
collate Documentation
Release 0.2.1

DSaPP Researchers

Jul 24, 2017

Contents

1 collate 3
1.1 Overview . 3
1.2 Inputs . 3
1.3 Outputs . 4
1.4 Usage Examples . 5
1.5 Technical details . 5

2 Installation 7
2.1 Stable release . 7
2.2 From sources . 7

3 Usage 9

4 Contributing 11
4.1 Types of Contributions . 11
4.2 Get Started! . 12
4.3 Pull Request Guidelines . 13
4.4 Tips . 13

5 Indices and tables 15

i

ii

collate Documentation, Release 0.2.1

Contents:

Contents 1

collate Documentation, Release 0.2.1

2 Contents

CHAPTER 1

collate

Aggregated feature generation made easy.

• Free software for noncommercial use: UChicago open source license.

• Documentation: https://collate.readthedocs.io.

Overview

Collate allows you to easily specify and execute statements like “find the number of restaurants in a given zip code that
have had food safety violations within the past year.” The real power is that it allows you to vary both the spatial and
temporal windows, choosing not just zip code and one year, but a range over multiple partitions and times. Specifying
features is also easier and more efficient than writing raw sql. Collate will automatically generate and execute all the
required SQL scripts to aggregate the data across many groups in an efficient manner. We mainly use the results as
features in machine learning models.

Inputs

Take for example food inspections data from the City of Chicago. The table looks like this:

inspection_id license_no zip inspection_date results violations ...
1966765 80273 60636 2016-10-18 No Entry ...
1966314 2092894 60640 2016-10-11 Pass . . . CORRECTED.
1966286 2215628 60661 2016-10-11 Pass w/ C. HAZARDOUS.
1966220 2424039 60620 2016-10-07 Pass ...

There are two spatial levels in the data: the specific restaurant (by its license number) and the zip code. And there is a
date.

An example of an aggregate feature is the number of failed inspections. In raw SQL this could be calculated, for each
restaurant, as so:

3

https://github.com/dssg/collate/blob/master/LICENSE
https://collate.readthedocs.io
https://data.cityofchicago.org/Health-Human-Services/Food-Inspections/4ijn-s7e5

collate Documentation, Release 0.2.1

SELECT license_no, sum((results = 'Fail')::int) as failed_sum
FROM food_inspections GROUP BY license_no;

In collate, this aggregated column would be defined as:

Aggregate({"failed": "(results = 'Fail')::int"}, "sum")

Note that the SQL query is split into two parts: the first argument to Aggregate is the computation to be performed
and gives it a name (as a dictionary key), and the second argument is the reduction function to perform. Splitting
the SQL like this makes it easy to generate lots of composable features as the outer product of these two lists. For
example, you may also be interested in the proportion of inspections that resulted in a failure in addition to the total
number. This is easy to specify with the average value of the failed computation:

Aggregate({"failed": "(results = 'Fail')::int"}, ["sum","avg"])

Aggregations in collate easily aggregate this single feature across different spatiotemporal groups, e.g.:

Aggregate({"failed": "(results = 'Fail')::int"}, ["sum","avg"])
st = SpacetimeAggregation([fail],

from_obj='food_inspections',
groups=['license_no','zip'],
intervals={"license_no":["2 year", "3 year"], "zip": ["1

→˓year"]},
dates=["2016-01-01", "2015-01-01"],
date_column="inspection_date",
schema='test_collate')

The SpacetimeAggregation object encapsulates the FROM section of the query (in this case it’s simply the
inspections table), as well as the GROUP BY columns. Not only will this create information about the individual
restaurants (grouping by license_no), it also creates “neighborhood” columns that add information about the
region in which the restaurant is operating (by grouping by zip).

Even more powerful is the sophisticated date range partitioning that the SpacetimeAggregation object provides.
It will create multiple queries in order to create the summary statistics over the past 1, 2, or 3 years, looking back from
either Jan 1, 2015 or Jan 1 2016. Executing this set of queries with:

st.execute(engine.connect()) # with a SQLAlchemy engine object

will create three new tables in the test_collate schema. The table food_inspections_license_no will
contain four feature columns for each license that describe the total number and proportion of failures over the
past two or three years, with a date column that states whether it was looking before 2016 or 2015. Similarly, a
food_inspections_zip table will have two feature columns for every zip code in the database, looking at the
total and average number of failures in that neighborhood over the year prior to the date in the date column. Finally, the
food_inspections_aggregate table joins these results together to make it easier to look at both neighborhood
and restaurant-level effects for any given restaurant.

Outputs

The main output of a collate aggregation is a database table with all of the aggregated features joined to a list of
entities.

TODO: sample rows from the above aggregation.

4 Chapter 1. collate

collate Documentation, Release 0.2.1

Usage Examples

Multiple quantities

TODO

Multiple functions

TODO

Tuple quantity

TODO

Date substitution

TODO

Categorical counts

TODO

Naming of features

TODO

More complicated from_obj

TODO

Technical details

1.4. Usage Examples 5

collate Documentation, Release 0.2.1

6 Chapter 1. collate

CHAPTER 2

Installation

Stable release

To install collate, run this command in your terminal:

$ pip install collate

This is the preferred method to install collate, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

From sources

The sources for collate can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/dssg/collate

Or download the tarball:

$ curl -OL https://github.com/dssg/collate/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

7

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/dssg/collate
https://github.com/dssg/collate/tarball/master

collate Documentation, Release 0.2.1

8 Chapter 2. Installation

CHAPTER 3

Usage

To use collate in a project:

import collate

9

collate Documentation, Release 0.2.1

10 Chapter 3. Usage

CHAPTER 4

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/dssg/collate/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

11

https://github.com/dssg/collate/issues

collate Documentation, Release 0.2.1

Write Documentation

collate could always use more documentation, whether as part of the official collate docs, in docstrings, or even on the
web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/dssg/collate/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up collate for local development.

1. Fork the collate repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/collate.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv collate
$ cd collate/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 collate tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

12 Chapter 4. Contributing

https://github.com/dssg/collate/issues

collate Documentation, Release 0.2.1

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check https://travis-ci.org/
dssg/collate/pull_requests and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_collate

4.3. Pull Request Guidelines 13

https://travis-ci.org/dssg/collate/pull_requests
https://travis-ci.org/dssg/collate/pull_requests

collate Documentation, Release 0.2.1

14 Chapter 4. Contributing

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

15

	collate
	Overview
	Inputs
	Outputs
	Usage Examples
	Technical details

	Installation
	Stable release
	From sources

	Usage
	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

	Indices and tables

