Welcome to Codex Africanus’s documentation!

Codex Africanus

https://img.shields.io/pypi/v/codex-africanus.svg https://img.shields.io/travis/ska-sa/codex-africanus.svg Documentation Status Updates

Radio Astronomy Building Blocks

Installation

Stable release

To install Codex Africanus, run this command in your terminal:

$ pip install codex-africanus

This is the preferred method to install Codex Africanus, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

By default, Codex Africanus will install with a minimal set of dependencies, numpy and numba.

Further functionality can be enabled by installing extra requirements as follows:

$ pip install codex-africanus[dask]
$ pip install codex-africanus[scipy]
$ pip install codex-africanus[astropy]
$ pip install codex-africanus[python-casacore]

To install the complete set of dependencies for the CPU:

$ pip install codex-africanus[complete]

To install the complete set of dependencies including CUDA:

$ pip install codex-africanus[complete-cuda]

From sources

The sources for Codex Africanus can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/ska-sa/codex-africanus

Or download the tarball:

$ curl  -OL https://github.com/ska-sa/codex-africanus/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use Codex Africanus in a project:

import africanus

Command Line Utilities

The following command line utilities are installed. Run each utility’s help for further information.

$ utility --help

plot-filter

Plots convolution filters.

plot-taper

Plots tapers associated with convolution filters.

API

Radio Interferometer Measurement Equation

Functions used to compute the terms of the Radio Interferometer Measurement Equation (RIME). It describes the response of an interferometer to a sky model.

\[V_{pq} = G_{p} \left( \sum_{s} E_{ps} L_{p} K_{ps} B_{s} K_{qs}^H L_{q}^H E_{qs}^H \right) G_{q}^H\]

where for antenna \(p\) and \(q\), and source \(s\):

  • \(G_{p}\) represents direction-independent effects.
  • \(E_{ps}\) represents direction-dependent effects.
  • \(L_{p}\) represents the feed rotation.
  • \(K_{ps}\) represents the phase delay term.
  • \(B_{s}\) represents the brightness matrix.

The RIME is more formally described in the following four papers:

Numpy

predict_vis(time_index, antenna1, antenna2) Multiply Jones terms together to form model visibilities according to the following formula:
phase_delay(lm, uvw, frequency) Computes the phase delay (K) term:
parallactic_angles(times, antenna_positions, …) Computes parallactic angles per timestep for the given reference antenna position and field centre.
feed_rotation(parallactic_angles[, feed_type]) Computes the 2x2 feed rotation (L) matrix from the parallactic_angles.
transform_sources(lm, parallactic_angles, …) Creates beam sampling coordinates suitable for use in beam_cube_dde() by:
beam_cube_dde(beam, coords, l_grid, m_grid, …) Computes Direction Dependent Effects (E) by sampling complex values in beam at the coordinates coords.
zernike_dde(coords, coeffs, noll_index) Computes Direction Dependent Effects by evaluating Zernicke Polynomials defined by coefficients coeffs and noll indexes noll_index at the specified coordinates coords.
africanus.rime.predict_vis(time_index, antenna1, antenna2, dde1_jones=None, source_coh=None, dde2_jones=None, die1_jones=None, base_vis=None, die2_jones=None)[source]

Multiply Jones terms together to form model visibilities according to the following formula:

\[V_{pq} = G_{p} \left( B_{pq} + \sum_{s} A_{ps} X_{pqs} A_{qs}^H \right) G_{q}^H\]

where for antenna \(p\) and \(q\), and source \(s\):

  • \(B_{{pq}}\) represent base coherencies.
  • \(E_{{ps}}\) represents Direction-Dependent Jones terms.
  • \(X_{{pqs}}\) represents a coherency matrix (per-source).
  • \(G_{{p}}\) represents Direction-Independent Jones terms.

Generally, \(E_{ps}\), \(G_{p}\), \(X_{pqs}\) should be formed by using the RIME API functions and combining them together with einsum().

Please read the Notes

Parameters:
time_index : numpy.ndarray

Time index used to look up the antenna Jones index for a particular baseline. shape (row,).

antenna1 : numpy.ndarray

Antenna 1 index used to look up the antenna Jones for a particular baseline. with shape (row,).

antenna2 : numpy.ndarray

Antenna 2 index used to look up the antenna Jones for a particular baseline. with shape (row,).

dde1_jones : numpy.ndarray, optional

\(A_{ps}\) Direction-Dependent Jones terms for the first antenna. shape (source,time,ant,chan,corr_1,corr_2)

source_coh : numpy.ndarray, optional

\(X_{pqs}\) Direction-Dependent Coherency matrix for the baseline. with shape (source,row,chan,corr_1,corr_2)

dde2_jones : numpy.ndarray, optional

\(A_{qs}\) Direction-Dependent Jones terms for the second antenna. shape (source,time,ant,chan,corr_1,corr_2)

die1_jones : numpy.ndarray, optional

\(G_{ps}\) Direction-Independent Jones terms for the first antenna of the baseline. with shape (time,ant,chan,corr_1,corr_2)

base_vis : numpy.ndarray, optional

\(B_{pq}\) base visibilities, added to source coherency summation before multiplication with die1_jones and die2_jones.

die2_jones : numpy.ndarray, optional

\(G_{ps}\) Direction-Independent Jones terms for the second antenna of the baseline. with shape (time,ant,chan,corr_1,corr_2)

Returns:
visibilities : numpy.ndarray

Model visibilities of shape (row,chan,corr_1,corr_2)

Notes

  • Direction-Dependent terms (dde{1,2}_jones) and Independent (die{1,2}_jones) are optional, but if one is present, the other must be present.
  • The inputs to this function involve row, time and ant (antenna) dimensions.
  • Each row is associated with a pair of antenna Jones matrices at a particular timestep via the time_index, antenna1 and antenna2 inputs.
  • The row dimension must be an increasing partial order in time.
africanus.rime.phase_delay(lm, uvw, frequency)[source]

Computes the phase delay (K) term:

\[ \begin{align}\begin{aligned}& {\Large e^{-2 \pi i (u l + v m + w (n - 1))} }\\& \textrm{where } n = \sqrt{1 - l^2 - m^2}\end{aligned}\end{align} \]
Parameters:
lm : numpy.ndarray

LM coordinates of shape (source, 2) with L and M components in the last dimension.

uvw : numpy.ndarray

UVW coordinates of shape (row, 3) with U, V and W components in the last dimension.

frequency : numpy.ndarray

frequencies of shape (chan,)

Returns:
complex_phase : numpy.ndarray

complex of shape (source, row, chan)

Notes

Corresponds to the complex exponential of the Van Cittert-Zernike Theorem.

MeqTrees uses a positive sign convention and so any UVW coordinates must be inverted in order for their phase delay terms (and therefore visibilities) to agree.

africanus.rime.parallactic_angles(times, antenna_positions, field_centre, backend='casa')[source]

Computes parallactic angles per timestep for the given reference antenna position and field centre.

Parameters:
times : numpy.ndarray

Array of Mean Julian Date times in seconds with shape (time,),

antenna_positions : numpy.ndarray

Antenna positions of shape (ant, 3) in metres in the ITRF frame.

field_centre : numpy.ndarray

Field centre of shape (2,) in radians

backend : {‘casa’, ‘test’}, optional

Backend to use for calculating the parallactic angles.

  • casa defers to an implementation depending on python-casacore. This backend should be used by default.
  • test creates parallactic angles by multiplying the times and antenna_position arrays. It exist solely for testing.
Returns:
parallactic_angles : numpy.ndarray

Parallactic angles of shape (time,ant)

africanus.rime.feed_rotation(parallactic_angles, feed_type='linear')[source]

Computes the 2x2 feed rotation (L) matrix from the parallactic_angles.

\[\begin{split}\textrm{linear} \begin{bmatrix} cos(pa) & sin(pa) \\ -sin(pa) & cos(pa) \end{bmatrix} \qquad \textrm{circular} \begin{bmatrix} e^{-i pa} & 0 \\ 0 & e^{i pa} \end{bmatrix}\end{split}\]
Parameters:
parallactic_angles : numpy.ndarray

floating point parallactic angles. Of shape (pa0, pa1, ..., pan).

feed_type : {‘linear’, ‘circular’}

The type of feed

Returns:
feed_matrix : numpy.ndarray

Feed rotation matrix of shape (pa0, pa1,...,pan,2,2)

africanus.rime.transform_sources(lm, parallactic_angles, pointing_errors, antenna_scaling, frequency, dtype=None)[source]

Creates beam sampling coordinates suitable for use in beam_cube_dde() by:

  1. Rotating lm coordinates by the parallactic_angles
  2. Adding pointing_errors
  3. Scaling by antenna_scaling
Parameters:
lm : numpy.ndarray

LM coordinates of shape (src,2) in radians offset from the phase centre.

parallactic_angles : numpy.ndarray

parallactic angles of shape (time, antenna) in radians.

pointing_errors : numpy.ndarray

LM pointing errors for each antenna at each timestep in radians. Has shape (time, antenna, 2)

antenna_scaling : numpy.ndarray

antenna scaling factor for each channel and each antenna. Has shape (antenna, chan)

frequency : numpy.ndarray

frequencies for each channel. Has shape (chan,)

dtype : numpy.dtype, optional

Numpy dtype of result array. Should be float32 or float64. Defaults to float64

Returns:
coords : numpy.ndarray

coordinates of shape (3, src, time, antenna, chan) where each coordinate component represents l, m and frequency, respectively.

africanus.rime.beam_cube_dde(beam, coords, l_grid, m_grid, freq_grid, spline_order=1, mode=u'nearest')[source]

Computes Direction Dependent Effects (E) by sampling complex values in beam at the coordinates coords.

Both real and imaginary beam values are sampled at the given coordinates and normalised to form a mean of circular quantities.

l_grid, m_grid and freq_grid can be obtained from beam_grids().

Parameters:
beam : numpy.ndarray

complex beam cube of shape (beam_lw, beam_mh, beam_nud, corr_1, corr_2) where beam_lw is the grid width of the l dimension, beam_mh is the grid height of the m dimension and beam_nud is the grid depth of the frequency dimension. Either corr_1 or both corr_1 and corr_2 may be present, representing 1, 2 or 2x2 correlations respectively.

coords : numpy.ndarray

beam cube coordinates of shape (coords, dim_1, ..., dim_n) where coord always has size 3 and refers to (l,m,frequency).

l_grid : numpy.ndarray

Monotonically increasing or decreasing grid values for the l axis, with shape (beam_lw,). If decreasing, the

m_grid : numpy.ndarray

Monotonically increasing or decreasing grid values for the m axis, with shape (beam_mh,)

freq_grid : numpy.ndarray

Monotonically increasing grid values for the frequency axis, with shape (beam_nud,)

spline_order : int

Spline order to use in scipy.ndimage.interpolation.map_coordinates(). Defaults to 1 (‘linear’)

mode : str

Border mode to use in scipy.ndimage.interpolation.map_coordinates() Defaults to ‘nearest’

Returns:
ddes : numpy.ndarray

Sampled complex beam values at the specified coordinates with shape (dim_1, ..., dim_n, corr_1, corr_2)

africanus.rime.zernike_dde(coords, coeffs, noll_index)[source]

Computes Direction Dependent Effects by evaluating Zernicke Polynomials defined by coefficients coeffs and noll indexes noll_index at the specified coordinates coords.

Decomposition of a voxel beam cube into Zernicke polynomial coefficients can be achieved through the use of the eidos package.

Parameters:
coords : numpy.ndarray

Float coordinates at which to evaluate the zernike polynomials. Has shape (3, source, time, ant, chan). The three components in the first dimension represent l, m and frequency coordinates, respectively.

coeffs : numpy.ndarray

complex Zernicke polynomial coefficients. Has shape (ant, chan, corr_1, ..., corr_n, poly) where poly is the number of polynomial coefficients and corr_1, ..., corr_n are a variable number of correlation dimensions.

noll_index : numpy.ndarray

Noll index associated with each polynomial coefficient. Has shape (ant, chan, corr_1, ..., corr_n, poly).

Returns:
dde : numpy.ndarray

complex values with shape (source, time, ant, chan, corr_1, ..., corr_n)

Cuda

predict_vis(time_index, antenna1, antenna2, …) Multiply Jones terms together to form model visibilities according to the following formula:
phase_delay(lm, uvw, frequency) Computes the phase delay (K) term:
feed_rotation(parallactic_angles[, feed_type]) Computes the 2x2 feed rotation (L) matrix from the parallactic_angles.
africanus.rime.cuda.predict_vis(time_index, antenna1, antenna2, dde1_jones, source_coh, dde2_jones, die1_jones, base_vis, die2_jones)[source]

Multiply Jones terms together to form model visibilities according to the following formula:

\[V_{pq} = G_{p} \left( B_{pq} + \sum_{s} A_{ps} X_{pqs} A_{qs}^H \right) G_{q}^H\]

where for antenna \(p\) and \(q\), and source \(s\):

  • \(B_{{pq}}\) represent base coherencies.
  • \(E_{{ps}}\) represents Direction-Dependent Jones terms.
  • \(X_{{pqs}}\) represents a coherency matrix (per-source).
  • \(G_{{p}}\) represents Direction-Independent Jones terms.

Generally, \(E_{ps}\), \(G_{p}\), \(X_{pqs}\) should be formed by using the RIME API functions and combining them together with einsum().

Please read the Notes

Parameters:
time_index : cupy.ndarray

Time index used to look up the antenna Jones index for a particular baseline. shape (row,).

antenna1 : cupy.ndarray

Antenna 1 index used to look up the antenna Jones for a particular baseline. with shape (row,).

antenna2 : cupy.ndarray

Antenna 2 index used to look up the antenna Jones for a particular baseline. with shape (row,).

dde1_jones : cupy.ndarray, optional

\(A_{ps}\) Direction-Dependent Jones terms for the first antenna. shape (source,time,ant,chan,corr_1,corr_2)

source_coh : cupy.ndarray, optional

\(X_{pqs}\) Direction-Dependent Coherency matrix for the baseline. with shape (source,row,chan,corr_1,corr_2)

dde2_jones : cupy.ndarray, optional

\(A_{qs}\) Direction-Dependent Jones terms for the second antenna. shape (source,time,ant,chan,corr_1,corr_2)

die1_jones : cupy.ndarray, optional

\(G_{ps}\) Direction-Independent Jones terms for the first antenna of the baseline. with shape (time,ant,chan,corr_1,corr_2)

base_vis : cupy.ndarray, optional

\(B_{pq}\) base visibilities, added to source coherency summation before multiplication with die1_jones and die2_jones.

die2_jones : cupy.ndarray, optional

\(G_{ps}\) Direction-Independent Jones terms for the second antenna of the baseline. with shape (time,ant,chan,corr_1,corr_2)

Returns:
visibilities : cupy.ndarray

Model visibilities of shape (row,chan,corr_1,corr_2)

Notes

  • Direction-Dependent terms (dde{1,2}_jones) and Independent (die{1,2}_jones) are optional, but if one is present, the other must be present.
  • The inputs to this function involve row, time and ant (antenna) dimensions.
  • Each row is associated with a pair of antenna Jones matrices at a particular timestep via the time_index, antenna1 and antenna2 inputs.
  • The row dimension must be an increasing partial order in time.
africanus.rime.cuda.phase_delay(lm, uvw, frequency)[source]

Computes the phase delay (K) term:

\[ \begin{align}\begin{aligned}& {\Large e^{-2 \pi i (u l + v m + w (n - 1))} }\\& \textrm{where } n = \sqrt{1 - l^2 - m^2}\end{aligned}\end{align} \]
Parameters:
lm : cupy.ndarray

LM coordinates of shape (source, 2) with L and M components in the last dimension.

uvw : cupy.ndarray

UVW coordinates of shape (row, 3) with U, V and W components in the last dimension.

frequency : cupy.ndarray

frequencies of shape (chan,)

Returns:
complex_phase : cupy.ndarray

complex of shape (source, row, chan)

Notes

Corresponds to the complex exponential of the Van Cittert-Zernike Theorem.

MeqTrees uses a positive sign convention and so any UVW coordinates must be inverted in order for their phase delay terms (and therefore visibilities) to agree.

africanus.rime.cuda.feed_rotation(parallactic_angles, feed_type='linear')[source]

Computes the 2x2 feed rotation (L) matrix from the parallactic_angles.

\[\begin{split}\textrm{linear} \begin{bmatrix} cos(pa) & sin(pa) \\ -sin(pa) & cos(pa) \end{bmatrix} \qquad \textrm{circular} \begin{bmatrix} e^{-i pa} & 0 \\ 0 & e^{i pa} \end{bmatrix}\end{split}\]
Parameters:
parallactic_angles : cupy.ndarray

floating point parallactic angles. Of shape (pa0, pa1, ..., pan).

feed_type : {‘linear’, ‘circular’}

The type of feed

Returns:
feed_matrix : cupy.ndarray

Feed rotation matrix of shape (pa0, pa1,...,pan,2,2)

Dask

predict_vis(time_index, antenna1, antenna2) Multiply Jones terms together to form model visibilities according to the following formula:
phase_delay(lm, uvw, frequency) Computes the phase delay (K) term:
parallactic_angles(times, antenna_positions, …) Computes parallactic angles per timestep for the given reference antenna position and field centre.
feed_rotation(parallactic_angles, feed_type) Computes the 2x2 feed rotation (L) matrix from the parallactic_angles.
transform_sources(lm, parallactic_angles, …) Creates beam sampling coordinates suitable for use in beam_cube_dde() by:
beam_cube_dde(beam, coords, l_grid, m_grid, …) Computes Direction Dependent Effects (E) by sampling complex values in beam at the coordinates coords.
zernike_dde(coords, coeffs, noll_index) Computes Direction Dependent Effects by evaluating Zernicke Polynomials defined by coefficients coeffs and noll indexes noll_index at the specified coordinates coords.
africanus.rime.dask.predict_vis(time_index, antenna1, antenna2, dde1_jones=None, source_coh=None, dde2_jones=None, die1_jones=None, base_vis=None, die2_jones=None)[source]

Multiply Jones terms together to form model visibilities according to the following formula:

\[V_{pq} = G_{p} \left( B_{pq} + \sum_{s} A_{ps} X_{pqs} A_{qs}^H \right) G_{q}^H\]

where for antenna \(p\) and \(q\), and source \(s\):

  • \(B_{{pq}}\) represent base coherencies.
  • \(E_{{ps}}\) represents Direction-Dependent Jones terms.
  • \(X_{{pqs}}\) represents a coherency matrix (per-source).
  • \(G_{{p}}\) represents Direction-Independent Jones terms.

Generally, \(E_{ps}\), \(G_{p}\), \(X_{pqs}\) should be formed by using the RIME API functions and combining them together with einsum().

Please read the Notes

Parameters:
time_index : dask.array.Array

Time index used to look up the antenna Jones index for a particular baseline. shape (row,).

antenna1 : dask.array.Array

Antenna 1 index used to look up the antenna Jones for a particular baseline. with shape (row,).

antenna2 : dask.array.Array

Antenna 2 index used to look up the antenna Jones for a particular baseline. with shape (row,).

dde1_jones : dask.array.Array, optional

\(A_{ps}\) Direction-Dependent Jones terms for the first antenna. shape (source,time,ant,chan,corr_1,corr_2)

source_coh : dask.array.Array, optional

\(X_{pqs}\) Direction-Dependent Coherency matrix for the baseline. with shape (source,row,chan,corr_1,corr_2)

dde2_jones : dask.array.Array, optional

\(A_{qs}\) Direction-Dependent Jones terms for the second antenna. shape (source,time,ant,chan,corr_1,corr_2)

die1_jones : dask.array.Array, optional

\(G_{ps}\) Direction-Independent Jones terms for the first antenna of the baseline. with shape (time,ant,chan,corr_1,corr_2)

base_vis : dask.array.Array, optional

\(B_{pq}\) base visibilities, added to source coherency summation before multiplication with die1_jones and die2_jones.

die2_jones : dask.array.Array, optional

\(G_{ps}\) Direction-Independent Jones terms for the second antenna of the baseline. with shape (time,ant,chan,corr_1,corr_2)

Returns:
visibilities : dask.array.Array

Model visibilities of shape (row,chan,corr_1,corr_2)

Notes

  • Direction-Dependent terms (dde{1,2}_jones) and Independent (die{1,2}_jones) are optional, but if one is present, the other must be present.

  • The inputs to this function involve row, time and ant (antenna) dimensions.

  • Each row is associated with a pair of antenna Jones matrices at a particular timestep via the time_index, antenna1 and antenna2 inputs.

  • The row dimension must be an increasing partial order in time.

    • The ant dimension should only contain a single chunk equal to the number of antenna. Since each row can contain any antenna, random access must be preserved along this dimension.

    • The chunks in the row and time dimension must align. This subtle point must be understood otherwise invalid results will be produced by the chunking scheme. In the example below we have four unique time indices [0,1,2,3], and four unique antenna [0,1,2,3] indexing 10 rows.

      #  Row indices into the time/antenna indexed arrays
      time_idx = np.asarray([0,0,1,1,2,2,2,2,3,3])
      ant1 = np.asarray(    [0,0,0,0,1,1,1,2,2,3]
      ant2 = np.asarray(    [0,1,2,3,1,2,3,2,3,3])
      

      A reasonable chunking scheme for the row and time dimension would be (4,4,2) and (2,1,1) respectively. Another way of explaining this is that the first four rows contain two unique timesteps, the second four rows contain one unique timestep and the last two rows contain one unique timestep.

      Some rules of thumb:

      1. The number chunks in row and time must match although the individual chunk sizes need not.

      2. Unique timesteps should not be split across row chunks.

      3. For a Measurement Set whose rows are ordered on the TIME column, the following is a good way of obtaining the row chunking strategy:

        import numpy as np
        import pyrap.tables as pt
        
        ms = pt.table("data.ms")
        times = ms.getcol("TIME")
        unique_times, chunks = np.unique(times, return_counts=True)
        
      4. Use aggregate_chunks() to aggregate multiple row and time chunks into chunks large enough such that functions operating on the resulting data can drop the GIL and spend time processing the data. Expanding the previous example:

        # Aggregate row
        utimes = unique_times.size
        # Single chunk for each unique time
        time_chunks = (1,)*utimes
        # Aggregate row chunks into chunks <= 10000
        aggregate_chunks((chunks, time_chunks), (10000, utimes))
        
africanus.rime.dask.phase_delay(lm, uvw, frequency)[source]

Computes the phase delay (K) term:

\[ \begin{align}\begin{aligned}& {\Large e^{-2 \pi i (u l + v m + w (n - 1))} }\\& \textrm{where } n = \sqrt{1 - l^2 - m^2}\end{aligned}\end{align} \]
Parameters:
lm : dask.array.Array

LM coordinates of shape (source, 2) with L and M components in the last dimension.

uvw : dask.array.Array

UVW coordinates of shape (row, 3) with U, V and W components in the last dimension.

frequency : dask.array.Array

frequencies of shape (chan,)

Returns:
complex_phase : dask.array.Array

complex of shape (source, row, chan)

Notes

Corresponds to the complex exponential of the Van Cittert-Zernike Theorem.

MeqTrees uses a positive sign convention and so any UVW coordinates must be inverted in order for their phase delay terms (and therefore visibilities) to agree.

africanus.rime.dask.parallactic_angles(times, antenna_positions, field_centre, **kwargs)[source]

Computes parallactic angles per timestep for the given reference antenna position and field centre.

Parameters:
times : dask.array.Array

Array of Mean Julian Date times in seconds with shape (time,),

antenna_positions : dask.array.Array

Antenna positions of shape (ant, 3) in metres in the ITRF frame.

field_centre : dask.array.Array

Field centre of shape (2,) in radians

backend : {‘casa’, ‘test’}, optional

Backend to use for calculating the parallactic angles.

  • casa defers to an implementation depending on python-casacore. This backend should be used by default.
  • test creates parallactic angles by multiplying the times and antenna_position arrays. It exist solely for testing.
Returns:
parallactic_angles : dask.array.Array

Parallactic angles of shape (time,ant)

africanus.rime.dask.feed_rotation(parallactic_angles, feed_type)[source]

Computes the 2x2 feed rotation (L) matrix from the parallactic_angles.

\[\begin{split}\textrm{linear} \begin{bmatrix} cos(pa) & sin(pa) \\ -sin(pa) & cos(pa) \end{bmatrix} \qquad \textrm{circular} \begin{bmatrix} e^{-i pa} & 0 \\ 0 & e^{i pa} \end{bmatrix}\end{split}\]
Parameters:
parallactic_angles : numpy.ndarray

floating point parallactic angles. Of shape (pa0, pa1, ..., pan).

feed_type : {‘linear’, ‘circular’}

The type of feed

Returns:
feed_matrix : numpy.ndarray

Feed rotation matrix of shape (pa0, pa1,...,pan,2,2)

africanus.rime.dask.transform_sources(lm, parallactic_angles, pointing_errors, antenna_scaling, frequency, dtype=None)[source]

Creates beam sampling coordinates suitable for use in beam_cube_dde() by:

  1. Rotating lm coordinates by the parallactic_angles
  2. Adding pointing_errors
  3. Scaling by antenna_scaling
Parameters:
lm : dask.array.Array

LM coordinates of shape (src,2) in radians offset from the phase centre.

parallactic_angles : dask.array.Array

parallactic angles of shape (time, antenna) in radians.

pointing_errors : dask.array.Array

LM pointing errors for each antenna at each timestep in radians. Has shape (time, antenna, 2)

antenna_scaling : dask.array.Array

antenna scaling factor for each channel and each antenna. Has shape (antenna, chan)

frequency : dask.array.Array

frequencies for each channel. Has shape (chan,)

dtype : numpy.dtype, optional

Numpy dtype of result array. Should be float32 or float64. Defaults to float64

Returns:
coords : dask.array.Array

coordinates of shape (3, src, time, antenna, chan) where each coordinate component represents l, m and frequency, respectively.

africanus.rime.dask.beam_cube_dde(beam, coords, l_grid, m_grid, freq_grid, spline_order=1, mode='nearest')[source]

Computes Direction Dependent Effects (E) by sampling complex values in beam at the coordinates coords.

Both real and imaginary beam values are sampled at the given coordinates and normalised to form a mean of circular quantities.

l_grid, m_grid and freq_grid can be obtained from beam_grids().

Parameters:
beam : dask.array.Array

complex beam cube of shape (beam_lw, beam_mh, beam_nud, corr_1, corr_2) where beam_lw is the grid width of the l dimension, beam_mh is the grid height of the m dimension and beam_nud is the grid depth of the frequency dimension. Either corr_1 or both corr_1 and corr_2 may be present, representing 1, 2 or 2x2 correlations respectively.

coords : dask.array.Array

beam cube coordinates of shape (coords, dim_1, ..., dim_n) where coord always has size 3 and refers to (l,m,frequency).

l_grid : dask.array.Array

Monotonically increasing or decreasing grid values for the l axis, with shape (beam_lw,). If decreasing, the

m_grid : dask.array.Array

Monotonically increasing or decreasing grid values for the m axis, with shape (beam_mh,)

freq_grid : dask.array.Array

Monotonically increasing grid values for the frequency axis, with shape (beam_nud,)

spline_order : int

Spline order to use in scipy.ndimage.interpolation.map_coordinates(). Defaults to 1 (‘linear’)

mode : str

Border mode to use in scipy.ndimage.interpolation.map_coordinates() Defaults to ‘nearest’

Returns:
ddes : dask.array.Array

Sampled complex beam values at the specified coordinates with shape (dim_1, ..., dim_n, corr_1, corr_2)

africanus.rime.dask.zernike_dde(coords, coeffs, noll_index)[source]

Computes Direction Dependent Effects by evaluating Zernicke Polynomials defined by coefficients coeffs and noll indexes noll_index at the specified coordinates coords.

Decomposition of a voxel beam cube into Zernicke polynomial coefficients can be achieved through the use of the eidos package.

Parameters:
coords : dask.array.Array

Float coordinates at which to evaluate the zernike polynomials. Has shape (3, source, time, ant, chan). The three components in the first dimension represent l, m and frequency coordinates, respectively.

coeffs : dask.array.Array

complex Zernicke polynomial coefficients. Has shape (ant, chan, corr_1, ..., corr_n, poly) where poly is the number of polynomial coefficients and corr_1, ..., corr_n are a variable number of correlation dimensions.

noll_index : dask.array.Array

Noll index associated with each polynomial coefficient. Has shape (ant, chan, corr_1, ..., corr_n, poly).

Returns:
dde : dask.array.Array

complex values with shape (source, time, ant, chan, corr_1, ..., corr_n)

Direct Fourier Transform

Functions used to compute the discretised direct Fourier transform (DFT) for an ideal unpolarised interferometer. The DFT for an ideal interferometer is defined as

\[V(u,v,w) = \int I(l,m) e^{-2\pi i \left( ul + vm + w(n-1)\right)} \frac{dl dm}{n}\]

where \(u,v,w\) are data (visibility \(V\)) space coordinates and \(l,m,n\) are signal (image \(I\)) space coordinates. We adopt the convention where we absorb the fixed coordinate \(n\) in the denominator into the image. Note that the data space coordinates have an implicit dependence on frequency and time and that the image has an implicit dependence on frequency. The discretised form of the DFT can be written as

\[V(u,v,w) = \sum_s e^{-2 \pi i (u l_s + v m_s + w (n_s - 1))} \cdot I_s\]

where \(s\) labels the source (or pixel) location. This can be cast into a matrix equation as follows

\[V = R I\]

where \(R\) is the operator that maps an image to visibility space. This mapping is implemented by the im_to_vis() function. An imaging algorithm also requires the adjoint denoted \(R^\dagger\) which is simply the complex conjugate transpose of \(R\). The dirty image is obtained by applying the adjoint operator to the visibilities

\[I^D = R^\dagger V\]

This is implemented by the vis_to_im() function. Note that an imaging algorithm using these operators will actually reconstruct \(\frac{I}{n}\) but that it is trivial to obtain \(I\) since \(n\) is known at each location in the image.

Numpy

im_to_vis(image, uvw, lm, frequency[, dtype]) Computes the discrete image to visibility mapping of an ideal unpolarised interferometer :
vis_to_im(vis, uvw, lm, frequency[, dtype]) Computes visibility to image mapping of an ideal unpolarised interferometer:
africanus.dft.im_to_vis(image, uvw, lm, frequency, dtype=None)[source]

Computes the discrete image to visibility mapping of an ideal unpolarised interferometer :

\[{\Large \sum_s e^{-2 \pi i (u l_s + v m_s + w (n_s - 1))} \cdot I_s }\]
Parameters:
image : numpy.ndarray

image of shape (source, chan) The Stokes I intensity in each pixel (flatten 2D array per channel).

uvw : numpy.ndarray

UVW coordinates of shape (row, 3) with U, V and W components in the last dimension.

lm : numpy.ndarray

LM coordinates of shape (source, 2) with L and M components in the last dimension.

frequency : numpy.ndarray

frequencies of shape (chan,)

dtype : np.dtype, optional

Datatype of result. Should be either np.complex64 or np.complex128. If None, numpy.result_type() is used to infer the data type from the inputs.

Returns:
visibilties : numpy.ndarray

complex of shape (row, chan)

africanus.dft.vis_to_im(vis, uvw, lm, frequency, dtype=None)[source]

Computes visibility to image mapping of an ideal unpolarised interferometer:

\[{\Large \sum_k e^{ 2 \pi i (u_k l + v_k m + w_k (n - 1))} \cdot V_k}\]
Parameters:
vis : numpy.ndarray

visibilities of shape (row, chan) The Stokes I visibilities of which to compute a dirty image

uvw : numpy.ndarray

UVW coordinates of shape (row, 3) with U, V and W components in the last dimension.

lm : numpy.ndarray

LM coordinates of shape (source, 2) with L and M components in the last dimension.

frequency : numpy.ndarray

frequencies of shape (chan,)

dtype : np.dtype, optional

Datatype of result. Should be either np.float32 or np.float64. If None, numpy.result_type() is used to infer the data type from the inputs.

Returns:
image : numpy.ndarray

float of shape (source, chan)

Dask

im_to_vis(image, uvw, lm, frequency[, dtype]) Computes the discrete image to visibility mapping of an ideal unpolarised interferometer :
vis_to_im(vis, uvw, lm, frequency[, dtype]) Computes visibility to image mapping of an ideal unpolarised interferometer:
africanus.dft.dask.im_to_vis(image, uvw, lm, frequency, dtype=<type 'numpy.complex128'>)[source]

Computes the discrete image to visibility mapping of an ideal unpolarised interferometer :

\[{\Large \sum_s e^{-2 \pi i (u l_s + v m_s + w (n_s - 1))} \cdot I_s }\]
Parameters:
image : dask.array.Array

image of shape (source, chan) The Stokes I intensity in each pixel (flatten 2D array per channel).

uvw : dask.array.Array

UVW coordinates of shape (row, 3) with U, V and W components in the last dimension.

lm : dask.array.Array

LM coordinates of shape (source, 2) with L and M components in the last dimension.

frequency : dask.array.Array

frequencies of shape (chan,)

dtype : np.dtype, optional

Datatype of result. Should be either np.complex64 or np.complex128. If None, numpy.result_type() is used to infer the data type from the inputs.

Returns:
visibilties : dask.array.Array

complex of shape (row, chan)

africanus.dft.dask.vis_to_im(vis, uvw, lm, frequency, dtype=<type 'numpy.float64'>)[source]

Computes visibility to image mapping of an ideal unpolarised interferometer:

\[{\Large \sum_k e^{ 2 \pi i (u_k l + v_k m + w_k (n - 1))} \cdot V_k}\]
Parameters:
vis : dask.array.Array

visibilities of shape (row, chan) The Stokes I visibilities of which to compute a dirty image

uvw : dask.array.Array

UVW coordinates of shape (row, 3) with U, V and W components in the last dimension.

lm : dask.array.Array

LM coordinates of shape (source, 2) with L and M components in the last dimension.

frequency : dask.array.Array

frequencies of shape (chan,)

dtype : np.dtype, optional

Datatype of result. Should be either np.float32 or np.float64. If None, numpy.result_type() is used to infer the data type from the inputs.

Returns:
image : dask.array.Array

float of shape (source, chan)

Gridding and Degridding

This section contains routines for

  1. Gridding complex visibilities onto an image.
  2. Degridding complex visibilities from an image.

Simple

Gridding with no correction for the W-term.

Numpy
grid(vis, uvw, flags, weights, ref_wave, …) Convolutional gridder which grids visibilities vis at the specified uvw coordinates and ref_wave reference wavelengths using the specified convolution_filter.
degrid(grid, uvw, weights, ref_wave, …[, …]) Convolutional degridder (continuum)
africanus.gridding.simple.grid(vis, uvw, flags, weights, ref_wave, convolution_filter, cell_size, nx=1024, ny=1024, grid=None)[source]

Convolutional gridder which grids visibilities vis at the specified uvw coordinates and ref_wave reference wavelengths using the specified convolution_filter.

Variable numbers of correlations are supported.

  • (row, chan, corr_1, corr_2) vis will result in a (ny, nx, corr_1, corr_2) grid.
  • (row, chan, corr_1) vis will result in a (ny, nx, corr_1) grid.
Parameters:
vis : np.ndarray

complex visibility array of shape (row, chan, corr_1, corr_2)

uvw : np.ndarray

float64 array of UVW coordinates of shape (row, 3) in wavelengths.

weights : np.ndarray

float32 or float64 array of weights. Set this to np.ones_like(vis, dtype=np.float32) as default.

flags : np.ndarray

flagged array of shape (row, chan, corr_1, corr_2). Any positive quantity will indicate that the corresponding visibility should be flagged. Set to np.zeros_like(vis, dtype=np.bool) as default.

ref_wave : np.ndarray

float64 array of wavelengths of shape (chan,)

convolution_filter : ConvolutionFilter

Convolution filter

cell_size : float

Cell size in arcseconds.

nx : integer, optional

Size of the grid’s X dimension

ny : integer, optional

Size of the grid’s Y dimension

grid : np.ndarray, optional

complex64/complex128 array of shape (ny, nx, corr_1, corr_2) If supplied, this array will be used as the gridding target, and nx and ny will be derived from this grid’s dimensions.

Returns:
np.ndarray

(ny, nx, corr_1, corr_2) complex ndarray of gridded visibilities. The number of correlations may vary, depending on the shape of vis.

africanus.gridding.simple.degrid(grid, uvw, weights, ref_wave, convolution_filter, cell_size, dtype=<type 'numpy.complex64'>)[source]

Convolutional degridder (continuum)

Variable numbers of correlations are supported.

  • (ny, nx, corr_1, corr_2) grid will result in a (row, chan, corr_1, corr_2) vis
  • (ny, nx, corr_1) grid will result in a (row, chan, corr_1) vis
Parameters:
grid : np.ndarray

float or complex grid of visibilities of shape (ny, nx, corr_1, corr_2)

uvw : np.ndarray

float64 array of UVW coordinates of shape (row, 3) in wavelengths.

weights : np.ndarray

float32 or float64 array of weights. Set this to np.ones_like(vis, dtype=np.float32) as default.

ref_wave : np.ndarray

float64 array of wavelengths of shape (chan,)

convolution_filter : ConvolutionFilter

Convolution Filter

cell_size : float

Cell size in arcseconds.

dtype : numpy.dtype

Data type of the visibilities

Returns:
np.ndarray

(row, chan, corr_1, corr_2) complex ndarray of visibilities

Dask
grid(vis, uvw, flags, weights, ref_wave, …) Convolutional gridder which grids visibilities vis at the specified uvw coordinates and ref_wave reference wavelengths using the specified convolution_filter.
degrid(grid, uvw, weights, ref_wave, …) Convolutional degridder (continuum)
africanus.gridding.simple.dask.grid(vis, uvw, flags, weights, ref_wave, convolution_filter, cell_size, nx=1024, ny=1024)[source]

Convolutional gridder which grids visibilities vis at the specified uvw coordinates and ref_wave reference wavelengths using the specified convolution_filter.

Variable numbers of correlations are supported.

  • (row, chan, corr_1, corr_2) vis will result in a (ny, nx, corr_1, corr_2) grid.
  • (row, chan, corr_1) vis will result in a (ny, nx, corr_1) grid.
Parameters:
vis : np.ndarray

complex visibility array of shape (row, chan, corr_1, corr_2)

uvw : np.ndarray

float64 array of UVW coordinates of shape (row, 3) in wavelengths.

weights : np.ndarray

float32 or float64 array of weights. Set this to da.ones_like(vis, dtype=np.float32) as default.

flags : np.ndarray

flagged array of shape (row, chan, corr_1, corr_2). Any positive quantity will indicate that the corresponding visibility should be flagged. Set to da.zeros_like(vis, dtype=np.bool) as default.

ref_wave : np.ndarray

float64 array of wavelengths of shape (chan,)

convolution_filter : ConvolutionFilter

Convolution filter

cell_size : float

Cell size in arcseconds.

nx : integer, optional

Size of the grid’s X dimension

ny : integer, optional

Size of the grid’s Y dimension

grid : np.ndarray, optional

complex64/complex128 array of shape (ny, nx, corr_1, corr_2) If supplied, this array will be used as the gridding target, and nx and ny will be derived from this grid’s dimensions.

Returns:
np.ndarray

(ny, nx, corr_1, corr_2) complex ndarray of gridded visibilities. The number of correlations may vary, depending on the shape of vis.

africanus.gridding.simple.dask.degrid(grid, uvw, weights, ref_wave, convolution_filter, cell_size)[source]

Convolutional degridder (continuum)

Variable numbers of correlations are supported.

  • (ny, nx, corr_1, corr_2) grid will result in a (row, chan, corr_1, corr_2) vis
  • (ny, nx, corr_1) grid will result in a (row, chan, corr_1) vis
Parameters:
grid : np.ndarray

float or complex grid of visibilities of shape (ny, nx, corr_1, corr_2)

uvw : np.ndarray

float64 array of UVW coordinates of shape (row, 3) in wavelengths.

weights : np.ndarray

float32 or float64 array of weights. Set this to da.ones_like(vis, dtype=np.float32) as default.

ref_wave : np.ndarray

float64 array of wavelengths of shape (chan,)

convolution_filter : ConvolutionFilter

Convolution Filter

cell_size : float

Cell size in arcseconds.

dtype : numpy.dtype

Data type of the visibilities

Returns:
np.ndarray

(row, chan, corr_1, corr_2) complex ndarray of visibilities

W Stacking

This is currently experimental

Implements W-Stacking as described in WSClean.

w_stacking_layers(w_min, w_max, l, m) Computes the number of w-layers given the minimum and maximum W coordinates, as well as the l and m coordinates.
w_stacking_bins(w_min, w_max, w_layers) Returns the W coordinate bins appropriate for the observation parameters, given the minimum and maximum W coordinates and the number of W layers.
w_stacking_centroids(w_bins) Returns the W coordinate centroids for each W layer.
grid(vis, uvw, flags, weights, ref_wave, …) Convolutional W-stacking gridder.
degrid(grids, uvw, weights, ref_wave, …[, …]) Convolutional W-stacking degridder (continuum)
africanus.gridding.wstack.w_stacking_layers(w_min, w_max, l, m)[source]

Computes the number of w-layers given the minimum and maximum W coordinates, as well as the l and m coordinates.

\[N_{wlay} >> 2 \pi \left(w_{max} - w_{min} \right) \underset{l, m}{\max}\left(1 - \sqrt{1 - l^2 - m^2}\right)\]
Parameters:
w_min : float

Minimum W coordinate in wavelengths.

w_max : float

Maximum W coordinate in wavelengths.

l : numpy.ndarray

l coordinates

m : numpy.ndarray

m coordinates

Returns:
int

Number of w-layers

africanus.gridding.wstack.w_stacking_bins(w_min, w_max, w_layers)[source]

Returns the W coordinate bins appropriate for the observation parameters, given the minimum and maximum W coordinates and the number of W layers.

W coordinates can be binned by calling

w_bins = np.digitize(w, bins) - 1
Parameters:
w_min : float

Minimum W coordinate in wavelengths.

w_max : float

Maximum W coordinate in wavelengths.

w_layers : int

Number of w layers

Returns:
:class:`numpy.ndarray`

W-coordinate bins of shape (nw + 1,).

Notes

A small epsilon is added to w_max to force this W coordinate into the last bin.

africanus.gridding.wstack.w_stacking_centroids(w_bins)[source]

Returns the W coordinate centroids for each W layer. Computed from bins produced by w_stacking_bins().

Parameters:
w_bins : numpy.ndarray

W stacking bins of shape (nw + 1,)

Returns:
:class:`numpy.ndarray`

W-coordinate centroids of shape (nw,) in wavelengths.

africanus.gridding.wstack.grid(vis, uvw, flags, weights, ref_wave, convolution_filter, w_bins, cell_size, nx=1024, ny=1024, grids=None)[source]

Convolutional W-stacking gridder.

This function grids visibilities vis onto multiple grids, each associated with a W-layer defined by w_bins. The W coordinate of the uvw array is used to bin the visibility into the appropriate grid.

Variable numbers of correlations are supported.

  • (row, chan, corr_1, corr_2) vis will result in a (ny, nx, corr_1, corr_2) grid.
  • (row, chan, corr_1) vis will result in a (ny, nx, corr_1) grid.
Parameters:
vis : numpy.ndarray

complex visibility array of shape (row, chan, corr_1, corr_2)

uvw : numpy.ndarray

float64 array of UVW coordinates of shape (row, 3)

weights : numpy.ndarray

float32 or float64 array of weights. Set this to np.ones_like(vis, dtype=np.float32) as default.

flags : np.ndarray

flagged array of shape (row, chan, corr_1, corr_2). Any positive quantity will indicate that the corresponding visibility should be flagged. Set to np.zeros_like(vis, dtype=np.bool) as default.

ref_wave : np.ndarray

float64 array of wavelengths of shape (chan,)

convolution_filter : ConvolutionFilter

Convolution filter

w_bins : numpy.ndarray

W coordinate bins of shape (nw + 1,)

cell_size : float

Cell size in arcseconds.

nx : integer, optional

Size of the grid’s X dimension

ny : integer, optional

Size of the grid’s Y dimension

grids : list of np.ndarray, optional

list of complex arrays of length nw, each with shape (ny, nx, corr_1, corr_2). If supplied, this array will be used as the gridding target, and nx and ny will be derived from the grid’s dimensions.

Returns:
list of np.ndarray

list of complex arrays of gridded visibilities, of length nw, each with shape (ny, nx, corr_1, corr_2). The number of correlations may vary, depending on the shape of vis.

africanus.gridding.wstack.degrid(grids, uvw, weights, ref_wave, convolution_filter, w_bins, cell_size, dtype=<type 'numpy.complex64'>)[source]

Convolutional W-stacking degridder (continuum)

Variable numbers of correlations are supported.

  • (ny, nx, corr_1, corr_2) grid will result in a (row, chan, corr_1, corr_2) vis
  • (ny, nx, corr_1) grid will result in a (row, chan, corr_1) vis
Parameters:
grids : list of np.ndarray

list of visibility grids of length nw. of shape (ny, nx, corr_1, corr_2)

uvw : np.ndarray

float64 array of UVW coordinates of shape (row, 3)

weights : np.ndarray

float32 or float64 array of weights. Set this to np.ones_like(vis, dtype=np.float32) as default.

ref_wave : np.ndarray

float64 array of wavelengths of shape (chan,)

convolution_filter : ConvolutionFilter

Convolution Filter

w_bins : numpy.ndarray

W coordinate bins of shape (nw + 1,)

cell_size : float

Cell size in arcseconds.

dtype : numpy.dtype, optional

Numpy type of the resulting array. Defaults to numpy.complex64.

Returns:
np.ndarray

(row, chan, corr_1, corr_2) complex ndarray of visibilities

Utilities

estimate_cell_size(u, v, wavelength[, …]) Estimate the cell size in arcseconds given baseline u and v coordinates, as well as the wavelengths, \(\lambda\).
africanus.gridding.util.estimate_cell_size(u, v, wavelength, factor=3.0, ny=None, nx=None)[source]

Estimate the cell size in arcseconds given baseline u and v coordinates, as well as the wavelengths, \(\lambda\).

The cell size is computed as:

\[ \begin{align}\begin{aligned}\Delta u = 1.0 / \left( 2 \times \text{ factor } \times \max (\vert u \vert) / \min( \lambda) \right)\\\Delta v = 1.0 / \left( 2 \times \text{ factor } \times \max (\vert v \vert) / \min( \lambda) \right)\end{aligned}\end{align} \]

If ny and nx are provided the following checks are performed and exceptions are raised on failure:

\[ \begin{align}\begin{aligned}\Delta u * \text{ ny } \leq \min (\lambda) / \min (\vert u \vert)\\\Delta v * \text{ nx } \leq \min (\lambda) / \min (\vert v \vert)\end{aligned}\end{align} \]
Parameters:
u : numpy.ndarray or float

Maximum u coordinate in metres.

v : numpy.ndarray or float

Maximum v coordinate in metres.

wavelength : numpy.ndarray or float

Wavelengths, in metres.

factor : float, optional

Scaling factor

ny : int, optional

Grid y dimension

nx : int, optional

Grid x dimension

Returns:
:class:`numpy.ndarray`

Cell size of u and v in arcseconds with shape (2,)

Raises:
ValueError

If the cell size criteria are not matched.

Convolution Filters

Convolution filters suitable for use in gridding and degridding.

API

convolution_filter(half_support, …) Create a 2D Convolution Filter suitable for use with gridding and degridding functions.
africanus.filters.convolution_filter(half_support, oversampling_factor, filter_type, **kwargs)[source]

Create a 2D Convolution Filter suitable for use with gridding and degridding functions.

Parameters:
half_support : integer

Half support (N) of the filter. The filter has a full support of N*2 + 3 taps. Two of the taps exist as padding.

oversampling_factor : integer

Number of spaces in-between grid-steps (improves gridding/degridding accuracy)

filter_type : {‘kaiser-bessel’, ‘sinc’}

Filter type. See Convolution Filters for further information.

beta : float, optional

Beta shape parameter for Kaiser Bessel filters.

normalise : {True, False}

Normalise the filter by the it’s volume. Defaults to True.

Returns:
:class:`ConvolutionFilter`

namedtuple containing filter attributes

africanus.filters.ConvolutionFilter = <class 'africanus.filters.conv_filters.ConvolutionFilter'>

Kaiser Bessel

The Kaiser Bessel function.

kaiser_bessel(u, W, beta) Compute a 1D Kaiser Bessel filter as defined in Selection of a Convolution Function for Fourier Inversion Using Gridding.
kaiser_bessel_with_sinc(u, W, oversample, beta) Produces a filter composed of Kaiser Bessel multiplied by a sinc.
kaiser_bessel_fourier(x, W, beta) Computes the Fourier Transform of a 1D Kaiser Bessel filter.
estimate_kaiser_bessel_beta(W) Estimate the kaiser bessel beta using the following heuristic:
africanus.filters.kaiser_bessel_filter.kaiser_bessel(u, W, beta)[source]

Compute a 1D Kaiser Bessel filter as defined in Selection of a Convolution Function for Fourier Inversion Using Gridding.

Parameters:
u : numpy.ndarray

Filter positions

W : int

Width of the filter

beta : float, optional

Kaiser Bessel shape parameter

Returns:
:class:`numpy.ndarray`

Kaiser Bessel filter with the same shape as u

africanus.filters.kaiser_bessel_filter.kaiser_bessel_with_sinc(u, W, oversample, beta, normalise=True)[source]

Produces a filter composed of Kaiser Bessel multiplied by a sinc.

Accounts for the oversampling factor, as well as normalising the filter.

Parameters:
u : numpy.ndarray

Filter positions

W : int

Width of the filter

oversample : int

Oversampling factor

beta : float

Kaiser Bessel shape parameter

normalise : optional, {True, False}

True if the filter should be normalised

Returns:
:class:`numpy.ndarray`

Filter with the same shape as u

africanus.filters.kaiser_bessel_filter.kaiser_bessel_fourier(x, W, beta)[source]

Computes the Fourier Transform of a 1D Kaiser Bessel filter. as defined in Selection of a Convolution Function for Fourier Inversion Using Gridding.

Parameters:
x : numpy.ndarray

Filter positions

W : int

Width of the filter.

beta : float

Kaiser bessel shape parameter

Returns:
:class:`numpy.ndarray`

Fourier Transform of the Kaiser Bessel, with the same shape as x.

africanus.filters.kaiser_bessel_filter.estimate_kaiser_bessel_beta(W)[source]

Estimate the kaiser bessel beta using the following heuristic:

\[\beta = 2.34 \times W\]

Derived from Nonuniform fast Fourier transforms using min-max interpolation.

Parameters:
W : int

Width of the filter

Returns:
float

Kaiser Bessel beta shape parameter

Sinc

The Sinc function.

Deconvolution Algorithms

Coordinate Transforms

Numpy

radec_to_lm(radec[, phase_centre]) Converts Right-Ascension/Declination coordinates in radians to a Direction Cosine lm coordinates, relative to the Phase Centre.
radec_to_lmn(radec[, phase_centre]) Converts Right-Ascension/Declination coordinates in radians to a Direction Cosine lm coordinates, relative to the Phase Centre.
lm_to_radec(lm[, phase_centre]) Convert Direction Cosine lm coordinates to Right Ascension/Declination coordinates in radians, relative to the Phase Centre.
lmn_to_radec(lmn[, phase_centre]) Convert Direction Cosine lm coordinates to Right Ascension/Declination coordinates in radians, relative to the Phase Centre.
africanus.coordinates.radec_to_lm(radec, phase_centre=None)[source]

Converts Right-Ascension/Declination coordinates in radians to a Direction Cosine lm coordinates, relative to the Phase Centre.

\begin{eqnarray} & l =& \, \cos \, \delta \sin \, \Delta \alpha \\ & m =& \, \sin \, \delta \cos \, \delta 0 - \cos \delta \sin \delta 0 \cos \Delta \alpha \\ & n =& \, \sqrt{1 - l^2 - m^2} - 1 \end{eqnarray}

where \(\Delta \alpha = \alpha - \alpha 0\) is the difference between the Right Ascension of each coordinate and the phase centre and \(\delta 0\) is the Declination of the phase centre.

Parameters:
radec : numpy.ndarray

radec coordinates of shape (coord, 2) where Right-Ascension and Declination are in the last 2 components, respectively.

phase_centre : numpy.ndarray, optional

radec coordinates of the Phase Centre. Shape (2,)

Returns:
:class:`numpy.ndarray`

lm Direction Cosines of shape (coord, 2)

africanus.coordinates.radec_to_lmn(radec, phase_centre=None)[source]

Converts Right-Ascension/Declination coordinates in radians to a Direction Cosine lm coordinates, relative to the Phase Centre.

\begin{eqnarray} & l =& \, \cos \, \delta \sin \, \Delta \alpha \\ & m =& \, \sin \, \delta \cos \, \delta 0 - \cos \delta \sin \delta 0 \cos \Delta \alpha \\ & n =& \, \sqrt{1 - l^2 - m^2} - 1 \end{eqnarray}

where \(\Delta \alpha = \alpha - \alpha 0\) is the difference between the Right Ascension of each coordinate and the phase centre and \(\delta 0\) is the Declination of the phase centre.

Parameters:
radec : numpy.ndarray

radec coordinates of shape (coord, 2) where Right-Ascension and Declination are in the last 2 components, respectively.

phase_centre : numpy.ndarray, optional

radec coordinates of the Phase Centre. Shape (2,)

Returns:
:class:`numpy.ndarray`

lm Direction Cosines of shape (coord, 3)

africanus.coordinates.lm_to_radec(lm, phase_centre=None)[source]

Convert Direction Cosine lm coordinates to Right Ascension/Declination coordinates in radians, relative to the Phase Centre.

\begin{eqnarray} & \delta = & \, \arcsin \left( m \cos \delta 0 + n \sin \delta 0 \right) \\ & \alpha = & \, \arctan \left( \frac{l}{n \cos \delta 0 - m \sin \delta 0} \right) \\ \end{eqnarray}

where \(\alpha\) is the Right Ascension of each coordinate and the phase centre and \(\delta 0\) is the Declination of the phase centre.

Parameters:
lm : numpy.ndarray

lm Direction Cosines of shape (coord, 2)

phase_centre : numpy.ndarray, optional

radec coordinates of the Phase Centre. Shape (2,)

Returns:
:class:`numpy.ndarray`

radec coordinates of shape (coord, 2) where Right-Ascension and Declination are in the last 2 components, respectively.

africanus.coordinates.lmn_to_radec(lmn, phase_centre=None)[source]

Convert Direction Cosine lm coordinates to Right Ascension/Declination coordinates in radians, relative to the Phase Centre.

\begin{eqnarray} & \delta = & \, \arcsin \left( m \cos \delta 0 + n \sin \delta 0 \right) \\ & \alpha = & \, \arctan \left( \frac{l}{n \cos \delta 0 - m \sin \delta 0} \right) \\ \end{eqnarray}

where \(\alpha\) is the Right Ascension of each coordinate and the phase centre and \(\delta 0\) is the Declination of the phase centre.

Parameters:
lmn : numpy.ndarray

lm Direction Cosines of shape (coord, 3)

phase_centre : numpy.ndarray, optional

radec coordinates of the Phase Centre. Shape (2,)

Returns:
:class:`numpy.ndarray`

radec coordinates of shape (coord, 2) where Right-Ascension and Declination are in the last 2 components, respectively.

Dask

radec_to_lm(radec[, phase_centre]) Converts Right-Ascension/Declination coordinates in radians to a Direction Cosine lm coordinates, relative to the Phase Centre.
radec_to_lmn(radec[, phase_centre]) Converts Right-Ascension/Declination coordinates in radians to a Direction Cosine lm coordinates, relative to the Phase Centre.
lm_to_radec(lm[, phase_centre]) Convert Direction Cosine lm coordinates to Right Ascension/Declination coordinates in radians, relative to the Phase Centre.
lmn_to_radec(lmn[, phase_centre]) Convert Direction Cosine lm coordinates to Right Ascension/Declination coordinates in radians, relative to the Phase Centre.
africanus.coordinates.dask.radec_to_lm(radec, phase_centre=None)[source]

Converts Right-Ascension/Declination coordinates in radians to a Direction Cosine lm coordinates, relative to the Phase Centre.

\begin{eqnarray} & l =& \, \cos \, \delta \sin \, \Delta \alpha \\ & m =& \, \sin \, \delta \cos \, \delta 0 - \cos \delta \sin \delta 0 \cos \Delta \alpha \\ & n =& \, \sqrt{1 - l^2 - m^2} - 1 \end{eqnarray}

where \(\Delta \alpha = \alpha - \alpha 0\) is the difference between the Right Ascension of each coordinate and the phase centre and \(\delta 0\) is the Declination of the phase centre.

Parameters:
radec : dask.array.Array

radec coordinates of shape (coord, 2) where Right-Ascension and Declination are in the last 2 components, respectively.

phase_centre : dask.array.Array, optional

radec coordinates of the Phase Centre. Shape (2,)

Returns:
:class:`dask.array.Array`

lm Direction Cosines of shape (coord, 2)

africanus.coordinates.dask.radec_to_lmn(radec, phase_centre=None)[source]

Converts Right-Ascension/Declination coordinates in radians to a Direction Cosine lm coordinates, relative to the Phase Centre.

\begin{eqnarray} & l =& \, \cos \, \delta \sin \, \Delta \alpha \\ & m =& \, \sin \, \delta \cos \, \delta 0 - \cos \delta \sin \delta 0 \cos \Delta \alpha \\ & n =& \, \sqrt{1 - l^2 - m^2} - 1 \end{eqnarray}

where \(\Delta \alpha = \alpha - \alpha 0\) is the difference between the Right Ascension of each coordinate and the phase centre and \(\delta 0\) is the Declination of the phase centre.

Parameters:
radec : dask.array.Array

radec coordinates of shape (coord, 2) where Right-Ascension and Declination are in the last 2 components, respectively.

phase_centre : dask.array.Array, optional

radec coordinates of the Phase Centre. Shape (2,)

Returns:
:class:`dask.array.Array`

lm Direction Cosines of shape (coord, 3)

africanus.coordinates.dask.lm_to_radec(lm, phase_centre=None)[source]

Convert Direction Cosine lm coordinates to Right Ascension/Declination coordinates in radians, relative to the Phase Centre.

\begin{eqnarray} & \delta = & \, \arcsin \left( m \cos \delta 0 + n \sin \delta 0 \right) \\ & \alpha = & \, \arctan \left( \frac{l}{n \cos \delta 0 - m \sin \delta 0} \right) \\ \end{eqnarray}

where \(\alpha\) is the Right Ascension of each coordinate and the phase centre and \(\delta 0\) is the Declination of the phase centre.

Parameters:
lm : dask.array.Array

lm Direction Cosines of shape (coord, 2)

phase_centre : dask.array.Array, optional

radec coordinates of the Phase Centre. Shape (2,)

Returns:
:class:`dask.array.Array`

radec coordinates of shape (coord, 2) where Right-Ascension and Declination are in the last 2 components, respectively.

africanus.coordinates.dask.lmn_to_radec(lmn, phase_centre=None)[source]

Convert Direction Cosine lm coordinates to Right Ascension/Declination coordinates in radians, relative to the Phase Centre.

\begin{eqnarray} & \delta = & \, \arcsin \left( m \cos \delta 0 + n \sin \delta 0 \right) \\ & \alpha = & \, \arctan \left( \frac{l}{n \cos \delta 0 - m \sin \delta 0} \right) \\ \end{eqnarray}

where \(\alpha\) is the Right Ascension of each coordinate and the phase centre and \(\delta 0\) is the Declination of the phase centre.

Parameters:
lmn : dask.array.Array

lm Direction Cosines of shape (coord, 3)

phase_centre : dask.array.Array, optional

radec coordinates of the Phase Centre. Shape (2,)

Returns:
:class:`dask.array.Array`

radec coordinates of shape (coord, 2) where Right-Ascension and Declination are in the last 2 components, respectively.

Sky Model

Functionality related to the Sky Model.

Coherency Conversion

Utilities for converting back and forth between stokes parameters and correlations

Numpy
convert(input, input_schema, output_schema) This function converts forward and backward from stokes I,Q,U,V to both linear XX,XY,YX,YY and circular RR, RL, LR, LL correlations.
africanus.model.coherency.convert(input, input_schema, output_schema)[source]

This function converts forward and backward from stokes I,Q,U,V to both linear XX,XY,YX,YY and circular RR, RL, LR, LL correlations.

For example, we can convert from stokes parameters to linear correlations:

stokes.shape == (10, 4, 4)
corrs = convert(stokes, ["I", "Q", "U", "V"],
                [['XX', 'XY'], ['YX', 'YY'])

assert corrs.shape == (10, 4, 2, 2)

Or circular correlations to stokes:

vis.shape == (10, 4, 2, 2)

stokes = convert(vis, [['RR', 'RL'], ['LR', 'LL']],
                        ['I', 'Q', 'U', 'V'])

assert stokes.shape == (10, 4, 4)

input can output can be arbitrarily nested or ordered lists, but the appropriate inputs must be present to produce the requested outputs.

The elements of input and output may be strings or integers representing stokes parameters or correlations. See the Notes for a full list.

Parameters:
input : numpy.ndarray

Complex or floating point input data of shape (dim_1, ..., dim_n, icorr_1, ..., icorr_m)

input_schema : list of str or int

A schema describing the icorr_1, ..., icorr_m dimension of input. Must have the same shape as the last dimensions of input.

output_schema : list of str or int

A schema describing the ocorr_1, ..., ocorr_n dimension of the return value.

Returns:
result : numpy.ndarray

Result of shape (dim_1, ..., dim_n, ocorr_1, ..., ocorr_m) The type may be floating point or promoted to complex depending on the combinations in output.

Notes

Only stokes parameters, linear and circular correlations are currently handled, but the full list of id’s and strings as defined in the CASA documentation is:

{{ Undefined: 0, I: 1, Q: 2, U: 3, V: 4, RR: 5, RL: 6, LR: 7, LL: 8,
    XX: 9, XY: 10, YX: 11, YY: 12, RX: 13, RY: 14, LX: 15, LY: 16,
    XR: 17, XL: 18, YR: 19, YL: 20, PP: 21, PQ: 22, QP: 23, QQ:
    24, RCircular: 25, LCircular: 26, Linear: 27, Ptotal: 28,
    Plinear: 29, PFtotal: 30, PFlinear: 31, Pangle: 32 }}
Cuda
convert(inputs, input_schema, output_schema) This function converts forward and backward from stokes I,Q,U,V to both linear XX,XY,YX,YY and circular RR, RL, LR, LL correlations.
africanus.model.coherency.cuda.convert(inputs, input_schema, output_schema)[source]

This function converts forward and backward from stokes I,Q,U,V to both linear XX,XY,YX,YY and circular RR, RL, LR, LL correlations.

For example, we can convert from stokes parameters to linear correlations:

stokes.shape == (10, 4, 4)
corrs = convert(stokes, ["I", "Q", "U", "V"],
                [['XX', 'XY'], ['YX', 'YY'])

assert corrs.shape == (10, 4, 2, 2)

Or circular correlations to stokes:

vis.shape == (10, 4, 2, 2)

stokes = convert(vis, [['RR', 'RL'], ['LR', 'LL']],
                        ['I', 'Q', 'U', 'V'])

assert stokes.shape == (10, 4, 4)

input can output can be arbitrarily nested or ordered lists, but the appropriate inputs must be present to produce the requested outputs.

The elements of input and output may be strings or integers representing stokes parameters or correlations. See the Notes for a full list.

Parameters:
input : cupy.ndarray

Complex or floating point input data of shape (dim_1, ..., dim_n, icorr_1, ..., icorr_m)

input_schema : list of str or int

A schema describing the icorr_1, ..., icorr_m dimension of input. Must have the same shape as the last dimensions of input.

output_schema : list of str or int

A schema describing the ocorr_1, ..., ocorr_n dimension of the return value.

Returns:
result : cupy.ndarray

Result of shape (dim_1, ..., dim_n, ocorr_1, ..., ocorr_m) The type may be floating point or promoted to complex depending on the combinations in output.

Notes

Only stokes parameters, linear and circular correlations are currently handled, but the full list of id’s and strings as defined in the CASA documentation is:

{{ Undefined: 0, I: 1, Q: 2, U: 3, V: 4, RR: 5, RL: 6, LR: 7, LL: 8,
    XX: 9, XY: 10, YX: 11, YY: 12, RX: 13, RY: 14, LX: 15, LY: 16,
    XR: 17, XL: 18, YR: 19, YL: 20, PP: 21, PQ: 22, QP: 23, QQ:
    24, RCircular: 25, LCircular: 26, Linear: 27, Ptotal: 28,
    Plinear: 29, PFtotal: 30, PFlinear: 31, Pangle: 32 }}
Dask
convert(input, input_schema, output_schema) This function converts forward and backward from stokes I,Q,U,V to both linear XX,XY,YX,YY and circular RR, RL, LR, LL correlations.
africanus.model.coherency.dask.convert(input, input_schema, output_schema)[source]

This function converts forward and backward from stokes I,Q,U,V to both linear XX,XY,YX,YY and circular RR, RL, LR, LL correlations.

For example, we can convert from stokes parameters to linear correlations:

stokes.shape == (10, 4, 4)
corrs = convert(stokes, ["I", "Q", "U", "V"],
                [['XX', 'XY'], ['YX', 'YY'])

assert corrs.shape == (10, 4, 2, 2)

Or circular correlations to stokes:

vis.shape == (10, 4, 2, 2)

stokes = convert(vis, [['RR', 'RL'], ['LR', 'LL']],
                        ['I', 'Q', 'U', 'V'])

assert stokes.shape == (10, 4, 4)

input can output can be arbitrarily nested or ordered lists, but the appropriate inputs must be present to produce the requested outputs.

The elements of input and output may be strings or integers representing stokes parameters or correlations. See the Notes for a full list.

Parameters:
input : dask.array.Array

Complex or floating point input data of shape (dim_1, ..., dim_n, icorr_1, ..., icorr_m)

input_schema : list of str or int

A schema describing the icorr_1, ..., icorr_m dimension of input. Must have the same shape as the last dimensions of input.

output_schema : list of str or int

A schema describing the ocorr_1, ..., ocorr_n dimension of the return value.

Returns:
result : dask.array.Array

Result of shape (dim_1, ..., dim_n, ocorr_1, ..., ocorr_m) The type may be floating point or promoted to complex depending on the combinations in output.

Notes

Only stokes parameters, linear and circular correlations are currently handled, but the full list of id’s and strings as defined in the CASA documentation is:

{{ Undefined: 0, I: 1, Q: 2, U: 3, V: 4, RR: 5, RL: 6, LR: 7, LL: 8,
    XX: 9, XY: 10, YX: 11, YY: 12, RX: 13, RY: 14, LX: 15, LY: 16,
    XR: 17, XL: 18, YR: 19, YL: 20, PP: 21, PQ: 22, QP: 23, QQ:
    24, RCircular: 25, LCircular: 26, Linear: 27, Ptotal: 28,
    Plinear: 29, PFtotal: 30, PFlinear: 31, Pangle: 32 }}

Spectral Model

Functionality for computing a Spectral Model.

Numpy
spectral_model(stokes, spi, ref_freq, frequency) Compute a spectral model, per polarisation.
africanus.model.spectral.spectral_model(stokes, spi, ref_freq, frequency, base=0)[source]

Compute a spectral model, per polarisation.

\begin{eqnarray} I(\lambda) & = & \sum_{i=0} \alpha_{i} (\lambda / \lambda_0 - 1)^i \, \textrm{where} \, \alpha_0 = I(\lambda_0) \\ \ln( I(\lambda) ) & = & \sum_{i=0} \alpha_{i} \ln (\lambda / \lambda_0)^i \, \textrm{where} \, \alpha_0 = \ln I_0 \\ \log_{10}( I(\lambda) ) & = & \sum_{i=0} \alpha_{i} \log_{10} (\lambda / \lambda_0)^i \, \textrm{where} \, \alpha_0 = \log_{10} I_0 \\ \end{eqnarray}
Parameters:
stokes : numpy.ndarray

Stokes parameters of shape (source,) or (source, pol). If a pol dimension is present, then it must also be present on spi.

spi : numpy.ndarray

Spectral index of shape (source, spi-comps) or (source, spi-comps, pol).

ref_freq : numpy.ndarray

Reference frequencies of shape (source,)

frequencies : numpy.ndarray

Frequencies of shape (chan,)

base : {“std”, “log”, “log10”} or {0, 1, 2} or list.

string or corresponding enumeration specifying the polynomial base. Defaults to 0.

If a list is provided, a polynomial base can be specified for each stokes parameter or polarisation in the pol dimension.

string specification of the base is only supported in python 3. while the corresponding integer enumerations are supported on all python versions.

Returns:
spectral_model : numpy.ndarray

Spectral Model of shape (source, chan) or (source, chan, pol).

Dask
spectral_model(stokes, spi, ref_freq, …[, …]) Compute a spectral model, per polarisation.
africanus.model.spectral.dask.spectral_model(stokes, spi, ref_freq, frequencies, base=0)[source]

Compute a spectral model, per polarisation.

\begin{eqnarray} I(\lambda) & = & \sum_{i=0} \alpha_{i} (\lambda / \lambda_0 - 1)^i \, \textrm{where} \, \alpha_0 = I(\lambda_0) \\ \ln( I(\lambda) ) & = & \sum_{i=0} \alpha_{i} \ln (\lambda / \lambda_0)^i \, \textrm{where} \, \alpha_0 = \ln I_0 \\ \log_{10}( I(\lambda) ) & = & \sum_{i=0} \alpha_{i} \log_{10} (\lambda / \lambda_0)^i \, \textrm{where} \, \alpha_0 = \log_{10} I_0 \\ \end{eqnarray}
Parameters:
stokes : dask.array.Array

Stokes parameters of shape (source,) or (source, pol). If a pol dimension is present, then it must also be present on spi.

spi : dask.array.Array

Spectral index of shape (source, spi-comps) or (source, spi-comps, pol).

ref_freq : dask.array.Array

Reference frequencies of shape (source,)

frequencies : dask.array.Array

Frequencies of shape (chan,)

base : {“std”, “log”, “log10”} or {0, 1, 2} or list.

string or corresponding enumeration specifying the polynomial base. Defaults to 0.

If a list is provided, a polynomial base can be specified for each stokes parameter or polarisation in the pol dimension.

string specification of the base is only supported in python 3. while the corresponding integer enumerations are supported on all python versions.

Returns:
spectral_model : dask.array.Array

Spectral Model of shape (source, chan) or (source, chan, pol).

Spectral Index

Functionality related to the spectral index.

For example, we may want to compute the spectral indices of components in a sky model defined by

\[I(\nu) = I(\nu_0) \left(\frac{\nu}{\nu_0}\right)^\alpha\]

where \(\nu\) are frequencies ay which we want to construct the intensity of a Stokes I image and the \(\nu_0\) is the corresponding reference frequency. The spectral index \(\alpha\) determines how quickly the intensity grows or decays as a function of frequency. Given a list of model image components (preferably with the residuals added back in) we can recover the corresponding spectral indices and reference intensities using the fit_spi_components() function. This will also return a lower bound on the associated uncertainties on these components.

Numpy
fit_spi_components(data, weights, freqs, freq0) Computes the spectral indices and the intensity at the reference frequency of a spectral index model:
africanus.model.spi.fit_spi_components(data, weights, freqs, freq0, alphai=None, I0i=None, tol=1e-06, maxiter=100, dtype=<type 'numpy.float64'>)[source]

Computes the spectral indices and the intensity at the reference frequency of a spectral index model:

\[I(\nu) = I(\nu_0) \left( \frac{\nu}{\nu_0} \right) ^ \alpha\]
Parameters:
data : numpy.ndarray

array of shape (comps, chan) The noisy data as a function of frequency.

weights : numpy.ndarray

array of shape (chan,) Inverse of variance on each frequency axis.

freqs : numpy.ndarray

frequencies of shape (chan,)

freq0 : float

Reference frequency

alphai : numpy.ndarray, optional

array of shape (comps,) Initial guess for the alphas. Defaults to -0.7.

I0i : numpy.ndarray, optional

array of shape (comps,) Initial guess for the intensities at the reference frequency. Defaults to 1.0.

tol : float, optional

Solver absolute tolerance (optional). Defaults to 1e-6.

maxiter : int, optional

Solver maximum iterations (optional). Defaults to 100.

dtype : np.dtype, optional

Datatype of result. Should be either np.float32 or np.float64. Defaults to np.float64.

Returns:
out : numpy.ndarray

array of shape (4, comps) The fitted components arranged as [alphas, alphavars, I0s, I0vars]

Dask
fit_spi_components(data, weights, freqs, freq0) Computes the spectral indices and the intensity at the reference frequency of a spectral index model:
africanus.model.spi.dask.fit_spi_components(data, weights, freqs, freq0, alphai=None, I0i=None, tol=1e-06, maxiter=100, dtype=<type 'numpy.float64'>)[source]

Computes the spectral indices and the intensity at the reference frequency of a spectral index model:

\[I(\nu) = I(\nu_0) \left( \frac{\nu}{\nu_0} \right) ^ \alpha\]
Parameters:
data : dask.array.Array

array of shape (comps, chan) The noisy data as a function of frequency.

weights : dask.array.Array

array of shape (chan,) Inverse of variance on each frequency axis.

freqs : dask.array.Array

frequencies of shape (chan,)

freq0 : float

Reference frequency

alphai : dask.array.Array, optional

array of shape (comps,) Initial guess for the alphas. Defaults to -0.7.

I0i : dask.array.Array, optional

array of shape (comps,) Initial guess for the intensities at the reference frequency. Defaults to 1.0.

tol : float, optional

Solver absolute tolerance (optional). Defaults to 1e-6.

maxiter : int, optional

Solver maximum iterations (optional). Defaults to 100.

dtype : np.dtype, optional

Datatype of result. Should be either np.float32 or np.float64. Defaults to np.float64.

Returns:
out : dask.array.Array

array of shape (4, comps) The fitted components arranged as [alphas, alphavars, I0s, I0vars]

Source Morphology

Shape functions for different Source Morphologies

Numpy
gaussian(uvw, frequency, shape_params) Computes the Gaussian Shape Function.
africanus.model.shape.gaussian(uvw, frequency, shape_params)[source]

Computes the Gaussian Shape Function.

\[\begin{split}& \lambda^\prime = 2 \lambda \pi \\ & r = \frac{e_{min}}{e_{maj}} \\ & u_{1} = (u \, e_{maj} \, cos(\alpha) - v \, e_{maj} \, sin(\alpha)) r \lambda^\prime \\ & v_{1} = (u \, e_{maj} \, sin(\alpha) - v \, e_{maj} \, cos(\alpha)) \lambda^\prime \\ & \textrm{shape} = e^{(-u_{1}^2 - v_{1}^2)}\end{split}\]

where:

  • \(u\) and \(v\) are the UV coordinates and \(\lambda\) the frequency.
  • \(e_{maj}\) and \(e_{min}\) are the major and minor axes and \(\alpha\) the position angle.
Parameters:
uvw : numpy.ndarray

UVW coordinates of shape (row, 3)

frequency : numpy.ndarray

frequencies of shape (chan,)

shape_param : numpy.ndarray

Gaussian Shape Parameters of shape (source, 3) where the second dimension contains the (emajor, eminor, angle) parameters describing the shape of the Gaussian

Returns:
gauss_shape : numpy.ndarray

Shape parameters of shape (source, row, chan)

Dask
gaussian(uvw, frequency, shape_params) Computes the Gaussian Shape Function.
africanus.model.shape.dask.gaussian(uvw, frequency, shape_params)[source]

Computes the Gaussian Shape Function.

\[\begin{split}& \lambda^\prime = 2 \lambda \pi \\ & r = \frac{e_{min}}{e_{maj}} \\ & u_{1} = (u \, e_{maj} \, cos(\alpha) - v \, e_{maj} \, sin(\alpha)) r \lambda^\prime \\ & v_{1} = (u \, e_{maj} \, sin(\alpha) - v \, e_{maj} \, cos(\alpha)) \lambda^\prime \\ & \textrm{shape} = e^{(-u_{1}^2 - v_{1}^2)}\end{split}\]

where:

  • \(u\) and \(v\) are the UV coordinates and \(\lambda\) the frequency.
  • \(e_{maj}\) and \(e_{min}\) are the major and minor axes and \(\alpha\) the position angle.
Parameters:
uvw : dask.array.Array

UVW coordinates of shape (row, 3)

frequency : dask.array.Array

frequencies of shape (chan,)

shape_param : dask.array.Array

Gaussian Shape Parameters of shape (source, 3) where the second dimension contains the (emajor, eminor, angle) parameters describing the shape of the Gaussian

Returns:
gauss_shape : dask.array.Array

Shape parameters of shape (source, row, chan)

WSClean Spectral Model

Utilities for creating a spectral model from a wsclean component file.

Numpy
load(filename) Loads wsclean component model.
spectra(I, coeffs, log_poly, ref_freq, frequency) Produces a spectral model from a polynomial expansion of a wsclean file model.
africanus.model.wsclean.load(filename)[source]

Loads wsclean component model.

sources = load("components.txt")
sources = dict(sources)  # Convert to dictionary

I = sources["I"]
ref_freq = sources["ReferenceFrequency"]

See the WSClean Component List for further details.

Parameters:
filename : str or iterable

Filename of wsclean model file or iterable producing the lines of the file.

Returns:
list of (name, list of values) tuples

list of column (name, value) tuples

africanus.model.wsclean.spectra(I, coeffs, log_poly, ref_freq, frequency)[source]

Produces a spectral model from a polynomial expansion of a wsclean file model. Depending on how log_poly is set ordinary or logarithmic polynomials are used to produce the expansion:

\[\begin{split}& flux(\lambda) = I_{0} + \sum\limits_{c=0} \textrm{coeffs}(c) ({\lambda/\lambda_{ref}} - 1)^{c+1} \\ & flux(\lambda) = \exp \left( \log I_{0} + \sum\limits_{c=0} \textrm{coeffs}(c) \log({\lambda/\lambda_{ref}})^{c+1} \right) \\\end{split}\]

See the WSClean Component List for further details.

Parameters:
I : numpy.ndarray

flux density in Janskys at the reference frequency of shape (source,)

coeffs : numpy.ndarray

Polynomial coefficients for each source of shape (source, comp)

log_poly : numpy.ndarray or bool

boolean array of shape (source, ) indicating whether logarithmic (True) or ordinary (False) polynomials should be used.

ref_freq : numpy.ndarray

Source reference frequencies of shape (source,)

frequency : numpy.ndarray

frequencies of shape (chan,)

Returns:
spectral_model : numpy.ndarray

Spectral Model of shape (source, chan)

Dask
spectra(stokes, spi, log_si, ref_freq, frequency) Produces a spectral model from a polynomial expansion of a wsclean file model.
africanus.model.wsclean.dask.spectra(stokes, spi, log_si, ref_freq, frequency)[source]

Produces a spectral model from a polynomial expansion of a wsclean file model. Depending on how log_poly is set ordinary or logarithmic polynomials are used to produce the expansion:

\[\begin{split}& flux(\lambda) = I_{0} + \sum\limits_{c=0} \textrm{coeffs}(c) ({\lambda/\lambda_{ref}} - 1)^{c+1} \\ & flux(\lambda) = \exp \left( \log I_{0} + \sum\limits_{c=0} \textrm{coeffs}(c) \log({\lambda/\lambda_{ref}})^{c+1} \right) \\\end{split}\]

See the WSClean Component List for further details.

Parameters:
I : dask.array.Array

flux density in Janskys at the reference frequency of shape (source,)

coeffs : dask.array.Array

Polynomial coefficients for each source of shape (source, comp)

log_poly : dask.array.Array or bool

boolean array of shape (source, ) indicating whether logarithmic (True) or ordinary (False) polynomials should be used.

ref_freq : dask.array.Array

Source reference frequencies of shape (source,)

frequency : dask.array.Array

frequencies of shape (chan,)

Returns:
spectral_model : dask.array.Array

Spectral Model of shape (source, chan)

Averaging

Routines for averaging visibility data.

Time and Channel Averaging

The routines in this section average row-based samples by:

  1. Averaging samples of consecutive time values into bins defined by an period of time_bin_secs seconds.
  2. Averaging channel data into equally sized bins of chan_bin_size.

In order to achieve this, a baseline x time ordering is established over the input data where baseline corresponds to the unique (ANTENNA1, ANTENNA2) pairs and time corresponds to the unique, monotonically increasing TIME values associated with the rows of a Measurement Set.

Baseline T0 T1 T2 T3 T4
(0, 0) 0.1 0.2 0.3 0.4 0.5
(0, 1) 0.1 0.2 0.3 0.4 0.5
(0, 2) 0.1 0.2 X 0.4 0.5
(1, 1) 0.1 0.2 0.3 0.4 0.5
(1, 2) 0.1 0.2 0.3 0.4 0.5
(2, 2) 0.1 0.2 0.3 0.4 0.5

It is possible for times or baselines to be missing. In the above example, T2 is missing for baseline (0, 2).

For each baseline, adjacent time’s are assigned to a bin if \(h_c - h_e/2 - (l_c - l_e/2) <\) time_bin_secs, where \(h_c\) and \(l_c\) are the upper and lower time and \(h_e\) and \(l_e\) are the upper and lower intervals, taken from the INTERVAL column. Note that no distinction is made between flagged and unflagged data when establishing the endpoints in the bin.

The reason for this is that the Measurement Set v2.0 Specification specifies that TIME and INTERVAL columns are defined as containing the nominal time and period at which the visibility was sampled. This means that their values includie valid, flagged and missing data. Thus, averaging a regular high-resolution baseline x htime grid should produce a regular low-resolution baseline x ltime grid (htime > ltime) in the presence of bad data

By contrast, other columns such as TIME_CENTROID and EXPOSURE contain the effective time and period as they exclude missing and bad data. Their increased accuracy, and therefore variability means that they are unsuitable for establishing a grid over the data.

To summarise, the averaged times in each bin establish a map:

  • from possibly unordered input rows.
  • to a reduced set of output rows ordered by averaged (TIME, ANTENNA1, ANTENNA2).
Flagged Data Handling

Both FLAG_ROW and FLAG columns may be supplied to the averager, but they should be consistent with each other. The averager will throw an exception if this is not the case, rather than making an assumption as to which is correct.

When provided with flags, the averager will output averages for bins that are completely flagged.

Part of the reason for this is that the specifies that the TIME and INTERVAL columns represent the nominal time and interval values. This means that they should represent valid as well as flagged or missing data in their computation.

By contrast, most other columns such as TIME_CENTROID and EXPOSURE, contain the effective values and should only include valid, unflagged data.

To support this:

  1. TIME and INTERVAL are averaged using both flagged and unflagged samples.
  2. Other columns, such as TIME_CENTROID are handled as follows:
    1. If the bin contains some unflagged data, only this data is used to calculate average.
    2. If the bin is completely flagged, the average of all samples (which are all flagged) will be used.
  3. In both cases, a completely flagged bin will have it’s flag set.
  4. To support the two cases, twice the memory of the output array is required to track both averages, but only one array of merged values is returned.
Guarantees
  1. Averaged output data will be lexicographically ordered by (TIME, ANTENNA1, ANTENNA2)
  2. TIME and INTERVAL columns always contain the nominal average and sum and therefore contain both and missing or unflagged data.
  3. Other columns will contain the effective average and will contain only valid data except when all data in the bin is flagged.
  4. Completely flagged bins will be set as flagged in both the nominal and effective case.
  5. Certain columns are averaged, while others are summed, or simply assigned to the last value in the bin in the case of antenna indices.
  6. Visibility data is averaged by multiplying and dividing by WEIGHT_SPECTRUM or WEIGHT or natural weighting, in order of priority.
\[\frac{\sum v_i w_i}{\sum w_i}\]
  1. SIGMA_SPECTRUM is averaged by multiplying and dividing by WEIGHT_SPECTRUM or WEIGHT or natural weighting, in order of priority and availability.

    SIGMA is only averaged with WEIGHT or natural weighting.

\[\sqrt{\frac{\sum w_i^2 \sigma_i^2}{(\sum w_i)^2}}\]
Column Unflagged/Flagged sample handling Aggregation Method Required
TIME Nominal Mean Yes
INTERVAL Nominal Sum Yes
ANTENNA1 Nominal Assigned to Last Input Yes
ANTENNA2 Nominal Assigned to Last Input Yes
TIME_CENTROID Effective Mean No
EXPOSURE Effective Sum No
FLAG_ROW Effective Set if All Inputs Flagged No
UVW Effective Mean No
WEIGHT Effective Sum No
SIGMA Effective Weighted Mean No
CHAN_FREQ Nominal Mean No
CHAN_WIDTH Nominal Sum No
DATA (vis) Effective Weighted Mean No
FLAG Effective Set if All Inputs Flagged No
WEIGHT_SPECTRUM Effective Sum No
SIGMA_SPECTRUM Effective Weighted Mean No
Dask Implementation

The dask implementation chunks data up by row and channel and averages each chunk independently of values in other chunks. This should be kept in mind if one wishes to maintain a particular ordering in the output dask arrays.

Typically, Measurement Set data is monotonically ordered in time. To maintain this guarantee in output dask arrays, the chunks will need to be separated by distinct time values. Practically speaking this means that the first and second chunk should not both contain value time 0.1, for example.

Numpy
time_and_channel(time, interval, antenna1, …) Averages in time and channel.
africanus.averaging.time_and_channel(time, interval, antenna1, antenna2, time_centroid=None, exposure=None, flag_row=None, uvw=None, weight=None, sigma=None, chan_freq=None, chan_width=None, vis=None, flag=None, weight_spectrum=None, sigma_spectrum=None, time_bin_secs=1.0, chan_bin_size=1)[source]

Averages in time and channel.

Parameters:
time : numpy.ndarray

Time values of shape (row,).

interval : numpy.ndarray

Interval values of shape (row,).

antenna1 : numpy.ndarray

First antenna indices of shape (row,)

antenna2 : numpy.ndarray

Second antenna indices of shape (row,)

time_centroid : numpy.ndarray, optional

Time centroid values of shape (row,)

exposure : numpy.ndarray, optional

Exposure values of shape (row,)

flag_row : numpy.ndarray, optional

Flagged rows of shape (row,).

uvw : numpy.ndarray, optional

UVW coordinates of shape (row, 3).

weight : numpy.ndarray, optional

Weight values of shape (row, corr).

sigma : numpy.ndarray, optional

Sigma values of shape (row, corr).

chan_freq : numpy.ndarray, optional

Channel frequencies of shape (chan,).

chan_width : numpy.ndarray, optional

Channel widths of shape (chan,).

vis : numpy.ndarray, optional

Visibility data of shape (row, chan, corr).

flag : numpy.ndarray, optional

Flag data of shape (row, chan, corr).

weight_spectrum : numpy.ndarray, optional

Weight spectrum of shape (row, chan, corr).

sigma_spectrum : numpy.ndarray, optional

Sigma spectrum of shape (row, chan, corr).

time_bin_secs : float, optional

Maximum summed interval in seconds to include within a bin. Defaults to 1.0.

chan_bin_size : int, optional

Number of bins to average together. Defaults to 1.

Returns:
namedtuple

A namedtuple whose entries correspond to the input arrays. Output arrays will generally be None if the inputs were None.

Dask
time_and_channel(time, interval, antenna1, …) Averages in time and channel.
africanus.averaging.dask.time_and_channel(time, interval, antenna1, antenna2, time_centroid=None, exposure=None, flag_row=None, uvw=None, weight=None, sigma=None, chan_freq=None, chan_width=None, vis=None, flag=None, weight_spectrum=None, sigma_spectrum=None, time_bin_secs=1.0, chan_bin_size=1)[source]

Averages in time and channel.

Parameters:
time : dask.array.Array

Time values of shape (row,).

interval : dask.array.Array

Interval values of shape (row,).

antenna1 : dask.array.Array

First antenna indices of shape (row,)

antenna2 : dask.array.Array

Second antenna indices of shape (row,)

time_centroid : dask.array.Array, optional

Time centroid values of shape (row,)

exposure : dask.array.Array, optional

Exposure values of shape (row,)

flag_row : dask.array.Array, optional

Flagged rows of shape (row,).

uvw : dask.array.Array, optional

UVW coordinates of shape (row, 3).

weight : dask.array.Array, optional

Weight values of shape (row, corr).

sigma : dask.array.Array, optional

Sigma values of shape (row, corr).

chan_freq : dask.array.Array, optional

Channel frequencies of shape (chan,).

chan_width : dask.array.Array, optional

Channel widths of shape (chan,).

vis : dask.array.Array, optional

Visibility data of shape (row, chan, corr).

flag : dask.array.Array, optional

Flag data of shape (row, chan, corr).

weight_spectrum : dask.array.Array, optional

Weight spectrum of shape (row, chan, corr).

sigma_spectrum : dask.array.Array, optional

Sigma spectrum of shape (row, chan, corr).

time_bin_secs : float, optional

Maximum summed interval in seconds to include within a bin. Defaults to 1.0.

chan_bin_size : int, optional

Number of bins to average together. Defaults to 1.

Returns:
namedtuple

A namedtuple whose entries correspond to the input arrays. Output arrays will generally be None if the inputs were None.

Utilities

Command Line

parse_python_assigns(assign_str) Parses a string, containing assign statements into a dictionary.
africanus.util.cmdline.parse_python_assigns(assign_str)[source]

Parses a string, containing assign statements into a dictionary.

data = parse_python_assigns("beta=5.6; l=[2,3], s='hello, world'")

assert data == {
    'beta': 5.6,
    'l': [2, 3],
    's': 'hello, world'
}
Parameters:
assign_str: str

Assignment string. Should only contain assignment statements assigning python literals or builtin function calls, to variable names. Multiple assignment statements should be separated by semi-colons.

Returns:
dict

Dictionary { name: value } containing assignment results.

Requirements Handling

requires_optional(*requirements) Decorator returning either the original function, or a dummy function raising a MissingPackageException when called, depending on whether the supplied requirements are present.
africanus.util.requirements.requires_optional(*requirements)[source]

Decorator returning either the original function, or a dummy function raising a MissingPackageException when called, depending on whether the supplied requirements are present.

If packages are missing and called within a test, the dummy function will call pytest.skip().

Used in the following way:

try:
    from scipy import interpolate
except ImportError as e:
    # https://stackoverflow.com/a/29268974/1611416, pep 3110 and 344
    scipy_import_error = e
else:
    scipy_import_error = None

@requires_optional('scipy', scipy_import_error)
def function(*args, **kwargs):
    return interpolate(...)
Parameters:
requirements : iterable of string, None or ImportError

Sequence of package names required by the decorated function. ImportError exceptions (or None, indicating their absence) may also be supplied and will be immediately re-raised within the decorator. This is useful for tracking down problems in user import logic.

Returns:
callable

Either the original function if all requirements are available or a dummy function that throws a MissingPackageException or skips a pytest.

Shapes

aggregate_chunks(chunks, max_chunks) Aggregate dask chunks together into chunks no larger than max_chunks.
corr_shape(ncorr, corr_shape) Returns the shape of the correlations, given ncorr and the type of correlation shape requested
africanus.util.shapes.aggregate_chunks(chunks, max_chunks)[source]

Aggregate dask chunks together into chunks no larger than max_chunks.

chunks, max_c = ((3,4,6,3,6,7),(1,1,1,1,1,1)), (10,3)
expected = ((7,9,6,7), (2,2,1,1))
assert aggregate_chunks(chunks, max_c) == expected
Parameters:
chunks : sequence of tuples or tuple
max_chunks : sequence of ints or int
Returns:
sequence of tuples or tuple
africanus.util.shapes.corr_shape(ncorr, corr_shape)[source]

Returns the shape of the correlations, given ncorr and the type of correlation shape requested

Parameters:
ncorr : integer

Number of correlations

corr_shape : {‘flat’, ‘matrix’}

Shape of output correlations

Returns:
tuple

Shape tuple describing the correlation dimensions

  • If flat returns (ncorr,)

  • If matrix returns

    • (1,) if ncorr == 1
    • (2,) if ncorr == 2
    • (2,2) if ncorr == 4

Beams

beam_filenames(filename_schema, …) Returns a dictionary of beam filename pairs, keyed on correlation,from the cartesian product of correlations and real, imaginary pairs
beam_grids(header) Extracts the FITS indices and grids for the beam dimensions in the supplied FITS header.
africanus.util.beams.beam_filenames(filename_schema, polarisation_type)[source]

Returns a dictionary of beam filename pairs, keyed on correlation,from the cartesian product of correlations and real, imaginary pairs

Given beam_$(corr)_$(reim).fits returns:

{
  'xx' : ('beam_xx_re.fits', 'beam_xx_im.fits'),
  'xy' : ('beam_xy_re.fits', 'beam_xy_im.fits'),
  ...
  'yy' : ('beam_yy_re.fits', 'beam_yy_im.fits'),
}

Given beam_$(CORR)_$(REIM).fits returns:

{
  'xx' : ('beam_XX_RE.fits', 'beam_XX_IM.fits'),
  'xy' : ('beam_XY_RE.fits', 'beam_XY_IM.fits'),
  ...
  'yy' : ('beam_YY_RE.fits', 'beam_YY_IM.fits'),
}
Parameters:
filename_schema : str

String containing the filename schema.

polarisation_type : {‘linear’, ‘circular’}

String defining the type of polarisation.

Returns:
dict

Dictionary of schema {correlation : (refile, imfile)} mapping correlations to real and imaginary filename pairs

africanus.util.beams.beam_grids(header)[source]

Extracts the FITS indices and grids for the beam dimensions in the supplied FITS header. Specifically the axes specified by

  1. L or X CTYPE
  2. M or Y CTYPE
  3. FREQ CTYPE

If the first two axes have a negative sign, such as -L, the grid will be inverted.

Any grids corresponding to axes with a CUNIT type of DEG will be converted to radians.

Parameters:
header : Header or dict

FITS header object.

Returns:
tuple

Returns ((l_axis, l_grid), (m_axis, m_grid), (freq_axis, freq_grid)) where the axis is the FORTRAN indexed FITS axis (1-indexed) and grid contains the values at each pixel along the axis.

Code

format_code(code) Formats some code with line numbers
memoize_on_key(key_fn) Memoize based on a key function supplied by the user.
africanus.util.code.format_code(code)[source]

Formats some code with line numbers

Parameters:
code : str

Code

Returns:
str

Code prefixed with line numbers

class africanus.util.code.memoize_on_key(key_fn)[source]

Memoize based on a key function supplied by the user. The key function should return a custom key for memoizing the decorated function, based on the arguments passed to it.

In the following example, the arguments required to generate the _generate_phase_delay_kernel function are the types of the lm, uvw and frequency arrays, as well as the number of correlations, ncorr.

The supplied key_fn produces a unique key based on these types and the number of correlations, which is used to cache the generated function.

def key_fn(lm, uvw, frequency, ncorrs=4):
    '''
    Produce a unique key for the arguments of
     _generate_phase_delay_kernel
    '''
    return (lm.dtype, uvw.dtype, frequency.dtype, ncorrs)

_code_template = jinja2.Template('''
#define ncorrs {{ncorrs}}

__global__ void phase_delay(
    const {{lm_type}} * lm,
    const {{uvw_type}} * uvw,
    const {{freq_type}} * frequency,
    {{out_type}} * out)
{
    ...
}
''')

_type_map = {
    np.float32: 'float',
    np.float64: 'double'
}

@memoize_on_key(key_fn)
def _generate_phase_delay_kernel(lm, uvw, frequency, ncorrs=4):
    ''' Generate the phase delay kernel '''
    out_dtype = np.result_type(lm.dtype, uvw.dtype, frequency.dtype)
    code = _code_template.render(lm_type=_type_map[lm.dtype],
                                 uvw_type=_type_map[uvw.dtype],
                                 freq_type=_type_map[frequency.dtype],
                                 ncorrs=ncorrs)
    return cp.RawKernel(code, "phase_delay")

Methods

__call__  

CUDA

grids(dims, blocks) Determine the grid size, given space dimensions sizes and blocks
africanus.util.cuda.grids(dims, blocks)[source]

Determine the grid size, given space dimensions sizes and blocks

Parameters:
dims : tuple of ints

(x, y, z) tuple

Returns:
tuple

(x, y, z) grid size tuple

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/ska-sa/codex-africanus/issues.

If you are reporting a bug, please include:

  • Your operating system name and version.
  • Any details about your local setup that might be helpful in troubleshooting.
  • Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to whoever wants to implement it.

Write Documentation

Codex Africanus could always use more documentation, whether as part of the official Codex Africanus docs, in docstrings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/ska-sa/codex-africanus/issues.

If you are proposing a feature:

  • Explain in detail how it would work.
  • Keep the scope as narrow as possible, to make it easier to implement.
  • Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up codex-africanus for local development.

  1. Fork the codex-africanus repo on GitHub.

  2. Clone your fork locally:

    $ git clone git@github.com:your_name_here/codex-africanus.git
    
  3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

    $ mkvirtualenv codex-africanus
    $ cd codex-africanus/
    $ pip install -e .
    
  4. Create a branch for local development:

    $ git checkout -b name-of-your-bugfix-or-feature
    

    Now you can make your changes locally.

  5. When you’re done making changes, check that your changes pass the test cases, fixup your PEP8 compliance, and check for any code style issues:

    $ py.test -v africanus $ autopep8 -r -i africanus $ flake8 africanus $ pycodestyle africanus

    To get autopep8 and pycodestyle, just pip install them into your virtualenv.

  6. Commit your changes and push your branch to GitHub:

    $ git add .
    $ git commit -m "Your detailed description of your changes."
    $ git push origin name-of-your-bugfix-or-feature
    
  7. Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

  1. The pull request should include tests.
  2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with a docstring, and add the feature to the list in HISTORY.rst.
  3. The pull request should work for Python 2.7, 3.5 and 3.6. Check https://travis-ci.org/ska-sa/codex-africanus/pull_requests and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_africanus

Deploying

A reminder for the maintainers on how to deploy.

  1. Start a release branch

    $ git checkout -b prepare-release-Z.Y.X.

  2. Update HISTORY.rst with the intended release number Z.Y.X and commit to git.

  3. Bump the version number. If your current version is Z.Y.W and the new version is Z.Y.X call:

    $ python -m pip install bumpversion
    $ bumpversion --current-version Z.Y.W --new-version Z.Y.X patch
    
  4. Push the release branch to github and merge it.

    $ git push origin prepare-release-Z.Y.X

  5. Create the source and wheel distributions:

    $ git checkout master
    $ git pull origin master
    $ python setup.py sdist bdist_wheel
    
  6. Install twine and upload the source distribution to the pypi test server. Here, pypitest refers to to the pypi test server setup in a .pypirc file.:

    $ python -m pip install twine
    $ python -m twine upload -r pypitest dist/codex-africanus-Z.Y.X.tar.gz
    
  7. Test pypi install on different python versions, running the test cases.

    $ python -m virtualenv --python=pythonM.N test
    $ source test/bin/activate
    (test) $ pip install --index-url https://test.pypi.org/simple --extra-index-url https://pypi.org/simple codex-africanus[complete]==Z.Y.X
    (test) $ py.test /path/to/tests
    
  8. Upload the source distribution to the main pypi server. Here, pypi refers to to the main pypi setup in a .pypirc file.:

    $ python -m twine upload -r pypi dist/codex-africanus-Z.Y.X*
    
  9. Tag the release commit, push the release commits and tag to github.:

    $ git tag Z.Y.X
    $ git push
    $ git push --tags
    

Credits

Development Lead

Contributors

History

0.1.6 (2019-05-09)

  • Support automated travis releases.

0.1.5 (2019-05-09)

  • Predict script enhancements (GH#103) and dask channel chunking fix (GH#104).
  • Directly jit DFT functions (GH#100, GH#101)
  • Spectral Models (GH#86)
  • Fix radec sign conversion in wsclean sky model (GH#96)
  • Full Time and Channel Averaging Implementation (GH#80, GH#97, GH#98)
  • Support integer seconds in wsclean ra and dec columns (GH#91, GH#93)
  • Fix ratio computation in Gaussian Shape (GH#89, GH#90)

0.1.4 (2019-03-11)

  • Support complete and complete-cuda to support non-GPU installs (GH#87)
  • Gaussian Shape Parameter Implementation (GH#82, GH#83)
  • WSClean Spectral Model (GH#81)
  • Compare predict versus MeqTrees (GH#79)
  • Time and channel averaging (GH#75)
  • cupy implementation of predict_vis (GH#73)
  • Introduce transpose in second antenna term of predict (GH#72)
  • cupy implementation of feed_rotation (GH#67)
  • cupy implementation of stokes_convert kernel (GH#65)
  • Add a basic RIME example (GH#64)
  • requires_optional accepts ImportError’s for a better debugging experience (GH#62, GH#63)
  • Added fit_component_spi function (GH#61)
  • cupy implementation of the phase_delay kernel (GH#59)
  • Correct phase_delay argument ordering (GH#57)
  • Support dask for radec_to_lmn and lmn_to_radec. Also add support for radec_to_lm and lm_to_radec (GH#56)
  • Added test for dft to test if image space covariance is symmetric(GH#55)
  • Correct Parallactic Angle Computation (GH#49)
  • Enhance visibility predict (GH#50)
  • Fix Kaiser Bessel filter and taper (GH#48)
  • Stokes/Correlation conversion (GH#41)
  • Fix gridding examples (GH#43)
  • Add simple dask gridder example (GH#42)
  • Implement Kaiser Bessel filter (GH#38)
  • Implement W-stacking gridder/degridder (GH#38)
  • Use 2D filters by default (GH#37)
  • Fixed bug in im_to_vis. Added more tests for im_to_vis. Removed division by \(n\) since it is trivial to reinstate after the fact. (GH#34)
  • Move numba implementations out of API functions. (GH#33)
  • Zernike Polynomial Direction Dependent Effects (GH#18, GH#30)
  • Added division by \(n\) to DFT. Fixed dask chunking issue. Updated test_vis_to_im_dask (GH#29).
  • Implement RIME visibility predict (GH#24, GH#25)
  • Direct Fourier Transform (GH#19)
  • Parallactic Angle computation (GH#15)
  • Implement Feed Rotation term (GH#14)
  • Swap gridding correlation dimensions (GH#13)
  • Implement Direction Dependent Effect beam cubes (GH#12)
  • Implement Brightness Matrix Calculation (GH#9)
  • Implement RIME Phase Delay term (GH#8)
  • Support user supplied grids (GH#7)
  • Add dask wrappers to the gridder and degridder (GH#4)
  • Add weights to gridder/degridder and remove PSF function (GH#2)

0.1.2 (2018-03-28)

  • First release on PyPI.

Indices and tables