
CodeVikng.Contract Documentation
Release 0.12.4

Dan Bullok

March 04, 2015

Contents

1 Overview 1

2 Features 3

3 Quick Start 5
3.1 Install . 5
3.2 Usage . 5

4 Argument and Return Value Conditions 7

5 Preconditions, Postconditions, and Invariants 9

6 Checkers Specification 11
6.1 Nested Conditions . 12

7 Disabling Contracts 15

8 Errors 17

9 How does it all work? 19

10 codeviking.contracts Package 21
10.1 Decorators . 21
10.2 Checkers . 21
10.3 codeviking.contracts.error Module . 22

11 Indices and tables 23

Python Module Index 25

i

ii

CHAPTER 1

Overview

This package provides simple but powerful support for contract programming. It includes support for preconditions,
postconditions, invariants, and function signature checking. Decorators are used to specify preconditions, postcondi-
tions, and invariants. Function signatures are automatically extracted from argument and return type annotations. All
contracts can easily be enabled or disabled. Disabled contracts add zero runtime overhead.

This package currently supports Python 3 only. There is no planned support for Python 2.

WARNING: Code and documentation are currently in alpha testing. Everything that has been impelemented
is expected to work, with the following exceptions:

• lazily-parsed argument and return value annotations.

1

http://en.wikipedia.org/wiki/Design_by_contract

CodeVikng.Contract Documentation, Release 0.12.4

2 Chapter 1. Overview

CHAPTER 2

Features

CodeViking Contracts supports the following contract programming features:

Precondition A condition that must be True before a function is called.

Postcondition A condition that must be True after a function has returned.

Invariant A property whose value must not change over the course of a function call. This is essentially
a pre- and post- condition rolled into one.

Note: Our use of invariant is slightly different than the one traditionally used in the contract pro-
gramming community. A codeviking .contracts invariant is a property that is unchanged by the
execution of a function. To clarify:

typical invariant a condition that is always true throughout the life of a function call or
class instance.

our invariant We adopt the definition used in mathematics. Given a property p() and a
function f(*args, **kwargs), let:

• p_before = p()

• f(*args, **kwargs)

• p_after = p()

We say a property is invariant if p_before == p_after.

Checker Ensures that a value satisfies arbitrary constraints. We support checking argument values passed
to a function, and values returned from a function. Although these are two different conditions, they
are specified using the same set of rules.

Preconditions, postconditions, and invariants are specified using function decorators. Checkers are automatically
extracted from function annotations.

3

CodeVikng.Contract Documentation, Release 0.12.4

4 Chapter 2. Features

CHAPTER 3

Quick Start

3.1 Install

pip3 install codeviking.contract

3.2 Usage

from codeviking.contracts import contract

@check_sig
class Stack:

@postcondition(is_empty)
def __init__(self):

...

def push(self, element: Elem):
...

@precondition(lambda s: not s.is_empty)
def pop(self) -> Elem:

...

def length(self) -> int:
...

5

CodeVikng.Contract Documentation, Release 0.12.4

6 Chapter 3. Quick Start

CHAPTER 4

Argument and Return Value Conditions

Validating argument and return values are crucial to creating a function contract. Conditions on function arguments
and return values can be automatically enforced:

def f(x: float, y:float) -> Point2d:
pass

def add(name: str,
elem: lambda(e): hasattr(elem, ’e_type’) and

e.isValid) -> Point2d:
pass

def scale(x: {int,float}) -> Option(List(Shape)):
pass

There is no need to specify conditions for every argument:

def lookup(key, timeout: float):
pass

def read(stream) -> List(Token):
pass

def remove(key):
pass

7

CodeVikng.Contract Documentation, Release 0.12.4

8 Chapter 4. Argument and Return Value Conditions

CHAPTER 5

Preconditions, Postconditions, and Invariants

Specifying other conditions is slightly more verbose

@precondition(lambda s: not s.is_empty):
def pop(self) -> Element:

@invariant(is_valid)
def compact(self):
@postcondition(is_empty)
def clear(self):

9

CodeVikng.Contract Documentation, Release 0.12.4

10 Chapter 5. Preconditions, Postconditions, and Invariants

CHAPTER 6

Checkers Specification

Checkers are automatically extracted from function annotations:

def find(self, elem: (int, str), start_index: int = 0) -> Option(int):
...

In the above function:

• the checker (int, str) will be applied to argument elem

• the checker int will be applied to argument start_index

• the checker Option(int) will be applied to the return value of find(...)

There are many ways to specify checkers. In the following examples, arg is the argument or return value that is being
validated, and c, c0, c1, ... are arbitrary checkers.

11

CodeVikng.Contract Documentation, Release 0.12.4

Table 6.1: Built-in Checkers

An-
no-
ta-
tion

Meaning Example Success Condition

type Type Ver-
ification

arg:
MyClass

arg is an instance of class MyClass

set
lit-
eral

Disjunc-
tion
(or)

arg: {c0,
c1, ...,
ck}

arg must satisfy at least one of the conditions c0, c1, ..., ck

list
lit-
eral

Conjunc-
tion
(and)

arg: [c0,
c1, ...,
ck]

arg must satisfy all of the conditions c0, c1, ..., ck

tuple Element-
wise
Condition

arg: (c0,
c1, ...,
ck)

arg is a tuple of length k whose elements satisfy conditions c0, c1, ..., ck

str Delayed
Evalua-
tion

arg:
"check_expr"

The string “check_expr” is evaluated to produce the condition. This can
be used to specify a type or other condition that has not yet been
defined; it is similar to a forward declaration in languages like C++.

func-
tion

Func-
tional
Condition

arg: func func(arg) is true

OptionOptional
match

arg:
Option(c)

condition c succeeds, or arg is None.

Is Identical
match

arg:
Is(obj)

arg is obj

List List arg:
List(c)

arg is a list, and all the elements in arg satisfy c.

Dict Dictio-
nary

arg:
Dict(c_key,
c_value)

arg is a dict, c_key succeeds for the keys of arg, and c_value succeeds
for the values of‘arg‘.

Any Universal
Match

arg: Any arg can be anything (condition is always satisfied)

NamedTuple - used to create namedtuples whose elements are subject to contracts.

6.1 Nested Conditions

Conditions may be nested. For example:

arg: (int, {float, int}, List(List(str)))

matches a tuple with the following properties:

• the first element must be of type int

• the second element must be of type int or type float

• the third element must be a list whose elements are lists of str.

Option([f,{g,h}])

where f, g, and h are functions, matches:

• None or

12 Chapter 6. Checkers Specification

CodeVikng.Contract Documentation, Release 0.12.4

• arg for which f(arg) == True, and at least one of g(arg) and h(arg) are True

6.1. Nested Conditions 13

CodeVikng.Contract Documentation, Release 0.12.4

14 Chapter 6. Checkers Specification

CHAPTER 7

Disabling Contracts

Contracts are enabled by default, but can be enabled or disabled as often as desired by setting contracts.enabled
= True|False. For example:

from codeviking.contracts import contracts, check_sig, precondition

contracts are enabled by default, so f1 will be checked.
@check_sig
def f1(x: float, y: float) -> float:

...

contracts.enabled = False
contracts are disabled until we turn them back on.
f2 will not have its signature checked
def f2(x: float, y: float) -> float:

...

contracts are still disabled
@check_sig
class A:

def __init__(self, a:int, b:int):
...

@precondition(lambda s: s.a != s.b)
def skew(self, s: float):

...

contracts.enabled = True
everything from here on will be checked (unless contracts are disabled
again).

Note that contracts can only be enabled/disabled at the time a function or class is defined. If contracts are disabled,
they do not wrap the decorated class or function, so there is no runtime penalty.

It is technically possible to implement runtime contract enabling/disabling, though there will be a small run-time
penalty in this case. If you are interested in this feature, please make a feature request on the project website.

15

CodeVikng.Contract Documentation, Release 0.12.4

16 Chapter 7. Disabling Contracts

CHAPTER 8

Errors

[ContractViolation] - This represents a violation of some part of a contract. The contract library al-
lows subclasses of ContractViolation to pass up to the user so they can be notified of the
code that caused the contract violation.

Subclasses:

• SignatureViolation

• PreconditionViolation

• InvariantViolation

• PostconditionViolation

ContractError - This is distinct from a ContractViolation. It does not indicate a failed
contract. Rather, it indicates that some sort of problem was encountered while attempting to validate
a contract condition. This is a serious error. It means that there is a bug in a contract, or in some
code that a contract calls.

Subclasses:

• SignatureError

• PreconditionError

• InvariantError

• PostconditionError

17

CodeVikng.Contract Documentation, Release 0.12.4

18 Chapter 8. Errors

CHAPTER 9

How does it all work?

All contract decorators that operate on the same function are combined into a single ContractWrapper object.
Instead of nested wrappers (what you normally get when you use multiple decorators), we collect all of the contracts
together and execute them in the proper sequence. This makes stack traces easier to follow, and is slightly more
efficient. A ContractWrapper works as follows:

• Call all of the preconditions. If any of them return False,we raise a PreconditionViolation. If any of
the preconditions raise an exception other than a ContractViolation we catch it and raise a PreconditionError.

• Call each of the invariant properties and store them. If any of them raise a ContractViolation, we ignore it. Any
other exceptions are caught and we raise an InvariantError.

• Call the actual wrapped function and save the return value.

• Call each of the invariant properties once again. We handle any exceptions as before. If any of the invariant
properties fail to match the value we saved before the function call, we raise an InvariantViolation exception.

• Call all of the postconditions. If any of them return False, we raise a PostconditionViolation. If any of the
postconditions raise an exception other than a ContractViolation we catch it and raise a PostconditionError.

• We return the stored return value of the wrapped function.

Try to keep all of the contracts together. If you use any other decorators (like @property), put them at the top of your
decorators.

19

CodeVikng.Contract Documentation, Release 0.12.4

20 Chapter 9. How does it all work?

CHAPTER 10

codeviking.contracts Package

10.1 Decorators

contracts
A Switch instance that controls all of the decorators in the package: precondition, postcondition, invariant, and
check_sig

@check_sig
When applied to a function, enable signature checking by extracting argument and return type annotations.
When applied to a class, enable checking for all annotated member functions within the class.

@invariant(prop)
Evaluate prop before and after the decorated function is called. If the values match, the invariant is satisfied.

@precondition(cond)
Evaluate cond before and decorated function is called. If cond is True, the precondition is satisfied.

@postcondition(cond)
Evaluate cond before and decorated function is called. If cond is True, the postcondition is satisfied.

10.2 Checkers

These are used to Annotate function arguments and return values.

Any
Matches any argument (always succeeds).

class Is(other)
Matches if (argument is other) is True

class Option(other)
Matches if argument is None or argument == other.

class AllOf(c1, c2, ...)
Matches if argument satisfies all checkers c1, c2, ...

class Dict(key_checker, value_checker)
Matches if argument is a Mapping subtype, its keys all satisfy key_checker, and its values all satisfy
value_checker.

class Union(c1, c2, ...)
Matches if argument satisfies all of the checkers c1, c2,

21

CodeVikng.Contract Documentation, Release 0.12.4

class Seq(checker)
Matches if argument is a Sequence subtype whose elements all satisfy checker.

class Set(checker)
Matches if argument is a Set subtype whose elements all satisfy checker.

class IsIterable(checker)
Matches if argument is an Iterable subtype whose elements all satisfy checker.

class Eq(other)
matches if argument == other

class Neq(other)
matches if argument != other

class Lt(other)
matches if argument < other

class Leq(other)
matches if argument <= other

class Gt(other)
matches if argument > other

class Geq(other)
matches if argument >= other

10.3 codeviking.contracts.error Module

22 Chapter 10. codeviking.contracts Package

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

23

CodeVikng.Contract Documentation, Release 0.12.4

24 Chapter 11. Indices and tables

Python Module Index

c
codeviking.contracts, 21

25

CodeVikng.Contract Documentation, Release 0.12.4

26 Python Module Index

Index

A
AllOf (class in codeviking.contracts), 21
Any (in module codeviking.contracts), 21

C
check_sig() (in module codeviking.contracts), 21
codeviking.contracts (module), 21
contracts (in module codeviking.contracts), 21

D
Dict (class in codeviking.contracts), 21

E
Eq (class in codeviking.contracts), 22

G
Geq (class in codeviking.contracts), 22
Gt (class in codeviking.contracts), 22

I
invariant() (in module codeviking.contracts), 21
Is (class in codeviking.contracts), 21
IsIterable (class in codeviking.contracts), 22

L
Leq (class in codeviking.contracts), 22
Lt (class in codeviking.contracts), 22

N
Neq (class in codeviking.contracts), 22

O
Option (class in codeviking.contracts), 21

P
postcondition() (in module codeviking.contracts), 21
precondition() (in module codeviking.contracts), 21

S
Seq (class in codeviking.contracts), 21

Set (class in codeviking.contracts), 22

U
Union (class in codeviking.contracts), 21

27

	Overview
	Features
	Quick Start
	Install
	Usage

	Argument and Return Value Conditions
	Preconditions, Postconditions, and Invariants
	Checkers Specification
	Nested Conditions

	Disabling Contracts
	Errors
	How does it all work?
	codeviking.contracts Package
	Decorators
	Checkers
	codeviking.contracts.error Module

	Indices and tables
	Python Module Index

