collections\Vector();
$collection->add($person1);
$collection->add($person2);
$collection->add($person3);

$collection->filter(function($person){
 return $person->age > 18;
})->each(function($item){
 echo $item->name; //John and Maria
});

Lets continue with the example above and count how many elements we have!

echo $collection->count();

Great, now we know how to run through a collection and how to count it, but these are pretty simple things to do,
so lets sort them:

use Collections\Vector;
use Collections\Comparer\StringComparer;

$collection->sort(); //by default the sort is by the keys
$collection->sort(new StringComparer()); //this will sort by alfabetic order
$collection->sort(new YourCustomComparer()); //you can create your own custom comparer to sort your collection

Yeah that is great, isn’t it? But we can do much more things, now lets search for someone in the collection.

print_r($collection->contains("John")); //returns true

Ok, now that we’ve learned the basic concepts about collections, I’ll show you other type of collection called Map.

Map

The Map class is something like associative arrays in PHP, or Hash tables in other languages.

use Collections\Map;

$dictionary = new Map();
$dictionary->add('person1', array(
 'name' => 'John',
 'age' => 20
));
$dictionary->add('person2', array(
 'name' => 'Maria',
 'age' => 19
));
$dictionary->add('person3', array(
 'name' => 'Anderson',
 'age' => 25
));

$dictionary->each(function($item){
 echo $key . ": " . $item['name'] . "-" . $item['age'];
});

We can use object as keys too.

use Collections\Map;

$dictionary = new Map();

$object = new \stdClass();
$dictionary->add($object, 'value');
echo $dictionary->get($object); //prints 'value'

When one key is added we can’t insert the same key again, if we want to change its value we need to use the method set(). Here is an example of how we can get some item based on the key;

 print_r ($dictionary->get('person1')); //returns ['name' => John, 'age' => 20]

Working with objects

To our last example we’ll use objects in our collection.

use Collections\Vector;

$collection = new Vector();
$collection->add(new Person('John', 20));
$collection->add(new Person('Peter', 20));
$collection->add(new Person('Sophie', 21));
$collection->add(new Person('Angela', 29));
$collection->add(new Person('Maria', 19));
$collection->add(new Person('Anderson', 25));

$collection->each(function($item){
 echo $item->getName();
});

Pretty simple, but the reason I wanted to show you objects is because of Reactive Extension API. Lets seek everyone with age 20.

// this will return John and Peter
$people = $people->filter(function($person){
 return $person->getAge() === 20;
});

The map() method will create a new collection based on the output of the callback being applied to each object in the original collection:

$new = $people->map(function ($person, $key) {
 return $person->getAge() * 2;
});

// $result contains all persons with twice theirs ages;
$result = $new->toArray();

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

instalation.html

 Navigation

 		
 index

 		collections stable documentation »

Instalation

The recommended way to install Collections is with Composer [http://getcomposer.org]. Composer is a dependency management tool for PHP that allows you to declare the dependencies your project needs and installs them into your project.

composer require easyframework/collections

You can find out more on how to install Composer, configure autoloading, and other best-practices for defining dependencies at getcomposer.org [http://getcomposer.org].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

