
ColanderAlchemy Documentation
Release 0.3.3.dev1

Stefano Fontanelli

April 23, 2015

Contents

1 Quick start 3

2 Usage 5

3 How it works 7

4 Contents 9
4.1 Examples . 9
4.2 Examples: using ColanderAlchemy with Deform . 11
4.3 Customization . 12
4.4 ColanderAlchemy API . 15

5 Indices and tables 19

Python Module Index 21

i

ii

ColanderAlchemy Documentation, Release 0.3.3.dev1

ColanderAlchemy helps you to automatically generate Colander schemas based on SQLAlchemy mapped classes.

Contents 1

http://docs.pylonsproject.org/projects/colander/
http://www.sqlalchemy.org/

ColanderAlchemy Documentation, Release 0.3.3.dev1

2 Contents

CHAPTER 1

Quick start

In order to get started with ColanderAlchemy, you can either use colanderalchemy.setup_schema()
to automatically create and attach a schema to a mapped class for you, or else you can use
colanderalchemy.SQLAlchemySchemaNode to have more control over the auto-generated schema.

The easiest way to get going is to set up an SQLAlchemy event listener. There are two ways in which to have schemas
automatically generated for your models.

1. For individual SQLAlchemy models, configure the colanderalchemy.setup_schema() method to lis-
ten for the mapper_configured event for your model class:

from sqlalchemy import event
from colanderalchemy import setup_schema
MyModel is your SQLAlchemy model class
event.listen(MyModel, ’mapper_configured’, setup_schema)

This is simplest and most efficient option if you know specifically which models require Colander schemas
attached.

2. To automatically create schemas for all mapped models, configure the
colanderalchemy.setup_schema() method to listen for the mapper_configured event for
sqlalchemy.orm.mapper:

from sqlalchemy import event
from sqlalchemy.orm import mapper
from colanderalchemy import setup_schema
event.listen(mapper, ’mapper_configured’, setup_schema)

Consider which Colander schemas you use directly because setup_schema will attach schemas to all models
automatically. This may result in extra overhead from generating Colander schemas that you do not use.

In both cases, this will create a Colander schema from the given SQLAlchemy model, and attach it to the given class
as the attribute __colanderalchemy__. This event fires when the mapper for the given class is fully configured.

Note: Keep in mind that you should configure the event listener as soon as possible in your application, especially
if you’re using declarative definitions. Adding the above code immediately after your SQLAlchemy model class
definition is advised.

By associating ColanderAlchemy configuration with your mapped class, its columns, and its relationships, you
can tell ColanderAlchemy how to generate each and every part of your mapped schema - including things like
titles, descriptions, preparers, validators, widgets, and more. See Configuring within SQLAlchemy models for more
information on how to customise this process.

3

http://docs.sqlalchemy.org/en/latest/orm/extensions/declarative/

ColanderAlchemy Documentation, Release 0.3.3.dev1

4 Chapter 1. Quick start

CHAPTER 2

Usage

Beyond the event listener methodology above, you can use colanderalchemy.setup_schema() manually.
Simply pass it a SQLAlchemy mapped class like so:

from sqlalchemy import Column, Integer, String, Text
from sqlalchemy.ext.declarative import declarative_base
from colanderalchemy import setup_schema

Base = declarative_base()

class SomeClass(Base):
__tablename__ = ’some_table’
id = Column(Integer, primary_key=True)
name = Column(String(50))
biography = Column(Text())

setup_schema(None, SomeClass)
SomeClass.__colanderalchemy__ # A Colander schema for you to use

If you already have a mapped class available, you can just pass it as is - you don’t need to redefine another schema.

Also, if you’d like even more control over your generated schema, then use
colanderalchemy.SQLAlchemySchemaNode directly like so:

from colanderalchemy import SQLAlchemySchemaNode
from my.project import SomeClass

schema = SQLAlchemySchemaNode(SomeClass,
includes=[’name’, ’biography’],
excludes=[’id’],
title=’Some class’)

Or include custom field:

import deform
import colander
from colanderalchemy import SQLAlchemySchemaNode
from my.project import SomeClass

typ = colander.String()
widget = deform.widget.SelectWidget(values=((’foo’, ’a’),

(’bar’, ’b’),
(’baz’, ’c’)))

column = colander.SchemaNode(typ,
name=’customfield’,

5

ColanderAlchemy Documentation, Release 0.3.3.dev1

widget=widget)
schema = SQLAlchemySchemaNode(SomeClass,

includes=[’name’, column, ’biography’],
excludes=[’id’],
title=’Some class’)

Note the various arguments you can pass when creating your mapped schema - you have full control
over how the schema is generated and what fields are included, which are excluded, and more. See the
colanderalchemy.SQLAlchemySchemaNode API documentation for more information. For more informa-
tion you should read the section Examples to see how use ColanderAlchemy.

In either situation, you can now pass the resulting Colander schema to anything that needs it. For instance, this
works well with Deform and you can read more about this later in this documentation: Examples: using Colander-
Alchemy with Deform.

6 Chapter 2. Usage

CHAPTER 3

How it works

ColanderAlchemy auto-generates Colander schemas following these rules:

1. The type of the schema is colander.MappingSchema,

2. The schema has a colander.SchemaNode for each sqlalchemy.Column in the mapped object:

• The type of colander.SchemaNode is based on the type of sqlalchemy.Column

• The colander.SchemaNode has a validator if the sqlalchemy.Column is an instance of
either sqlalchemy.types.Enum or sqlalchemy.types.String. Enum is checked with
colander.OneOf and String is checked with colander.Length

• Customization stored in the __colanderalchemy_config__ attribute of the SQLAlchemy type are
applied.

• colander.SchemaNode has missing=colander.required except for the when default is
set, nullable=True, there’s a server_default, or the field is an auto incrementing integer used as
part of a primary key. Essentially it’s required unless SQLAlchemy can derive a value for you automati-
cally if it’s missing.

• colander.SchemaNode has default=colander.null unless there is a column default which
is a static scalar value. Callable function defaults and server defaults are ignored for the purposes of
generating a colander schema default value.

• Customisations to the resulting colander.SchemaNode are applied, if defined as part of the info
structure on the sqlalchemy.Column.

3. The schema has a colander.SchemaNode for each relationship (sqlalchemy.orm.relationship
or those from sqlalchemy.orm.backref) in the mapped object:

• The colander.SchemaNode has missing=None

• The type of colander.SchemaNode is:

– A colander.Mapping for ManyToOne and OneToOne relationships

– A colander.Sequence of colander.Mapping for ManyToMany and One-
ToMany relationships

– Customisations to the resulting colander.SchemaNode are applied, if defined as part
of the info structure on the sqlalchemy.orm.relationship.

For both kind of relationships, the colander.Mapping is built recursively by applying this same
set of rules to the mapped class referenced by the relationship.

4. Customisations to the resulting Colander schema are applied using configuration stored in the
__colanderalchemy_config__ attribute on the class definition.

7

ColanderAlchemy Documentation, Release 0.3.3.dev1

Read the section Customization to see how change these rules and how to customize the Colander schema returned by
ColanderAlchemy.

8 Chapter 3. How it works

CHAPTER 4

Contents

4.1 Examples

4.1.1 Less boilerplate

The best way to illustrate the benefit of using ColanderAlchemy is to show a comparison between the code required
to represent SQLAlchemy model as a Colander schema.

Suppose you have these SQLAlchemy mapped classes:

from sqlalchemy import Column, Enum, ForeignKey, Integer, Unicode
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class Phone(Base):
__tablename__ = ’phones’

person_id = Column(Integer, ForeignKey(’persons.id’),
primary_key=True)

number = Column(Unicode(128), primary_key=True)
location = Column(Enum(’home’, ’work’))

class Friend(Base):
__tablename__ = ’friends’

person_id = Column(Integer, ForeignKey(’persons.id’),
primary_key=True)

friend_of = Column(Integer, ForeignKey(’persons.id’),
primary_key=True)

rank = Column(Integer, default=0)

class Person(Base):
__tablename__ = ’persons’

id = Column(Integer, primary_key=True)
name = Column(Unicode(128), nullable=False)
surname = Column(Unicode(128), nullable=False)
gender = Column(Enum(’M’, ’F’))
age = Column(Integer)

9

ColanderAlchemy Documentation, Release 0.3.3.dev1

phones = relationship(Phone)
friends = relationship(Friend, foreign_keys=[Friend.person_id])

The code you need to create the Colander schema for Person would be:

import colander

class Friend(colander.MappingSchema):
person_id = colander.SchemaNode(colander.Int())
friend_of = colander.SchemaNode(colander.Int())
rank = colander.SchemaNode(colander.Int(),

missing=0,
default=0)

class Phone(colander.MappingSchema):
person_id = colander.SchemaNode(colander.Int())
number = colander.SchemaNode(

colander.String(),
validator=colander.Length(0, 128)

)
location = colander.SchemaNode(

colander.String(),
validator=colander.OneOf([’home’, ’work’]),
missing=colander.null

)

class Friends(colander.SequenceSchema):
friends = Friend(missing=[])

class Phones(colander.SequenceSchema):
phones = Phone(missing=[])

class Person(colander.MappingSchema):
id = colander.SchemaNode(

colander.Int(),
missing=colander.drop

)
name = colander.SchemaNode(

colander.String(),
validator=colander.Length(0, 128)

)
surname = colander.SchemaNode(

colander.String(),
validator=colander.Length(0, 128)

)
gender = colander.SchemaNode(

colander.String(),
validator=colander.OneOf([’M’, ’F’]),
missing=colander.null

)
age = colander.SchemaNode(

colander.Int(),
missing=colander.null

)
phones = Phones(missing=[])
friends = Friends(missing=[])

10 Chapter 4. Contents

ColanderAlchemy Documentation, Release 0.3.3.dev1

person = Person()

By contrast, all you need to obtain the same Colander schema for the Person mapped class using ColanderAlchemy
is simply:

from colanderalchemy import setup_schema

setup_schema(None, Person)
schema = Person.__colanderalchemy__

Or alternatively, you may do this:

from colanderalchemy import SQLAlchemySchemaNode

schema = SQLAlchemySchemaNode(Person)

As you can see, it’s a lot simpler.

4.2 Examples: using ColanderAlchemy with Deform

When using ColanderAlchemy, the resulting Colander schema will reflect the configuration on the mapped class, as
shown in the code below:

from colanderalchemy import SQLAlchemySchemaNode

from sqlalchemy import Enum, ForeignKey, Integer, Unicode
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Phone(Base):
__tablename__ = ’phones’

person_id = Column(Integer, ForeignKey(’persons.id’),
primary_key=True)

number = Column(Unicode(128), primary_key=True)
location = Column(Enum(’home’, ’work’))

class Person(Base):
__tablename__ = ’persons’

id = Column(Integer, primary_key=True)
name = Column(Unicode(128), nullable=False)
surname = Column(Unicode(128), nullable=False)
phones = relationship(Phone)

schema = SQLAlchemySchemaNode(Person)

The resulting schema from the code above is the same as what would be produced by constructing the following
Colander schema by hand:

import colander

class Phone(colander.MappingSchema):
person_id = colander.SchemaNode(colander.Int())

4.2. Examples: using ColanderAlchemy with Deform 11

ColanderAlchemy Documentation, Release 0.3.3.dev1

number = colander.SchemaNode(
colander.String(),
validator=colander.Length(0, 128)

)
location = colander.SchemaNode(

colander.String(),
validator=colander.OneOf([’home’, ’work’]),
missing=colander.null

)

class Phones(colander.SequenceSchema):
phones = Phone(missing=[])

class Person(colander.MappingSchema):
id = colander.SchemaNode(colander.Int(),

missing=colander.drop)
name = colander.SchemaNode(

colander.String(),
validator=colander.Length(0, 128)

)
surname = colander.SchemaNode(

colander.String(),
validator=colander.Length(0, 128)

)
phones = Phones(missing=[])

schema = Person()

Note the various configuration aspects like field length and the like will automatically be mapped. This means that
getting a Deform form to use ColanderAlchemy is as simple as using any other Colander schema:

from colanderalchemy import SQLAlchemySchemaNode
from deform import Form

Using Colander requires manually constructing the schema
person = Person()

Using ColanderAlchemy is easy!
person = SQLAlchemySchemaNode(Person)

form = Form(person, buttons=(’submit’,))

Keep in mind that if you want additional control over the resulting Colander schema and nodes produced (such as con-
trolling a node’s title, description, widget or more), you are able to provide appropriate keyword arguments
declaratively within the SQLAlchemy model as part of the respective info argument to a sqlalchemy.Column
or sqlalchemy.orm.relationship() declaration. For more information, see Customization.

4.3 Customization

4.3.1 Changing auto-generation rules

The default Colander schema generated using colanderalchemy.SQLAlchemySchemaNode
follows certain rules seen in How it works. You can change the default behaviour of
colanderalchemy.SQLAlchemySchemaNode by specifying the keyword arguments includes,
excludes, and overrides.

12 Chapter 4. Contents

ColanderAlchemy Documentation, Release 0.3.3.dev1

Refer to the API for colanderalchemy.SQLAlchemySchemaNode and the tests to understand how they work.

This class also accepts all keyword arguments that could normally be passed to a basic colander.SchemaNode,
such as title, description, preparer, and more. Read more about basic Colander customisation at
http://docs.pylonsproject.org/projects/colander/en/latest/basics.html.

If the available customisation isn’t sufficient, then you can subclass the following
colanderalchemy.SQLAlchemySchemaNode methods when you need more control:

• SQLAlchemySchemaNode.get_schema_from_column(), which returns a
colander.SchemaNode given a sqlachemy.schema.Column

• SQLAlchemySchemaNode.get_schema_from_relationship(), which returns a
colander.SchemaNode given a sqlalchemy.orm.relationship().

4.3.2 Configuring within SQLAlchemy models

One of the most useful aspects of ColanderAlchemy is the ability to customize the schema being built by including
hints directly in your SQLAlchemy models. This means you can define just one SQLAlchemy model and have it
translate to a fully-customised Colander schema, and do so purely using declarative code. Alternatively, since the
resulting schema is just a colander.SchemaNode, you can configure it imperatively too, if you prefer.

Colander options can be specified declaratively in SQLAlchemy models using the info argument that you can pass
to either sqlalchemy.Column or sqlalchemy.orm.relationship(). info accepts any and all options
that colander.SchemaNode objects do and should be specified like so:

name = Column(
’name’,
info={

’colanderalchemy’: {
’title’: ’Your name’,
’description’: ’Test’,
’missing’: ’Anonymous’,
... add your own!

}
}

)

and you can add any number of other options into the dict structure as described above. So, anything you want passed
to the resulting mapped colander.SchemaNode should be added here. This also includes arbitrary attributes like
widget, which, whilst not part of Colander by default, is useful for a library like Deform.

Note that for a relationship, these configured attributes will only apply to the outer mapped
colander.SchemaNode; this outer node being a colander.Sequence or colander.Mapping, de-
pending on whether the SQLAlchemy relationship is x-to-many or x-to-one, respectively.

To customise the inner mapped class, use the special attribute __colanderalchemy_config__ on the class itself
and define this as a dict-like structure of options that will be passed to colander.SchemaNode, like so:

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

def address_validator(node, value):
Validate address node
pass

class Address(Base):
__colanderalchemy_config__ = {’title’: ’An address’,

4.3. Customization 13

https://github.com/stefanofontanelli/ColanderAlchemy/tree/master/tests
http://docs.pylonsproject.org/projects/colander/en/latest/basics.html

ColanderAlchemy Documentation, Release 0.3.3.dev1

’description’: ’Enter an address.’,
’validator’: address_validator,
’unknown’: ’preserve’}

Other SQLAlchemy columns are defined here

Note that, in contrast to the other options in __colanderalchemy_config__, the unknown option is not di-
rectly passed to colander.SchemaNode. Instead, it is passed to the colander.Mapping object, which itself
is passed to colander.SchemaNode.

It is also possible to customize the column type, this is done in the same manner as above, using the
__colanderalchemy_config__ attribute, like so:

from sqlalchemy import types

def email_validator(node, value):
Validate an e-mail address
pass

class Email(types.TypeDecorator):

impl = types.String

__colanderalchemy_config__ = {’validator’: email_validator}

It should be noted that the default and missing colander options can not be set in a SQLAlchemy type.

4.3.3 Worked example

A full worked example could be like this:

from sqlalchemy import Integer
from sqlalchemy import Unicode
from sqlalchemy.ext.declarative import declarative_base

import colander

Base = declarative_base()

class Person(Base):
__tablename__ = ’person’
Fully customised schema node
id = Column(sqlalchemy.Integer,

primary_key=True,
info={’colanderalchemy’: {

’typ’: colander.Float(),
’title’: ’Person ID’,
’description’: ’The Person identifier.’,
’widget’: ’Empty Widget’

}})
Explicitly set as a default field
name = Column(sqlalchemy.Unicode(128),

nullable=False,
info={’colanderalchemy’: {

’default’: colander.required
}})

Explicitly excluded from resulting schema
surname = Column(sqlalchemy.Unicode(128),

14 Chapter 4. Contents

ColanderAlchemy Documentation, Release 0.3.3.dev1

nullable=False,
info={’colanderalchemy’: {’exclude’: True}})

4.3.4 Customizable Keyword Arguments

sqlalchemy.Column and sqlalchemy.orm.relationship() can be configured with an info argument
that ColanderAlchemy will use to customise resulting colander.SchemaNode objects for each attribute. The
special (magic) key for attributes is colanderalchemy, so a Column definition should look like how it was
mentioned above in Configuring within SQLAlchemy models.

This means you can customise options like:

• typ

• children

• default

• missing

• preparer

• validator

• after_bind

• title

• description

• widget

Keep in mind the above list isn’t exhaustive and you should refer to the complete list of constructor arguments in the
Colander API documentation for SchemaNode.

So, as an example, the value of title will be passed as the keyword argument title when instantiating the
colander.SchemaNode. For more information about what each of the options can do, see the Colander doc-
umentation.

In addition, you can specify the following custom options to control what ColanderAlchemy itself does:

• exclude - Boolean value for whether to exclude a given attribute. Extremely useful for keeping a Column or
relationship out of a schema. For instance, an internal field that shouldn’t be made available on a Deform
form.

• children - An iterable (such as a list or tuple) of child nodes that should be used explicitly rather than
mapping the current SQLAlchemy aspect.

• name - Identifier for the resulting mapped Colander node.

• typ - An explicitly-configured Colander node type.

4.4 ColanderAlchemy API

class colanderalchemy.SQLAlchemySchemaNode(class_, includes=None, excludes=None, over-
rides=None, unknown=’ignore’, **kw)

Build a Colander Schema based on the SQLAlchemy mapped class.

4.4. ColanderAlchemy API 15

http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.SchemaNode
http://docs.pylonsproject.org/projects/colander/
http://docs.pylonsproject.org/projects/colander/

ColanderAlchemy Documentation, Release 0.3.3.dev1

__init__(class_, includes=None, excludes=None, overrides=None, unknown=’ignore’, **kw)
Initialise the given mapped schema according to options provided.

Arguments/Keywords

class_ An SQLAlchemy mapped class that you want a Colander schema to be generated for.

To declaratively customise Colander SchemaNode options, add a
__colanderalchemy_config__ attribute to your initial class declaration like so:

class MyModel(Base):
__colanderalchemy_config__ = {’title’: ’Custom title’,

’description’: ’Sample’}
...

includes Iterable of attributes to include from the resulting schema. Using this option will ensure only the
explicitly mentioned attributes are included and all others are excluded.

includes can be included in the __colanderalchemy_config__ dict on a class to declara-
tively customise the resulting schema. Explicitly passing this option as an argument takes precedence
over the declarative configuration.

Incompatible with excludes. Default: None.

excludes Iterable of attributes to exclude from the resulting schema. Using this option will ensure only
the explicitly mentioned attributes are excluded and all others are included.

excludes can be included in the __colanderalchemy_config__ dict on a class to declara-
tively customise the resulting schema. Explicitly passing this option as an argument takes precedence
over the declarative configuration.

Incompatible with includes. Default: None.

overrides

A dict-like structure that consists of schema attributes to override imperatively. Values pro-
vides as part of overrides will take precendence over all others.

overrides can be included in the __colanderalchemy_config__ dict on a class to declara-
tively customise the resulting schema. Explicitly passing this option as an argument takes precedence
over the declarative configuration.

Default: None.

unknown Represents the unknown argument passed to colander.Mapping.

The unknown argument passed to colander.Mapping, which defaults to ’ignore’, can be set
by adding an unknown key to the __colanderalchemy_config__ dict. For example:

class MyModel(Base):
__colanderalchemy_config__ = {’title’: ’Custom title’,

’description’: ’Sample’,
’unknown’: ’preserve’}

...

In contrast to the other options in __colanderalchemy_config__, the unknown option is not
directly passed to colander.SchemaNode. Instead, it is passed to the colander.Mapping
object, which itself is passed to colander.SchemaNode.

From Colander:

unknown controls the behavior of this type when an unknown key is encountered in the cstruct passed
to the deserialize method of this instance.

16 Chapter 4. Contents

ColanderAlchemy Documentation, Release 0.3.3.dev1

Default: ‘ignore’

**kw Represents all other options able to be passed to a colander.SchemaNode. Keywords passed
will influence the resulting mapped schema accordingly (for instance, passing title=’My Model’
means the returned schema will have its title attribute set accordingly.

See http://docs.pylonsproject.org/projects/colander/en/latest/basics.html for more information.

dictify(obj)
Return a dictified version of obj using schema information.

The schema will be used to choose what attributes will be included in the returned dict.

Thus, the return value of this function is suitable for consumption as a Deform appstruct and can be
used to pre-populate forms in this specific use case.

Arguments/Keywords

obj An object instance to be converted to a dict structure. This object should conform to the given
schema. For example, obj should be an instance of this schema’s mapped class, an instance of a
sub-class, or something that has the same attributes.

objectify(dict_, context=None)
Return an object representing dict_ using schema information.

The schema will be used to choose how the data in the structure will be restored into SQLAlchemy model
objects. The incoming dict_ structure corresponds with one that may be created from the dictify()
method on the same schema. Relationships and backrefs will be restored in accordance with their specific
configurations.

The return value of this function will be suitable for adding into an SQLAlchemy session to be committed
to a database.

Arguments/Keywords

dict_ An dictionary or similar data structure to be converted to a an SQLAlchemy object. This data
structure should conform to the given schema. For example, dict_ should be an appstruct (such as
that returned from a Deform form submission), result of a call to this schema’s dictify() method,
or a matching structure with relevant keys and nesting, if applicable.

context Optional keyword argument that, if supplied, becomes the base object, with attributes and objects
being applied to it.

Specify a context in the situation where you already have an object that exists already, such as
when you have a pre-existing instance of an SQLAlchemy model. If your model is already bound to
a session, then this facilitates directly updating the database – just pass in your dict or appstruct, and
your existing SQLAlchemy instance as context and this method will update all of its attributes.

This is a perfect fit for something like a CRUD environment.

Default: None. Defaults to instantiating a new instance of the mapped class associated with this
schema.

get_schema_from_column(prop, overrides)
Build and return a colander.SchemaNode for a given Column.

This method uses information stored in the column within the info that was passed to the Column on
creation. This means that Colander options can be specified declaratively in SQLAlchemy models
using the info argument that you can pass to sqlalchemy.Column.

Arguments/Keywords

prop A given sqlalchemy.orm.properties.ColumnProperty instance that represents the
column being mapped.

4.4. ColanderAlchemy API 17

http://docs.pylonsproject.org/projects/colander/en/latest/basics.html

ColanderAlchemy Documentation, Release 0.3.3.dev1

overrides A dict-like structure that consists of schema attributes to override imperatively. Values provides
as part of overrides will take precendence over all others.

get_schema_from_relationship(prop, overrides)
Build and return a colander.SchemaNode for a relationship.

The mapping process will translate one-to-many and many-to-many relationships from SQLAlchemy into
a Sequence of Mapping nodes in Colander, and translate one-to-one and many-to-one relationships into
a Mapping node in Colander. The related class involved in the relationship will be recursively mapped
by ColanderAlchemy as part of this process, following the same mapping process.

This method uses information stored in the relationship within the info that was passed to the relationship
on creation. This means that Colander options can be specified declaratively in SQLAlchemy models
using the info argument that you can pass to sqlalchemy.orm.relationship().

For all relationships, the settings will only be applied to the outer Sequence or Mapping. To customise the
inner schema node, create the attribute __colanderalchemy_config__ on the related model with a
dict-like structure corresponding to the Colander options that should be customised.

Arguments/Keywords

prop A given sqlalchemy.orm.properties.RelationshipProperty instance that repre-
sents the relationship being mapped.

overrides A dict-like structure that consists of schema attributes to override imperatively. Values provides
as part of overrides will take precendence over all others. Example keys include children,
includes, excludes, overrides.

colanderalchemy.setup_schema(mapper, class_)
Build a Colander schema for class_ and attach it to that class.

This method is designed to be attached to the mapper_configured event from SQLAlchemy.

See http://docs.sqlalchemy.org/en/latest/orm/events.html#sqlalchemy.orm.events.MapperEvents.mapper_configured
for more information about event handling.

Arguments/Keywords

mapper The mapper associated with the given class_. This is typically passed automatically via the
SQLAlchemy event handler.

May be specified as None if this method is being called manually.

class_ The SQLAlchemy mapped class. This class may have attributes, related mapped classes (via
SQLAlchemy relationships) and the like.

18 Chapter 4. Contents

http://docs.sqlalchemy.org/en/latest/orm/events.html#sqlalchemy.orm.events.MapperEvents.mapper_configured

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

• ColanderAlchemy API

19

ColanderAlchemy Documentation, Release 0.3.3.dev1

20 Chapter 5. Indices and tables

Python Module Index

c
colanderalchemy, 15

21

ColanderAlchemy Documentation, Release 0.3.3.dev1

22 Python Module Index

Index

Symbols
__init__() (colanderalchemy.SQLAlchemySchemaNode

method), 15

C
colanderalchemy (module), 15

D
dictify() (colanderalchemy.SQLAlchemySchemaNode

method), 17

G
get_schema_from_column() (colander-

alchemy.SQLAlchemySchemaNode method),
17

get_schema_from_relationship() (colander-
alchemy.SQLAlchemySchemaNode method),
18

O
objectify() (colanderalchemy.SQLAlchemySchemaNode

method), 17

S
setup_schema() (in module colanderalchemy), 18
SQLAlchemySchemaNode (class in colanderalchemy),

15

23

	Quick start
	Usage
	How it works
	Contents
	Examples
	Examples: using ColanderAlchemy with Deform
	Customization
	ColanderAlchemy API

	Indices and tables
	Python Module Index

