

Welcome to Codon Harmony’s documentation!

Contents:

	Codon Harmony
	Features

	Future work

	Installation
	Stable release

	From sources

	Usage
	Named Arguments

	Executing Codon Harmony as a script

	Using Codon Harmony in a project

	codon_harmony
	codon_harmony package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.9.2 (2019-02-06)

	0.9.4 (2019-02-20)

	0.9.5 (2019-02-25)

	0.9.6 (2019-02-28)

	1.0.0 (2019-03-06)

Indices and tables

	Index

	Module Index

	Search Page

Codon Harmony

[image: _images/codon_harmony.svg]
 [https://pypi.python.org/pypi/codon_harmony][image: MIT License]
 [https://opensource.org/licenses/MIT][image: _images/codon_harmony1.svg]
 [https://travis-ci.org/weitzner/codon_harmony][image: Documentation status]
 [https://codon-harmony.readthedocs.io/en/latest/?badge=latest][image: Coverage report]
 [https://codecov.io/gh/weitzner/codon_harmony][image: Updates]
 [https://pyup.io/repos/github/weitzner/codon_harmony/][image: Code style: black]
 [https://github.com/ambv/black]Amino acid reverse translation and DNA optimization tool based on species-specific codon-use distributions.
Species-specifc data can be found on the Codon Usage Database [http://www.kazusa.or.jp/codon] using the NCBI Taxonomy database [http://www.ncbi.nlm.nih.gov/taxonomy] id (e.g. 413997) or the organism’s Latin name (e.g. Escherichia coli B). Mapping species names to Taxonomy IDs can be done here [https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi].

	Documentation: https://codon-harmony.readthedocs.io

Features

	Reverse translates input amino acid sequence to DNA.

	Calculates the host’s per-AA codon usage profile – codons used less than a specified threshold (defaults to 10%) are dropped.

	Compares the reverse-translated DNA sequence to the host profile, determines which codons are overused/underused.

	Stochastically mutates codons according to host profile.

	Ranks sequences by codon adaptation index relative to host

	Processes DNA to remove unwanted features:

	high GC content within a sliding window and across the entire sequence

	unwanted restriction sites

	alternate start positions (GA-rich regions 18 bp upstream of ATG/GTG/TTG)

	3-consecutive identical codons and 9-mer repeat chunks

	areas with more than 4 (variable) consecutive identical bps (“local homopolymers”)

	RNA hairpins, detected by looking for 10-mers with reverse complements (including wobble bases) in the sequence

	RNA splice sites, detected by similarity to consensus donor and acceptor site sequences

The process is repeated from step 3 for a specified number of cycles (defaults to 1000) OR until the per-AA codon profile of current DNA and host profile matches (within tolerance).

Future work

	More advanced RNA-structure removal

	CONTRAfold [http://contra.stanford.edu/contrafold/] – overkill for now

	nupack [http://nupack.org] – overkill for now

Installation

Stable release

To install Codon Harmony, run this command in your terminal:

$ pip install codon_harmony

This is the preferred method to install Codon Harmony, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Codon Harmony can be downloaded from the Github repo [https://github.com/weitzner/codon_harmony].

You can either clone the public repository:

$ git clone git://github.com/weitzner/codon_harmony

Or download the tarball [https://github.com/weitzner/codon_harmony/tarball/master]:

$ curl -OL https://github.com/weitzner/codon_harmony/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

Reverse translate your amino acid sequence harmoniously with a host’s condon usage.

usage: codon_harmony [-h] --input INPUT --output OUTPUT [--host HOST]
 [--host-threshold HOST_THRESHOLD]
 [--local-host-profile LOCAL_HOST_PROFILE]
 [--verbose {0,1,2,3}]
 [--local-homopolymer-threshold LOCAL_HOMOPOLYMER_THRESHOLD]
 [--cycles CYCLES] [--inner-cycles INNER_CYCLES]
 [--max-relax MAX_RELAX]
 [--restriction-enzymes [RESTRICTION_ENZYMES [RESTRICTION_ENZYMES ...]]]
 [--remove-splice-sites | --no-remove-splice-sites]
 [--remove-start-sites | --no-remove-start-sites]

Named Arguments

	--input

	input file with sequence

	--output

	output file to write DNA sequence(s)

	--host

	host table code: http://www.kazusa.or.jp/codon/, default is “Escherichia coli B”

Default: “413997”

	--host-threshold

	lowest codon fraction per AA in the host that is allowed

Default: 0.10

	--local-host-profile

	path to host codon usage table as JSON file

	--verbose

	Possible choices: 0, 1, 2, 3

verbose output level (0=only result, 1=standard output, 2=extra output 3=debugging)

Default: 0

	--local-homopolymer-threshold

	number of consecutive NT repeats allowed

Default: 4

	--cycles

	number of independent codon samples to run. 0 means 1 pass

Default: 10

	--inner-cycles

	number of times to iteratively optimize each independent codon sample. 0 means 1 pass

Default: 10

	--max-relax

	maximum percent deviation from host profile

Default: 0.1

	--restriction-enzymes

	list of restriction enzyme sites to remove (e.g. –restriction_enzymes NdeI XhoI HpaI).

Default: [‘NdeI’, ‘XhoI’, ‘HpaI’, ‘PstI’, ‘EcoRV’, ‘NcoI’, ‘BamHI’]

	--remove-splice-sites

	Remove splice sites. Use for mammalian hosts.

Default: True

	--no-remove-splice-sites

	Do not remove splice sites.

Default: True

	--remove-start-sites

	Remove alternate start sites. Use for bacterial hosts.

Default: True

	--no-remove-start-sites

	Do not remove alternate start sites.

Default: True

v1.0.0 (contact bweitzner@lyellbio.com if you encounter errors)

Executing Codon Harmony as a script

python codon_harmony/codon_harmony.py –input misc/INPUT_LIST.fasta –output out.fasta

To get started, create a conda environment from the environment.yml file:

conda env create -f environment.yml

contents of misc/INPUT_LIST.fasta:

>test_sequence1|can be optimized with `max_relax` set to 0.1
HHHHHHHHHH
>test_sequence2|cannot be optimized with `max_relax` set to 0.1
ACDEFGHIKLMNPQRSTVWY
>test_sequence3|can be optimized with `max_relax` set to 0.1, has extreme GC content
FFFFFFFFFFFF

Using Codon Harmony in a project

import codon_harmony
codon_harmony.runner()

The runner function will handle parsing all command line arguments.

codon_harmony

	codon_harmony package
	Subpackages
	codon_harmony.data module

	codon_harmony.util package
	codon_harmony.util.codon_use module

	codon_harmony.util.seq module

	codon_harmony.util.seq_opt module

	Module contents

codon_harmony package

Subpackages

	codon_harmony.data module

	codon_harmony.util package
	codon_harmony.util.codon_use module

	codon_harmony.util.seq module

	codon_harmony.util.seq_opt module

Module contents

	
codon_harmony.codon_harmony.get_parser()

	

	
codon_harmony.codon_harmony.main(argv=None)

	Read in a fasta-formatted file containing amino acid sequences and
reverse translate each of them in accordance with a specified host’s
codon usage frequency. The DNA sequence is then processed to remove
unwanted features.

codon_harmony.data module

	
class codon_harmony.data.GCParams

	High and low values for GC-content within a specified window size.

	
name

	Name of the parameter set.

	Type

	str

	
window_size

	Number of nucleotides over which the GC content
will be calculated.

	Type

	int

	
low

	The minimum fraction of GC in the window.

	Type

	float

	
high

	The maximum fraction of GC in the window.

	Type

	float

	
codon_harmony.data.RestrictionEnzymes(restriction_enzymes)

	Create a RestrictionBatch instance to search for sites for a supplied
list of restriction enzymes.

	Parameters

	restriction_enzymes (list[str], optional) – List of restriction
enzymes to consider. Defaults to [“NdeI”, “XhoI”, “HpaI”, “PstI”,
“EcoRV”, “NcoI”, “BamHI”].

	Returns

	RestrictionBatch instance
configured with the input restriction enzymes.

	Return type

	Bio.Restriction.Restriction.RestrictionBatch

	
codon_harmony.data.codon_tables(taxid, table_path=None)

	Download the codon use table for the given species and return it as
a dictionary.

	Returns

	The NCBI taxonomy ID for the supplied species.

	Return type

	int

	Parameters

	
	taxid (int) – NCBI taxonomy ID for the desrired species.

	table_path (str) – Defaults to None. Path to a JSON-formatted file representing the
codon usage to consider. If None, the table is fetched from the internet.

	Raises

	
	ValueError – If the NCBI taxonomy ID is not associated with a codon

	usage table, raise a ValueError informing the user and directing

	them to the NCBI Taxonomy Browser.

	Returns

	A dictionary with codons as keys and the frequency
that the codon is used to encode its amino acid as values.

	Return type

	dict{str, float}

codon_harmony.util package

codon_harmony.util.codon_use module

	
codon_harmony.util.codon_use.calc_codon_relative_adaptiveness(codons_count)

	Calculate the relative adaptiveness of each synonymous codon from an
input dictionary of counts.

Note

The claculation and some nomenclature is taken from Sharp and
Li (Nucleic Acids Res. 1987 Feb 11;15(3):1281-95).

	Parameters

	codons_count (dict{str, int}) – A dictionary with codons as keys
and the corresponding number of occurences as values.

	Returns

	A CodonAdaptationIndex
instance configured to calculate CAI for a target gene.

	Return type

	Bio.SeqUtils.CodonUsage.CodonAdaptationIndex

	
codon_harmony.util.codon_use.calc_profile(codons_count)

	Calculate the frequency of usage of each synonymous codon from an
input dictionary of counts.

	Parameters

	codons_count (dict{str, int}) – A dictionary with codons as keys
and the corresponding number of occurences as values.

	Returns

	A dictionary with codons as keys and the
corresponding frequency of occurences as values.

	Return type

	dict{str, int}

	
codon_harmony.util.codon_use.count_codons(dna_sequence)

	Count the number of times each codon appears in a DNA sequence.

	Parameters

	dna_sequence (Bio.Seq.Seq) – A read-only representation of
the DNA sequence.

	Returns

	A dictionary with codons as keys and the
corresponding number of occurences as values.

	Return type

	dict{str, int}

	
codon_harmony.util.codon_use.host_codon_usage(host, threshold=0.1, table_path=None)

	Load and process the per amino acid codon usage for the desired host in
accordance with the supplied threshold and configure a CodonAdaptationIndex
instance to calculate CAI for a target gene.

Note

The relative adaptiveness used in the CodonAdaptationIndex is based
on the filtered codon use frequencies, not the raw counts.

	Parameters

	
	host (str) – Latin name or NCBI taxonomy ID of the host organism.

	threshold (float, optional) – Lowest fraction of codon usage to keep.
Defaults to 0.10.

	Returns

	A dictionary with each amino acid three-letter code as keys, and a
list of two lists as values. The first list is the synonymous codons
that encode the amino acid, the second is the frequency with which
each synonymous codon is used.

A dictionary with codons as keys and the corresponding frequency of
occurences as values.

A CodonAdaptationIndex instance configured to calculate CAI for a
target gene.

	Return type

	dict{str, list[list, list]}, dict{str, int}, Bio.SeqUtils.CodonUsage.CodonAdaptationIndex

	
codon_harmony.util.codon_use.process_host_table(host, threshold, table_path)

	Load the codon usage table for the desired host, filter codons with
a lower occurence than the threshold, and renormalize the frequency of
usage of each synonymous codon.

	Parameters

	
	host (str) – Latin name or NCBI taxonomy ID of the host organism.

	threshold (float) – Lowest fraction of codon usage to keep.

	Returns

	A dictionary with codons as keys and the
corresponding frequency of occurences as values.

	Return type

	dict{str, int}

codon_harmony.util.seq module

	
codon_harmony.util.seq.back_translate(self)

	Return the DNA sequence from an amino acid sequence by creating a new Seq object.
The first codon in the synonymous codons list is always chosen for each amino acid;
codon optimization is required after back translation.

>>> from Bio.Seq import Seq
>>> from Bio.Alphabet import IUPAC
>>> my_protein = Seq("MAIVMGR", IUPAC.protein)
>>> my_protein
Seq('MAIVMGR', IUPACProtein())
>>> my_protein.back_translate()
Seq('ATGGCCATTGTAATGGGCCGCTG', IUPACUnambiguousDNA())

Trying to back-transcribe a DNA or RNA sequence raises an
exception:

>>> messenger_rna = Seq("AUGGCCAUUGUAAUGGGCCGCUG", IUPAC.unambiguous_rna)
>>> messenger_rna.back_translate()
Traceback (most recent call last):
...
ValueError: Nucleic acids cannot be back translated!

codon_harmony.util.seq_opt module

	
codon_harmony.util.seq_opt.compare_profiles(codons_count, host_profile, relax)

	Compute the deviation from the expected codon usage based on a host
codon usage profile.

Note

The relax parameter uniformly increases the host codon usage that
is used to estimate the number of times each codon should appear in
the sequence. These values are rounded and then iteratively adjusted
to be consistent with the length of the sequence of interest.
Increasing this parameter further distorts the codon use distribution
from the host.

	Parameters

	
	codons_count (dict{str, int}) – A dictionary with each codon as
keys and the number of times it appears in a gene as values.

	host_profile (dict{str, foat}) – A dictionary with each codon as keys
and the frequency of its use in the host organism as values.

	relax (float) – The maximum deviation from the host profile to tolerate.

	Returns

	A dictionary with each codon as keys,
and dictionaries of the difference between the observed and expected
codon usage.

The number of mutations per residue that are needed to make
the sequence match the host codon usage.

	Return type

	dict{str, dict{str, int}}, float

	
codon_harmony.util.seq_opt.gc_scan(dna_sequence, codon_use_table, gc)

	Scan across a sequence and replace codons to acheive a desired GC
content within the window.

Note

The following fields of the GCParams type are used in this
function:

	window_size (int) – Size of sliding window (in nucelotides) to
examine for GC content. Window sizes can also be expressed as
factors of the length of dna_sequence by passing a string
that begins with “x” (e.g. “x0.5”).

	low (float) – Minimum GC content in window.

	high (float) – Maximum GC content in window.

	Parameters

	
	dna_sequence (Bio.Seq.Seq) – A read-only representation of
the DNA sequence.

	codon_use_table (dict{str, list[list, list]}) – A dictionary with
each amino acid three-letter code as keys, and a list of two
lists as values. The first list is the synonymous codons that
encode the amino acid, the second is the frequency with which
each synonymouscodon is used.

	gc (GCParams) – A namedtuple with fields for name, window_size,
minimum and maximum GC content.

	Returns

	A read-only representation of the new DNA sequence.

	Return type

	Bio.Seq.Seq

	
codon_harmony.util.seq_opt.harmonize_codon_use_with_host(dna_sequence, mutation_profile)

	Adjust the codon usage in the DNA sequence to be consistent with
the host profile.

	Parameters

	
	dna_sequence (Bio.Seq.Seq) – A read-only representation of
the DNA sequence.

	mutation_profile (dict{str, dict{str, int}}) – A dictionary
with each codon as keys, and dictionaries of the difference
between the observed and expected codon usage.

	Returns

	A read-only representation of the new DNA sequence.

	Return type

	Bio.Seq.Seq

	
codon_harmony.util.seq_opt.mutate_codon(codon_in, codon_use_table)

	Select a synonymous codon in accordance with the frequency of use
in the host organism.

	Parameters

	
	codon_in (Bio.Seq.Seq) – A single codon.

	codon_use_table (dict{str, list[list, list]}) – A dictionary with
each amino acid three-letter code as keys, and a list of two
lists as values. The first list is the synonymous codons that
encode the amino acid, the second is the frequency with which
each synonymous codon is used.

	Returns

	A new codon.

	Return type

	Bio.Seq.Seq

	
codon_harmony.util.seq_opt.remove_hairpins(dna_sequence, codon_use_table, stem_length=10)

	Identify and remove stretches of the equence that can form hairpins.

	Parameters

	
	dna_sequence (Bio.Seq.Seq) – A read-only representation of
the DNA sequence.

	codon_use_table (dict{str, list[list, list]}) – A dictionary with
each amino acid three-letter code as keys, and a list of two
lists as values. The first list is the synonymous codons that
encode the amino acid, the second is the frequency with which
each synonymouscodon is used.

	stem_length (int, optional) – Length of hairpin stem to detect.
Defaults to 10.

	Returns

	A read-only representation of the new DNA sequence.

	Return type

	Bio.Seq.Seq

	
codon_harmony.util.seq_opt.remove_local_homopolymers(dna_sequence, codon_use_table, n_codons=2, homopolymer_threshold=4)

	Identify and remove consecutive stretches of the same nucleotides
using a sliding window of a fixed number of codons.

	Parameters

	
	dna_sequence (Bio.Seq.Seq) – A read-only representation of
the DNA sequence.

	codon_use_table (dict{str, list[list, list]}) – A dictionary with
each amino acid three-letter code as keys, and a list of two
lists as values. The first list is the synonymous codons that
encode the amino acid, the second is the frequency with which
each synonymouscodon is used.

	n_codons (int, optional) – Size of window (in codons) to examine.
Defaults to 2.

	homopolymer_threshold (int) – number of consecutive nucleotide
repeats allowed. Defaults to 4.

	Returns

	A read-only representation of the new DNA sequence.

	Return type

	Bio.Seq.Seq

	
codon_harmony.util.seq_opt.remove_repeating_sequences(dna_sequence, codon_use_table, window_size)

	Identify and remove repeating sequences of codons or groups of
codons within a DNA sequence.

	Parameters

	
	dna_sequence (Bio.Seq.Seq) – A read-only representation of
the DNA sequence.

	codon_use_table (dict{str, list[list, list]}) – A dictionary with
each amino acid three-letter code as keys, and a list of two
lists as values. The first list is the synonymous codons that
encode the amino acid, the second is the frequency with which
each synonymouscodon is used.

	window_size (int) – Size the window (in nucleotides) to examine.
Window sizes are adjusted down to the nearest multiple of 3 so
windows only contain complete codons.

	Returns

	A read-only representation of the new DNA sequence.

	Return type

	Bio.Seq.Seq

	
codon_harmony.util.seq_opt.remove_restriction_sites(dna_sequence, codon_use_table, restrict_sites)

	Identify and remove seuences recognized by a set of restriction
enzymes.

	Parameters

	
	dna_sequence (Bio.Seq.Seq) – A read-only representation of
the DNA sequence.

	codon_use_table (dict{str, list[list, list]}) – A dictionary with
each amino acid three-letter code as keys, and a list of two
lists as values. The first list is the synonymous codons that
encode the amino acid, the second is the frequency with which
each synonymouscodon is used.

	restrict_sites (Bio.Restriction.RestrictionBatch) – RestrictionBatch
instance configured with the input restriction enzymes.

	Returns

	A read-only representation of the new DNA sequence.

	Return type

	Bio.Seq.Seq

	
codon_harmony.util.seq_opt.remove_splice_sites(dna_sequence, codon_use_table)

	Identify and remove RNA splice sites within a DNA sequence.

	Parameters

	
	dna_sequence (Bio.Seq.Seq) – A read-only representation of
the DNA sequence.

	codon_use_table (dict{str, list[list, list]}) – A dictionary with
each amino acid three-letter code as keys, and a list of two
lists as values. The first list is the synonymous codons that
encode the amino acid, the second is the frequency with which
each synonymouscodon is used.

	Returns

	A read-only representation of the new DNA sequence.

	Return type

	Bio.Seq.Seq

	
codon_harmony.util.seq_opt.remove_start_sites(dna_sequence, codon_use_table, ribosome_binding_sites, table_name='Standard')

	Identify and remove alternate start sites using a supplied set of
ribosome binding sites and a codon table name.

	Parameters

	
	dna_sequence (Bio.Seq.Seq) – A read-only representation of
the DNA sequence.

	codon_use_table (dict{str, list[list, list]}) – A dictionary with
each amino acid three-letter code as keys, and a list of two
lists as values. The first list is the synonymous codons that
encode the amino acid, the second is the frequency with which
each synonymouscodon is used.

	ribosome_binding_sites (dict{str, str}) – A dictionary with named
ribosome binding sites as keys and the corresponding sequences
as values.

	table_name (str, optional) – Name of a registered NCBI table. See
Bio.Data.CodonTable.unambiguous_dna_by_name.keys() for
options. Defaults to “Standard”.

	Returns

	A read-only representation of the new DNA sequence.

	Return type

	Bio.Seq.Seq

	
codon_harmony.util.seq_opt.resample_codons(dna_sequence, codon_use_table)

	Generate a new DNA sequence by swapping synonymous codons.
Codons are selected in accordance with their frequency of occurrence in
the host organism.

	Parameters

	
	dna_sequence (Bio.Seq.Seq) – A read-only representation of
the DNA sequence.

	codon_use_table (dict{str, list[list, list]}) – A dictionary with
each amino acid three-letter code as keys, and a list of two
lists as values. The first list is the synonymous codons that
encode the amino acid, the second is the frequency with which
each synonymous codon is used.

	Returns

	A read-only representation of the new DNA sequence.

	Return type

	Bio.Seq.Seq

	
codon_harmony.util.seq_opt.resample_codons_and_enforce_host_profile(dna_sequence, codon_use_table, host_profile, relax)

	Generate a new DNA sequence by swapping synonymous codons.
Codons are selected in accordance with their frequency of occurrence in
the host organism and adjust the codon usage in the DNA sequence to
match the host profile.

	Parameters

	
	dna_sequence (Bio.Seq.Seq) – A read-only representation of
the DNA sequence.

	codon_use_table (dict{str, list[list, list]}) – A dictionary with
each amino acid three-letter code as keys, and a list of two
lists as values. The first list is the synonymous codons that
encode the amino acid, the second is the frequency with which
each synonymous codon is used.

	host_profile (dict{str, foat}) – A dictionary with each codon as keys
and the frequency of its use in the host organism as values.

	relax (float) – The maximum deviation from the host profile to tolerate.

	Returns

	A read-only representation of the new DNA sequence.

	Return type

	Bio.Seq.Seq

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/weitzner/codon_harmony/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Codon Tools could always use more documentation, whether as part of the
official Codon Tools docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/weitzner/codon_harmony/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up codon_harmony for local development.

	Fork the codon_harmony repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/codon_harmony.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv codon_harmony
$ cd codon_harmony/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 codon_harmony tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check
https://travis-ci.org/weitzner/codon_harmony/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_codon_harmony

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Development Lead

	Brian D. Weitzner <bweitzner@lyellbio.com>

	Yang Hsia <yhsia@uw.edu>

Contributors

None yet. Why not be the first?

History

0.9.2 (2019-02-06)

	First release on PyPI.

0.9.4 (2019-02-20)

	Full suite of tests added, bugs uncovered and fixed

	Adjustments to the packaging setup – actaully installable now

0.9.5 (2019-02-25)

	Adding support for RNA splice site detection and removal

0.9.6 (2019-02-28)

	Updating the way optimization failures are reported and displayed

	Parallelizing via a process pool

1.0.0 (2019-03-06)

	Added ability to use offline tables in addition to fetching from the internet

	Full suite of tests and documentation

	Tested on real-world sequences

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 codon_harmony	

 	
 	
 codon_harmony.codon_harmony	

 	
 	
 codon_harmony.data	

 	
 	
 codon_harmony.util.codon_use	

 	
 	
 codon_harmony.util.seq	

 	
 	
 codon_harmony.util.seq_opt	

Index

 B
 | C
 | G
 | H
 | L
 | M
 | N
 | P
 | R
 | W

B

 	
 	back_translate() (in module codon_harmony.util.seq)

C

 	
 	calc_codon_relative_adaptiveness() (in module codon_harmony.util.codon_use)

 	calc_profile() (in module codon_harmony.util.codon_use)

 	codon_harmony.codon_harmony (module)

 	codon_harmony.data (module)

 	codon_harmony.util.codon_use (module)

 	
 	codon_harmony.util.seq (module)

 	codon_harmony.util.seq_opt (module)

 	codon_tables() (in module codon_harmony.data)

 	compare_profiles() (in module codon_harmony.util.seq_opt)

 	count_codons() (in module codon_harmony.util.codon_use)

G

 	
 	gc_scan() (in module codon_harmony.util.seq_opt)

 	
 	GCParams (class in codon_harmony.data)

 	get_parser() (in module codon_harmony.codon_harmony)

H

 	
 	harmonize_codon_use_with_host() (in module codon_harmony.util.seq_opt)

 	
 	high (codon_harmony.data.GCParams attribute)

 	host_codon_usage() (in module codon_harmony.util.codon_use)

L

 	
 	low (codon_harmony.data.GCParams attribute)

M

 	
 	main() (in module codon_harmony.codon_harmony)

 	
 	mutate_codon() (in module codon_harmony.util.seq_opt)

N

 	
 	name (codon_harmony.data.GCParams attribute)

P

 	
 	process_host_table() (in module codon_harmony.util.codon_use)

R

 	
 	remove_hairpins() (in module codon_harmony.util.seq_opt)

 	remove_local_homopolymers() (in module codon_harmony.util.seq_opt)

 	remove_repeating_sequences() (in module codon_harmony.util.seq_opt)

 	remove_restriction_sites() (in module codon_harmony.util.seq_opt)

 	
 	remove_splice_sites() (in module codon_harmony.util.seq_opt)

 	remove_start_sites() (in module codon_harmony.util.seq_opt)

 	resample_codons() (in module codon_harmony.util.seq_opt)

 	resample_codons_and_enforce_host_profile() (in module codon_harmony.util.seq_opt)

 	RestrictionEnzymes() (in module codon_harmony.data)

W

 	
 	window_size (codon_harmony.data.GCParams attribute)

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Codon Harmony’s documentation!

 		
 Codon Harmony

 		
 Features

 		
 Future work

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Named Arguments

 		
 Executing Codon Harmony as a script

 		
 Using Codon Harmony in a project

 		
 codon_harmony

 		
 codon_harmony package

 		
 Subpackages

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.9.2 (2019-02-06)

 		
 0.9.4 (2019-02-20)

 		
 0.9.5 (2019-02-25)

 		
 0.9.6 (2019-02-28)

 		
 1.0.0 (2019-03-06)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

